Science.gov

Sample records for advanced energy efficiency

  1. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  2. Advanced, Energy Efficient Shelter Systems

    DTIC Science & Technology

    2012-03-02

    Development Analysis, M&S Thermal Barriers Large Shelter Efficiency System Integration Follow-On Demonstrations Lessons Learned from Initial...UNCLASSIFIED 13 Technology Development: Thermal Barriers Objective: Address the enduring challenge of developing a thermal insulation for shelter systems

  3. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  4. An efficient time advancing strategy for energy-preserving simulations

    NASA Astrophysics Data System (ADS)

    Capuano, F.; Coppola, G.; de Luca, L.

    2015-08-01

    Energy-conserving numerical methods are widely employed within the broad area of convection-dominated systems. Semi-discrete conservation of energy is usually obtained by adopting the so-called skew-symmetric splitting of the non-linear convective term, defined as a suitable average of the divergence and advective forms. Although generally allowing global conservation of kinetic energy, it has the drawback of being roughly twice as expensive as standard divergence or advective forms alone. In this paper, a general theoretical framework has been developed to derive an efficient time-advancement strategy in the context of explicit Runge-Kutta schemes. The novel technique retains the conservation properties of skew-symmetric-based discretizations at a reduced computational cost. It is found that optimal energy conservation can be achieved by properly constructed Runge-Kutta methods in which only divergence and advective forms for the convective term are used. As a consequence, a considerable improvement in computational efficiency over existing practices is achieved. The overall procedure has proved to be able to produce new schemes with a specified order of accuracy on both solution and energy. The effectiveness of the method as well as the asymptotic behavior of the schemes is demonstrated by numerical simulation of Burgers' equation.

  5. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  6. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    SciTech Connect

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  7. Advanced Nano-Composites for Increased Energy Efficiency

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to increase energy efficiency and operating lifetime of wear-intensive industrial components and systems by developing and commercializing a family of ceramic-based monolithic composites that have shown remarkable resistance to wear in laboratory tests.

  8. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  9. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  10. Advanced Energy-Efficient Filtration: Fan Filter Unit

    SciTech Connect

    Xu, Tengfang

    2005-10-01

    The objective of this project is to provide assistance in development of a standard test procedure for fan-filter units, which are gaining popularity for use in California cleanrooms. In particular, LBNL carried out collaboration with various stakeholders in the industry and took a lead in developing a draft standard method for testing the energy performance of fan-filter units, and provided assistance to California public utility companies by testing the draft method in PG&E's testing facility. Through testing more units in the future with a robust standard method, baseline performance information can be developed for use in possible energy incentive programs.

  11. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper

  12. ENERGY EFFICIENCY CHALLENGES ADDRESSED THROUGH THE USE OF ADVANCED REFRACTORY CERAMIC MATERIALS

    SciTech Connect

    Hemrick, James Gordon

    2014-01-01

    Refractory ceramics can play a critical role in improving the energy efficiency of traditional industrial processes through increased furnace efficiency brought about by the employment of novel refractory systems and techniques. Examples of advances in refractory materials related to aluminum, gasification, glass, and lime are highlighted. Energy savings are realized based on reduction of chemical reactions, elimination of mechanical degradation caused by the service environment, reduction of temperature limitations of materials, and elimination of costly installation and repair needs. Key results of projects resulting from US Department of Energy (DOE) funded research programs are discussed with emphasis on applicability of these results to high temperature furnace applications and needed research directions for the future.

  13. Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-17

    Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

  14. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  15. Advanced liquid cooling in HCPVT systems to achieve higher energy efficiencies

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Helmers, H.; Tiwari, M. K.; Escher, W.; Paredes, S.; Neves, P.; Poulikakos, D.; Wiesenfarth, M.; Bett, A. W.; Michel, B.

    2013-09-01

    The benefits of advanced thermal packaging are demonstrated through a receiver package consisting of a monolithic interconnected module (MIM) which is directly attached to a high performance microchannel heat sink. Those packages can be applied in high-concentration photovoltaic systems and the generated heat can be used in addition to the electrical power output (CPVT systems). Thus, the total energy efficiency of the system increases significantly. A detailed exergy analysis of the receiver power output underscores the advantages of the new cooling approach.

  16. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  17. Energy-efficiency comparison of advanced ammonia heat-exchanger types

    SciTech Connect

    Panchal, C.; Rabas, T.

    1990-01-01

    Ammonia is the most cost-effective working fluid for many Rankine power cycles and is widely utilized in industrial refrigeration applications. For example, it was selected as the most advantageous working fluid for the comprehensive closed-cycle Ocean Thermal Energy Conversion investigations where the heat source and sink are the warm, surface seawater and the cold, deep seawater, respectively. An essential part of this investigation was to measure the performance of many advanced heat-exchanger types using ammonia as the working fluid and to compare these results with those for conventional shell-and-tube designs. This paper presents an overview of these experiments and their potential significance for improved energy efficiency for industrial refrigeration applications. The heat exchangers used for industrial refrigeration systems account for about 50% of the equipment cost. However, current practice is to use state-of-the-art designs -- the shell-and-tube type without enhanced tubes. Substantial energy savings are possible through the use of advanced ammonia evaporator and condenser heat-exchanger types. 31 refs., 10 figs., 6 tabs.

  18. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    PubMed

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (P<0.05) faster than that observed with synthetic wastewater (with similar CN concentration). A combined application of H(2)O(2)/O(3) was found to be the best option for maximum CN destruction. This treatment allows CN to reach the regional/international limit (of 0.02 mg/L) for safe industrial wastewater discharges to the receiving water bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  19. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  20. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  1. Leveraging Smart Meter Data through Advanced Analytics: Applications to Building Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Jalori, Saurabh

    The poor energy efficiency of buildings is a major barrier to alleviating the energy dilemma. Historically, monthly utility billing data was widely available and analytical methods for identifying building energy efficiency improvements, performing building Monitoring and Verification (M&V) and continuous commissioning (CCx) were based on them. Although robust, these methods were not sensitive enough to detect a number of common causes for increased energy use. In recent years, prevalence of short-term building energy consumption data, also known as Energy Interval Data (EID), made available through the Smart Meters, along with data mining techniques presents the potential of knowledge discovery inherent in this data. This allows more sophisticated analytical tools to be developed resulting in greater sensitivities due to higher prediction accuracies; leading to deep energy savings and highly efficient building system operations. The research explores enhancements to Inverse Statistical Modeling techniques due to the availability of EID. Inverse statistical modeling is the process of identification of prediction model structure and estimates of model parameters. The methodology is based on several common statistical and data mining techniques: cluster analysis for day typing, outlier detection and removal, and generation of building scheduling. Inverse methods are simpler to develop and require fewer inputs for model identification. They can model changes in energy consumption based on changes in climatic variables and up to a certain extent, occupancy. This makes them easy-to-use and appealing to building managers for evaluating any general retrofits, building condition monitoring, continuous commissioning and short-term load forecasting (STLF). After evaluating several model structures, an elegant model form was derived which can be used to model daily energy consumption; which can be extended to model energy consumption for any specific hour by adding corrective

  2. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  3. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  4. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect

    LaClair, Tim J

    2012-01-01

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  5. Energy efficient motors

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This TechData Sheet is intended to help activity personnel identify cost effective energy projects for energy efficient motors. With this guide an energy manager can identify when an energy efficient induction motor should be used.

  6. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  7. Energy efficient engine

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Sabla, P. E.; Bahr, D. W.

    1980-01-01

    The feasibility of meeting or closely approaching the emissions goals established for the Energy Efficient Engine (E3) Project with an advanced design, single annular combustor was determined. A total of nine sector combustor configurations and one full-annular-combustor configuration were evaluated. Acceptable levels of carbon monoxide and hydrocarbon emissions were obtained with several of the sector combustor configurations tested, and several of the configurations tested demonstrated reduced levels of nitrogen oxides compared to conventional, single annular designs. None of the configurations tested demonstrated nitrogen oxide emission levels that meet the goal of the E3 Project.

  8. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    SciTech Connect

    E. Levy; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2016-03-01

    Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.

  9. Targeting 100! Advanced Energy Efficient Building Technologies for High Performance Hospitals: Executive Summary.

    SciTech Connect

    Burpee, Heather; Loveland, Joel; Helmers, Aaron

    2015-09-02

    This research, Targeting 100!, provides a conceptual framework and decision-making structure at a schematic design level of precision for hospital owners, architects and engineers to radically reduce energy use in hospitals. Following the goals of Architecture 2030 and The 2030 Challenge, it offers access to design strategies and the cost implications of those strategies for new hospitals to utilize 60% less energy. The name, Targeting 100!, comes from the 2030 Challenge energy reduction goal for hospitals; a 60% energy use reduction from typical acute care hospital targets approximately 100 KBtu/SF Year, thus the name “Targeting 100!”. Targeting 100! was developed through funding partnerships with the US Department of Energy and the Northwest Energy Efficiency’s BetterBricks Initiative. The technical team was led by the University of Washington Integrated Design Lab supported by deep collaboration with Solarc Architecture and Engineering, TBD Cost Consultants, and NBBJ Architecture. Through extensive research and design development, Targeting 100! provides a framework for developing high performance healthcare projects today and into the future. An online tool houses a Targeting 100! knowlegebase and roadmap. It can be accessed at: www.idlseattle.com/t100. The webtool is structured from high-level overview materials to detailed library with modeling inputs and outputs, providing a comprehensive report of the background, data, and outcomes from the project.

  10. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  11. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    SciTech Connect

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2016-03-01

    Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductless mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.

  12. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    NASA Technical Reports Server (NTRS)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  13. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies

    NASA Astrophysics Data System (ADS)

    1992-07-01

    To use slurries efficiently in a process, engineers must be able to determine the particle size distribution. A new particle size sensor is under development, based on ultrasonic spectroscopy and mathematical modeling. A field test prototype is being installed at a pilot facility for manufacturing pigments. The mathematical model has also been modified. The sensor is expected to enhance process control in the chemicals industry.

  14. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  15. Integrated window systems: An advanced energy-efficient residential fenestration product

    SciTech Connect

    Arasteh, D.; Griffith, B.; LaBerge, P.

    1994-03-01

    The last several years have produced a wide variety of new window products aimed at reducing the energy impacts associated with residential windows. Improvements have focused on reducing the rate at which heat flows through the total window product by conduction/convection and thermal radiation (quantified by the U-factor) as well as in controlling solar heat gain (measured by the Solar Heat Gain Coefficient (SHGC) or Shading Coefficient (SC)). Significant improvements in window performance have been made with low-E coated glazings, gas fills in multiple pane windows and with changes in spacer and frame materials and designs. These improvements have been changes to existing design concepts. They have pushed the limits of the individual features and revealed weaknesses. The next generation of windows will have to incorporate new materials and ideas, like recessed night insulation, seasonal sun shades and structural window frames, into the design, manufacturing and construction process, to produce an integrated window system that will be an energy and comfort asset.

  16. Advanced high temperature materials for the energy efficient automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.

    1984-01-01

    The Stirling Engine is under investigated jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling Engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

  17. Energy Efficiency in Libraries.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; And Others

    1993-01-01

    Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…

  18. Landscaping for energy efficiency

    SciTech Connect

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

  19. Duluth Energy Efficiency Program

    EPA Pesticide Factsheets

    The City of Duluth developed the Duluth Energy Efficiency Program (DEEP) to create jobs, lessen the energy affordability gap faced by Duluth families, retain energy dollars currently exported from the city, and reduce Duluth's carbon footprint.

  20. Making energy efficiency happen

    NASA Astrophysics Data System (ADS)

    Hirst, E.

    1991-04-01

    Improving energy efficiency is the least expensive and most effective way to address simultaneously several national issues. Improving efficiency saves money for consumers, increases economic productivity and international competitiveness, enhances national security by lowering oil imports, and reduces the adverse environmental effects of energy production. This paper discusses some of the many opportunities to improve efficiency, emphasizing the roles of government and utilities.

  1. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  2. Energy Efficiency Collaboratives

    SciTech Connect

    Li, Michael; Bryson, Joe

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  3. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  4. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  5. ENERGY EFFICIENT LAUNDRY PROCESS

    SciTech Connect

    Tim Richter

    2005-04-01

    With the rising cost of energy and increased concerns for pollution and greenhouse gas emissions from power generation, increased focus is being put on energy efficiency. This study looks at several approaches to reducing energy consumption in clothes care appliances by considering the appliances and laundry chemistry as a system, rather than individually.

  6. An energy-efficient SIMD DSP with multiple VLIW configurations and an advanced memory access unit for LTE-A modem LSIs

    NASA Astrophysics Data System (ADS)

    Tomono, Mitsuru; Ito, Makiko; Nomura, Yoshitaka; Mouri, Makoto; Hirose, Yoshio

    2015-12-01

    Energy efficiency is the most important factor in the design of wireless modem LSIs for mobile handset systems. We have developed an energy-efficient SIMD DSP for LTE-A modem LSIs. Our DSP has mainly two hardware features in order to reduce energy consumption. The first one is multiple VLIW configurations to minimize accesses to instruction memories. The second one is an advanced memory access unit to realize complex memory accesses required for wireless baseband processing. With these features, performance of our DSP is about 1.7 times faster than a base DSP on average for standard LTE-A Libraries. Our DSP achieves about 20% improvement in energy efficiency compared to a base DSP for LTE-A modem LSIs.

  7. Energy Efficiency of LEDs

    SciTech Connect

    2013-03-01

    Solid-state lighting program technology fact sheet on energy efficiency of LEDs, characterizing the current state of the market and discussing package efficacy, luminaire efficacy, and application efficacy.

  8. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  9. Energy Efficient Supercomputing

    SciTech Connect

    Anypas, Katie

    2014-10-17

    Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  10. Energy Efficient Supercomputing

    ScienceCinema

    Anypas, Katie

    2016-07-12

    Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  11. Technology for aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  12. Energy Efficiency Project Development

    SciTech Connect

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through

  13. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  14. Energy Efficiency Program Administrators and Building Energy Codes

    EPA Pesticide Factsheets

    This brief explores how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  15. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  16. Advancing Residential Energy Retrofits

    SciTech Connect

    Jackson, Roderick K; Boudreaux, Philip R; Kim, Eyu-Jin; Roberts, Sydney

    2012-01-01

    To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

  17. Energy Efficient Digital Networks

    SciTech Connect

    Lanzisera, Steven; Brown, Richard

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  18. The energy efficient engine project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine Project is directed at providing, by 1984, the advanced technologies which could be used for a generation of fuel conservative turbofan engines. The project is conducted through contracts with the General Electric Company and Pratt and Whitney Aircraft. The scope of the entire project and the current status of these efforts are summarized. A description of the preliminary designs of the fully developed engines is included and the potential benefits of these advanced engines, as well as highlights of some of the component technology efforts conducted to date, are discussed.

  19. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  20. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.

    1974-01-01

    Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.

  1. California Enhances Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.

    2011-11-01

    This article will discuss how my colleagues and I have promoted energy efficiency over the last 40 years. Our efforts have involved thousands of people from many different areas of expertise. The work has proceeded in several areas: • Investigating the science and engineering of energy end-use, • Assessing the potential and theoretical opportunities for energy efficiency, • Developing analytic and economic models to quantify opportunities, • Researching and developing new equipment and processes to bring these opportunities to fruition, • Participating in the development of California and later federal standards for energy performance in buildings and appliances, • Ensuring that market incentives were aligned with policies, and • Designing clear and convincing graphics to convey opportunities and results to all stakeholders.

  2. Energy Efficiency I: Automobiles

    SciTech Connect

    Martin, Peter M.

    2003-11-15

    Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.

  3. Center For Advanced Energy Studies Overview

    ScienceCinema

    Blackman, Harold

    2016-07-12

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  4. Center For Advanced Energy Studies Overview

    SciTech Connect

    Blackman, Harold

    2011-01-01

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  5. Southern Energy Efficiency Center (SEEC)

    SciTech Connect

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  6. Energy efficient data centers

    SciTech Connect

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case

  7. Energy-efficient Images.

    PubMed

    Hadizadeh, Hadi

    2017-04-03

    In this paper, a novel method is presented for producing energy-efficient images, i.e., images that consume less electrical energy on energy-adaptive displays, yet have the same, or very similar perceptual quality to their original images. The proposed method relies on the fact the the energy consumption of pixels in modern energy-adaptive displays like OLED displays is directly proportional to the luminance of the pixels. Hence, in this paper to reduce the energy consumption of an image while at the same time preserving its perceptual quality, it is proposed to reduce the luminance of the pixels in the image by one just-noticeable-difference (JND) threshold. To determine the JND thresholds, an adaptive saliency-modulated JND (SJND) model is developed. In the proposed model, the JND thresholds of each block in the given image are elevated by two non-linear saliency modulation functions using the visual saliency of the block. The parameters of the saliency modulation functions are estimated through an adaptive optimization framework, which utilizes a state-of-the-art saliency-based objective image quality assessment (IQA) method. To evaluate the proposed methods, a set of subjective experiments were conducted, and the real energy consumption of the produced energy-efficient images were measured by an accurate power monitor equipment on an OLED display. The obtained experimental results demonstrated that, on average, the proposed method is able to reduce the energy consumption by about 14.1% while preserving the perceptual quality of the displayed images.

  8. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  9. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  10. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    NASA Astrophysics Data System (ADS)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  11. 75 FR 30014 - Office of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice. SUMMARY... Efficiency and Renewable Energy (EERE), has experienced historic growth and unprecedented workload...

  12. Energy, energy efficiency, and the built environment.

    PubMed

    Wilkinson, Paul; Smith, Kirk R; Beevers, Sean; Tonne, Cathryn; Oreszczyn, Tadj

    2007-09-29

    Since the last decades of the 19th century, technological advances have brought substantial improvements in the efficiency with which energy can be exploited to service human needs. That trend has been accompanied by an equally notable increase in energy consumption, which strongly correlates with socioeconomic development. Nonetheless, feasible gains in the efficiency and technology of energy use in towns and cities and in homes have the potential to contribute to the mitigation of greenhouse-gas emissions, and to improve health, for example, through protection against temperature-related morbidity and mortality, and the alleviation of fuel poverty. A shift towards renewable energy production would also put increasing focus on cleaner energy carriers, especially electricity, but possibly also hydrogen, which would have benefits to urban air quality. In low-income countries, a vital priority remains the dissemination of affordable technology to alleviate the burdens of indoor air pollution and other health effects in individuals obliged to rely on biomass fuels for cooking and heating, as well as the improvement in access to electricity, which would have many benefits to health and wellbeing.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  14. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  15. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  16. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  17. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  18. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  19. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  20. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  1. Energy efficiency: major issues and policy recommendations

    SciTech Connect

    Not Available

    1981-01-01

    The Advisory Committee on Energy Efficiency has investigated strategies for improving energy efficiency in all sectors of the economy - industrial, agricultural, residential, and commercial, and transportation - and has considered the contributions of local government and utility companies, as well as the state, in encouraging its efficient use. The state may exercise several policy options to encourage energy efficiency: information transfer, financial aids and incentives, and building conservation standards. The Committee believes that the major objectives for state legislative and administrative actions should be to facilitate the efforts of consumers to improve energy efficiency and to set an example of efficiency in its own buildings and operations. The state can realize these objectives with programs that: provide accurate and unbiased information on energy efficiency technologies and practices; provide consumers with information to evaluate products and vendor claims of efficiency and thereby to protect against consumer fraud; identify and remove institutional and legislative barriers to energy efficient practices; provide economic incentives to help meet the capital requirements to invest in energy efficiency technologies; and advance research, development, and demonstration of new technologies.

  2. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    In 1976 NASA initiated the Aircraft Energy Efficiency (ACEE) Program to assist in the development of technology for more fuel-efficient aircraft for commercial airline use. The Energy Efficient Engine (EEE) Project of the ACEE program is intended to lay the advanced-technology foundation for a new generation of turbofan engines. This project, planned as a seven-year cooperative government-industry effort, is aimed at developing and demonstrating advanced component and systems technologies for engines that could be introduced into airline service by the late 1980s or early 1990s. In addition to fuel savings, new engines must offer potential for being economically attractive to the airline users and environmentally acceptable. A description is presented of conceptual energy-efficient engine designs which offer potential for achieving all of the goals established for the EEE Project.

  3. Energy efficient building design

    SciTech Connect

    Not Available

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  4. Forget energy conservation - think energy efficiency

    SciTech Connect

    Decker, D.A.

    1996-12-31

    {open_quotes}CONSERVE ENERGY: Please Turn Off The Lights!{close_quotes} Many buildings constructed before 1975 have the peeling remains of those green or orange stickers on light switches. They are the remnants of a U.S. energy policy gone bad. Twenty years ago, energy conservation meant telling employees to wear sweaters to work and applying stickers to remind people to turn off the lights. Neither worked. People who see those old stickers probably don`t know that a quiet revolution has taken place inside thousands of public and commercial buildings. Thanks to new technology and a new attitude about energy, you can forget sweaters and switches. For example... (1) Motion sensors automatically turn off fights when you leave the room. (2) Computers determine when energy rates go down to get the best value. (3) Personal environmental modules let office workers set their cubicle`s heating and lighting levels. These days, energy efficiency is equated with good business. It can increase productivity, create jobs, and reduce pollution -- all with very little effort. That`s why it`s called energy efficiency, not energy conservation. And energy efficiency is good government. If Congress truly is committed to lowering taxes and reducing the budget deficit, members should first look at ways to lower the nation`s energy bill through energy efficiency. It is in the best interests of the energy efficiency industry to work together and promote these benefits.

  5. LEDs for Efficient Energy

    ERIC Educational Resources Information Center

    Guerin, David A.

    1978-01-01

    Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)

  6. Nonprofit Energy Efficiency Act

    THOMAS, 113th Congress

    Sen. Klobuchar, Amy [D-MN

    2013-04-11

    06/25/2013 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 113-70. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations

    SciTech Connect

    Rick Honaker; Gerald Luttrell

    2007-09-30

    The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the

  8. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  9. Aircraft energy efficiency. Overview

    SciTech Connect

    Not Available

    1981-01-01

    Six advanced technology development projects that could cut fuel consumption of future civil air transports by as much as 50 percent are highlighted. These include improved engine components, better engine design, thin short blades for turboprop aircaft using composite primary structures for weight reduction, the use of supercritical wings, higher aspect ratio, and winglets for improved aerodynamics active controls and laminar flow control. The time span of each of the six efforts and NASA's expected expenditures are also discussed.

  10. Aircraft energy efficiency. Overview

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Six advanced technology development projects that could cut fuel consumption of future civil air transports by as much as 50 percent are highlighted. These include improved engine components; better engine design; thin short blades for turboprop aircaft; using composite primary structures for weight reduction; the use of supercritical wings, higher aspect ratio, and winglets for improved aerodynamics; active controls; and laminar flow control. The time span of each of the six efforts and NASA's expected expenditures are also discussed.

  11. Energy efficiency, renewable energy and sustainable development

    SciTech Connect

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  12. Improving aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.

    1976-01-01

    Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.

  13. Energy 101: Energy Efficient Data Centers

    ScienceCinema

    None

    2016-07-12

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components—up to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  14. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  15. Advanced Energy Initiative

    DTIC Science & Technology

    2006-02-01

    President’s National Energy Policy remain to be addressed: o ANWR : The President continues to support Congressional action to authorize...environmentally responsible oil and gas exploration within a small area of the Arctic National Wildlife Refuge ( ANWR ) located in northern Alaska. Using...modern technologies and subject to the world’s most stringent environmental protections, ANWR could produce as much as 1 million barrels of oil per day

  16. Energy Efficient Economists.

    ERIC Educational Resources Information Center

    Silverman, Judy; Lamp, Nancy

    This interdisciplinary economics project helped first and second graders learn how to conserve energy and save money. The project started because of an announcement by the elementary school principal that, if school utility bills could be lowered, the Board of Education would give the school half the money saved. Students were first introduced to…

  17. Advanced Energy Projects, FY 1993

    NASA Astrophysics Data System (ADS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase 1 SBIR projects, and Phase 2 SBIR projects. Investigator and institutional indexes are included.

  18. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  19. Energy sustainability: consumption, efficiency, and ...

    EPA Pesticide Factsheets

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  20. Energy planning and energy efficiency assistance

    SciTech Connect

    Markel, L.

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  1. Results of NASA's Energy Efficient Engine Program

    NASA Technical Reports Server (NTRS)

    Ciepluch, Carl C.; Davis, Donald Y.; Gray, David E.

    1987-01-01

    The major activity undertaken in the NASA Energy Efficient Engine Program has been completed. This paper reports on the progress made toward achieving the program goal of developing advanced technology to significantly reduce fuel consumption and operating costs of future subsonic transport-type propulsion systems. An additional goal was that the advanced concepts be compatible with future environmental regulations. Along with the results obtained, a brief overview of the design details of both the General Electric and Pratt and Whitney energy efficient engines and the overall program scope are presented. Overall, this program has been highly successful; the technology developed during its course is, and will continue to be, effectively employed in both current and future advance transport aircraft engine designs.

  2. Polish Foundation for Energy Efficiency

    SciTech Connect

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  3. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect

    1996-09-01

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  4. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  5. Toward energy efficient neural interfaces.

    PubMed

    Peng, Chung-Ching; Xiao, Zhiming; Bashirullah, Rizwan

    2009-11-01

    This letter presents progress toward an energy efficient neural data acquisition transponder for brain-computer interfaces. The transponder utilizes a four-channel time-multiplexed analog front-end and an energy efficient short-range backscattering RF link to transmit digitized wireless data. In addition, a low-complexity autonomous and adaptive digital neural signal processor is proposed to minimize wireless bandwidth and overall power dissipation.

  6. Downtown Detroit Energy Efficient Street Lighting

    SciTech Connect

    Goodwin, Malik

    2013-11-29

    Reliable public lighting remains a critically important and valuable public service in Detroit, Michigan. The Downtown Detroit Energy Efficiency Lighting Program (the, “Program”) was designed and implemented to bring the latest advancements in lighting technology, energy efficiency, public safety and reliability to Detroit’s Central Business District, and the Program accomplished those goals successfully. Downtown’s nighttime atmosphere has been upgraded as a result of the installation of over 1000 new LED roadway lighting fixtures that were installed as part of the Program. The reliability of the lighting system has also improved.

  7. Cleanroom Energy Efficiency Workshop Proceedings

    SciTech Connect

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  8. Energy Efficiency for Electrical Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in electrical technology. The following topics are examined: where to look for energy waste; conservation methods for electrical consumers, for…

  9. New Orleans and Energy Efficiency

    ScienceCinema

    Rosenburg, Zachary

    2016-07-12

    The Saint Bernard Project works tirelessly with volunteers, veterans and homeowners to continue the rebuilding. With the help of the Department of Energy and the Department of Housing and Urban Development they will be able to apply a greater energy efficiency strategy to help New Orleans and the country reduce our dependence on foreign oil.

  10. Bright, Light and Energy Efficient.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)

  11. Energy Efficiency Indicators Methodology Booklet

    SciTech Connect

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  12. Advanced techniques in laser-ion acceleration: Conversion efficiency, beam distribution and energy scaling in the Break-Out Afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Yin, Lin; Albright, Brian; Gautier, Donald; Hoerlein, Rainer; Johnson, Randall; Kiefer, Daniel; Letzring, Sam; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Habs, Dietrich; Fernandez, Juan; Hegelich, Manuel

    2011-10-01

    Recently, increasing laser intensities and contrast made acceleration mechanisms such as the radiation pressure acceleration or the Break-Out Afterburner (BOA) accessible. These mechanisms efficiently couple laser energy into all target ion species, making them a competitive alternative to conventional accelerators. We here present experimental data addressing conversion efficiency and ion distribution scaling for both carbon C6+ and protons within the BOA regime and the transit into the TNSA regime. Unique high resolution measurements of angularly resolved carbon C6+ and proton energy spectra for targets ranging from 30nm to 25microns - recorded with a novel ion wide angle spectrometer - are presented and used to derive thickness scaling estimates. While the measured conversion efficiency for C6+ reaches up to ~6%, peak energies of 1GeV and 120MeV have been measured for C6+ and protons, respectively.

  13. Energy Efficient Drivepower: An Overview.

    SciTech Connect

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  14. Energy efficient drivepower: An overview

    NASA Astrophysics Data System (ADS)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    Energy efficiency is a major concern to industry for a variety of reasons. Operating expenses and public relations are just two of these. While a lot of effort has been expended in the area of electrical energy efficiency, the area of concern in the report, most papers use a limited approach when examining the opportunities for efficiency improvement. However, use of a systems approach--examining the entire power train system from when electrical power first enters a facility to the final output is presented. This type of approach to electrical energy efficiency can improve the overall efficiency by a significant amount. There are many methods of driving mechanical loads such as waste steam (steam turbine), centralized hydraulic systems, and compressed air. Only electric-drive systems were analyzed. Depending on the application and facilities, these other methods may be a viable alternative to electric drivepower systems. The document assumes that the reader has an understanding of the basic concepts, practices, and terminology used in electrical and mechanical engineering. The reader should be familiar with terms such as voltage, current, dc power, ac power, power factor, horse power, torque, angular velocity, kilowatt-hours, efficiency, harmonics, and gear ratio.

  15. Energy efficiency standards and innovation

    NASA Astrophysics Data System (ADS)

    Morrison, Geoff

    2015-01-01

    Van Buskirk et al (2014 Environ. Res. Lett. 9 114010) demonstrate that the purchase price, lifecycle cost and price of improving efficiency (i.e. the incremental price of efficiency gain) decline at an accelerated rate following the adoption of the first energy efficiency standards for five consumer products. The authors show these trends using an experience curve framework (i.e. price/cost versus cumulative production). While the paper does not draw a causal link between standards and declining prices, they provide suggestive evidence using markets in the US and Europe. Below, I discuss the potential implications of the work.

  16. Energy Efficiency: Transportation and Buildings

    NASA Astrophysics Data System (ADS)

    Lubell, Michael S.; Richter, Burton

    2011-11-01

    We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings, we include the report's recommendations for policy makers that we believe are in the best interests of the nation.

  17. Energy Efficiency for Automotive Instructors.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.; Lay, Gary, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains six units on energy efficiency that were designed to be incorporated into an existing program in automobile mechanics. The following topics are examined: drivers and public awareness (relationship between driving and fuel consumption); ignition…

  18. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...; ] DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency Advisory... Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a...: Ryan Mulholland, Office of Energy and Environmental Industries (OEEI), International...

  19. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold its inaugural meeting to..., Office of Energy and Environmental Technologies Industries (OEEI), International Trade Administration,...

  20. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  1. Guide to Energy-Efficient Lighting

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Lighting accounts for about 15% of an average home’s electricity use, so it pays to make energy-efficient choices.

  2. Energy Efficient Transport - Technology in hand

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1984-01-01

    Technologies developed through NASA's Energy Efficient Transport Program are described. The program was charged with research in advanced aerodynamics and active controls, with the goal of increasing the fuel efficiency of transport aircraft by 15 to 20 percent. Research in aerodynamics was directed toward the development of high-aspect-ratio supercritical wings, winglets, computational design methodology, high-lift devices, propulsion airframe integration, and surface coatings. The active control portion of the program investigated Wing Load Alleviation (WLA) through the use of active controls, drag reduction, and the effect of active pitch controls on fuel consumption. It was found that applying active control functions at the beginning of the aircraft design cycle brings the best benefit, and that if active control and advanced aerodynamic airframe configurations are applied to transport aircraft design concurrently with new lightweight materials, fuel consumption can be reduced by as much as 40 percent.

  3. Energy-Efficient Neuromorphic Classifiers.

    PubMed

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2016-10-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.

  4. No maintenance -- no energy efficiency

    SciTech Connect

    Szydlowski, R.F.; Schliesing, J.S.; Winiarski, D.W.

    1994-12-01

    Field investigations illustrate that it is not realistic to expect new high-tech equipment to function for a full life expectancy at high efficiency without significant operations and maintenance (O&M). A simple walk through inspection of most buildings reveals extensive equipment that is being operated on manual override, is incorrectly adjusted and operating inefficiently, or is simply inoperative. This point is illustrated with two examples at Robins Air Force Base, Georgia. The first describes development of a comprehensive, base-wide, steam trap maintenance program. The second describes a measured evaluation from a typical office building. The objective of both examples was to assess the importance of proper O&M. The proposed ``O&M First`` philosophy will result in more efficient building HVAC operation, provide improved services to the building occupants, and reduce energy consumption and unscheduled equipment repair/replacement. Implementation of a comprehensive O&M program will result in a 15--25% energy savings. The O&M foundation that is established will allow other energy conservation activities such is demand side management or energy management and control systems, to achieve and maintain their expected energy savings.

  5. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gan; Jin, Dandan; Zhou, Rui; Shen, Chao; Xie, Keyu; Wei, Bingqing

    2016-02-01

    A simple one-step and low-temperature synthesis approach has been developed to grow hierarchical NiCo2S4 ultrathin nanosheets (2-3 nm in thickness) on Ni foam. Owing to the unique nanoarchitecture, the NiCo2S4 nanosheets not only offer abundant electro-active sites for energy storage, but also have good electrical and mechanical connections to the conductive Ni foam for enhancing reaction kinetics and improving electrode integrity. When used as anodes for Li-ion batteries, the NiCo2S4 nanosheets demonstrate exceptional energy storage performance in terms of high specific capacity, excellent rate capability, and good cycling stability. The mild-solution synthesis of NiCo2S4 nanostructures and the outstanding electrochemical performance enable the novel electrodes to hold great potential for high-efficient energy storage systems.

  6. Advanced energy projects FY 1994 research summaries

    SciTech Connect

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  7. Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, V.; Bhargava, A.

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  8. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area

  9. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.

  10. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  11. Energy efficiency public service advertising campaign

    SciTech Connect

    Gibson-Grant, Amanda

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  12. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call on January... renewable energy and energy efficiency (RE&EE) products and services. DATES: January 23, 2014, from 2:00...

  13. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: U.S... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call to... expand the competitiveness of the U.S. renewable energy and energy efficiency industries,...

  14. Aerodynamics/ACEE: aircraft energy efficiency

    SciTech Connect

    Not Available

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  15. Energy efficient contextual sensing for elderly care.

    PubMed

    Bhatia, Dinesh; Estevez, Leonardo; Rao, Shekar

    2007-01-01

    Technology assisted safe living has great potential in revolutionizing the way healthcare is provided to elderly and needy population. A wireless sensor network (WSN) based system for sensing and reporting events based on context is presented in this paper. It is demonstrated that by proper use of architectures for supporting WSNs and by exploiting very recent technological advances, it is now possible to build and deploy extremely energy efficient systems with very long and dependable battery life. The system evolves over most existing approaches by highly localizing the computations for detecting events and transmitting only positive events where care providers may need to be alerted.

  16. Aerodynamics/ACEE: Aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  17. The energy efficient industrialized housing research program

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    The United states housing industry is undergoing a metamorphosis from hand built to factory built products. Virtually all new housing incorporates manufactured components; indeed, an increasing percentage is totally assembled in a factory. The factory-built process offers the promise of houses that are more energy efficient, of higher quality, and less costly. To ensure that this promise can be met, the US industry must begin to develop and use new technologies, new design strategies, and new industrial processes. However, the current fragmentation of the industry makes research by individual companies prohibitively expensive, and retards innovation. This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: the formation of a steering committee; the development of a multiyear research plan; analysis of the US industrialized housing industry; assessment of foreign technology; assessment of industrial applications; analysis of computerized design and evaluation tools; and assessment of energy performance of baseline and advanced industrialized housing concepts. Our goal is to develop techniques to produce marketable industrialized housing that is 25% more energy efficient that the most stringent US residential codes now require, and that costs less. Energy efficiency is the focus of the research, but it is viewed in the context of production and design. 63 refs.

  18. Energy efficient sensor network implementations

    SciTech Connect

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M; Kulathumani, Vinod; Rosten, Ed; Wolinski, Christophe; Wagner, Charles; Charot, Francois

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  19. 7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.255 Energy efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain...

  20. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy...

  1. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  2. Guide for Conducting Energy Efficiency Potential Studies

    EPA Pesticide Factsheets

    The Guide for Conducting Energy Efficiency Potential Studies is provided to assist state officials, regulators, legislators, and others in implementing the recommendations of the National Action Plan for Energy Efficiency.

  3. Resale housing and energy efficiency

    SciTech Connect

    Benoit, J.; Campbell, H.D.

    1981-01-01

    The Residential Conservation Service Program (RCS), a new tool, the energy audit, has been identified as a potential benefit to the appraiser, underwriter, and resale home buyer. This paper examines the possible use of the RCS audit in the valuation process and transfer of real estate from seller to buyer. The use of the RCS audit upon resale should provide the appraiser with detailed weatherization information, leading to a more comprehensive appraisal. This paper explores complex problematical issues of logistics with the goal of managing backlogs, avoiding escrow delays, and providing for efficient zone planning. The issue of legal liability seems to loom as the largest barrier to this proposal. The potential legal liability of lenders and utilities is discussed. It is also important to consider the ramifications of the audit on substandard, low-income, minority, and senior citizen housing. A final problem area examined concerns attitude and acceptance.

  4. Energy-efficient skylight structure

    SciTech Connect

    Dame, J.V.

    1988-03-29

    This patent describes an energy-efficient skylight structure for attaching to a ceiling having a hole therein. The structure includes a roof membrane of light translucent material. The improvement comprises: a framework being larger in size than the hole in the ceiling, the framework adapted to receive a light-diffusing panel; means for attaching the framework over the hole in the ceiling to support beams for the ceiling; gasket means between the framework and the ceiling for sealing the framework to the ceiling around the hole; a light-diffusing panel held by the framework; sealing means between the light-diffusing panel and the framework for sealing the perimeter of the light diffusing panel to the framework; and a light-channeling means attached at one end to the ceiling around the opening on the side opposite the framework and at the other end around the light translucent material of the roof membrane.

  5. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  6. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  7. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Advanced Energy Industries at the ESIF to test its advanced photovoltaic inverter technology with the ESIF's power hardware-in-the-loop system and megawatt-scale grid simulators.

  8. Indian Renewable Energy and Energy Efficiency Policy Database (Fact Sheet)

    SciTech Connect

    Bushe, S.

    2013-09-01

    This fact sheet provides an overview of the Indian Renewable Energy and Energy Efficiency Policy Database (IREEED) developed in collaboration by the United States Department of Energy and India's Ministry of New and Renewable Energy. IREEED provides succinct summaries of India's central and state government policies and incentives related to renewable energy and energy efficiency. The online, public database was developed under the U.S.- India Energy Dialogue and the Clean Energy Solution Center.

  9. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  10. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2016-07-12

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  11. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to hear presentations from the Departments of Energy and Commerce on how their programs support the competitiveness of...

  12. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to deliver a letter... administration of programs and policies to enhance the competitiveness of the U.S. renewable energy and...

  13. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call on May 2... Trade Subcommittees that address issues affecting U.S. competitiveness in exporting renewable energy...

  14. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting on May 1, 2013. The... NW., Washington, DC 20230. FOR FURTHER INFORMATION CONTACT: Ryan Mulholland, Office of Energy...

  15. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting on December 3, 2013... NW., Washington, DC 20230. FOR FURTHER INFORMATION CONTACT: Ryan Mulholland, Office of Energy...

  16. 76 FR 26695 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet to hear briefings on the state of renewable energy finance and to discuss the development of recommendations on increasing...

  17. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to deliver 11... administration of programs and policies to enhance the competitiveness of the U.S. renewable energy and...

  18. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold its inaugural meeting under... expected to develop recommendations on improving the competitiveness of U.S. renewable energy and...

  19. Energy efficiency of a dynamic glazing system

    SciTech Connect

    Lollini, R.; Danza, L.; Meroni, I.

    2010-04-15

    The reduction of air-conditioning energy consumptions is one of the main indicators to act on when improving the energy efficiency in buildings. In the case of advanced technological buildings, a meaningful contribution to the thermal loads and the energy consumptions reduction could depend on the correct configuration and management of the envelope systems. In recent years, the architectural trend toward highly transparent all-glass buildings presents a unique challenge and opportunity to advance the market for emerging, smart, dynamic window and dimmable daylighting control technologies (). A prototype dynamic glazing system was developed and tested at ITC-CNR; it is aimed at actively responding to the external environmental loads. Both an experimental campaign and analyses by theoretical models were carried out, aimed at evaluating the possible configurations depending on different weather conditions in several possible places. Therefore, the analytical models of the building-plant system were defined by using a dynamic energy simulation software (EnergyPlus). The variables that determine the system performance, also influenced by the boundary conditions, were analysed, such as U- and g-value; they concern both the morphology of the envelope system, such as dimensions, shading and glazing type, gap airflow thickness, in-gap airflow rate, and management, in terms of control algorithm parameters tuning fan and shading systems, as a function of the weather conditions. The configuration able to provide the best performances was finally identified by also assessing such performances, integrating the dynamic system in several building types and under different weather conditions. The dynamic envelope system prototype has become a commercial product with some applications in facade systems, curtain walls and windows. The paper describes the methodological approach to prototype development and the main results obtained, including simulations of possible applications on

  20. Energy Efficient Industrialized Housing Research Program

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  1. Health, Energy Efficiency and Climate Change

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  2. Assessment of Selected Energy Efficiency Policies

    EIA Publications

    2005-01-01

    This report responds to a request from Senator Byron L. Dorgan, asking the Energy Information Administration (EIA) to undertake a quantitative analysis of a variety of energy efficiency policies using assumptions provided by the Alliance to Save Energy (ASE).

  3. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  4. State-Level Benefits of Energy Efficiency

    SciTech Connect

    Tonn, Bruce Edward

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  5. Energy Efficiency in India: Challenges and Initiatives

    ScienceCinema

    Ajay Mathur

    2016-07-12

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  6. Energy Efficiency in India: Challenges and Initiatives

    SciTech Connect

    Ajay Mathur

    2010-05-20

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  7. Energy efficient lighting for the biological clock

    NASA Astrophysics Data System (ADS)

    Lang, Dieter

    2011-03-01

    Unexpectedly the existence of a formerly unknown type of photoreceptor in the human eye has been proven about 10 years ago. Primarily sensitive in the blue spectral range it is responsible for transducing light signals directly into the brain, controlling essential biological functions like setting of the circadian clock or daytime activation. Recent scientific research has enabled beneficial applications. The paradigms for good lighting design are shifting and standardization activities have been started to build up a sound base for description and application of biologically effective lighting. Latest improvements of LED technology are now allowing realizeation of advanced lighting solutions based on SSL. Optimization of biological effects is possible while demands on good vision are maintained. As biologically effective lighting is addressing a second system besides vision in the human body a measure beyond lumen per watt is required for a proper description of energy efficiency.

  8. The drive for Aircraft Energy Efficiency

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  9. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  10. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to hear... of Commerce on efforts to address issues that affect the competitiveness of U.S. renewable ]...

  11. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  12. Linking Transformational Materials and Processing for an Energy-Efficient and Low-Carbon Economy, 2010

    SciTech Connect

    Hunt, Warren H.; Brindle, Ross; James, Mallory; Justiniano, Mauricio; Sabouni, Ridah; Seader, Melanie; Ruch, Jennifer; Andres, Howard; Zafar, Muhammad

    2010-06-01

    The Energy Materials Blue Ribbon Panel, representing experts from industry, academia, and government, identifies new materials and processing breakthroughs that could lead to transformational advances in energy efficiency, energy security, and carbon reduction.

  13. Promotion of Efficient Use of Energy

    SciTech Connect

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  14. Energy efficiency, market failures, and government policy

    SciTech Connect

    Levine, M.D.; Koomey, J.G.; McMahon, J.E.; Sanstad, A.H.; Hirst, E.

    1994-03-01

    This paper presents a framework for evaluating engineering-economic evidence on the diffusion of energy efficiency improvements. Four examples are evaluated within this framework. The analysis provides evidence of market failures related to energy efficiency. Specific market failures that may impede the adoption of cost-effective energy efficiency are discussed. Two programs that have had a major impact in overcoming these market failures, utility DSM programs and appliance standards, are described.

  15. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    SciTech Connect

    Gu, Lixing; Shirey, Don; Raustad, Richard; Nigusse, Bereket; Sharma, Chandan; Lawrie, Linda; Strand, Rick; Pedersen, Curt; Fisher, Dan; Lee, Edwin; Witte, Mike; Glazer, Jason; Barnaby, Chip

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly

  16. National Action Plan for Energy Efficiency Report

    SciTech Connect

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  17. Energy Efficiency in Water and Wastewater Facilities

    EPA Pesticide Factsheets

    The Local Government Climate and Energy Strategy Series provides a comprehensive, straightforward overview of green-house gas (GHG) emissions reduction strategies for local governments. Developing and implementing energy efficiency improvements in water an

  18. National Action Plan for Energy Efficiency Report

    EPA Pesticide Factsheets

    This seminal report includes the Action Plan recommendations, identifies key barriers, and summarizes methods for energy efficiency in utility ratemaking and revenue requirements, energy resource planning processes, rate design, and other best practices.

  19. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  20. Energy efficient engine preliminary design and integration studies

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Hemsworth, M. C.

    1978-01-01

    The characteristics and systems benefits of an energy efficient engine (E3) suitable for use on advanced subsonic transport aircraft were determined. Relative to a current CF6-50C engine, the following benefits were estimated: 14.4% reduction in installed cruise specific fuel consumption, and a reduction in direct operating cost of more than 5%. The advanced technology E3 system would also permit: compliance with FAR 36 (1977) noise limits, and compliance with 1981 EPA emission standards.

  1. A status report on the Energy Efficient Engine Project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine (E3) Project is directed at providing, by 1984, the advanced technologies which could be used for a new generation of fuel conservative turbofan engines. This paper summarizes the scope of the entire project and the current status of these efforts. Included is a description of the preliminary designs of the fully developed engines, the potential benefits of these advanced engines, and highlights of some of the component technology efforts conducted to date.

  2. Energy efficiency buildings program, FY 1980

    SciTech Connect

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  3. Center for Advanced Energy Studies Program Plan

    SciTech Connect

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  4. Jcpenney Buying into Energy Efficiency

    SciTech Connect

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air- Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  5. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  6. Risk Assessment of Energy-Efficient Walls

    SciTech Connect

    Pallin, Simon B.; Hun, Diana E.; Jackson, Roderick K.; Kehrer, Manfred

    2014-12-01

    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  7. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  8. Airframe technology for aircraft energy efficiency. [economic factors

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    The economic factors that resulted in the implementation of the aircraft energy efficiency program (ACEE) are reviewed and airframe technology elements including content, progress, applications, and future direction are discussed. The program includes the development of laminar flow systems, advanced aerodynamics, active controls, and composite structures.

  9. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  10. (ACEEE summer study on energy efficiency in buildings)

    SciTech Connect

    Not Available

    1990-01-01

    The ACEEE Summer Study is a biennial conference that aims to bring together the foremost researchers, practitioners and policy makers involved in research on energy efficiency in buildings. The 1990 Summer Study had the objective to facilitate the exchange of research and implementation results and encourage the advancement of knowledge in the field of energy efficiency in buildings. The research papers presented at the conference published and distributed. Two hundred seventy two papers were presented. These individual papers, published in ten volumes, have been processed separately for the Energy Data Base.

  11. The Study on Energy Efficiency in Africa

    NASA Astrophysics Data System (ADS)

    Wu, Jinduo

    This paper is dedicated to explore the dynamic performance of energy efficiency in Africa, with panel data in country level, taking energy yield, power consumption, electricity transmission and distribution losses into account, the paper employ stochastic frontier mode,highlighting a dummy variable in energy output in terms of net imports of energy and power, which minify the deviation of estimated variables. The results show that returns of scale did not appear in energy and power industry in Africa, electricity transmission and distribution losses contribute most to GDP per unit of energy. In country level, Republic of Congo and Botswana suggest an obvious energy efficiency advantage. Energy efficiency in Mozambique and Democratic Republic of Congo are not very satisfying during the studying year

  12. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads, motor loads...Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical Point of

  13. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    waveform, detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads...Electrical Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical

  14. Energy Efficient Legged Robotics at Sandia Labs

    SciTech Connect

    Buerger, Steve

    2014-12-16

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  15. Energy Efficient Legged Robotics at Sandia Labs

    ScienceCinema

    Buerger, Steve

    2016-07-12

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  16. Toward an energy efficient community

    NASA Astrophysics Data System (ADS)

    Horn, M.

    1980-10-01

    The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.

  17. Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Not Available

    2013-06-01

    This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  18. Energy Efficiency and Renewable Energy in SIPs and TIPs

    EPA Pesticide Factsheets

    Tools and guides to encourage state, tribal and local agencies to consider incorporating Energy Efficiency (EE) and Renewable Energy (RE) policies and programs in their State and Tribal Implementation Plans (SIPs/TIPs).

  19. Energy-efficient water heating

    SciTech Connect

    1995-01-01

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  20. Creating Energy-Efficient Buildings.

    ERIC Educational Resources Information Center

    Burr, Donald F.

    This paper was presented during the time the author was president of the Council of Educational Facility Planners, International, (CEFP/I). The presentation begins with a summary of the state of the world's natural gas and petroleum supplies and states that since one-third of all energy consumed in the United States is to heat and cool buildings,…

  1. Advances in geothermal energy use

    SciTech Connect

    Kilkis, I.B.; Eltez, M.

    1996-10-01

    One of the earliest examples of large scale use of the geothermal energy is the district heating system in Boise, Idaho. Established in 1892, this system now serves 266 customers--mostly residential. Today, excluding heat pumps, there are about 300 sites in America where geothermal energy is currently used in various applications; including district heating, absorption cooling and refrigeration, industrial processes, aquaculture, horticulture, and snow melting/freeze protection. Among these, 18 geothermal district heating systems are operating with 677 GBtu (714 TJ) total annual heat output. Geothermal activity was first generated in Italy, in 1904, with a 10 kWe capacity. Now, commercial power plants are in service using vapor-dominated and liquid-dominated plants with a world-wide installed capacity of 6 GWe. This paper looks at a hybrid cycle/integrated district HVAC system.

  2. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  3. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  4. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  5. Energy efficient engine fan component detailed design report

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Michael, C. J.

    1981-01-01

    The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.

  6. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  7. Financial Planning for Energy Efficiency Investments.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Financing options for energy efficiency investments by colleges are outlined by the Energy Task Force of three higher education associations. It is suggested that alternative financing techniques generate a positive cash flow and allow campuses to implement conservation despite fiscal constraints. Since energy conservation saves money, the savings…

  8. Energy Efficiency for Architectural Drafting Instructors.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in architectural drafting. The following topics are examined: energy conservation awareness (residential energy use and audit procedures); residential…

  9. State Energy Efficiency Program Evaluation Inventory

    EIA Publications

    2013-01-01

    The focus of this inventory, some of which has been placed into a searchable spreadsheet, is to support the National Energy Modeling System (NEMS) and to research cost information in state-mandated energy efficiency program evaluations – e.g., for use in updating analytic and modeling assumptions used by the U.S. Energy Information Administration (EIA).

  10. 50% Advanced Energy Design Guides: Preprint

    SciTech Connect

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  11. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    In this report, the contents and major results of the national research program on advanced energy system and technologies (NEMO) are presented. The NEMO-program was one of the energy research programs of the Ministry of Trade and Industry during 1988-1992. Helsinki University of Technology had the responsibility of the overall coordination of the program. NEMO has been the largest resource allocation into advanced energy systems in Finland so far. The total budget was 70 million FIM. The focus of the program has been in solar energy, wind power, and energy storage. Hydrogen and fuel cells have been included in smaller amount. On all major fields of the NEMO-program, useful and high quality results have been obtained. Results of international significance include among others arctic wind energy, new approaches for the energy storage problem in solar energy applications, and the development of a completely new storage battery. International collaboration has been given high priority. The NEMO-program has also been active in informing the industries of the various business and utilization possibilities that advanced energy technologies offer. For example, major demonstration plants of each technology group have been realized. It is recommended that the further R and D should be still more focused on commercial applications. Through research efforts at universities, a good technology base should be maintained, whereas the industries should take a stronger position in commercializing new technology. Parallel to technology R and D, more public resources should be allocated for market introduction.

  12. Moving around efficiently: Energy and transportation

    NASA Astrophysics Data System (ADS)

    Hermans, L. J. F.

    2013-06-01

    Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  13. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and

  14. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2016-07-12

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  15. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  16. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  17. Something Special from SEED: Energy Efficiency for Educators and Students. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Tenneco, Inc., Houston, TX.

    The goal of the Schoolhouse Energy Efficiency Demonstration (SEED) was to assist schools in reducing the impact of the rising cost of energy by defining good energy management programs and by implementing quick-fix, low-cost energy efficiency improvements. Twenty schools in 15 states participated in the demonstration program. This report covers…

  18. Energy efficient laboratory fume hood

    DOEpatents

    Feustel, Helmut E.

    2000-01-01

    The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.

  19. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L. ); Purcell, C.W. )

    1992-01-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  20. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L.; Purcell, C.W.

    1992-10-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  1. Energy Efficient School Designed for the Future

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    When completed, the planned Greeley Elementary School will be able to accommodate any future changes in enrollment and technological developments, while maintaining a constant energy efficient heating and cooling operation. (Author/MLF)

  2. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  3. Junior High Gets Energy Efficient VAV System

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    Minnesota's Isanti Junior High, designed with an energy efficient variable air volume system, is an innovative school selected for display at the 1977 Exhibition of School Architecture in Las Vegas. (Author/MLF)

  4. High efficiency flat plate solar energy collector

    SciTech Connect

    Butler, R. F.

    1985-04-30

    A concentrating flat plate collector for the high efficiency collection of solar energy. Through an arrangement of reflector elements, incoming solar radiation, either directly or after reflection from the reflector elements, impinges upon both surfaces of a collector element.

  5. Guide to Resource Planning with Energy Efficiency

    EPA Pesticide Factsheets

    This document is a “how-to” guide that describes the key issues, best practices, and main process steps for integrating energy efficiency into resource planning on an equal basis with other resources.

  6. Determinants of energy efficiency across countries

    NASA Astrophysics Data System (ADS)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  7. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect

    Parker, G.B.

    1991-01-01

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  8. Efficient hybrid electric and thermal energy generation

    NASA Astrophysics Data System (ADS)

    Xia, X. Winston; Parfenov, Alexander V.; Aye, Tin M.; Shih, Min-Yi

    2011-10-01

    We demonstrate a novel hybrid solar photovoltaic electrical and thermal energy cogeneration system with high efficiency, at potentially reduced overall weight and size compared with current solar energy systems. The new system is based on highly efficient photovoltaic solar cells and tubular water thermal receivers, incorporating holographic spectral beam light guide concentrators resulting in a more cost-effective solution. Details of fabrication and preliminary experimental testing results are presented.

  9. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  10. Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  11. Worker productivity rises with energy efficiency

    SciTech Connect

    Romm, J.J. )

    1995-01-01

    Many American companies have found that saving energy and cutting pollution dramatically improves the bottom line. But beyond these gains, businesses that launch energy efficiency programs to save money are often astonished to discover unforeseen benefits: energy efficient lighting, heating, cooling, motors, and industrial processes can increase worker productivity, decrease absenteeism, and improve the quality of work performed. Profits created by the jump in worker productivity can exceed energy savings by a factor of ten. Energy efficiency and pollution prevention represent the next wave in manufacturing, following the quality revolution launched by the Japanese in the 1960s. Unless America leads the lean and clean revolution, economic health will be undermined as other countries develop clean processes and products and US companies suffer competitively. Also, developing countries will leapfrog their wasteful model and buy products and manufacturing processes from foreign firms already practicing lean and clean.

  12. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  13. The New Center for Advanced Energy Studies

    SciTech Connect

    L.J. Bond; K. Kostelnik; R.A. Wharton; A. Kadak

    2006-06-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundation to enable future economic growth. The next generation energy workforce in the U.S. is a critical element in meeting both national and global energy needs. The Center for Advanced Energy Studies (CAES) was established in 2005 in response to U.S. Department of Energy (DOE) requirements. CAES, located at the new Idaho National Laboratory (INL), will address critical energy education, research, policy study and training needs. CAES is a unique joint partnership between the Battelle Energy Alliance (BEA), the State of Idaho, an Idaho University Consortium (IUC), and a National University Consortium (NUC). CAES will be based in a new facility that will foster collaborative academic and research efforts among participating institutions.

  14. Energy 101: Heavy Duty Vehicle Efficiency

    SciTech Connect

    2015-05-14

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  15. Energy 101: Heavy Duty Vehicle Efficiency

    ScienceCinema

    None

    2016-07-12

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  16. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  17. Energy modeling for aviation fuel efficiency

    SciTech Connect

    Collins, B.P.

    1981-01-01

    The fuel consumption and path profile description of an aircraft can be related by an energy balanced concept. Application of this concept has produced an equation set that can be utilized to analyze the energy efficiency of propeller and turbojet aircraft during various operating conditions. Analytical methods, results and aircraft specific constants are presented and discussed along with proposed extensions. 10 refs.

  18. Energy Efficiency for Building Construction Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units of materials on energy efficiency that were designed to be incorporated into an existing program in building construction. The following topics are examined: conservation measures (residential energy use and methods for reducing…

  19. Functional materials for energy-efficient buildings

    NASA Astrophysics Data System (ADS)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  20. GLIDES – Efficient Energy Storage from ORNL

    SciTech Connect

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2016-03-01

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  1. Veterans Advancing Clean Energy and Climate

    ScienceCinema

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2016-07-12

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  2. Veterans Advancing Clean Energy and Climate

    SciTech Connect

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2013-11-11

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  3. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... State Residential Building Energy Efficiency Codes AGENCY: Office of Energy Efficiency and Renewable... (DOE or Department) has preliminarily determined that the 2009 version of the International Code Council (ICC) International Energy Conservation Code (IECC) would achieve greater energy efficiency in...

  4. Energy-Efficient Electric Motor Selection Handbook

    SciTech Connect

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  5. Energy efficient affordable housing. Final report

    SciTech Connect

    1995-07-01

    In 1994, the Southface Energy Institute, working with support from US DOE, initiated a program to provide technical assistance to nonprofit organizations developing affordable housing in the Olympic target communities of Atlanta. The specific project goals were: Identify the barriers that nonprofit affordable housing providers face in increasing the energy and resource efficiency of affordable housing; Assist them in developing the resources to overcome these barriers; Develop specific technical materials and program models that will enable these affordable housing groups to continue to improve the energy efficiency of their programs; and, To transfer the program materials to other affordable housing providers. This report summarizes the progress made in each of these areas.

  6. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  7. Advanced Chemical Design for Efficient Lignin Bioconversion

    DOE PAGES

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao; ...

    2017-01-30

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 106 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less

  8. Advanced chemical design for efficient lignin bioconversion

    SciTech Connect

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao; Lin, Furong; Sun, Su; Wang, Xin; Ragauskas, Arthur J.; Yuan, Joshua S.

    2016-12-22

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysis revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 106 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.

  9. Energy efficiency opportunities in the brewery industry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  10. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  11. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  12. Residential energy use in Lithuania: The prospects for energy efficiency

    SciTech Connect

    Vine, E.; Kazakevicius, E.

    1998-06-01

    While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.

  13. Saving Energy, Water, and Money with Efficient Water Treatment Technologies

    SciTech Connect

    Not Available

    2004-06-01

    Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

  14. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  15. Flywheel energy storage advances using HTS bearings.

    SciTech Connect

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  16. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  17. 75 FR 35450 - Establishment of the Energy Efficiency and Renewable Energy Advisory Committee and Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... of Energy Efficiency and Renewable Energy Establishment of the Energy Efficiency and Renewable Energy Advisory Committee and Request for Member Nominations AGENCY: Office of Energy Efficiency and Renewable... Renewable Energy Advisory Committee and request member nominations. SUMMARY: Pursuant to Section...

  18. 75 FR 35766 - Establishment of the Renewable Energy and Energy Efficiency Advisory Committee and Solicitation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... International Trade Administration Establishment of the Renewable Energy and Energy Efficiency Advisory.... ACTION: Notice of establishment of the Renewable Energy and Energy Efficiency Advisory Committee and... establishment of the Renewable Energy and Energy Efficiency Advisory Committee (the Committee) by the...

  19. 77 FR 38040 - Reestablishment of the Renewable Energy and Energy Efficiency Advisory Committee and Solicitation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... International Trade Administration Reestablishment of the Renewable Energy and Energy Efficiency Advisory... Energy and Energy Efficiency Advisory Committee and Solicitation of Nominations for Membership. SUMMARY... announces the reestablishment of the Renewable Energy and Energy Efficiency Advisory Committee...

  20. Reliability and energy efficiency of zero energy homes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    2016-09-01

    Photovoltaic (PV) modules and systems are being installed increasingly on residential homes to increase the proportion of renewable energy in the energy mix. The ultimate goal is to attain sustainability without subsidy. The prices of PV modules and systems have declined substantially during the recent years. They will be reduced further to reach grid parity. Additionally the total consumed energy must be reduced by making the homes more energy efficient. FSEC/UCF Researchers have carried out research on development of PV cells and systems and on reducing the energy consumption in homes and by small businesses. Additionally, they have provided guidance on PV module and system installation and to make the homes energy efficient. The produced energy is fed into the utility grid and the consumed energy is obtained from the utility grid, thus the grid is assisting in the storage. Currently the State of Florida permits net metering leading to equal charge for the produced and consumed electricity. This paper describes the installation of 5.29 KW crystalline silicon PV system on a south-facing tilt at approximately latitude tilt on a single-story, three-bedroom house. It also describes the computer program on Building Energy Efficiency and the processes that were employed for reducing the energy consumption of the house by improving the insulation, air circulation and windows, etc. Finally it describes actual consumption and production of electricity and the installation of additional crystalline silicon PV modules and balance of system to make it a zero energy home.

  1. Improving Energy Efficiency in Federal Commercial Buildings

    SciTech Connect

    Nasseri, Cyrus H.; Somasundaram, Sriram; Winiarski, David W.

    2004-08-27

    This paper is an overview of various activities underway in the Federal sector to help improve the energy efficiency in new and existing Federal commercial buildings. The two main drivers for the energy efficiency upgrades within the Federal sector are Executive Orders (E.O.) from the Executive branch and the legislative requirements passed by the legislative branch and then signed into law by the Executive branch of the U.S. Federal Government. The recent Executive Orders pertaining to this discussion are the E.O. 12902 (1994) and the E.O. 13123 (1999). The legislative requirements are contained in the Energy Policy Act (EPACT) of 1992 which amended the Energy Conservation and Production Act (ECPA) and the pending Energy Policy Act of 2003.

  2. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  3. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  4. Advanced energy projects; FY 1995 research summaries

    SciTech Connect

    1995-09-01

    The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

  5. Cleanroom Energy Efficiency: Metrics and Benchmarks

    SciTech Connect

    International SEMATECH Manufacturing Initiative; Mathew, Paul A.; Tschudi, William; Sartor, Dale; Beasley, James

    2010-07-07

    Cleanrooms are among the most energy-intensive types of facilities. This is primarily due to the cleanliness requirements that result in high airflow rates and system static pressures, as well as process requirements that result in high cooling loads. Various studies have shown that there is a wide range of cleanroom energy efficiencies and that facility managers may not be aware of how energy efficient their cleanroom facility can be relative to other cleanroom facilities with the same cleanliness requirements. Metrics and benchmarks are an effective way to compare one facility to another and to track the performance of a given facility over time. This article presents the key metrics and benchmarks that facility managers can use to assess, track, and manage their cleanroom energy efficiency or to set energy efficiency targets for new construction. These include system-level metrics such as air change rates, air handling W/cfm, and filter pressure drops. Operational data are presented from over 20 different cleanrooms that were benchmarked with these metrics and that are part of the cleanroom benchmark dataset maintained by Lawrence Berkeley National Laboratory (LBNL). Overall production efficiency metrics for cleanrooms in 28 semiconductor manufacturing facilities in the United States and recorded in the Fabs21 database are also presented.

  6. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    SciTech Connect

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  7. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect

    Not Available

    2013-02-01

    The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

  8. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    SciTech Connect

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  9. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  10. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  11. Learning energy literacy concepts from energy-efficient homes

    NASA Astrophysics Data System (ADS)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  12. Energy efficiency: Perspectives on individual behavior

    SciTech Connect

    Kempton, W.; Neiman, M.

    1986-01-01

    A collection of research papers on the personal behavior and attitudes that affect residential energy use. Articles in the first section address the factors that affect decision-making by consumers; convenience and personal opinions often override rational economic choices. The research in the second section uses aggregate survey data to gain insight into energy behavior. Papers in the third section use detailed monitoring of individual households to analyze personal behavior and home energy management, and the fourth section includes papers on the interaction of building systems with occupants. These papers demonstrate that, to be successful, energy conservation programs must consider the ''human factor'' in addition to the conventional energy parameters (e.g. weather, insulation, and appliance efficiencies). Main emphasis was given to: energy conservation; consumers; personal behavior; economic decision-making; buildings; energy policy; hot water use; thermostats; attitudes; applied anthropology.

  13. R&D Issues in the Office of Energy Efficiency and Renewable Energy

    SciTech Connect

    Baldwin, S.

    2003-08-24

    The Office of Energy Efficiency and Renewable Energy (EERE) leads the federal government's research, development, and deployment (RD&D) efforts to provide reliable, affordable, and environmentally sound energy for America's future. EERE's role is to invest in high-risk, high-value research and development that is critical to the Nation's energy future and would not be sufficiently conducted by the private sector acting on its own. EERE also works with stakeholders to develop programs and policies to facilitate the deployment of advanced clean energy technologies and practices.

  14. Mobile Energy Laboratory energy-efficiency testing programs

    NASA Astrophysics Data System (ADS)

    Parker, G. B.; Currie, J. W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at Federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the U.S. Department of Energy, U.S. Army, U.S. Air Force, U.S. Navy, and other Federal agencies.

  15. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G.B.; Currie, J.W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  16. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  17. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  18. Energy Efficiency and Renewable Energy in Low-Income Communities

    EPA Pesticide Factsheets

    This guide is designed to help state and local governments connect with EPA programs that can help them expand or develop their own energy efficiency/renewable energy (EE/RE) and climate initiatives in ways that benefit low-income communities.

  19. Energy efficient transport technology: Program summary and bibliography

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1985-01-01

    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements.

  20. Emissions and energy efficiency assessment of baseload wind energy systems.

    PubMed

    Denholm, Paul; Kulcinski, Gerald L; Holloway, Tracey

    2005-03-15

    The combination of wind energy generation and energy storage can produce a source of electricity that is functionally equivalent to a baseload coal or nuclear power plant. A model was developed to assess the technical and environmental performance of baseload wind energy systems using compressed air energy storage. The analysis examined several systems that could be operated in the midwestern United States under a variety of operating conditions. The systems can produce substantially more energy than is required from fossil or other primary sources to construct and operate them. By operation at a capacity factor of 80%, each evaluated system achieves an effective primary energy efficiency of at least five times greater than the most efficient fossil combustion technology, with greenhouse gas emission rates less than 20% of the least emitting fossil technology currently available. Life-cycle emission rates of NOx and SO2 are also significantly lower than fossil-based systems.

  1. The Structural Insulated Panel SIP Hut: Preliminary Evaluation of Energy Efficiency and Indoor Air Quality

    DTIC Science & Technology

    2015-08-19

    tight” energy efficient structures is the use of a heat recovery ven- tilator (HRV) or an energy recovery ventilator (ERV) system that pro- vides...titled “Advanced, Energy Efficient Shelter System (AEESS)” and by U.S. Army 6.2 (Applied Research) Program, AT45 “Modeling and Mitigation of Energy...and USMA proposal to study lightweight systems for improving the building envelope efficiency of standard semi-permanent theater struc- tures. In

  2. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  3. Building Energy Efficiency in Rural China

    SciTech Connect

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  4. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc; Kissock, Professor Kelly

    2013-01-01

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  5. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    SciTech Connect

    Salasovich, James; LoVullo, David; Kandt, Alicen

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  6. Save Money and the Planet: Make Your School Energy Efficient.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; Weltman, Eric

    1993-01-01

    Examines ways in which schools can cut their energy costs. Suggestions are provided for making school lighting more efficient, conducting a life-cycle cost analysis to facilitate energy efficiency, and developing funding for implementing energy-efficient projects. (GLR)

  7. Strategies to improve energy efficiency in semiconductor manufacturing

    SciTech Connect

    Robertson, C.; Stein, J; Harris, J.; Cherniack, M.

    1997-07-01

    The global semiconductor industry is growing at an astounding rate. In the next few years, the industry is expected to invest some $169 billion to build more than 36 million square feet of clean room floor space. Electric loads in these new plants are expected to total more than 5,000 MW and 40,000 GWH per year. This paper summarizes the results of studies to identify opportunities for improved energy efficiency in the semiconductor industry. The genesis of this work came about as the authors observed the rapid growth of the semiconductor industry in the Pacific Northwest. Industry observers report that some $20 billion in new facilities could be build in the Northwest in the nest few years, with a combined electric load in excess of 500 to 600 MW. The research results reported in this paper have been supported in part by the Bonneville Power Administration, the Northwest Power Planning Council, the Oregon Office of Energy, New England Electric System and the Conservation Law Foundation of New England. With their support the authors interviewed numerous industry participants, reviewed key literature, and met extensively with industry engineering firms. manufacturers, vendors and suppliers of manufacturing equipment and materials, and others with interests in this industry. Significant opportunities to improve energy efficiency in the semiconductor industry have been reported to us; perhaps 50 percent or greater aggregate improvement appears possible. Equally significant market barriers constrain the industry from achieving these savings. Yet, because of his industry's concentration, competitiveness, and existing research consortia such as SEMATECH, the authors believe the substantial market barriers to energy efficiency can be addressed with carefully formulated strategies to demonstrate, document and communicate the business and technical case for advanced energy efficiency, including potential benefits in finance, manufacturing and corporate environmental

  8. Who Should Administer Energy-Efficiency Programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen L.

    2003-05-01

    The restructuring of the electric utility industry in the US created a crisis in the administration of ratepayer-funded energy-efficiency programs. Before restructuring, nearly all energy-efficiency programs in the US were administered by utilities and funded from utility rates. Restructuring called these arrangements into question in two ways. First, the separation of generation from transmission and distribution undermined a key rationale for utility administration. This was the Integrated Resource Planning approach in which the vertically integrated utility was given incentives to provide energy services at least cost. Second, questions were raised as to whether funding through utility rates could be sustained in a competitive environment and most states that restructured their electricity industry adopted a system benefits charge. The crisis in administration of energy-efficiency programs produced a variety of responses in the eight years since restructuring in the US began in earn est. These responses have included new rationales for energy-efficiency programs, new mechanisms for funding programs, and new mechanisms for program administration and governance. This paper focuses on issues related to program administration. It describes the administrative functions and some of the options for accomplishing them. Then it discusses criteria for choosing among the options. Examples are given that highlight some of the states that have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. The conclusion attempts to summarize lessons learned.

  9. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  10. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  11. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  12. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  13. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  14. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of... of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public Law......

  15. Energy efficiency evaluation of hospital building office

    NASA Astrophysics Data System (ADS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  16. A design guide for energy-efficient research laboratories

    SciTech Connect

    Wishner, N.; Chen, A.; Cook, L.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  17. Energy Efficiency for the Nunamiut People

    SciTech Connect

    Goodman, Dan

    2014-04-09

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  18. Guidelines for Energy-Efficient Sustainable Schools.

    ERIC Educational Resources Information Center

    Nicklas, Michael; Bailey, Gary; Rosemain, Pascale; Olin, Samuel

    These guidelines present optional strategies to be considered in designing schools to be more energy efficient and sustainable. The guidelines are organized by the following design and construction process: site selection; selection of A & E design team; programming and goal setting; schematic design; design development; construction…

  19. Teaching the Fundamentals of Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Meier, Alan

    2010-02-01

    A course on energy efficiency is a surprisingly valuable complement to a student's education in physics and many other disciplines. The Univ. of California, Davis, offers a 1-quarter course on ``understanding the other side of the meter.'' Lectures begin by giving students a demand-side perspective on how, where, and why energy is used. Students measure energy use of appliances in their homes and then report results. This gives students a practical sense of the difference between energy and power and learn how appliances transform energy into useful services. Lectures introduce the types of direct conservation measures--reducing demand, reducing fixed consumptions, and increasing efficiency. Practical examples draw upon simple concepts in heat transfer, thermodynamics, and mechanics. Graphical techniques, strengthened through problem sets, explain the interdependence of conservation measures. Lectures then examine indirect energy savings from measures and consider questions like ``where can one achieve the greatest fuel savings in a car by removing one gram of mass?'' Finally, students learn about conservation measures that circumvent physical limits by adopting new processes. By the end of the course, students have a gained a new perspective on energy consumption and the opportunities to reduce it. )

  20. Engineering intelligent structures for energy efficiency

    NASA Astrophysics Data System (ADS)

    Strojnik, M.; Garcia-Torales, G.; Scholl, M. K.; Kranjc, T.

    2016-09-01

    The current philosophy of designing intelligent buildings emphasizes the use of materials whose performance is compatible with thermal environment that changes daily and seasonally. Ideally, engineering designs should incorporate features to reflect as much energy as feasible and store excess thermal energy. This may be for usage during periods when thermal energy is needed for heating. We show that current construction design methods may be improved for energy efficiency, by incorporating an attic as an transitional space for energy storage during summer, and by employing roof materials with high reflectivity in the visible and in the near IR (up to about 1.9 μm). Thus, traditional red or pink brick roofs, potentially glazed or covered with low reflectivity coating, would likely remain (become again) the preferred construction material.

  1. 77 FR 54839 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... assistance in support of energy efficiency programs (EE Programs) sponsored and implemented by...

  2. Improving energy efficiency in the transportation sector

    SciTech Connect

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  3. Who should administer energy efficiency programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2003-08-01

    The restructuring of the U.S. electricity industry created a crisis for ratepayer-funded energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities-utilities, state agencies, and non-profit corporations-that might be administrators. Four criteria are developed for choosing among program administration options: Compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved.We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition.

  4. Affordable Energy-Efficient New Housing Solutions

    SciTech Connect

    Chandra, Subrato; Widder, Sarah H.; Bartlett, Rosemarie; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen; Abbott, , K.; Fonorow, Ken; Eklund, Ken; Lubliner, Michael; Salzberg, Emily; Peeks, B.; Hewes, T.; Kosar, D.

    2012-05-31

    Since 2010, the U.S. Department of Energy’s Building America has sponsored research at PNNL to investigate cost-effective, energy-saving home-building technologies and to demonstrate how high-performance homes can deliver lower utility bills, increased comfort, and improved indoor air quality, while maintaining accessibility for low-income homeowners. PNNL and its contractors have been investigating 1) cost-effective whole-house solutions for Habitat for Humanity International (HFHI) and specific HFH affiliates in hot-humid and marine climates; 2) cost-effective energy-efficiency improvements for heating, ventilation, and air-conditioning (HVAC) systems in new, stick-built and manufactured homes; and 3) energy-efficient domestic hot-water systems.

  5. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement

  6. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  7. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  8. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  9. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    SciTech Connect

    Schwartz, Lisa; Wei, Max; Morrow, William; Deason, Jeff; Schiller, Steven R.; Leventis, Greg; Smith, Sarah; Leow, Woei Ling; Levin, Todd; Plotkin, Steven; Zhou, Yan

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  10. Improving Energy Efficiency in CNC Machining

    NASA Astrophysics Data System (ADS)

    Pavanaskar, Sushrut S.

    We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

  11. Energy Efficiency Adult Tracking Report - Final

    SciTech Connect

    Gibson-Grant, Amy

    2014-09-30

    Postwave tracking study for the Energy Efficiency Adult Campaign This study serves as measure of key metrics among the campaign’s target audience, homeowners age 25+. Key measures include: Awareness of messages relating to the broad issue; Recognition of the PSAs; Relevant attitudes, including interest, ease of taking energy efficient steps, and likelihood to act; Relevant knowledge, including knowledge of light bulb alternatives and energy efficient options; and Relevant behaviors, including specific energy-saving behaviors mentioned within the PSAs. Wave 1: May 27 – June 7, 2011 Wave 2: May 29 – June 8, 2012 Wave 3: May 29 – June 19, 2014 General market sample of adults 25+ who own their homes W1 sample: n = 704; W2: n=701; W3: n=806 Online Survey Panel Methodology Study was fielded by Lightspeed Research among their survey panel. Sample is US Census representative of US homeowners by race/ethnicity, income, age, region, and family status. At least 30% of respondents were required to have not updated major appliances in their home in the past 5 years (dishwasher, stove, refrigerator, washer, or dryer).

  12. Microbial battery for efficient energy recovery

    PubMed Central

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi

    2013-01-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs—a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800

  13. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  14. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  15. Microbial battery for efficient energy recovery.

    PubMed

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  16. Analysis on energy efficiency in healthcare buildings.

    PubMed

    García-Sanz-Calcedo, Justo

    2014-01-01

    The aim of this paper is to analyze and quantify the average healthcare centres' energy behavior and estimate the possibilities of savings through the use of concrete measures to reduce their energy demand in Extremadura, Spain. It provides the average energy consumption of 55 healthcare centres sized between 500 and 3,500 m². The analysis evaluated data of electricity and fossil fuel energy consumption as well as water use and other energy-consuming devices. The energy solutions proposed to improve the efficiency are quantified and listed. The average annual energy consumption of a healthcare centre is 86.01 kWh/m², with a standard deviation of 16.8 kWh/m². The results show that an annual savings of €4.77/m² is possible. The potential to reduce the energy consumption of a healthcare centre of size 1,000 m² is 10,801 kWh by making an average investment of €11,601, thus saving €2,961/year with an average payback of 3.92 years.

  17. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

  18. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  19. The reHABITAT Guide: For Energy- and Resource-Efficient Retrofit Strategies

    SciTech Connect

    2004-07-01

    This guide seeks to advance the goal of the U.S. Department of Energy’s Existing Residential Buildings Program (ERBP): to develop approaches that will enable the housing retrofit industry to deliver energy-efficient housing improvements.

  20. Advanced Dark Energy Physics Telescope (ADEPT)

    SciTech Connect

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan

  1. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  2. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  3. CoNNECT: Data Analytics for Energy Efficient Communities

    SciTech Connect

    Omitaomu, Olufemi A; Bhaduri, Budhendra L; Kodysh, Jeffrey B

    2012-01-01

    Energy efficiency is the lowest cost option being promoted for achieving a sustainable energy policy. Thus, there have been some innovations to reduce residential and commercial energy usage. There have also been calls to the utility companies to give customers access to timely, useful, and actionable information about their energy use, in order to unleash additional innovations in homes and businesses. Hence, some web-based tools have been developed for the public to access and compare energy usage data. In order to advance on these efforts, we propose a data analytics framework called Citizen Engagement for Energy Efficient Communities (CoNNECT). On the one hand, CoNNECT will help households to understand (i) the patterns in their energy consumption over time and how those patterns correlate with weather data, (ii) how their monthly consumption compares to other households living in houses of similar size and age within the same geographic areas, and (iii) what other customers are doing to reduce their energy consumption. We hope that the availability of such data and analysis to the public will facilitate energy efficiency efforts in residential buildings. These capabilities formed the public portal of the CoNNECT framework. On the other hand, CoNNECT will help the utility companies to better understand their customers by making available to the utilities additional datasets that they naturally do not have access to, which could help them develop focused services for their customers. These additional capabilities are parts of the utility portal of the CoNNECT framework. In this paper, we describe the CoNNECT framework, the sources of the data used in its development, the functionalities of both the public and utility portals, and the application of empirical mode decomposition for decomposing usage signals into mode functions with the hope that such mode functions could help in clustering customers into unique groups and in developing guidelines for energy

  4. Energy Efficient Community Development in California: Chula Vista Research Project

    SciTech Connect

    Gas Technology Institute

    2009-03-31

    utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.

  5. Energy Efficient Engine acoustic supporting technology report

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.

    1985-01-01

    The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.

  6. Power Measurement Methods for Energy Efficient Applications

    PubMed Central

    Calandrini, Guilherme; Gardel, Alfredo; Bravo, Ignacio; Revenga, Pedro; Lázaro, José L.; Toledo-Moreo, F. Javier

    2013-01-01

    Energy consumption constraints on computing systems are more important than ever. Maintenance costs for high performance systems are limiting the applicability of processing devices with large dissipation power. New solutions are needed to increase both the computation capability and the power efficiency. Moreover, energy efficient applications should balance performance vs. consumption. Therefore power data of components are important. This work presents the most remarkable alternatives to measure the power consumption of different types of computing systems, describing the advantages and limitations of available power measurement systems. Finally, a methodology is proposed to select the right power consumption measurement system taking into account precision of the measure, scalability and controllability of the acquisition system. PMID:23778191

  7. New Methods of Energy Efficient Radon Mitigation

    SciTech Connect

    Fisk, W.J.; Prill, R.J.; Wooley, J.; Bonnefous, Y.C.; Gadgil, A.J.; Riley, W.J.

    1994-05-01

    Two new radon mitigation techniques are introduced and their evaluation in a field study complemented by numerical model predictions is described. Based on numerical predictions, installation of a sub gravel membrane at the study site resulted in a factor of two reduction in indoor radon concentrations. Experimental data indicated that installation of 'short-circuit' pipes extending between the subslab gravel and outdoors, caused an additional factor of two decrease in the radon concentration. Consequently, the combination of these two passive radon mitigation features, called the membrane and short-circuit (MASC) technique, was associated with a factor of four reduction in indoor radon concentration. The energy-efficient active radon mitigation method, called efficient active subslab pressurization (EASP), required only 20% of the fan energy of conventional active subslab depressurization and reduced the indoor radon concentration by approximately a factor of 15, including the numerically-predicted impact of the sub-gravel membrane.

  8. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    SciTech Connect

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  9. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  10. Energy efficiency through integrated environmental management.

    PubMed

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  11. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  12. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  13. Energy Efficient Alternatives to Chlorofluorocarbons (CFCs)

    SciTech Connect

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum-based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are presented. The potential benefits, research, general approach, and probability of success are addressed.

  14. Surface Catalytic Efficiency of Advanced Carbon Carbon Candidate Thermal Protection Materials for SSTO Vehicles

    NASA Technical Reports Server (NTRS)

    Stewart, David A.

    1996-01-01

    The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.

  15. The Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, Victoria

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency. The report covers critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  16. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30

    This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting

  17. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  18. Advanced energy projects FY 1997 research summaries

    SciTech Connect

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  19. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  20. Energy efficient engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Zeisser, M. H.; Greene, W.; Dubiel, D. J.

    1982-01-01

    The combustor for the Energy Efficient Engine is an annular, two-zone component. As designed, it either meets or exceeds all program goals for performance, safety, durability, and emissions, with the exception of oxides of nitrogen. When compared to the configuration investigated under the NASA-sponsored Experimental Clean Combustor Program, which was used as a basis for design, the Energy Efficient Engine combustor component has several technology advancements. The prediffuser section is designed with short, strutless, curved-walls to provide a uniform inlet airflow profile. Emissions control is achieved by a two-zone combustor that utilizes two types of fuel injectors to improve fuel atomization for more complete combustion. The combustor liners are a segmented configuration to meet the durability requirements at the high combustor operating pressures and temperatures. Liner cooling is accomplished with a counter-parallel FINWALL technique, which provides more effective heat transfer with less coolant.

  1. Energy efficient alternatives to halogen torchieres

    SciTech Connect

    Siminovitch, M.; Marr, L.; Mitchell, J.; Page, E.

    1997-03-01

    A series of novel energy efficient torchiere systems have been developed using compact fluorescent lamps (CFLs). These systems were studied photometrically and compared with the performance of traditional commercially available tungsten halogen sources. Gonio-photometric data and power assessments indicate that significant lighting energy savings can be obtained by utilizing CFL sources instead of standard tungsten halogen sources. This energy savings is jointly due to the higher source efficacy of the CFLs and the surprisingly poor performance of the imported 300 Watt halogen lamps. Experimental data shows that a 50 to 60 Watt CFL will effectively lumen match a variety of 300 Watt tungsten halogen sources with 5 to 10 times the efficacy. CFL torchieres have additional benefits of higher power quality and cooler lamp operating temperature, making them safer fixtures.

  2. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  3. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  4. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  5. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  6. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  7. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  8. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  9. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  10. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  11. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  12. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  13. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4

  14. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  15. 75 FR 12743 - Office of Energy Efficiency and Renewable Energy; Request for Information; Weatherization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... of Energy Efficiency and Renewable Energy; Request for Information; Weatherization Assistance Program; Sustainable Energy Resources for Consumers Grants AGENCY: Office of Energy Efficiency and Renewable Energy... Program for residential buildings to include materials, benefits, and renewable and domestic...

  16. Energy efficient engine program contributions to aircraft fuel conservation

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  17. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ..., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies... Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Part 430 RIN 1904-AB57 Energy Efficiency Program for Consumer Products: Energy Conservation...

  18. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...] [FR Doc No: 2010-28640] DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces the...

  19. 76 FR 80355 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Doc No: 2011-32912] DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of... the field of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public Law...

  20. Theoretical efficiency limits for thermoradiative energy conversion

    SciTech Connect

    Strandberg, Rune

    2015-02-07

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m{sup 2} has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  1. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect

    Not Available

    2013-12-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

  2. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4...

  3. Center for Efficiency in Sustainable Energy Systems

    SciTech Connect

    Abraham, Martin

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  4. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  5. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  6. Magnetocaloric materials for energy efficient cooling

    NASA Astrophysics Data System (ADS)

    Lyubina, Julia

    2017-02-01

    Solid-state magnetic cooling near room temperature has recently gained a prominent position among alternative cooling technologies that are deemed to have higher energy efficiency compared to vapour compression. This prospect has surged a rapid growth of the area of magnetocaloric materials. Although several breakthroughs were achieved, the extensive study revealed a number of challenges in the effective deployment of the magnetic refrigerants. This review focuses on fundamentally and technologically relevant aspects of the cooling with magnetocaloric materials. A critical evaluation of magnetic refrigerants and progress made in improvement of their performance is provided. Future development trends in the field of materials for the solid state cooling are highlighted.

  7. Non-Construction Approaches to Reducing Greenhouse Gas Emissions Through Energy Efficient Products and Practices - Closed Announcement FY 2017

    EPA Pesticide Factsheets

    The Office of Atmospheric Programs is soliciting proposals to advance the energy efficiency of products through product specific technical research, test procedure development, and education that drives consumer adoption of efficient products and practices

  8. Weatherization and Intergovernmental Program - State Energy Program Helps States Plan and Implement Energy Efficiency

    SciTech Connect

    2010-06-01

    State energy offices use SEP funds to develop state plans that identify opportunities for adopting renewable energy and energy efficiency technologies, and implementing programs to improve energy sustainability.

  9. Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Marquis, Fernand D. S.

    2012-03-01

    The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.

  10. Nanotechnologies for efficient solar and wind energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

  11. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... energy efficient over the past several decades, there is an opportunity to accelerate and expand these efforts with investments to reduce energy use through more efficient manufacturing processes and... can use a CHP system to provide both types of energy in one energy-efficient step. Accelerating...

  12. 77 FR 43723 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... efficiency, and (5) encouraging the use of renewable energy fuels for both demand side management and the reduction of conventional fossil fuel use within the service territory. The Energy Efficiency and... investing in energy efficiency, and (5) to encourage the use of renewable energy fuels to accomplish...

  13. Harsh environment sensor development for advanced energy systems

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.; Maley, Susan M.

    2013-05-01

    Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.

  14. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  15. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski

    1999-06-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The seventh reporting period in Phase II (April 1-June 30, 1999) included experimental activities and combined chemistry-mixing modeling on advanced gas reburning. The goal of combustion tests was to determine the efficiency of advanced reburning using coal as the reburning fuel. Tests were conducted in Boiler Simulator Facility (BSF). Several coals were tested. The modeling effort was focused on the description of N-agent injection along with overfire air. Modeling identified process parameters that can be used to optimize the AR-Lean process.

  16. Environmental efficiency of energy, materials, and emissions.

    PubMed

    Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke

    2015-09-15

    This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency.

  17. Curriculum for Commissioning Energy Efficient Buildings

    SciTech Connect

    Webster, Lia

    2012-12-27

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  18. Production of Energy Efficient Preform Structures (PEEPS)

    SciTech Connect

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  19. Three essays on energy efficiency policy

    NASA Astrophysics Data System (ADS)

    Kabiri, Maryam

    This thesis is comprised of three essays which explore selected aspects of demand side energy efficiency policy of International Energy Conservation Codes (IECC). The first essay models the adoption of IECC in the U.S. between 1998 and 2010. An ordered probit model with IECC adoption as the dependent variable is used to test if a set of socio-economics, political, spatial, and environmental factors predict the residential building energy code adoption. The results show that higher energy price, relative political extraction, climate extremes, pollution level, and population growth predict IECC adoption in the sample. The diffusion variable (share of neighbor states with IECC) is shown to have large impacts on the probability of IECC adoption. The next two essays examine the effect of IECC on residential electricity consumption. The second essay investigates the impact of International Energy Conservation Codes (IECC) on per-capita residential electricity consumption for 44 U.S. states from 1981-2008. Applying the pooled mean group (PMG) model developed by Pesaran et al. (1999), and controlling for energy specific demand factors such as: prices, income, heating degree days, and cooling degree days, I find that there is an overall 2% decrease in new residential buildings per-capita electricity consumption in the states which adopted any version of IECC. The new residential buildings per-capita electricity consumption has decreased by about 2.5% and 5% in the states with IECC 2000 and IECC 2003 respectively. The third essay examines the impact of building energy code on the household electricity consumption in three states in U.S. To do so; I construct a pseudo panel using household level data from the American Community Survey (ACS) over the period 2005-2010. By constructing pseudo panel, we are able to track cohorts of relatively homogeneous individuals over time, and control for cohort unobserved heterogeneity that may bias the results of cross sectional estimates

  20. Adaptive Voltage Management Enabling Energy Efficiency in Nanoscale Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander E.

    power only when the entire circuit is powered off. This technique provides significant savings in static power in addition to standard benefits from classical power gating. Improvements in energy efficiency are enabled by reducing both static and dynamic power consumption utilizing adaptive and near threshold circuit techniques. These advanced power reduction techniques will enable the greater energy efficiency required in modern portable systems.

  1. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  2. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  3. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2004-01-29

    This is the sixth quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period from October 1, 2003 through December 31, 2003. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. In coordination with the DOE, IEUA has revised the original Cooperative Agreement to reflect the actual and current project scope of work. The original Agreement statement of work (SOW) included conceptual and preliminary equipment and systems, which were further evaluated for feasibility and suitability for the project. As a result, some of the equipment was taken out of the project scope. In response to questions from the DOE, IEUA has submitted a summary report on the Organic Rankine Cycle (ORC) secondary power generation units for availability and suitability for this project and associated safety concerns pointed out by the DOE. IEUA has awarded the consulting engineering contract to Parsons Water and Infrastructure, Inc. to provide the project's design and construction services. The project's pre-design kickoff meeting was held at IEUA's headquarters on December 11, 2003. IEUA has submitted a proposal for a grant offered by California Energy Commission (CEC) which if awarded to IEUA, will add value to this project. IEUA has finalized and signed the agreement with Stirling Energy Systems (SES) to host a 25 kW Stirling Engine at the RP-5 plant site for reliability and performance testing using digester and natural gas. As a result of further evaluation of the flexible microturbine system, IEUA has decided to take it out of the project's scope of work; however, it may be considered in future projects at other locations. IEUA has installed a 60 kW Photovoltaic (PV) power generation system on the roof of the new headquarters building. A matching funds update is also included in the Results and Discussion section. The update presents the

  4. Photometric assessment of energy efficient torchieres

    SciTech Connect

    Page, Erik; Siminovitch, Michael

    1997-06-01

    Extensive development of designs and prototyping of energy efficient torchiere systems using compact fluorescent lamps (CFLs) has led directly to the production of CFL torchieres by a major US manufacturer. This paper compares the electrical and photometric characteristics of one of the new CFL torchieres to standard tungsten halogen torchieres (halogen uplighters). Power assessments and gonio-photometric data indicate that the new CFL torchiere provides significant energy savings over the standard tungsten halogen torchiere while producing more luminous flux. The energy savings is jointly due to the high source efficacy of the CFLs and the poor performance . of the imported halogen lamps. The paper also presents results from a test site in the student dormitories at Stanford University where a torchiere "lamp swap" program was initiated in which students voluntarily traded their halogen torchieres for CFL torchieres. Out of the 500 torchieres involved in the lamp swap, a random sample of nearly 100 halogen lamps (seasoned in the field and considered to represent a typical population) were collected and photometrically and electrically characterized in the laboratory. These laboratory results indicate that the CFL torchieres use 65 watts to produce 25 percent more light than the 300 W tungsten halogen torchieres they are designed to replace. Additionally, the CFL torchieres have the benefit of a cooler lamp operating temperature, making them safer luminaires.

  5. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  6. States Address Air Pollution from Energy through Energy Efficiency and Renewable Energy Programs

    SciTech Connect

    Not Available

    2007-12-01

    This fact sheet highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics.

  7. Energy Efficient Engine: Flight propulsion system final design and analysis

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y.; Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.

  8. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  9. Get Started: Energy Efficiency Makes More Sense Than Ever.

    ERIC Educational Resources Information Center

    Alban, Josh; Drabick, J. R.

    2003-01-01

    Describes the benefits of making school building more energy efficient. Provides examples of physical retrofits and behavioral changes to save energy costs. Describes four-step process to create an energy efficiency plan. Includes resources and information such as U.S. Department of Energy's Energy STAR program (www.energystar.gov). (PKP)

  10. Advanced materials manufacturing for solar energy

    NASA Astrophysics Data System (ADS)

    van Mierlo, Frank

    2012-02-01

    The US has a robust technical roadmap to get to a 1/W total installed cost with several potential winners in the race. We dominate in the new technology arena and there is a good chance that tomorrow's winning technology will be from the current crop of contenders. One potential breakthrough is Direct Wafer^TM a new manufacturing technique to make silicon wafers at a fraction of the traditional cost. Current wafer manufacturing is a multi-step, energy- and capital-intensive process that wastes half of the valuable silicon feedstock. 1366's Direct Wafer technology forms a standard, 156mm multi-crystalline wafer directly from molten silicon in a semi-continuous, efficient, high-throughput process that eliminates silicon waste. Direct Wafer^TM cuts the amount of consumables by a factor of four and requires only half the capital per GigaWatt production capacity thus enabling solar to compete successfully with coal generated electricity.

  11. Energy Efficiency and Renewable Energy Network (EREN): Customer satisfaction survey

    SciTech Connect

    Anderson, A.V.; Henderson, D.P.

    1996-04-22

    The Energy Efficiency and Renewable Energy Network (EREN) Customer Satisfaction Survey was developed and executed in support of EREN`s continuous quality improvement (CQI) plan. The study was designed to provide information about the demographic make up of EREN users, the value or benefits they derive from EREN, the kinds and quality of services they want, their levels of satisfaction with existing services, their preferences in both the sources of service and the means of delivery, and to provide benchmark data for the establishment of continuous quality improvement measures. The survey was performed by soliciting voluntary participation from members of the EREN Users Group. It was executed in two phases; the first being conducted by phone using a randomly selected group; and the second being conducted electronically and which was open to all of the remaining members of the Users Group. The survey results are described.

  12. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  13. Aligning Utility Incentives with Investment in Energy Efficiency

    EPA Pesticide Factsheets

    This paper describes the financial effects on a utility of its spending on energy efficiency programs, how those effects could constitute barriers to more aggressive and sustained utility investment in energy efficiency.

  14. Understanding Cost-Effectiveness of Energy Efficiency Programs

    EPA Pesticide Factsheets

    This paper discusses the five standard tests used to assess the cost-effectiveness of energy efficiency, how states are using these tests, and how the tests can be used to determine the cost-effectiveness of energy efficiency measures.

  15. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  16. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. (a) General. A...

  17. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. Link to an...

  18. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. (a) General. A...

  19. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  20. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  1. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  2. 76 FR 54224 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: The purpose of the ERAC is to..., and deployment priorities within the field of energy efficiency and renewable energy. The...

  3. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and Renewable Energy and Office of the General Counsel... mechanisms by grantees of the State Energy Program (SEP) and Energy Efficiency and Conservation Block...

  4. Energy savings through improved tractive efficiency

    SciTech Connect

    Taylor, J.H.

    1981-01-01

    The fuel consumption of farm tractors for 1980 is estimated to be 5.0 billion gallons. Assuming that 75 percent of this amount is used for drawbar or draft loads, then 3.75 billion gallons of fuel energy will be passed through tractive devices, mostly rubber tires, this year. The average tractive efficiency for tractors operating under drawbar or draft loads is estimated to be 46 percent. Each 1-percent increase will bring savings of approximately 75 to 80 million gallons of fuel annually to United States farmers. Tractive efficiency can be increased in several ways. Research has shown that the shape of the ground contact area, or footprint, of a tractive device is important. A footprint that is long and narrow in the direction of travel compacts less of the total soil surface area than one that is short and wide, thereby reducing rolling losses. The front portion of the device establishes a firm travel path for much of the rest of the device, resulting in improved traction. The length/width ratio of tractive devices may be increased by using tracks, tandem drive wheels, large-diameter tires, or radial ply tires.

  5. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  6. Energy Efficient Graphene Based High Performance Capacitors.

    PubMed

    Bae, Joonwon; Lee, Chang-Soo; Kwon, Oh Seok

    2016-10-27

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study.

  7. Materials advances required to reduce energy consumption through the application of heavy duty diesel engines

    SciTech Connect

    Patten, J.W.

    1984-09-01

    Several key materials advances are required to reduce energy consumption through application of heavy duty diesel engines. Heavy duty diesel engines are viewed as effecting energy use both directly through fuel consumption, and indirectly through their durability with large energy expenditures required to replace worn-out engines. Materials advances that would improve fuel consumption include materials related to hot gas-path insulation, and materials related to design advances (other than insulation). Most design advances that are focused on fuel consumption or other performance factors also directly influence durability through materials properties. Several major engine components and many conventional (and advanced) materials are examined. If materials development is integrated with design and manufacturing advances, then fuel economy higher than 0.28 BSFC (50 pct thermal efficiency), and durability beyond 750,000 miles may be achievable.

  8. Advanced Functional Materials for Energy Related Applications

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  9. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    SciTech Connect

    Krebs, Martha

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  10. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.

  11. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  12. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    SciTech Connect

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  13. Competency Based Education Curriculum for Energy Efficient Building Construction.

    ERIC Educational Resources Information Center

    Cole, John; And Others

    This competency-based curriculum for energy-efficient building construction is intended to educate students in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. Each of the eight units is based on one to five competencies. For…

  14. Coeur d'Alene Tribe Energy Efficiency Feasibility Study

    SciTech Connect

    Allgood, Tiffany L.; Sorter, Andy

    2014-09-01

    The Coeur d'Alene Tribe's Energy Efficiency Feasibility Study (EEFS) is the culminating document that compiles the energy efficiency and building performance assessment and project prioritization process completed on 36 Tribally owned and operated facilities within Tribal lands. The EEFS contains sections on initial findings, utility billing analyses, energy conservation measures and prioritization and funding sources and strategies for energy project implementation.

  15. Contracting for Efficiency. A Best Practices Guide for Energy -Efficient Product Procurement

    SciTech Connect

    Bunch, Saralyn; Payne, Christopher

    2016-04-25

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  16. Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  17. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  18. Energy conservation, energy efficiency and energy savings regulatory hypotheses - taxation, subsidies and underlying economics

    SciTech Connect

    Trumpy, T.

    1995-12-01

    More efficient use of energy resources can be promoted by various regulatory means, i.e., taxation, subsidies, and pricing. Various incentives can be provided by income and revenue tax breaks-deductible energy audit fees, energy saving investment credits, breaks for energy saving entrepreneurs, and energy savings accounts run through utility accounts. Value added and excise taxes can also be adjusted to reward energy saving investments and energy saving entrepreneurial activity. Incentives can be provided in the form of cash refunds, including trade-in-and-scrap programs and reimbursements or subsidies on audit costs and liability insurance. Pricing incentives include lower rates for less energy use, prepayment of deposit related to peak load use, electronically dispatched multiple tariffs, savings credits based on prior peak use, and subsidized {open_quotes}leasing{close_quotes} of more efficient appliances and lights. Credits, with an emphasis on pooling small loans, and 5-year energy savings contracts are also discussed.

  19. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    SciTech Connect

    McEntee, Jarlath; Polagye, Brian; Fabien, Brian; Thomson, Jim; Kilcher, Levi; Marnagh, Cian; Donegan, James

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  20. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  1. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  2. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  3. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  4. Carbon-based electrocatalysts for advanced energy conversion and storage.

    PubMed

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-08-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance.

  5. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  6. Green Energy: Advancing Bio-Hydrogen (Presentation)

    SciTech Connect

    Alber, D.

    2007-07-01

    Developing a model of metabolism linked to H2 production in green algae. Develop tools for parameter discovery and optimization at organism level and advance knowledge of hydrogen-producting photosynthetic organisms.

  7. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  8. Interim review of the Energy Efficient Engine /E3/ Program

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.; Hannah, W.; Gray, D. E.

    1982-01-01

    The NASA-sponsored Energy Efficient Engine (E3) Program, which is now in its fourth year, is assessed from the viewpoint of one of its research contractors. Attention is given to the development status of the shroudless fan, segmented combustor and exhaust mixer components which are encompassed by the program. The shroudless fan blades are two-thirds hollow for lightness, and are fabricated by means of plies and cores subjected to hot isostatic pressing diffusion bonding. The combustor's segmented liner is cast from turbine blade materials. Exhaust mixer flow visualization tests are described. Consideration is given to the effects of integrating the technology described with the low and high pressure advanced turbines whose development is also part of the E3 program.

  9. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  10. Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.

    1998-01-01

    The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.

  11. Advanced research in solar energy storage

    NASA Astrophysics Data System (ADS)

    Luft, W.

    1983-01-01

    This paper gives an overview of the Solar Energy Storage Program at the Solar Energy Research Institute. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800 C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  12. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  13. Estimating Energy Expenditure using Individualized, Power-Specific Gross Efficiencies.

    PubMed

    Homestead, E P; Peterman, J E; Kane, L A; Contini, E J; Byrnes, W C

    2016-12-01

    Our purpose was to determine if using an individual's power-specific gross efficiency improves the accuracy of estimating energy expenditure from cycling power. 30 subjects performed a graded cycling test to develop 4 gross efficiencies: individual power-specific gross efficiencies, a group mean power-specific gross efficiency, individual fixed gross efficiencies, and a group mean fixed gross efficiency. Energy expenditure was estimated from power using these different gross efficiencies and compared to measured energy expenditure during moderate- and hard-intensity constant-power and 2 variable-power cycling bouts. Estimated energy expenditures using individual or group mean power-specific gross efficiencies were not different from measured energy expenditure across all cycling bouts (p>0.05). To examine the intra-individual variability of the estimates, absolute difference scores (absolute value of estimated minus measured energy expenditure) were compared, where values closer to zero represent more accurate individual estimates. The absolute difference score using individual power-specific gross efficiencies was significantly lower compared to the other gross efficiencies across all cycling bouts (p<0.01). Significant and strong correlations (r≥0.97, p<0.001) were found across all cycling bouts between estimated and measured energy expenditures using individual power-specific gross efficiencies. In conclusion, using an individual's power-specific gross efficiency significantly improves their energy expenditure estimate across different power outputs.

  14. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE). ACTION: Submission for Office...

  15. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  16. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect

    Hernandez, Adriana

    2012-09-21

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  17. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    SciTech Connect

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  18. 75 FR 7556 - Energy Efficiency Standards for Manufactured Housing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 460 RIN 1904-AC11 Energy Efficiency Standards for Manufactured Housing... initiated the process to develop and publish energy standards for manufactured housing as directed by the... efficiency standards would cover new manufactured housing, DOE is interested in information that relates...

  19. Monitoring agricultural processing electrical energy use and efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy costs have become proportionately larger as cotton post-harvest processing facilities have utilized other inputs more efficiently. A discrepancy in energy consumption per unit processed between facilities suggests that energy could be utilized more efficiently. Cotton gin facilities were in...

  20. Shared Savings Financing for College and University Energy Efficiency Investments.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Shared savings arrangements for campus energy efficient investments are discussed. Shared savings is a term for an agreement in which a private company offers to implement an energy efficiency program, including capital improvements, in exchange for a portion of the energy cost savings. Attention is directed to: types of shared savings…

  1. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Seneca Rocks Discovery Center, Seneca Rocks, West Virginia

    SciTech Connect

    Kiatreungwattana, Kosol; Salasovich, James; Kandt, Alicen

    2016-03-22

    As part of ongoing efforts by the U.S. Forest Service to reduce energy use and incorporate renewable energy technologies into its facilities, the Department of Energy's National Renewable Energy Laboratory performed an energy efficiency and renewable energy site assessment of the Seneca Rocks Discovery Center in Seneca Rocks, West Virginia. This report documents the findings of this assessment, and provides site-specific information for the implementation of energy and water conservation measures, and renewable energy measures.

  2. Enabling Energy Efficiency in South Africa's Commercial Buildings

    SciTech Connect

    2016-04-01

    South Africa is leading a number of efforts to support a thriving economy while also reducing energy use. Increasing energy demand coupled with a highly energy intensive economy and energy inefficient industries provide the backdrop for strong government action underway in South Africa. This brochure details how the Clean Energy Solutions Center supported development of the Regulations on Allowance for the Energy Efficiency Savings legislation designed to provide a framework for effective energy efficiency regulation, incentives and energy reduction targets for South Africa's commercial buildings sector.

  3. Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable-Energy Technologies

    SciTech Connect

    Widergren, Steven E.; Paget, Maria L.; Secrest, Thomas J.; Balducci, Patrick J.; Orrell, Alice C.; Bloyd, Cary N.

    2011-05-10

    This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.

  4. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema

    None

    2016-07-12

    Technology — from sophisticated computer modeling to advanced windows that actually open — will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  5. More Efficient Solar Thermal-Energy Receiver

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  6. Transportation Energy Efficiency Trends, 1972--1992

    SciTech Connect

    Greene, D.L.; Fan, Y.

    1994-12-01

    The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

  7. Superconductor digital electronics: Scalability and energy efficiency issues (Review Article)

    NASA Astrophysics Data System (ADS)

    Tolpygo, Sergey K.

    2016-05-01

    Superconductor digital electronics using Josephson junctions as ultrafast switches and magnetic-flux encoding of information was proposed over 30 years ago as a sub-terahertz clock frequency alternative to semiconductor electronics based on complementary metal-oxide-semiconductor (CMOS) transistors. Recently, interest in developing superconductor electronics has been renewed due to a search for energy saving solutions in applications related to high-performance computing. The current state of superconductor electronics and fabrication processes are reviewed in order to evaluate whether this electronics is scalable to a very large scale integration (VLSI) required to achieve computation complexities comparable to CMOS processors. A fully planarized process at MIT Lincoln Laboratory, perhaps the most advanced process developed so far for superconductor electronics, is used as an example. The process has nine superconducting layers: eight Nb wiring layers with the minimum feature size of 350 nm, and a thin superconducting layer for making compact high-kinetic-inductance bias inductors. All circuit layers are fully planarized using chemical mechanical planarization (CMP) of SiO2 interlayer dielectric. The physical limitations imposed on the circuit density by Josephson junctions, circuit inductors, shunt and bias resistors, etc., are discussed. Energy dissipation in superconducting circuits is also reviewed in order to estimate whether this technology, which requires cryogenic refrigeration, can be energy efficient. Fabrication process development required for increasing the density of superconductor digital circuits by a factor of ten and achieving densities above 107 Josephson junctions per cm2 is described.

  8. Pump efficiency in solar-energy systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  9. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  10. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  11. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Roy Payne; Lary Swanson; Antonio Marquez; Ary Chang; Vladimir M. Zamansky; Pete M. Maly; Vitali V. Lissianski

    2000-09-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+% NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The twelfth reporting period in Phase II (July 3-October 15, 2000) included design validation AR-Lean tests (Task No.2.6) in the 10 x 10{sup 6} Btu/hr Tower Furnace. The objective of tests was to determine the efficiency of AR-Lean at higher than optimum OFA/N-Agent injection temperatures in large pilot-scale combustion facility. Tests demonstrated that co-injection of urea with overfire air resulted in NO{sub x} reduction. However, observed NO{sub x} reduction was smaller than that under optimum conditions.

  12. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir Zamansky

    2000-06-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The eleventh reporting period in Phase II (April 1-June 30, 2000) included design validation AR-Lean tests (Task 2.6) in the 10 x 10{sup 6} Btu/hr Tower Furnace. The objective of tests was to determine the efficiency of AR-Lean at higher than optimum OFA/N-Agent injection temperatures in large pilot-scale combustion facility. Tests demonstrated that co-injection of urea with overfire air resulted in NO{sub x} reduction. However, observed NO{sub x} reduction was smaller than that under optimum conditions.

  13. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  14. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    SciTech Connect

    Pannone, Greg; Thomas, John F; Reale, Michael; Betz, Brian

    2017-01-01

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily available from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.

  15. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  16. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  17. Discussion of Consumer Perspectives on Regulation of Energy Efficiency Investments

    EPA Pesticide Factsheets

    This report considers consumers’ perspectives on policy and regulatory issues associated with the administration of energy efficiency investments funded by ratepayers of electric and natural gas utilities.

  18. Energy efficiency in California laboratory-type facilities

    SciTech Connect

    Mills, E.; Bell, G.; Sartor, D.

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  19. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    SciTech Connect

    Authors, Various

    1981-05-01

    The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

  20. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    SciTech Connect

    Hannigan, Jim; Coleman, Chris; Oliver, LeAnn; Jambois, Louis

    2011-01-01

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers.

  1. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    ScienceCinema

    Hannigan, Jim; Coleman, Chris; Oliver, LeAnn; Jambois, Louis

    2016-07-12

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers.

  2. Efficiency of Energy Use in the United States

    ERIC Educational Resources Information Center

    Hirst, Eric; Moyers, John C.

    1973-01-01

    Describes ways to reduce energy consumption in transportation, space heating, and air conditioning. Greater efficiency for energy use from an engineering point of view is possible in present circumstances. (PS)

  3. Circuit Rider Program - Energy Efficiency in Local Government Operations

    EPA Pesticide Factsheets

    This project works with four of the nine counties within the DVRPC region and focuses on the 228 small municipalities that are too small to qualify for Department of Energy's Energy Efficiency and Conservation Block Grant program

  4. Residential Energy Efficiency Research Planning Meeting Summary Report

    SciTech Connect

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  5. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  6. Improving the energy efficiency in Lonza Ltd, Visp.

    PubMed

    Szijjarto, Andrej

    2013-01-01

    Over the past few decades, the development of the energy market was marked by market liberalization, a surging appetite for energy in the developing world, constantly high energy prices, energy security concerns, a growing awareness of climate change, and introduction of the emissions trading. These issues result in the growing importance of energy efficiency for the chemical and life science industries. This article describes a systematic approach to achieve higher energy efficiency in the Swiss chemical and life science company Lonza Ltd. A particular energy-saving project focusing on the optimization of infrastructure is presented.

  7. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  8. 77 FR 43807 - Renewable Energy and Energy Efficiency Advisory Committee; Extended Deadline for Solicitation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee; Extended Deadline... which it will accept nominations to serve on the Renewable Energy and Energy Efficiency Advisory... procedures, qualifications for membership, and on the composition and purpose of the Renewable Energy...

  9. 76 FR 71312 - Renewable Energy and Energy Efficiency Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee Meeting AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to review... administration of programs and policies to support the competitiveness of the U.S. renewable energy and...

  10. 77 FR 64106 - Renewable Energy and Energy Efficiency Trade Policy Mission to Chile

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ..., geothermal, biomass, hydropower, and energy efficiency sectors. Several U.S. firms have already made... International Trade Administration Renewable Energy and Energy Efficiency Trade Policy Mission to Chile AGENCY... Commerce's International Trade Administration (ITA) is organizing a Renewable Energy and Energy...

  11. 78 FR 16443 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC87 Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans and Ceiling Fan Light Kits AGENCY: Office of Energy Efficiency and... process to consider amending the energy conservation standards for ceiling fans and ceiling fan light...

  12. Berkeley Lab Answers Your Home Energy Efficiency Questions

    SciTech Connect

    Walker, Iain

    2013-02-14

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  13. Berkeley Lab Answers Your Home Energy Efficiency Questions

    ScienceCinema

    Walker, Iain

    2016-07-12

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  14. Energy Efficiency/Renewable Energy Programs in State Implementation Plans - Guidance Documents

    EPA Pesticide Factsheets

    final document that provides guidance to States and local areas on quantifying and including emission reductions from energy efficiency and renewable energy measures in State Implementation Plans (SIPS).

  15. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    NASA Astrophysics Data System (ADS)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  16. Building America - Resources for Energy Efficient Homes

    SciTech Connect

    2012-04-19

    Building America publications help builders achieve whole-house energy savings in five major climate zones. Using the recommendation and process improvements outlined in the Best Practices Series handbooks, builders can re-engineer their designs to improve energy performance and quality. Case studies for new and existing homes provide results from actual projects.

  17. Tool to Prioritize Energy Efficiency Investments

    SciTech Connect

    Farese, Philip; Gelman, Rachel; Hendron, Robert

    2012-08-01

    To provide analytic support of the U.S. Department of Energy's Office of the Building Technology Program (BTP), NREL developed a Microsoft Excel-based tool to provide an open and objective comparison of the hundreds of investment opportunities available to BTP. This tool uses established methodologies to evaluate the energy savings and cost of those savings.

  18. 76 FR 42688 - Updating State Residential Building Energy Efficiency Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... 1904-AC17 Updating State Residential Building Energy Efficiency Codes AGENCY: Department of Energy.... Department of Energy (DOE or Department) has determined that the 2009 edition of the International Code Council (ICC) International Energy Conservation Code (IECC) (2009 IECC or 2009 edition) would...

  19. Impact of improved building thermal efficiency on residential energy demand

    SciTech Connect

    Adams, R.C.; Rockwood, A.D.

    1983-04-01

    The impact of improved building shell thermal efficiency on residential energy demand is explored in a theoretical framework. The important economic literature on estimating the price elasticity of residential energy demand is reviewed. The specification of the residential energy demand model is presented. The data used are described. The empirical estimation of the residential energy demand model is described. (MHR)

  20. Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands

    SciTech Connect

    Sockalexis, Mike; Fields, Brenda

    2006-11-30

    The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

  1. Energy efficiency of electrified passenger railway in the Canadian context

    SciTech Connect

    Khan, A.M.

    1980-01-01

    Energy requirements of electrified passenger trains have not been adequately addressed in the technical literature. This paper examines in the Canadian context: (1) the energy implications of passenger railway electrification in terms of propulsion energy requirements (from primary energy source to final consumption) as well as the indirect energy needed for rolling stock and infrastructure, and (2) the relative energy efficiencies of electric and diesel-electric railway traction systems.

  2. Modeling Innovations Advance Wind Energy Industry

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  3. Energy efficiency and the environment: Forging the link

    SciTech Connect

    Vine, E.; Crawley, D.; Centolella, P.

    1991-12-31

    Energy efficiency in homes, the workplace and transportation provides one of the most immediate and valuable solutions to the environmental problems that endanger the world. This book addresses the direct correlation between conserving energy and mitigating environmental hazards such as global warming, air pollution, acid rain, and ozone depletion. Twenty chapters focus on how energy efficiency measures and programs can reduce pollutant emissions, and how planners can incorporate environmental externalities in the allocation of natural resources. Based on papers presented at the ACEEE 1990 Summer Study on Energy Efficiency in Buildings, the book is written by leading researchers, program analysts and policymakers. Topics include: global warming--public perspectives and CO{sub 2} reduction potential; efficiency improvements as an acid rain compliance strategy; efficiency and regulatory policy options; environmental externality costs; integrating energy and environmental planning; trees, landscaping and urban heat islands; and CFCs, energy use in buildings.

  4. Promoting Behavior-Based Energy Efficiency in Military Housing

    SciTech Connect

    AH McMakin; EL Malone; RE Lundgren

    1999-09-07

    The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps agencies reduce the cost of doing business through energy efficiency, water conservation, and the use of solar and other renewable energy. As a large energy user, the U.S. military has been one of the government sectors of focus. Several military installations have shown substantial energy savings in past years. Most of these efficiency projects, however, have focused primarily on physical upgrades, technologies, and purchasing habits. Furthermost projects have focused on administrative and operational areas of energy use. Military residential housing, in particular, has received little formal attention for energy efficiency involving behaviors of the residents themselves. Behavior-based change is a challenging, but potentially fruitful area for energy conservation programs. However, behavioral change involves links with values, social networks and organizations, and new ways of thinking about living patterns. This handbook attempts to fill a gap by offering guidance for promoting such efforts.

  5. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  6. Prototype dining hall energy efficiency study

    SciTech Connect

    Mazzucchi, R.P.; Bailey, S.A.; Zimmerman, P.W.

    1988-06-01

    The energy consumption of food service facilities is among the highest of any commercial building type, owing to the special requirements for food preparation, sanitation, and ventilation. Consequently, the US Air Force Engineering and Services Center (AFESC) contracted with Pacific Northwest Laboratory (PNL) to collect and analyze end-use energy consumption data for a prototypical dining hall and make specific recommendations on cost-effective energy conservation options. This information will be used to establish or update criteria for dining hall designs and retrofits as appropriate. 6 refs., 21 figs., 23 tabs.

  7. EPA Webinar on the Energy Efficiency/Renewable Energy Manual

    EPA Pesticide Factsheets

    existing EPA EE/RE SIP guidance, policies and programs in the jurisdiction, electric energy system, roles and responsibilities of key state energy-related organizations, emission benefits, screening analysis

  8. Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting

    NASA Astrophysics Data System (ADS)

    Kabra, Dinesh; Lu, Li Ping; Vaynzof, Yana; Song, Myounghoon; Snaith, Henry J.; Friend, Richard H.

    2011-07-01

    Conventional photovoltaic technology will certainly contribute this century, but to generate a significant fraction of our global power from solar energy, a radically new disruptive technology is required. Research primarily focused on developing the physics and technologies being low cost photovoltaic concepts are required. The materials with carbon-based solution processible organic semiconductors with power conversion efficiency as high as ˜8.2%, which have emerged over the last decade as promising alternatives to expensive silicon based technologies. We aim at exploring the morphological and optoelectronic properties of blends of newly synthesized polymer semiconductors as a route to enhance the performance of organic semiconductor based optoelectronic devices, like photovoltaic diodes (PV) and Light Emitting Diodes (LED). OLED efficiency has reached upto 150 lm/W and going to be next generation cheap and eco friendly solid state lighting solution. Hybrid electronics represent a valuable alternative for the production of easy processible, flexible and reliable optoelectronic thin film devices. I will be presenting recent advancement of my work in the area of hybrid photovoltaics, PLED and research path towards realization electrically injectable organic laser diodes.

  9. Indoor Air Quality and Energy Efficiency

    EPA Pesticide Factsheets

    EPA completed an extensive modeling study to assess the compatibilities and trade-offs between energy, indoor air quality, and thermal comfort objectives for HVAC systems and to formulate strategies for superior performance across all areas.

  10. Energy Efficient Approach in RFID Network

    NASA Astrophysics Data System (ADS)

    Mahdin, Hairulnizam; Abawajy, Jemal; Salwani Yaacob, Siti

    2016-11-01

    Radio Frequency Identification (RFID) technology is among the key technology of Internet of Things (IOT). It is a sensor device that can monitor, identify, locate and tracking physical objects via its tag. The energy in RFID is commonly being used unwisely because they do repeated readings on the same tag as long it resides in the reader vicinity. Repeated readings are unnecessary because it only generate duplicate data that does not contain new information. The reading process need to be schedule accordingly to minimize the chances of repeated readings to save the energy. This will reduce operational cost and can prolong the tag's battery lifetime that cannot be replaced. In this paper, we propose an approach named SELECT to minimize energy spent during reading processes. Experiments conducted shows that proposed algorithm contribute towards significant energy savings in RFID compared to other approaches.

  11. National Energy Efficiency Enhancement Act of 2010

    THOMAS, 111th Congress

    Sen. Bingaman, Jeff [D-NM

    2010-03-02

    03/10/2010 Committee on Energy and Natural Resources. Hearings held. Hearings printed: S.Hrg. 111-402. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Energy Efficiency Improvement Act of 2014

    THOMAS, 113th Congress

    Rep. McKinley, David B. [R-WV-1

    2013-05-23

    03/06/2014 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  13. Jcpenney is Sold on Energy Efficiency

    SciTech Connect

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  14. Energy efficiency of electron plasma emitters

    SciTech Connect

    Zalesski, V. G.

    2011-12-15

    Electron emission influence from gas-discharge plasma on plasma emitter energy parameters is considered. It is shown, that electron emission from plasma is accompanied by energy contribution redistribution in the gas-discharge from plasma emitter supplies sources-the gas-discharge power supply and the accelerating voltage power supply. Some modes of electron emission as a result can be realized: 'a probe measurements mode,' 'a transitive mode,' and 'a full switching mode.'.

  15. Healthcare Energy Efficiency Research and Development

    SciTech Connect

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M; Parrish, Kristen D.; Singer, Brett C.

    2011-01-31

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that can be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.

  16. Linking quality improvement and energy efficiency/waste reduction

    SciTech Connect

    Lewis, R.E.; Moore, N.L.

    1995-04-01

    For some time industry has recognized the importance of both energy efficiency/waste reduction (ee/wr) and quality/manufacturing improvement. However, industry has not particularly recognized that manufacturing efficiency is, in part, the result of a more efficient use of energy. For that reason, the energy efficiency efforts of most companies have involved admonishing employees to save energy. Few organizations have invested resources in training programs aimed at increasing energy efficiency and reducing waste. This describes a program to demonstrate how existing utility and government training and incentive programs can be leveraged to increase ee/wr and benefit both industry and consumers. Fortunately, there are a variety of training tools and resources that can be applied to educating workers on the benefits of energy efficiency and waste reduction. What is lacking is a method of integrating ee/wr training with other important organizational needs. The key, therefore, is to leverage ee/wr investments with other organizational improvement programs. There are significant strides to be made by training industry to recognize fully the contribution that energy efficiency gains make to the bottom line. The federal government stands in the unique position of being able to leverage the investments already made by states, utilities, and manufacturing associations by coordinating training programs and defining the contribution of energy-efficiency practices. These aims can be accomplished by: developing better measures of energy efficiency and waste reduction; promoting methods of leveraging manufacturing efficiency programs with energy efficiency concepts; helping industry understand how ee/wr investments can increase profits; promoting research on the needs of, and most effective ways to, reach the small and medium-sized businesses that so often lack the time, information, and finances to effectively use the hardware and training technologies available.

  17. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  18. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  19. What works for energy efficiency in large industry

    SciTech Connect

    Peach, H.G.; Bonnyman, C.E.; Ghislain, J.C.

    1997-07-01

    In recent years it has become clear that various groups interested in energy efficiency, including state energy agencies, utilities, and advocacy groups do not know how energy efficiency efforts are conceived and carried out within global industrial corporations. There are vast energy efficiency efforts underway of which almost no one knows, except those directly involved. Nevertheless, the criteria employed, the viewpoint on efficiency, the constraints, and the methods of evaluation are all either somewhat or even quite different in an industrial setting. This paper reports on work underway at Ford Motor Company. Ford Motor Company has demonstrated a major commitment to energy efficiency. This paper illustrates the ways energy efficiency is approached, explains something of how the internal process works. and provides examples of the types of projects recently completed and underway. This paper first reviews certain organizational features of large industrial Demand Side Management (DSM). Second, it explores the model provided by ISO 14001. Third, specific experience of Ford Motor Company, General Motors, and Chrysler in working cooperatively with the Detroit Edison electric utility is reported. Finally, the broader scope of energy efficiency at Ford is indicated, and the ethical nature of energy efficiency is asserted.

  20. ANSI Energy Efficiency Standarization Coordination Collaborative: Call for Participants

    SciTech Connect

    2012-12-10

    The EESCC invites experts to help develop an energy efficiency standardization "roadmap," consisting of an inventory, gap analysis, and priority areas in need of additional standardization efforts. Public and private representatives will also identify approaches to promote adoption and effective implementation of energy efficiency solutions through voluntary, consensus-based standardization and conformance activities.