Science.gov

Sample records for advanced energy sources

  1. A study of an advanced confined linear energy source

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Heidemann, W. B.

    1971-01-01

    A literature survey and a test program to develop and evaluate an advanced confined linear energy source were conducted. The advanced confined linear energy source is an explosive or pyrotechnic X-Cord (mild detonating fuse) supported inside a confining tube capable of being hermetically sealed and retaining all products of combustion. The energy released by initiation of the X-Cord is transmitted through the support material to the walls of the confining tube causing an appreciable change in cross sectional configuration and expansion of the tube. When located in an assembly that can accept and use the energy of the tube expansion, useful work is accomplished through fracture of a structure, movement of a load, reposition of a pin, release of a restraint, or similar action. The tube assembly imparts that energy without release of debris or gases from the device itself. This facet of the function is important to the protection of men or equipment located in close proximity to the system during the time of function.

  2. Inverter for interfacing advanced energy sources to a utility grid

    DOEpatents

    Steigerwald, Robert L.

    1984-01-01

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  3. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  4. The Advanced Photon Source

    SciTech Connect

    Galayda, John N.

    1996-01-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996.

  5. The advanced photon source

    SciTech Connect

    Galayda, J.N.

    1995-07-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996.

  6. Advanced system demonstration for utilization of biomass as an energy source

    SciTech Connect

    Not Available

    1980-10-01

    The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

  7. Advancing Residential Energy Retrofits

    SciTech Connect

    Jackson, Roderick K; Boudreaux, Philip R; Kim, Eyu-Jin; Roberts, Sydney

    2012-01-01

    To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

  8. Applying high frame-rate digital radiography and dual-energy distributed-sources for advanced tomosynthesis

    NASA Astrophysics Data System (ADS)

    Travish, Gil; Rangel, Felix J.; Evans, Mark A.; Schmiedehausen, Kristin

    2013-09-01

    Conventional radiography uses a single point x-ray source with a fan or cone beam to visualize various areas of the human body. An imager records the transmitted photons—historically film and now increasingly digital radiography (DR) flat panel detectors—followed by optional image post-processing. Some post-processing techniques of particular interest are tomosynthesis, and dual energy subtraction. Tomosynthesis adds the ability to recreate quasi-3D images from a series of 2D projections. These exposures are typically taken along an arc or other path; and, tomosynthesis reconstruction is used to form a three-dimensional representation of the area of interest. Dual-energy radiography adds the ability to enhance or "eliminate" structures based on their different attenuation of well-separated end-point energies in two exposures. These advanced capabilities come at a high cost in terms of complexity, imaging time, capital equipment, space, and potentially reduced image quality due to motion blur if acquired sequentially. Recently, the prospect of creating x-ray sources, which are composed of arrays of micro-emitters, has been put forward. These arrays offer a flat-panel geometry and may afford advantages in fabrication methodology, size and cost. They also facilitate the use of the dual energy technology. Here we examine the possibility of using such an array of x-ray sources combined with high frame-rate (~kHz) DR detectors to produce advanced medical images without the need for moving gantries or other complex motion systems. Combining the advantages of dual energy imaging with the ability to determine the relative depth location of anatomical structures or pathological findings from imaging procedures should prove to be a powerful diagnostic tool. We also present use cases that would benefit from the capabilities of this modality.

  9. Advanced light source

    NASA Astrophysics Data System (ADS)

    Sah, R. C.

    1983-03-01

    The Advanced Light Source (ALS) is a new synchrotron radiation source which was proposed by Lawrence Berkeley Laboratory. The ALS will be a key component in a major new research facility, the National Center for Advanced Materials. The ALS will consist of an electron linear accelerator, a booster synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines. Most of all photon beam lines will originate from wiggler and undulator magnets placed in the 12 long straight sections of the ALS. A very low electron beam emittance will provide photon beams of unsurpassed spectral brilliance from specially-designed undulators, and a high radiofrequency will produce very short pulse lengths.

  10. The advanced neutron source

    SciTech Connect

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 8 {times} 10{sup 19} m{sup {minus}2} {center dot}s{sup {minus}1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research.

  11. The Advanced Neutron Source

    SciTech Connect

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 9{center dot}10{sup 19} m{sup -2}{center dot}s{sup -1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs.

  12. Two-source energy balance model to calculate row crop E.T. and ET:Advances at ARS, Bushland, TX 2010-2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two-source energy balance (TSEB) model has undergone several advances recently that improved its accuracy in calculating evaporation (E), transpiration (T), and evapotranspiration (ET) for row crops. These advances were tested using microlysimeter, sap flow, and large weighing lysimeter measurem...

  13. Energy Sources and Development.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with energy sources and development. Its objective is for the student to be able to discuss energy sources and development related to the historical perspective, biological development, current aspects, and future expectations…

  14. Advances in the Two Source Energy Balance (TSEB) model using very high resolution remote sensing data in vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable ...

  15. Advances in the two-source energy balance model: Partioning of evaporation and transpiration for row crops for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  16. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  17. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  18. Diversification of energy sources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  19. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.

    1974-01-01

    Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.

  20. Recent advances in the two source energy balance model to calculate E.T. and ET for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calculation of evaporation (E), transpiration (T), and evapotranspiration (ET) are fundamental to assess strategies and tactics that might improve crop water productivity in both irrigated and dryland production systems. One approach to calculate E, T, and ET is by a two-source energy balance model ...

  1. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    SciTech Connect

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  2. Advanced Light Source elliptical wiggler

    NASA Astrophysics Data System (ADS)

    Hoyer, E.; Akre, J.; Humphries, D.; Marks, S.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-02-01

    A 3.5-m-long elliptical wiggler, optimized to produce elliptically polarized light in the 50 eV to 10 keV range, is currently under design and construction at the Advanced Light Source at Lawrence Berkeley Laboratory. Calculations of spectral performance show that the flux of circularly polarized photons exceeds 1013 photons/s over the 50 eV to 10 keV operating range for current of 0.4 A and 1.5 GeV electron energy. This device features vertical and horizontal magnetic structures of 14 and 141/2 periods, respectively. The period length is 20.0 cm. The vertical structure is a hybrid permanent magnet design with tapered pole tips that produce a peak field of 2.0 T. The horizontal structure is an iron core electromagnetic design, shifted longitudinally 1/4 period, that is tucked between the upper and lower vertical magnetic structure sections. A maximum peak oscillating field of 0.095 T at a frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform. The vacuum chamber is an unconventional design that is removable from the magnetic structure, after magnetic measurements, for UHV processing. The chamber is fabricated from non-magnetic stainless steel to minimize the effects of eddy currents. Device design is presented.

  3. Alternative energy sources

    NASA Astrophysics Data System (ADS)

    Todd, R. W.

    1982-04-01

    Renewable energy sources and their potential contribution for solving energy needs are presented. Centralized supply technologies include those alternative fuels derived from biomass using solar energy, (supplying 57% of the energy supply in some countries), and those using directly collected solar energy to manufacture a fuel. Fuel utilization effects can be doubled by using combined heat and power stations, and other major sources include wind, wave, tidal, and solar. In terms of local supply technology, wood burning appliances are becoming more popular, and methane is being used for heating and to fuel spark ignition engines. Geothermal low temperature heating exists worldwide at a capacity of 7.2 GW, supplying heat, particularly in Hungary, parts of the U.S.S.R., and Iceland, and a geothermal research program has been established in the United States. Sweden has a potential hydroelectric capacity of 600 MW, and the United States has a 100 GW capacity. Many of these technologies are already cost effective.

  4. Advances in the Two Source Energy Balance (TSEB) model using very high resolution remote sensing data in vineyards

    NASA Astrophysics Data System (ADS)

    Nieto Solana, H.; Kustas, W. P.; Torres-Rua, A. F.; ELarab, M.; Song, L.; Alfieri, J. G.; Prueger, J. H.; McKee, L.; Anderson, M. C.; Alsina, M. M.; Jensen, A.; McKee, M.

    2015-12-01

    The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures as well as the net radiation partitioning (ΔRn), as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in agricultural areas, with vegetation clumped along rows and hence only partially covering the soil surface for much of the growing season. The effects on radiation and temperature partitioning is extreme for vineyards and orchards, where there is often significant separation between plants, resulting in strongly clumped vegetation with significant fraction of bare soil/substrate. To better understand the effects of strongly clumped vegetation on radiation and Land Surface Temperature (LST) partitioning very high spatial resolution remote sensing data acquired from an Unmanned Aerial System (UAS) were collected over vineyards in Califronia, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX).The multi-temporal observations from the UAS and very high pixel resolution permitted the estimation of reliable soil and leaf temperatures using a contextual algorithm based on the inverse relationship between LST and a vegetation index. An improvement in the algorithm estimating the effective leaf area index explicitly developed for vine rows and ΔRn using the 4SAIL Radiative Transfer Model is as well developed. The revisions to the TSEB model are evaluated with in situ measurements of energy fluxes and transmitted solar radiation. Results show that the modifications to the TSEB resulted in closer agreement with the flux tower measurements compared to the original TSEB model formulations. The

  5. Status of the advanced neutron source. [Advanced Neutron Source Reactor

    SciTech Connect

    Hayter, J.B.

    1990-01-01

    Research reactors in the United States are becoming more and more outdated, at a time when neutron scattering is being recognized as an increasingly important technique in areas vital to the US scientific and technological future. The last US research reactor was constructed over 25 years ago, whereas new facilities have been built or are under construction in Japan, Russia and, especially, Western Europe, which now has a commanding lead in this important field. Concern over this situation in the early 1980's by a number of organizations, including the National Academy of Sciences, led to a recommendation that design work start urgently on an advanced US neutron research facility. This recommendation is realized in the Advanced Neutron Source Project. The centerpiece of the Advanced Neutron Source will be a new research reactor of unprecedented flux (>7.5 {times} 10{sup 19} m{sup {minus}2}{center dot}s{sup {minus}1}), equipped with a wide variety of state-of-the-art spectrometers and diffractometers on hot, thermal, and cold neutron beams. Very cold and ultracold neutron beams will also be provided for specialized experiments. This paper will discuss the current status of the design and the plans for scattering instrumentation. 5 refs.

  6. Advanced Neutron Source enrichment study

    SciTech Connect

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1994-12-31

    A study has been performed of the impact on performance of using low enriched uranium (20% {sup 235}U) or medium enriched uranium (35% {sup 235}U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% {sup 235}U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology.

  7. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  8. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  9. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  10. The heliospheric energy source

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1986-01-01

    The solar wind and the heliosphere exist as a consequence of the heat input to the corona, particularly the coronal holes. The necessary energy input to coronal holes has been estimated to be 10 to the 6th erg/sq cm sec, requiring Alfven waves with rms fluid velocities of 100 km/sec. Observational upper limits on coronal fluid velocities are of the order of 25 km/sec, which may not apply to the transparent coronal hole. Alternatively it has been suggested that coronal holes may be heated by agitation from neighboring active regions, suggesting that the vigor of a coronal hole depends upon its location. The Ulysses Mission will provide a direct comparison of the strength of the high speed wind from coronal holes at low latitude and coronal holes at high latitude, from which the nature of the presently unknown energy sources of the coronal holes and the resulting structure of the heliosphere may be better judged. The question is fundamental to the dynamics of the windspheres of all stars.

  11. Fission Energy and Other Sources of Energy

    ERIC Educational Resources Information Center

    Alfven, Hannes

    1974-01-01

    Discusses different forms of energy sources and basic reasons for the opposition to the use of atomic energy. Suggests that research efforts should also be aimed toward the fission technology to make it acceptable besides major research studies conducted in the development of alternative energy sources. (CC)

  12. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  13. A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges.

    PubMed

    Rivas-Cantu, Raul C; Jones, Kim D; Mills, Patrick L

    2013-04-01

    An assessment of recent technical advances on pretreatment processes and its effects on enzymatic hydrolysis as the main steps of a proposed citrus processing waste (CPW) biorefinery is presented. Engineering challenges and relevant gaps in scientific and technical information for reliable design, modeling and scale up of a CPW biorefinery are also discussed. Some integrated physico-chemical pretreatments are proposed for testing for CPW, including high speed knife-grinding and simultaneous caustic addition. These new proposed processes and the effect of parameters such as particle size, surface area and morphology, pore volume and chemical composition of the diverse fractions resulting from pretreatment and enzymatic hydrolysis need to be evaluated and compared for pretreated and untreated samples of grapefruit processing waste. This assessment suggests the potential for filling the data gaps, and preliminary results demonstrate that the reduction of particle size and the increased surface area for the CPW will result in higher reaction rates and monosaccharide yields for the pretreated waste material.

  14. Advanced Energy Initiative

    DTIC Science & Technology

    2006-02-01

    President’s National Energy Policy remain to be addressed: o ANWR : The President continues to support Congressional action to authorize...environmentally responsible oil and gas exploration within a small area of the Arctic National Wildlife Refuge ( ANWR ) located in northern Alaska. Using...modern technologies and subject to the world’s most stringent environmental protections, ANWR could produce as much as 1 million barrels of oil per day

  15. Advanced Energy Projects, FY 1993

    NASA Astrophysics Data System (ADS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase 1 SBIR projects, and Phase 2 SBIR projects. Investigator and institutional indexes are included.

  16. Renewal of the Advanced Photon Source.

    SciTech Connect

    Gibson, J. M.

    2008-12-31

    To ensure that state-of-the-art hard x-ray tools are available for US scientists and engineers who are solving key problems in energy, environment, technology development and human health, the nation's unique high-energy x-ray source needs a major renewal of its capabilities. The Advanced Photon Source renewal program responds to key scientific needs driven by our user community. The renewal encompasses many innovations in beamlines and accelerator capabilities, each of which will transform our tools and allow new problems to be solved. In particular the APS renewal dramatically expands two compelling avenues for research. Through x-ray imaging, we can illuminate complex hierarchical structures from the molecular level to the macroscopic level, and study how they change in time and in response to stimuli. Images will facilitate understanding how proteins fit together to make living organisms, contribute to development of lighter, higher-strength alloys for fuel-efficient transportation and advance the use of biomass for alternative fuels. Hard x-rays are also especially suited to the study of real materials, under realistic conditions and in real-time. The advances proposed in this area would help develop more efficient catalysts, enhance green manufacturing, point the way to artificial light-harvesting inspired by biology and help us develop more efficient lighting. The scope of the renewal of our {approx}$1.5B facility is estimated to be {approx}$350M over five years. It is vital that the investment begin as soon as possible. The renewed APS would complement other national investments such as the National Synchrotron Light Source-II and would keep the U.S. internationally competitive.

  17. The Advanced Photon Source list of parameters

    SciTech Connect

    Bizek, H.M.

    1996-07-01

    The Advanced Photon Source (APS) is a third-generation synchrotron radiation source that stores positrons in a storage ring. The choice of positrons as accelerating particles was motivated by the usual reason: to eliminate the degradation of the beam caused by trapping of positively charged dust particles or ions. The third-generation synchrotron radiation sources are designed to have low beam emittance and many straight sections for insertion devices. The parameter list is comprised of three basic systems: the injection system, the storage ring system, and the experimental facilities system. The components of the injection system are listed according to the causal flow of positrons. Below we briefly list the individual components of the injection system, with the names of people responsible for managing these machines in parentheses: the linac system; electron linac-target-positron linac (Marion White); low energy transport line from linac to the PAR (Michael Borland); positron accumulator ring or PAR (Michael Borland); low energy transport line from PAR to injector synchrotron (Michael Borland); injector synchrotron (Stephen Milton); high energy transport line from injector synchrotron to storage ring (Stephen Milton). The storage ring system, managed by Glenn Decker, uses the Chasman-Green lattice. The APS storage ring, 1104 m in circumference, has 40 periodic sectors. Six are used to house hardware and 34 serve as insertion devices. Another 34 beamlines emit radiation from bending magnets. The experimental facilities system`s parameters include parameters for both an undulator and a wiggler.

  18. Research opportunities at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1991-05-01

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is a third-generation synchrotron radiation facility based on a low-emittance, 1.5-GeV electron storage ring with ten long straight sections available for insertion devices and, initially, 24 bend-magnet ports. Undulators will provide high-brightness radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes to above 10 keV. Scheduled to begin operations as a US Department of Energy national user facility in the spring of 1993, the ALS will support an extensive research program in which soft X-ray and ultraviolet radiation is used to study matter in all its varied gaseous, liquid and solid forms. Participating research teams to implement the initial scientific program have been selected.

  19. Alternate Propulsion Energy Sources.

    DTIC Science & Technology

    1983-06-01

    sails, laser propulsion , tethers, fusion rockets, antimatter rockets Z9 BSTRACT (Continue on reverse aide if necessary and identify by block number) This...advanced propulsion Dr. Robert Frisbee, JPL - advanced propulsion Dr. Jonas Zmuidzinas, JPL - metastable helium Dr. Paul Massier, JPL - antimatter ... propulsion Dr. Duane Dipprey, JPL - antimatter propulsion Dr. Giulio Varsi, JPL - solar sails Dr. William Carroll, JPL - solar sails Dr. Duncan Steel

  20. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect

    1996-09-01

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  1. Advanced Photon Source research: Volume 1, Number 1, April 1998

    SciTech Connect

    1998-04-01

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

  2. Energy Sources: An Historical Perspective.

    ERIC Educational Resources Information Center

    Perry, Constance M.

    1983-01-01

    Putting the present energy situation into an historical perspective provides meaning to today's energy concerns and demonstrates how important energy has always been to our life style. Primary energy sources of the United States from 1850 to the present are examined. (RM)

  3. High-resolution beamline 9.3.2 in the energy range 30-1500 eV at the advanced light source: Design and performance

    SciTech Connect

    Hussain, Z.; Heimann, P.A.; McKinney, W.

    1995-12-01

    Bending magnet beamline 9.3.2 at the Advanced Light Source (ALS) was designed for high resolution spectroscopy with capability for delivering circularly polarized light in the soft X-ray energy region using three gratings. The monochromator is a fixed included angle spherical grating monochromator (SGM) and was originally used at SSRL as a prototype for later insertion device based monochromators for the ALS, For operation at the ALS, the toroidal pre-mirror used at SSRL was replaced by a horizontally focusing and a vertically focusing mirrors in the Kirkpatrick-Baez configuration. Circularly polarized radiation is obtained by inserting a water-cooled movable aperture in front of the vertically focusing mirror to allow selecting the beam either above or below the horizontal plane. To maintain a stable beam intensity through the entrance slit, the photocurrent signals from the upper and lower jaws of the entrance slit are utilized to set a feedback loop with the vertically deflecting mirror piezoelectric drive. The beamline end station has a movable platform that accommodates two experimental chambers enabling the synchrotron radiation to be directed to either one of the two experimental chambers without breaking the vacuum.

  4. Status of the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Marx, Jay N.

    1991-01-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory will be a national user facility for the production ofhigh-brightness and partially coherent soft x-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1. 5 GeV with insertion devices in 10 long straight sections and 24 premier bend-magnet ports. High-brightness photon beams from less than 10 eV to more than 2 keY will be produced by undulators thereby providing many research opportunities in materials and surface science biology atomic physics and chemistry. Wigglers and bend magnets will provide high-flux broad-band radiation at energies to 10 keY. 2.

  5. The Advanced Neutron Source liquid deuterium cold source

    SciTech Connect

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy.

  6. Status of the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Gerig, R. E.; Gibson, J. M.; Mills, D. M.; Ruzicka, W. G.; Young, L.; Zholents, A.

    2011-09-01

    In the fall of 2010, the Advanced Photon Source (APS) will enter its fifteenth year of user operations. During fiscal year 2009, the APS delivered X-ray beam to the scientific community 97.7% of scheduled hours (availability) and with a mean time between faults of 77.5 h. The APS remains the most prolific source worldwide of structure deposits in the Protein Data Bank (1433 in 2009) and a leader in the field of high-pressure research, among others. However, to maintain its position as a state-of-the-art facility for hard X-ray science, it will be necessary to refresh and improve the APS X-ray source and beamlines. We are presently on the path to do that through the APS Upgrade Project. The US Department of Energy Office of Science has formally approved the start of this project with the issuance of Critical Decision-0, Approve of Mission Need. The APS staff, in collaboration with our user community, is now in the process of developing a Conceptual Design Report that documents the proposed scope of the APS Upgrade Project. Components of the Upgrade plan will be presented as well as science highlights from the past year.

  7. Economics and energy sources.

    PubMed

    Munro, Malcolm G

    2013-01-01

    Energy-based instrumentation has not only facilitated the rapid adoption of laparoscopic surgery, but could be considered essential for the completion of abdominal and pelvic procedures under endoscopic guidance. For decades, relatively simple and generic reusable monopolar and bipolar systems were the only options available. More recently, the available options for energy-based surgical instrumentation have become more crowded with the introduction of ultrasound-based cutting and sealing instruments and proprietary, impedance monitoring radiofrequency coagulation devices. Such instrumentation is presented as being easier to use as well as providing greater safety and efficacy. However, these new instruments typically require the expenditure of capital for proprietary energy generators and are usually designed to be for single use, a circumstance that increases per case costs, a circumstance that begs the question of value. Do the additional costs expended for the more expensive devices translate into reduced complications, faster operating time, or even wider access to minimally invasive procedures because they enable more surgeons to offer the service? Herein is explored the complex economic issues associated with the use of energy-based surgical devices as they apply to minimal access surgery in general and to laparoscopic procedures specifically.

  8. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  9. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  10. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2016-07-12

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  11. The Advanced Light Source: Technical Design

    SciTech Connect

    Authors, Various

    1984-05-01

    The Advanced Light Source (ALS) is a synchrotron radiation source consisting of a 50-MeV linear accelerator, a 1.3-GeV 'booster' synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines, as shown in Figure 1. As an introduction to a detailed description of the Advanced Light Source, this section provides brief discussions on the characteristics of synchrotron radiation and on the theory of storage rings. Appendix A contents: Introduction to Synchrotron-Radiation Sources; Storage Ring; Injection System; Control System; Insertion Devices; Photon Beam Lines; and References.

  12. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  13. Alternate Propulsion Energy Sources

    DTIC Science & Technology

    1983-12-01

    Fermilab in the USA. The antiprotons are generated by the collision of high energy protons with multiple arrays of thin metal targets. The high...UNCLASSIFIED AD NUMBER ADB088771 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S...EdwarsAFB CA 93523erne_ .... • ir cont-rac--o-S Report distribution limited to ... . .y, Critical Technology,14-Ne 4. .. 9A2 M - Other requests for this

  14. VEDCO energy installations sources

    SciTech Connect

    McDonald, A.

    1996-12-31

    A process for solid waste management is described. The approach combines materials recovery, recycling, and using refuse-derived fuel for cogeneration. A fluidized bed system is used for combustion. An example of the use of this system is briefly cited; it has extended landfill life up to 100 years for one county and allowed three counties to close municipal landfills. Over 50,000 tons of material are recycled each year, saving more than $100 million on waste disposal. Energy generation saves a chemical company over 3 million gallons of oil annually and allows the local utility company to save 75,000 tons of coal. Air emissions at the chemical company will also be reduced by over 50%.

  15. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  16. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  17. Advanced controls for light sources

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Edelen, A. L.; Milton, S. V.

    2016-09-01

    We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.

  18. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  19. Advanced energy projects FY 1994 research summaries

    SciTech Connect

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  20. Electric Power From Ambient Energy Sources

    SciTech Connect

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  1. Design calculations for the ANS (Advanced Neutron Source) cold source

    SciTech Connect

    Lillie, R.A.; Alsmiller, R.G. Jr.

    1988-01-01

    The calculation procedure, based on discrete ordinates transport methods, that is being used to carry out design calculations for the Advanced Neutron Source cold source is described. Calculated results on the gain in cold neutron flux produced by a liquid deuterium cold source are compared with experimental data and with calculated data previously obtained by P. Ageron et al., at the Institute Max von Laue-Paul Langevin in Grenoble, France. Calculated results are also presented that indicated how the flux of cold neutrons vary with cold source parameters. 23 refs., 5 figs., 3 tabs.

  2. Antimatter as an Energy Source

    SciTech Connect

    Jackson, Gerald P.

    2009-03-16

    Antiprotons and positrons are constantly generated in space, and periodically manufactured by humans here on Earth. Harvesting of these particles in space and forming stable antimatter atoms and molecules would create a significant energy source for power and propulsion. Though dedicated fabrication of these particles on Earth consumes much more energy than could be liberated upon annihilation, manufactured antimatter represents a high-density energy storage mechanism well suited for spacecraft power and propulsion. In this paper the creation, storage, and utilization of antimatter is introduced. Specific examples of electrical energy generation and deep-space propulsion based on antimatter are also reviewed.

  3. Energy source for comet outbursts

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Schuerman, D. W.; Rupprecht, G.

    1974-01-01

    Development of a mechanism explaining the internal source of energy of comet outbursts. A mechanism is proposed which automatically provides a source of particulate matter which creates a huge surface area which contains a substantial percentage of amorphous ice, so that the phase transition of the amorphous ice to a cubic structure provides a release of energy which may be responsible for the outbursts observed in many comets. In addition, the volume into which the transition can propagate is estimated for a spherical comet with a radius of 5 km.

  4. Advanced Source Deconvolution Methods for Compton Telescopes

    NASA Astrophysics Data System (ADS)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a

  5. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    NASA Astrophysics Data System (ADS)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  6. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  7. Ethanol: A Strategic Energy Source?

    DTIC Science & Technology

    2009-05-04

    REPORT DATE (DD-MM-YYYY) 04-05-2009 2. REPORT TYPE Program Research Paper 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER...radical terrorists richer.” 3 This research project examines the viability of ethanol as an alternative fuel source. It will identify whether an ethanol...Japan in 1941 went to war to secure its energy supplies. The United States must 3 prepare for these shortages if we are to maintain our economic

  8. Advanced Neutron Source: The users' perspective

    SciTech Connect

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper.

  9. Monitoring performance of the Advanced Light Source

    SciTech Connect

    Byrne, Warren E.; Lampo, Edward J.; Samuelson, Bruce C.

    2001-06-13

    Providing high quality light to users in a consistent and reliable manner is one of the main goals of the accelerator physics group at the Advanced Light source (ALS). To meet this goal considerable time is spent monitoring the performance of the machine. At the Group's weekly meeting the performance of the accelerator over the previous week's run is reviewed. This paper describes the parameters that are monitored to optimize the performance of the ALS.

  10. Insertion devices at the advanced photon source

    SciTech Connect

    Moog, E.R.

    1996-07-01

    The insertion devices being installed at the Advanced Photon Source cause the stored particle beam to wiggle, emitting x-rays with each wiggle. These x-rays combine to make an intense beam of radiation. Both wiggler and undulator types of insertion devices are being installed; the characteristics of the radiation produced by these two types of insertion devices are discussed, along with the reasons for those characteristics.

  11. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Advanced Energy Industries at the ESIF to test its advanced photovoltaic inverter technology with the ESIF's power hardware-in-the-loop system and megawatt-scale grid simulators.

  12. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    SciTech Connect

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  13. Status of the advanced photon source

    SciTech Connect

    Galayda, J.

    1996-12-31

    This report presents general information on the Advanced Photon Source (APS) and then breaks down the APS project into three categories: accelerator systems, experimental facilities, and conventional facilities. The accelerator systems consist of the 7 GeV APS positron storage ring and a 7 GeV positron injector. The experimental facilities include 20 undulator radiation sources and the x-ray beamline components necessary to transport their extraordinarily intense x-ray beams outside the accelerator enclosure. Also included are x-ray beamline components for 20 bending magnet radiation sources. The conventional facilities consist of the accelerator enclosures, a 35,300 m{sup 2} experimental hall to house the x-ray beamlines, an office building for the APS staff and lab/office facilities for the research groups which will construct and operate the first 40 beamlines. APS users are described, and the properties of synchrotron radiation are discussed.

  14. Center For Advanced Energy Studies Overview

    ScienceCinema

    Blackman, Harold

    2016-07-12

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  15. Center For Advanced Energy Studies Overview

    SciTech Connect

    Blackman, Harold

    2011-01-01

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  16. Advanced energy projects FY 1997 research summaries

    SciTech Connect

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  17. Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria.

    SciTech Connect

    Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-09-30

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

  18. The Advanced Photon Source looks to the future.

    SciTech Connect

    Fenner, R. B; Gerig, R. E.; Gibson, J. M.; Gluskin, E.; Long, G. G.; Mills, D. M.; Ruzicka, W. G.

    2007-11-11

    The Advanced Photon Source (APS) at Argonne National Laboratory is in its 12th year since producing first light. With an eye on the next 10 years, facility management have developed plans that address priorities for new and/or improved beamlines over the next 5-10 years with a strong evolution toward a greater number of dedicated beamlines. In addition, options, including an energy-recovery linac, are being evaluated for a planned upgrade of the APS.

  19. Gravitational energy sources in Jupiter

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1973-01-01

    Gravitational sources of the intrinsic luminosity of Jupiter are examined in the context of current hydrogen-helium models. When no gravitational separation of matter occurs, the amount of heat which can be released over the remaining lifetime of the planet is necessarily limited by the size of its existing reservoir of thermal energy. This conclusion rests only on the assumption that its interior is relatively cold and degenerate. If gravitational unmixing occurs, the size of the thermal reservoir does not necessarily limit the heat output. If core formation occurs, for example, then the size of the core formed will be a limiting factor. The energy released with the formation of a helium core is computed for Jupiter. A core growth rate, averaged over several billion years, of 20 trillionths of Jupiter's mass per year is required if gravitational separation is to play a significant role in the thermal evolution.

  20. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  1. Operator scheduling at the Advanced Light Source

    SciTech Connect

    Miller, B.

    1998-06-01

    Scheduling Operations staff at the Advanced Light Source (ALS) has evolved from 5 shifts/week for commissioning operations in 1992 to the present 24 hour/day, 21 shift coverage as the ALS went to full operation for users. A number of schedules were developed and implemented in an effort to accommodate changing ALS shift coverage requirements. The present work schedule and the lessons learned, address a number of issues that are useful to any facility that is operating 24 hours/day, 7 days/week.

  2. Scientific opportunities at the advanced light source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.

    1989-04-01

    The Advanced Light Source (ALS) is a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. Now under construction at the Lawrence Berkeley Laboratory with a projected completion date of September 1992, the ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in eleven long straight sections. It will also have up to 48 bending-magnet ports. Scientific opportunities in materials science, surface science, chemistry, atomic and molecular physics, life science and other fields are reflected in Letters of Interest received for the establishment of beamlines.

  3. Advanced Light Source beam diagnostics systems

    SciTech Connect

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  4. Preconceptual design requirements for the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.; Goldstein, S.A.; Cereghino, S.J.; MacLeod, G.

    1998-09-01

    The X-1 Advanced Radiation Source represents the next step in providing the US Department of Energy`s Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray source for the Radiation Effects Science and Simulation, Inertial Confinement Fusion, and Weapon Physics Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator provide sufficient basis for pursuing the development of X-1. The X-1 plan follows a strategy based on scaling the 2 MJ x-ray output on Z via a 3-fold increase in z-pinch load current. The large volume (>5 cm{sup 3}), high temperature (>150 eV), temporally long (>10 ns) hohlraums are unique outside of underground nuclear weapon testing. Analytical scaling arguments and hydrodynamic simulations indicate that these hohlraums at temperatures of 230--300 eV will ignite thermonuclear fuel and drive the reaction to a yield of 200 to 1,000 MJ in the laboratory. X-1 will provide the high-fidelity experimental capability to certify the survivability and performance of non-nuclear weapon components in hostile radiation environments. Non-ignition sources will provide cold x-ray environments (<15 keV), and high yield fusion burn sources will provide high fidelity warm x-ray environments (15 keV--80 keV).

  5. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  6. Advanced RF power sources for linacs

    SciTech Connect

    Wilson, P.B.

    1996-10-01

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  7. Renewable Sources of Energy and Development.

    ERIC Educational Resources Information Center

    Diatta, Christian Sina

    1979-01-01

    Reviewed are the status of conventional sources of energy, prospects for the development of alternative sources of energy, and the consequences of that development on countries that are in the process of industrialization. (BT)

  8. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    SciTech Connect

    Gu, Lixing; Shirey, Don; Raustad, Richard; Nigusse, Bereket; Sharma, Chandan; Lawrie, Linda; Strand, Rick; Pedersen, Curt; Fisher, Dan; Lee, Edwin; Witte, Mike; Glazer, Jason; Barnaby, Chip

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly

  9. Superbend upgrade on the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W. R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J. A.; Pipersky, P.; Portmann, G.; Ritchie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt, A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2005-02-01

    The Advanced Light Source (ALS) is a third generation synchrotron light source at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand for additional high brightness hard X-ray beamlines in the 7-40 keV range, so in August 2001, three 1.3 T normal conducting bending magnets were removed from the storage ring and replaced with 5 T superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV, making them excellent sources of hard X-rays for protein crystallography and other hard X-ray applications. The Superbends did not compromise the performance of the facility in the VUV and soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new beam lines, greatly enhancing the facility's capability and capacity in the hard X-ray region. The Superbend project is the biggest upgrade since the ALS storage ring was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  10. Economics of alternative energy sources.

    PubMed

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  11. Center for Advanced Energy Studies Program Plan

    SciTech Connect

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  12. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  13. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  14. Alternative Sources of Energy: A Course in Energy Education.

    ERIC Educational Resources Information Center

    Gupta, Gian

    1983-01-01

    Describes a course designed to familiarize students with alternative sources of energy, with emphasis on problem-solving strategies. Includes list of major topics/subtopics addressed and list of textbooks and recommended readings on alternative energy sources. (JN)

  15. Supplementing Conservation Practices with Alternative Energy Sources.

    ERIC Educational Resources Information Center

    Kraetsch, Gayla A.

    1981-01-01

    Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)

  16. The Advanced Photon Source control system

    SciTech Connect

    Knott, M.J.; McDowell, W.P.; Lenkszus, F.R.; Kraimer, M.R.; Arnold, N.D.; Daly, R.T.; Gunderson, G.R.; Cha, Ben-Chin K.; Anderson, M.D.

    1991-01-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), is a 7-GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible and expandable control system. The control system must be capable of operating the APS storage ring alone, and in conjunction with its injector synchrotron for filling, as well as operating both storage ring and injection facilities as machines with separate missions. The control system design is based on the (now classic) precepts of high-performance workstations as operators consoles, distributed microprocessors to control equipment interfacing and preprocess data, and an interconnecting network. The current design includes about 45 distributed microprocessors and five console systems, which may consist of one or more workstations. 6 refs., 2 figs.

  17. Advanced neutron source materials surveillance program

    SciTech Connect

    Heavilin, S.M.

    1995-01-01

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing.

  18. Advanced Light Source beam position monitor

    SciTech Connect

    Hinkson, J.

    1991-10-28

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics.

  19. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  20. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads, motor loads...Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical Point of

  1. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    waveform, detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads...Electrical Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical

  2. The Advanced Light Source at Lawrence Berkeley Laboratory

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Perera, R. C. C.; Schlachter, A. S.

    1992-01-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL), scheduled to be operational in the spring of 1993 as a U.S. Department of Energy national user facility, will be a next-generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide the world's brightest synchrotron radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes above 10 keV. These capabilities will support an extensive research program in a broad spectrum of scientific and technological areas in which XUV radiation is used to study and manipulate matter in all its varied gaseous, liquid, and solid forms. The ALS will also serve those interested in developing the fabrication technology for microstructures and nanostructures, as well as for characterizing them.

  3. Advances in geothermal energy use

    SciTech Connect

    Kilkis, I.B.; Eltez, M.

    1996-10-01

    One of the earliest examples of large scale use of the geothermal energy is the district heating system in Boise, Idaho. Established in 1892, this system now serves 266 customers--mostly residential. Today, excluding heat pumps, there are about 300 sites in America where geothermal energy is currently used in various applications; including district heating, absorption cooling and refrigeration, industrial processes, aquaculture, horticulture, and snow melting/freeze protection. Among these, 18 geothermal district heating systems are operating with 677 GBtu (714 TJ) total annual heat output. Geothermal activity was first generated in Italy, in 1904, with a 10 kWe capacity. Now, commercial power plants are in service using vapor-dominated and liquid-dominated plants with a world-wide installed capacity of 6 GWe. This paper looks at a hybrid cycle/integrated district HVAC system.

  4. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  5. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  6. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  7. 50% Advanced Energy Design Guides: Preprint

    SciTech Connect

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  8. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    In this report, the contents and major results of the national research program on advanced energy system and technologies (NEMO) are presented. The NEMO-program was one of the energy research programs of the Ministry of Trade and Industry during 1988-1992. Helsinki University of Technology had the responsibility of the overall coordination of the program. NEMO has been the largest resource allocation into advanced energy systems in Finland so far. The total budget was 70 million FIM. The focus of the program has been in solar energy, wind power, and energy storage. Hydrogen and fuel cells have been included in smaller amount. On all major fields of the NEMO-program, useful and high quality results have been obtained. Results of international significance include among others arctic wind energy, new approaches for the energy storage problem in solar energy applications, and the development of a completely new storage battery. International collaboration has been given high priority. The NEMO-program has also been active in informing the industries of the various business and utilization possibilities that advanced energy technologies offer. For example, major demonstration plants of each technology group have been realized. It is recommended that the further R and D should be still more focused on commercial applications. Through research efforts at universities, a good technology base should be maintained, whereas the industries should take a stronger position in commercializing new technology. Parallel to technology R and D, more public resources should be allocated for market introduction.

  9. X-ray micro-Tomography at the Advanced Light Source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  10. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  11. An ALS (Advanced Light Source) handbook

    SciTech Connect

    Not Available

    1988-11-01

    This booklet aims to provide the prospective user of the Advanced Light Source with a concise description of the radiation a researcher might expect at his or her experimental station. The focus is therefore on the characteristics of the light that emerges from insertion devices and bending magnets and on how components of the beam lines further alter the properties of the radiation. The specifications and operating parameters of the ALS injection system and storage ring are of only peripheral interest. To this end, Sections 3 and 5 and most of Section 4 are devoted to summary presentations, by means of performance plots and tabular compilations, of radiation characteristics at the ALS--spectral brightness, flux, coherent power, resolution, time structure, etc.--assuming a representative set of four undulators and one wiggler and a corresponding set of five beam lines. As a complement to these performance summaries, Section 1 is a general introductory discussion of synchrotron radiation and the ALS, and Section 2 provides a compendious introduction to the characteristics of synchrotron radiation from bending magnets, wigglers, and undulators. In addition, Section 4 briefly introduces the theory of diffraction grating and crystal monochromators. 15 refs., 28 figs., 5 tabs.

  12. Advanced Neutron Sources: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  13. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  14. The importance of the different kinds of energy sources for energy future of Turkey

    NASA Astrophysics Data System (ADS)

    Kaplan, Yusuf Alper; Aladağ, Canan

    2016-11-01

    Nowadays, the need of energy has been increasing day by day with the population growth and the advancements of technology. In this study, the current state of nuclear, wind and solar energy on the worldwide has been generally investigated. The general assessments have been made based on Turkey's energy potential and the evaluation situation of this potential. The current political structures of countries are generally assessed and under this policy, the last situation and the latest implemented innovations are given. Turkey's energy demand is constantly increasing and Turkey is a country that needs to energy imports. This is a need for new energy sources to meet the growing need for energy. Nuclear, wind and solar energy are the new sources of energy to the fore in our country recently. In this study is given general information on the usage of energy sources of making and some deficiencies were been emphasized by political considerations in this regard.

  15. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  16. Study for promotion of introducing advanced battery energy storage systems

    NASA Astrophysics Data System (ADS)

    1991-03-01

    An advanced battery energy storage system is examined, with studies focused mainly on its technical development, but also its commercialization, cost, reliability, simplification and compactness. The purpose of this project is to study the parameters which are needed in order to promote introduction of the advanced battery energy storage system. Systems which are expected to be commercialized in the near future are a customer peak-cut system, an isolated island peak-cut system, and emergency electric power sources. When technology reaches maturity, a load-leveling system to be installed at substations of electric utilities are expected to be commercially used. With the study on commercial application as one of the purposes, small scale (50 to 100 kW) advanced battery energy storage systems are expected to be trially employed to peak cut use at customers (prime) end. To promote introduction of the system, it is necessary to make environmental improvement in the institutional aspect.

  17. The New Center for Advanced Energy Studies

    SciTech Connect

    L.J. Bond; K. Kostelnik; R.A. Wharton; A. Kadak

    2006-06-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundation to enable future economic growth. The next generation energy workforce in the U.S. is a critical element in meeting both national and global energy needs. The Center for Advanced Energy Studies (CAES) was established in 2005 in response to U.S. Department of Energy (DOE) requirements. CAES, located at the new Idaho National Laboratory (INL), will address critical energy education, research, policy study and training needs. CAES is a unique joint partnership between the Battelle Energy Alliance (BEA), the State of Idaho, an Idaho University Consortium (IUC), and a National University Consortium (NUC). CAES will be based in a new facility that will foster collaborative academic and research efforts among participating institutions.

  18. Undulators at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Hoyer, E.; Akre, J.; Chin, J.; Gath, W.; Hassenzahl, W. V.; Humphries, D.; Kincaid, B.; Marks, S.; Pipersky, P.; Plate, D.; Portmann, G.; Schlueter, R.

    1995-02-01

    At Lawrence Berkeley Laboratory's Advanced Light Source, three 4.6 m long undulators have been completed, tested, and installed. A fourth is under construction. The completed undulators include two 5.0 cm period length, 89 period devices (U5.0s) which achieve a 0.85 T effective field at a 14 mm minimum gap and a 8.0 cm period length, 55 period device (U8.0) that reaches a 1.2 T effective field at a 14 mm minimum gap. The undulator under construction is a 10.0 cm period length, 43 period device (U10.0) that is designed to achieve 0.98 T at a 23 mm gap. Undulator magnetic gap variation (rms) is within 25 μm over the periodic structure length. Reproducibility of the adjustable magnetic gap has been measured to be within ±5 μm. Gap adjusting range is from 14 to 210 mm, which can be scanned in 1 min. The 5.1 m long vacuum chambers are flat in the vertical direction to within 0.74 mm and straight in the horizontal direction to within 0.08 mm over the 4.6 m magnetic structure sections. Vacuum chamber base pressures after UHV beam conditioning are in the mid-10-11 Torr range and storage ring operating pressures with full current are in the low 10-10 Torr range. Measurements show that the uncorrelated magnetic field errors are 0.23% and 0.20% for the two U5.0s and the U8.0, respectively, and that the field integrals are small over the 1 cm×6 cm beam aperture. Device description, fabrication, and measurements are presented.

  19. The advanced light source at the Lawrence Berkeley laboratory

    NASA Astrophysics Data System (ADS)

    Jackson, Alan

    1991-05-01

    The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.

  20. The advanced neutron source safety approach and plans

    SciTech Connect

    Harrington, R.M. )

    1989-01-01

    The Advanced Neutron Source (ANS) is a user facility for all areas of neutron research proposed for construction at the Oak Ridge National Laboratory. The neutron source is planned to be a 350-MW research reactor. The reactor, currently in conceptual design, will belong to the United States Department of Energy (USDOE). The safety approach and planned elements of the safety program for the ANS are described. The safety approach is to incorporate USDOE requirements (which, by reference, include appropriate requirements from the United States Nuclear Regulatory Commission (USNRC) and other national and state regulatory agencies) into the design, and to utilize probabilistic risk assessment (PRA) techniques during design to achieve extremely low probability of severe core damage. The PRA has already begun and will continue throughout the design and construction of the reactor. Computer analyses will be conducted for a complete spectrum of accidental events, from anticipated events to very infrequent occurrences. 8 refs., 2 tabs.

  1. Veterans Advancing Clean Energy and Climate

    ScienceCinema

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2016-07-12

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  2. Veterans Advancing Clean Energy and Climate

    SciTech Connect

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2013-11-11

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  3. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  4. Delays in Tapping Energy Sources

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1975-01-01

    Summarizes factors that will create severe energy shortages by 1980. Indicates that conservation is not enough, and the quickest path toward relief is the expansion of surface mining of low-sulfur coal in the Rocky Mountain states. (GS)

  5. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    EPA Pesticide Factsheets

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  6. Flywheel energy storage advances using HTS bearings.

    SciTech Connect

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  7. Finding radiant-energy sources

    NASA Technical Reports Server (NTRS)

    Schaffer, G. J.

    1978-01-01

    Antenna is scanned in orthogonal directions to pinpoint interfering sources. Satellite system locates ground-based microwave transmitter to accuracy of about 100 miles. When data on misalinement of satellite antenna boresight are used to correct antenna pointing, accuracy is improved to better than 70 miles.

  8. Advanced Energy Conversion Concept for Beamed-Energy Propulsion.

    DTIC Science & Technology

    1987-08-21

    geometry ................ 9 Figure HA Methods for incorporating variable geometry In radlally-eymmetric supersonic inlets...41 Figure 11. EB thrust vector geometry for rotating ine source(s) ... ........... 42 Ire 11-19. Energy deposition mode - bottom view...coniguration . ..... ................... 106 Figure V.2. LSD wave Laraglan view ..... ....................... 105 Figure V-.& Cylindrical blad wave geometry

  9. Advanced energy projects; FY 1995 research summaries

    SciTech Connect

    1995-09-01

    The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

  10. Looking for alternative energy sources.

    PubMed

    Gross, Michael

    2012-02-21

    With unrest in oil-exporting countries, backlashes against biofuels and photovoltaics, and a nuclear incident in Japan, the year 2011 rattled confidence in future energy supplies. The search for alternatives is all the more urgent, but some of the solutions investigated hark back to fossil fuels that we can't afford to burn.

  11. Sources of Information on Wind Energy (Brochure)

    SciTech Connect

    Not Available

    2001-12-01

    As wind technology continues to mature and the wind industry becomes an increasingly respected member of the energy producing community, a growing number of people require more information about wind energy. Whether you are a business manager, utility engineer, scientific researcher, or an interested energy user, this brochure provides helpful information sources.

  12. An advanced negative hydrogen ion source

    SciTech Connect

    Goncharov, Alexey A. Dobrovolsky, Andrey N.; Goretskii, Victor P.

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  13. The Sun: Source of the Earth's Energy

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.

  14. Fusion as a future energy source

    NASA Astrophysics Data System (ADS)

    Ward, D. J.

    2016-11-01

    Fusion remains the main source of energy generation in the Universe and is indirectly the origin of nearly all terrestrial energy (including fossil fuels) but it is the only fundamental energy source not used directly on Earth. Here we look at the characteristics of Earth-based fusion power, how it might contribute to future energy supply and what that tells us about the future direction of the R&D programme. The focus here is Magnetic Confinement Fusion although many of the points apply equally to inertial confinement fusion.

  15. Modeling Innovations Advance Wind Energy Industry

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  16. Proceedings of the Advanced Photon Source renewal workshop.

    SciTech Connect

    Gibson, J. M.; Mills, D. M.; Kobenhavns Univ.; Northwestern Univ.; Stony Brook Univ.; Univ. of Pennsylvania; Notre Dame Univ.; Univ. of Chicago; Univ. of Connecticut; Diamond Light Source Ltd.; Univ. of Wisconsin at Madison; North Dakota State Univ.; Washington State Univ.; ORNL; Univ. of Illinois; NIH

    2008-12-01

    Beginning in March 2008, Advanced Photon Source (APS) management engaged users, facility staff, the distinguished members of the APS Scientific Advisory Committee, and other outside experts in crafting a renewal plan for this premier synchrotron x-ray research facility. It is vital that the investment in the APS renewal begin as soon as possible in order to keep this important U.S. facility internationally competitive. The APS renewal plan encompasses innovations in the beamlines and the x-ray source that are needed for major advances in science - advances that promise to further extend the impact of x-ray science on energy research, technology development, materials innovation, economic competitiveness, health, and far-reaching fundamental knowledge. A planning milestone was the APS Renewal Workshop held on October 20-21, 2008. Organized by the APS Renewal Steering Committee, the purpose of the workshop was to provide a forum where leading researchers could present the broad outlines of forward-looking plans for science at the APS in all major disciplines serviced by x-ray techniques. Two days of scientific presentations, discussions, and dialogue involved more than 180 scientists representing 41 institutions. The scientific talks and breakout/discussion sessions provided a forum for Science Team leaders to present the outlines of forward-looking plans for experimentation in all the major scientific disciplines covered by photon science. These proceedings comprise the reports from the Science Teams that were commissioned by the APS Renewal Steering Committee, having been edited by the Science Teams after discussion at the workshop.

  17. Observations of collective effects at the Advanced Light Source

    SciTech Connect

    Byrd, J.M.; Barry, W.; Corlett, J.N.; Fox, J.; Teytelman, D.

    1995-10-01

    We present a summary of measurements of single beam collective effects in the Advanced Light Source (ALS). We describe measurements of coupled-bunch instabilities, including some recent results using the newly commissioned feedback systems and the results of an initial search for the fast ion instability. Single bunch effects include bunch lengthening, energy spread increase, HOM loss measurements, head-tail damping rates, current dependent tune shifts, and transverse mode coupling instability threshold. The longitudinal measurements are consistent with a broadband impedance {vert_bar}{Zeta}{sub {parallel}}/{eta}{vert_bar}{sub eff} = 0.22{plus_minus}0.07 {Omega} and transverse measurements indicate broadband impedances of {Zeta}{sub y,eff} = 155 k{Omega}/m and Z{sub x,eff} = 58 k{Omega}/m.

  18. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  19. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  20. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  1. Proposed neutron activation analysis facilities in the Advanced Neutron Source

    SciTech Connect

    Robinson, L.; Dyer, F.F.; Emery, J.F.

    1990-01-01

    A number of analytical chemistry experimental facilities are being proposed for the Advanced Neutron Source. Experimental capabilities will include gamma-ray analysis and neutron depth profiling. This paper describes the various systems proposed and some of their important characteristics.

  2. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  3. Science at the Speed of Light: Advanced Photon Source

    SciTech Connect

    Murray Gibson

    2009-06-03

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  4. Science at the Speed of Light: Advanced Photon Source

    ScienceCinema

    Murray Gibson

    2016-07-12

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  5. Expert Assessment of Advanced Power Sources

    DTIC Science & Technology

    2007-07-01

    attracting attention worldwide. A South African firm, Pebble Bed Modular Reactor ( PBMR ) Pty, is apparently constructing a demonstration plant near Cape...Encapsulated Nuclear Heat-Source (ENHS), 50 MWe, from UC Berkeley, U.S.; and NEREUS, 8 MWe, reactor from the Netherlands, similar to the PBMR . Several

  6. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  7. Advanced Power Sources for Space Missions

    DTIC Science & Technology

    1989-01-01

    baseload operation of the space platform, including communication, station-keeping, and surveillance systems. A typical household consumes energy at the...RESEARCH CENTER, CLEVELAND, OHIO June 25,1987 NASA space power need» and programs SDI space power architecture studies SDI nonnuclear baseload

  8. Systems analysis and engineering of the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.

    1998-10-01

    The X-1 Advanced Radiation Source, which will produce {approximately} 16 MJ in x-rays, represents the next step in providing US Department of Energy`s Stockpile Stewardship program with the high-energy, large volume, laboratory x-ray sources needed for the Radiation Effects Science and Simulation (RES), Inertial Confinement Fusion (ICF), and Weapon Physics (WP) Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator in 1997 provide sufficient basis for pursuing the development of X-1. This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the systems analysis and engineering approach being used, and identify critical technology areas being researched.

  9. Advanced Dark Energy Physics Telescope (ADEPT)

    SciTech Connect

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan

  10. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect

    Campbell, J.H.; King-Jones, K.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  11. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  12. Energy Sources of T-Tauri Stars

    NASA Astrophysics Data System (ADS)

    Calvet, N.; Albarran, J.

    1984-06-01

    We empirically estimated the total energy loss from the atmospheric regions above the photo sphere in T Tauri stars. We have also estimated the flux input into the atmosphere by magnetohydrodynamic (MHD) aves produced in the subphotospheric convection zone. Within the uncertainties of both theory and observations, this flux seems to represent the basic energy input into the atmosphere provided that a large surface coverage of magnetic regions exists. In addition to this basic energy input from the convection zone the T Tauri atmospheres must have other energy sources, originating in the stellar surfitee. Among those we can include the flux of energy carried by Alfven waves resulting from the action of surface material motions on magnetic flux tubes, as well as dissipation and annihilation of magnetic fields in flare events. The observed decrease in emission line fluxes with luminosity seems to indicate that MHD wave fluxes heat the chromosphere, while the uppermost atmospheric regions require another source of heating.

  13. Recent Advancements in Nanogenerators for Energy Harvesting.

    PubMed

    Hu, Fei; Cai, Qian; Liao, Fan; Shao, Mingwang; Lee, Shuit-Tong

    2015-11-11

    Nanomaterial-based generators are a highly promising power supply for micro/nanoscale devices, capable of directly harvesting energy from ambient sources without the need for batteries. These generators have been designed within four main types: piezoelectric, triboelectric, thermoelectric, and electret effects, and consist of ZnO-based, silicon-based, ferroelectric-material-based, polymer-based, and graphene-based examples. The representative achievements, current challenges, and future prospects of these nanogenerators are discussed.

  14. Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings

    SciTech Connect

    Pless, S.; Torcellini, P.; Long, N.

    2007-09-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

  15. Advanced Photon Source accelerator ultrahigh vacuum guide

    SciTech Connect

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  16. Do alternative energy sources displace fossil fuels?

    NASA Astrophysics Data System (ADS)

    York, Richard

    2012-06-01

    A fundamental, generally implicit, assumption of the Intergovernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil-fuel sources. However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered. Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non-fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.

  17. Vacuum chamber thermal protection for the APS (Advanced Photon Source)

    SciTech Connect

    Kramer, S.L.; Crosbie, E.A.; Kim, S.; Wehrle, R.; Yoon, M.

    1989-01-01

    The addition of undulators and wigglers into synchrotron storage rings created new problems in terms of protecting the integrity of the ring vacuum chamber. If the photon beam from these devices were missteered into striking an inadequately cooled section of the storage ring vacuum chamber, the structural strength might be reduced sufficiently that the vacuum envelope could be penetrated, resulting in long downtime of the storage ring. The new generation of high-energy synchrotron light sources will produce photon beams of such high power density that cooling of the vacuum chamber will not prevent a potential penetration of the vacuum envelope, and other methods of preventing this occurrence will be required. Since active methods will be used to ensure that the beams are delivered to beam lines for users during normal operation, there is a need for passive protection methods during non-routine operation, such as turning on new beam lines, injection, etc., when the active systems may be disabled. In addition, the passive methods could prevent the problem from arising and provide the rapid time response necessary for the highest power beams, a property that might not be easily and reliably provided by active methods during the early operation of these machines. This paper summarizes the results of a task group that studied the problem and outlines passive methods of protection for the Advanced Photon Source (APS). 2 refs., 3 figs., 1 tab.

  18. Scientific program of the advanced light source at LBL

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1992-08-01

    Construction of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory is nearing completion, with operation as a US Department of Energy national user facility scheduled to begin in the spring of 1993. Based on a low-emittance, 1.5 GeV electron storage ring with ten long straight sections available for insertion devices and, initially, 24 bend-magnet ports, the ALS will be a third-generation source of soft X-ray and ultraviolet (collectively, the XUV) synchrotron radiation. Experimental facilities (insertion devices, beamlines, and end stations) will be developed and operated by participating research teams working with the ALS staff. The ability to exploit the high spectral brightness of the ALS was the main criterion for PRT selection. In the XUV spectral regions served by the ALS, a major benefit of high brightness will be the ability to achieve spatial resolution in the neighborhood of 200 Å in X-ray microscopy and holography and in spatially resolved spectroscopy. Other beneficiaries of high brightness include very-high-resolution spectroscopy, spectroscopy of dilute species, diffraction from very small samples, and time-resolved spectroscopy and diffraction.

  19. Controlling hazardous energy sources (lockout/tagout)

    NASA Technical Reports Server (NTRS)

    Dominguez, Manuel B.

    1991-01-01

    The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.

  20. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  1. Bamboo as a renewable energy source

    SciTech Connect

    Molini, A.E.; Irizarry, J.G.

    1982-08-01

    Our complete dependence upon imported fossil fuels forces us to make a conscientious evaluation of the other energy sources the authors have readily available. Some of the approximately 1000 species of bamboo of some 50 genera, which range from plants the size of field grass to giants 120 ft. high and one ft. in diameter, and which grow from sea level in the tropics to 10,000 ft. mountain slopes, appear to be excellent alternate renewable energy sources. This paper presents the results obtained from a recently initiated research effort on the subject.

  2. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  3. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  4. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  5. Energy scavenging sources for biomedical sensors.

    PubMed

    Romero, E; Warrington, R O; Neuman, M R

    2009-09-01

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed.

  6. Microbial production of energy sources from biomass

    NASA Astrophysics Data System (ADS)

    Righelato, R. C.

    1980-02-01

    The biochemical options available for the microbial production of energy sources from biomass is reviewed and some of the technology available for microbial conversion is discussed with particular reference to present limitations and how they may be overcome. Attention is given to the chemical process of anaerobic fermentation emphasizing the chemical reaction of glucose into pyruvic acid. The capital costs and energy consumption of ethanol and methane and their production are discussed. It is concluded that anaerobic fermentation of carbohydrates and digestion of biomass-containing effluents can be used as methods for achieving greater energy availability.

  7. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  8. The high energy source 3C 273

    NASA Technical Reports Server (NTRS)

    Vonmontigny, Corinna

    1990-01-01

    The properties of 3C 273 are reviewed and an attempt is made to find an answer to the question why 3C 273 is the only extragalactic source so far, which was detected at energies greater than or equal to 50 MeV.

  9. A Web Based Puzzle for Energy Sources

    ERIC Educational Resources Information Center

    Secken, Nilgun

    2006-01-01

    At present many countries in the world consume too much fossil fuels such as petroleum, natural gas and coal to meet their energy needs. These fossil fuels are not renewable; their sources are limited and reducing gradually. More importantly they have been becoming more expensive day by day and their damage to the environment has been increasing.…

  10. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  11. Power conversion from environmentally scavenged energy sources.

    SciTech Connect

    Druxman, Lee Daniel

    2007-09-01

    As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

  12. Biological sources of energy from the sea

    NASA Astrophysics Data System (ADS)

    Phlips, E. J.

    1982-02-01

    The use of marine plants and microscopic organisms as possible future energy sources is examined. Parallels are drawn between the coming depletion of fossil fuel resources and the first energy crisis on earth, when evolving cells began to use up the stores of organic molecules in the ocean, and photosynthesis, in the form of plant biomass, is considered as a possible solution to the present energy crisis. The energy potential of marine biomass, specifically the seaweeds, microscopic algae and photosynthetic bacteria, is then assessed, and experimental attempts at the culturing of such organisms, are noted. Microbial energy technologies, principally the replacement of chemical processes requiring fossil fuels with biological conversion systems and direct biomass conversion into hydrogen and methane fuels, are then examined. Possible applications of techniques involving genetic engineering and cell-free systems to future bioenergy research are indicated, and the impetus to the rapid development of solar energy posed by the problems of pollution and availability of present energy sources is emphasized.

  13. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  14. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  15. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  16. Kansas Energy Sources: A Geological Review

    USGS Publications Warehouse

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  17. Sixth users meeting for the Advanced Photon Source: Proceedings

    SciTech Connect

    1994-12-01

    Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here.

  18. Environmental Science Program at the Advanced Light Source

    SciTech Connect

    Nico, Peter; A; Anastasio, Cort; Dodge, Cleveland; Fendorf, Scott; Francis, A.J.; Hubbard, Susan; Shuh, David; Tomutsa, Liviu; Tufano, Kate; Tyliszczak, Tolek; Werner, Michelle; Williams, Ken

    2006-04-05

    The Advanced Light Source (ALS) has a variety of capabilities that are applicable to very different types of environmental systems. Shown are the basic descriptions of four of the approximately 35 beam lines at the ALS. The complimentary capabilities of these four beam lines allow for investigations that range from a spatial scale of a few nanometers to several millimeters. The Environmental Science Program at the Advanced Light Source seeks to promote and assist environmental research, particularly on the four beam lines described in this report. Several short examples of the types of research conducted on these beam lines are also described.

  19. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  20. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  1. Radiogenic metabolism: an alternative cellular energy source.

    PubMed

    Benford, M S

    2001-01-01

    The concept of 'healing energy' is commonly used in complementary and alternative medicine; however, efforts to define this concept using contemporary scientific theory, and measure it using modern scientific methods, have been limited to date. Recent experimental testing by Benford et al. observed a uniform, substantial, and consistent decrease in gamma radiation during alternative healing sessions, thus supporting a new energy-balance paradigm hypothesizing ionizing radiation as an alternative cellular energy source. This hypothesis extends the known elements of radiogenic metabolism to potentially explain a number of presumably biopositive energy-related phenomena, including fasting and radiation hormesis, as well as to demystify unexplained anomalies such as idiopathic thermogenesis, halos and auras, and incorruptibility of human corpses.

  2. Survey, alignment, and beam stability at the Advanced Light Source

    SciTech Connect

    Krebs, G.F.

    1997-10-01

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring.

  3. Multi-source energy harvester power management

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Tiwari, Rashi; Garcia, Ephrahim

    2011-03-01

    Much of the work on improving energy harvesting systems currently focuses on tasks beyond geometric optimization and has shifted to using complex feedback control circuitry. While the specific technique and effectiveness of the circuits have varied, an important goal is still out of reach for many desired applications: to produce sufficient and sustained power. This is due in part to the power requirements of the control circuits themselves. One method for increasing the robustness and versatility of energy harvesting systems which has started to receive some attention would be to utilize multiple energy sources simultaneously. If some or all of the present energy sources were harvested, the amount of constant power which could be provided to the system electronics would increase dramatically. This work examines two passive circuit topologies, parallel and series, for combining multiple piezoelectric energy harvesters onto a single storage capacitor using an LTspice simulation. The issue of the relative phase between the two piezoelectric signals is explored to show that the advantages of both configurations are significantly affected by increased relative phase values.

  4. An overview of energy sources in clinical use for the ablation of atrial fibrillation.

    PubMed

    Comas, George M; Imren, Yildirim; Williams, Mathew R

    2007-01-01

    Recent years have seen many developments in the field of alternative energy sources for arrhythmia surgery. The impetus behind these advances is to replace the traditional, "cut-and-sew" Cox maze III procedure with lesion sets that are simpler, shorter, and safer but just as effective. There is demand for technology to make continuous, linear, transmural ablations reliably with a versatile energy source via an epicardial approach. This would make minimally invasive endoscopic surgical ablation of atrial fibrillation (AF) without cardiopulmonary bypass and with a closed chest feasible. These advances would shorten cardio-pulmonary bypass and improve outcomes in patients having surgical ablation and concomitant cardiac surgery. This review summarizes the technology behind alternative energy sources used to treat AF. Alternative energy sources include hypothermic sources (cryoablation) and hyperthermic sources (radiofrequency, microwave, laser, ultrasound). For each source, the biophysical background, mode of tissue injury, factors affecting lesion size, and advantages and complications are discussed.

  5. Fusion - An energy source for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Fillo, J. A.; Powell, J.; Steinberg, M.

    1980-05-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  6. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    PubMed

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  7. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    NASA Astrophysics Data System (ADS)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  8. Advanced Functional Materials for Energy Related Applications

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  9. Measurement of storage ring motion at the advanced light source

    SciTech Connect

    Krebs, G.F.

    1997-05-01

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions.

  10. Advanced radioisotope power source options for Pluto Express

    SciTech Connect

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  11. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  12. Investigations of magnetic overlayers at the Advanced Photon Source

    SciTech Connect

    Tobin, J.G.; Yu, S.-W.; Butterfield, M.T.; Komesu, Takashi; Waddill, G.D.

    2010-08-27

    Magnetic overlayers of Fe and Co have been investigated with x-ray magnetic circular dichroism in x-ray absorption spectroscopy and photoelectron spectroscopy, including spin-resolved photoelectron spectroscopy, at Beamline 4 at the Advanced Photon Source. Particular emphasis was placed upon the interrogation of the 2p levels of the Fe.

  13. Investigations of Magnetic Overlayers at the Advanced Photon Source

    SciTech Connect

    Tobin, J G; Yu, S; Butterfield, M T

    2009-06-26

    Magnetic overlayers of Fe and Co have been investigated with X-ray Magnetic Circular Dichroism in X-ray Absorption Spectroscopy (XMCD-ABS) and Photoelectron Spectroscopy (PES), including Spin-Resolved Photoelectron Spectroscopy (SRPES), at Beamline 4 at the Advanced Photon Source (APS). Particular emphasis was placed upon the interrogation of the 2p levels of the Fe.

  14. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  15. Nuclear resonant scattering beamline at the Advanced Photon Source

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-09-01

    The principal and engineering aspects of a dedicated synchrotron radiation beamline under construction at the Advanced Photon Source for nuclear resonant scattering purposes are explained. The expected performance in terms of isotopes to be studied, flux, and timing properties is discussed.

  16. Opportunities for Condensed Matter Research at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Gibson, J. Murray

    2004-03-01

    The Advanced Photon Source is the Western Hemisphere's most brilliant source of x-rays. This 3rd-generation 7-GeV synchrotron source can accomodate 34 insertion device ports, of which 30 are committed, and 24 are currently operating. In Fiscal Year 2002, we had 2767 unique users carry out at least one experiment at the source, of which 35research in materials science or condensed matter physics. Techniques commonly used by condensed matter scientists include single-crystal and powder diffraction, high-pressure studies, inelastic scattering, absorption and fluorescence spectroscopy, magnetic scattering and fluctuation spectroscopy. Access to the Advanced Photon Source can be either as a general user (www.aps.anl.gov) or as a partner user. Proposals from general users are encouraged, and beamtime is granted based on competitive review. Our capacity to accomodate more general users continues to increase. Typically, partner users build specialized equipment which is made available to general users. Many of our sectors have been built and operated by external Collaborative Access Teams, which support general users who enter through the APS centralized system. With the help of partnerships, the APS continues to evolve state-of-the-art beamlines of interest to condensed matter scientists, in areas such as inelastic scattering and nano-imaging. The Advanced Photon Source is closely connected with the new Center for Nanoscale Materials User Facility at Argonne. In this talk I will present notable examples of recent condensed matter physics experiments which utilized the unique capabilities of existing beamlines, and discuss future beamlines at the Advanced Photon Source.

  17. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  18. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  19. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  20. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  1. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  2. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  3. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect

    Lippmann, Marcelo J.; Antunez, Emilio u.

    1996-01-24

    In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

  4. Hydrogen energy for tomorrow: Advanced hydrogen production technologies

    SciTech Connect

    1995-08-01

    The future vision for hydrogen is that it will be cost-effectively produced from renewable energy sources and made available for widespread use as an energy carrier and a fuel. Hydrogen can be produced from water and when burned as a fuel, or converted to electricity, joins with oxygen to again form water. It is a clean, sustainable resource with many potential applications, including generating electricity, heating homes and offices, and fueling surface and air transportation. To achieve this vision, researchers must develop advanced technologies to produce hydrogen at costs competitive with fossil fuels, using sustainable sources. Hydrogen is now produced primarily by steam reforming of natural gas. For applications requiring extremely pure hydrogen, production is done by electrolysis. This is a relatively expensive process that uses electric current to dissociate, or split, water into its hydrogen and oxygen components. Technologies with the best potential for producing hydrogen to meet future demand fall into three general process categories: photobiological, photoelectrochemical, and thermochemical. Photobiological and photoelectrochemical processes generally use sunlight to split water into hydrogen and oxygen. Thermochemical processes, including gasification and pyrolysis systems, use heat to produce hydrogen from sources such as biomass and solid waste.

  5. Masters Study in Advanced Energy and Fuels Management

    SciTech Connect

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  6. Cyanate as an energy source for nitrifiers.

    PubMed

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-08-06

    Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.

  7. Biochar As a Renewable Energy Source

    NASA Astrophysics Data System (ADS)

    Stein, Richard

    2011-11-01

    Biochar is a form of charcoal prepared by heating biomass in limited air. It is porous and has high surface area, maintaining much of the morphology of the biomass. The heat for its preparation arises primarily from burning volatiles emitted upon heating. About half the chemical energy in the biomass is contained in the biochar, about 40% is used for the conversion, and about 10% may be used as a local heat source. The biochar can serve as a soil additive where it acts as a template for the growth of bacteria and fungi which then lead to improved growth of biomass by as much as several hundred percent. It remains inert in the soil for many years. Thus, it sequesters the carbon, originally coming from the carbon dioxide absorbed during the photosynthesis occurring during the growth of the biomass. Its use reduces fertilizer and water needs and to pollution arising from the run-off of fertilizer and emission of noxious vapors. Its use is best done at a local level, close to sources of biomass from farm and forest waste. The Pioneer Valley Biochar Initiative along with the Center of Agriculture of the University of Massachusetts, Amherst is promoting the use of biochar on local farms which reduces their dependence on energy arising from fossil fuel and nuclear sources.

  8. PASOTRON high-energy microwave source

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  9. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  10. An advanced data-acquisition system for wind energy projects

    SciTech Connect

    Simms, D.A. ); Cousineau, K.L. )

    1992-10-01

    NREL has subcontracted with Zond Systems, Inc. to develop an advanced data-acquisition system (ADAS) for wind energy projects. The ADAS can be used to simplify the process of making accurate measurements and analyzing. The system utilizes state-of-the-art electronics and telemetry to provide distributed multi-source, multi-channel data acquisition. Local stand-alone microprocessor-based data acquisition modules (DAMs) can be located near sources of measurement. These allow analog data values to be digitized close to the measurement source, thus eliminating the need for long data runs and slip rings. Signals from digital sensors and transducers can also be directly input to the local DAMS. A PC-based ground station is used to coordinate data transmission to and from all remote DAMS, display real-time values, archive data sets, and process and analyze results. The system is capable of acquiring synchronized time-series data from sensors and transducers under a variety of test configurations in an operational wind-park environment. Data acquisition needs of the wind industry differ significantly from those of most other technologies. Most conventional system designs do not handle data coming from multiple distributed sources, nor do they provide telemetry or the ability to mesh multiple incoming digital data streams. This paper describes the capabilities of the ADAS, and how its design and cost objectives are geared to meet anticipated US wind industry needs.

  11. Insertion device operating experience at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Grimmer, John; Ramanathan, Mohan; Smith, Martin; Merritt, Michael

    2002-03-01

    The Advanced Photon Source has 29 insertion devices (IDs) installed in the 7 GeV electron storage ring; 28 of these devices, most of which are 3.3 cm period undulators, use two horizontal permanent magnet structures positioned over a straight vacuum chamber. A support and drive mechanism allows the vertical gap between the magnet structures to be varied, thus changing the x-ray energy produced by the ID [J. Viccaro, Proc. SPIE 1345, 28 (1990); E. Gluskin, J. Synchrotron Radiat. 5, 189 (1998)]. Most of these IDs use a drive scheme with two stepper motors, one driving each end through a mechanism synchronizing the upper and lower magnet structures. Our experience in almost 5 yr of operating this system will be discussed. All of the IDs are in continuous operation for approximately 10 weeks at a time. Reliability of operation is of paramount importance, as access to the storage ring for servicing of a single ID inhibits operation for all users. Our experience in achieving highly reliable ID operation is reviewed. Accuracy of operation and repeatability over time are also vital. To this end, these devices use absolute optical linear encoders with submicron resolution for primary position feedback. Absolute rotary encoders are used as a backup to the linear encoders. The benefits and limitations of each type of encoder, and our experience dealing with radiation and electrical noise are reviewed. The insertion devices operate down to gaps as small as 8.5 mm, with clearance over the vacuum chamber as small as 200 μm. The vacuum chamber has a minimum wall thickness of only 1 mm. A number of levels of safeguards are used to prevent contact between the magnet structure and the vacuum chamber. These safeguards and their evolution after gaining operational experience are presented.

  12. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  13. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  14. Radiant Energy Power Source for Jet Aircraft

    SciTech Connect

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  15. Photovoltaics as a worldwide energy source

    SciTech Connect

    Jones, G.J.

    1991-12-31

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity. 11 refs.

  16. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    SciTech Connect

    McEntee, Jarlath; Polagye, Brian; Fabien, Brian; Thomson, Jim; Kilcher, Levi; Marnagh, Cian; Donegan, James

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  17. ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE

    SciTech Connect

    Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp

    2015-04-01

    A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.

  18. Fusion: an energy source for synthetic fuels

    SciTech Connect

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  19. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  20. Spin polarized low-energy positron source

    NASA Astrophysics Data System (ADS)

    Petrov, V. N.; Samarin, S. N.; Sudarshan, K.; Pravica, L.; Guagliardo, P.; Williams, J. F.

    2015-06-01

    This paper presents an investigation of spin polarization of positrons from a source based on the decay of 22Na isotopes. Positrons are moderated by transmission through a tungsten film and electrostatically focussed and transported through a 90 deg deflector to produce a slow positron beam with polarization vector normal to the linear momentum. The polarization of the beam was determined to be about 10% by comparison with polarized electron scattering asymmetries from a thin Fe film on W(110) at 10-10 Torr. Low energy electron emission from Fe layer on W(100) surfaces under positron impact is explored. It is shown that the intensity asymmetry of the electron emission as a function of the incident positron energy can be used to estimate the polarization of the positron beam. Also several materials with long mean free paths for spin relaxation are considered as possible moderators with increased polarization of the emergent positrons.

  1. An overview of the planned advanced neutron source facility

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS), now in the conceptual design stage, will be a new user facility for neutron research, including neutron beam experiments, materials irradiation testing and materials analysis capabilities, and production facilities for transuranic and lighter isotopes. The neutron source is to be the world's highest flux beam reactor and is based on existing reactor technology to minimize safety issues. The preferred fuel, U{sub 3}Si{sub 2}, has been tested in operating reactors in the United States, Japan, and Europe. The core is cooled, moderated, and reflected by heavy water, common practice for research reactors. 3 refs., 9 figs., 3 tabs.

  2. Access control and interlock system at the Advanced Photon Source

    SciTech Connect

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D.

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  3. Radioistopes to Solar to High Energy Accelerators - Chip-Scale Energy Sources

    NASA Astrophysics Data System (ADS)

    Lal, Amit

    2013-12-01

    This talk will present MEMS based power sources that utilize radioisotopes, solar energy, and potentially nuclear energy through advancements in integration of new structures and materials within MEMS. Micro power harvesters can harness power from vibration, radioisotopes, light, sound, and biology may provide pathways to minimize or even eliminate batteries in sensor nodes. In this talk work on radioisotope thin films for MEMS will be include the self-reciprocating cantilever, betavoltaic cells, and high DC voltages. The self-reciprocating cantilever energy harvester allows small commercially viable amounts of radioisotopes to generate mW to Watts of power so that very reliable power sources that last 100s of years are possible. The tradeoffs between reliability and potential stigma with radioisotopes allow one to span a useful design space with reliability as a key parameter. These power sources provide pulsed power at three different time scales using mechanical, RF, and static extraction of energy from collected charge. Multi-use capability, both harvesting radioisotope power and local vibration energy extends the reliability of micro-power sources further.

  4. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  5. Green Energy: Advancing Bio-Hydrogen (Presentation)

    SciTech Connect

    Alber, D.

    2007-07-01

    Developing a model of metabolism linked to H2 production in green algae. Develop tools for parameter discovery and optimization at organism level and advance knowledge of hydrogen-producting photosynthetic organisms.

  6. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  7. Advanced research in solar energy storage

    NASA Astrophysics Data System (ADS)

    Luft, W.

    1983-01-01

    This paper gives an overview of the Solar Energy Storage Program at the Solar Energy Research Institute. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800 C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  8. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  9. Conceptual Architecture of Building Energy Management Open Source Software (BEMOSS)

    SciTech Connect

    Khamphanchai, Warodom; Saha, Avijit; Rathinavel, Kruthika; Kuzlu, Murat; Pipattanasomporn, Manisa; Rahman, Saifur; Akyol, Bora A.; Haack, Jereme N.

    2014-12-01

    The objective of this paper is to present a conceptual architecture of a Building Energy Management Open Source Software (BEMOSS) platform. The proposed BEMOSS platform is expected to improve sensing and control of equipment in small- and medium-sized buildings, reduce energy consumption and help implement demand response (DR). It aims to offer: scalability, robustness, plug and play, open protocol, interoperability, cost-effectiveness, as well as local and remote monitoring. In this paper, four essential layers of BEMOSS software architecture -- namely User Interface, Application and Data Management, Operating System and Framework, and Connectivity layers -- are presented. A laboratory test bed to demonstrate the functionality of BEMOSS located at the Advanced Research Institute of Virginia Tech is also briefly described.

  10. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  11. Advances in audio source seperation and multisource audio content retrieval

    NASA Astrophysics Data System (ADS)

    Vincent, Emmanuel

    2012-06-01

    Audio source separation aims to extract the signals of individual sound sources from a given recording. In this paper, we review three recent advances which improve the robustness of source separation in real-world challenging scenarios and enable its use for multisource content retrieval tasks, such as automatic speech recognition (ASR) or acoustic event detection (AED) in noisy environments. We present a Flexible Audio Source Separation Toolkit (FASST) and discuss its advantages compared to earlier approaches such as independent component analysis (ICA) and sparse component analysis (SCA). We explain how cues as diverse as harmonicity, spectral envelope, temporal fine structure or spatial location can be jointly exploited by this toolkit. We subsequently present the uncertainty decoding (UD) framework for the integration of audio source separation and audio content retrieval. We show how the uncertainty about the separated source signals can be accurately estimated and propagated to the features. Finally, we explain how this uncertainty can be efficiently exploited by a classifier, both at the training and the decoding stage. We illustrate the resulting performance improvements in terms of speech separation quality and speaker recognition accuracy.

  12. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  13. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  14. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  15. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  16. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  17. First commissioning results for the elliptically polarizing undulator beamline at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Young, A. T.; Feng, J.; Arenholz, E.; Padmore, H. A.; Henderson, T.; Marks, S.; Hoyer, E.; Schlueter, R.; Kortright, J. B.; Martynov, V.; Steier, C.; Portmann, G.

    2001-07-01

    A new facility at the Advanced Light Source, Lawrence Berkeley National Laboratory, for high resolution magnetic spectroscopy is described. Beamline 4.0.2 has an elliptically polarizing undulator (EPU) and a high resolution monochromator, covering the energy range from 90 to 1800 eV. In this paper, we present the first commissioning results from this beamline, including measurements of the spectral resolution, photon flux and polarization of the x-rays.

  18. Review of biomass as a source of energy for Poland

    SciTech Connect

    Leszczynski, S.; Brzychczyk, P.; Sekula, R.

    1997-10-01

    To the present day, biomass has not been considered as an energy source for Poland, and over 95% of energy is generated through fossil fuel combustion. However, it is necessary to search for new energy sources because of high prices of traditional energy carriers and massive environmental pollution caused by these fuels. Biomass seems to be one of the best renewable energy sources. Basic components of biomass in Poland and estimations of energetic resources of biomass are presented.

  19. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  20. Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  1. Hydrothermal energy: a source of energy for alcohol production

    SciTech Connect

    Stiger, R.R.

    1980-01-01

    A small scale (1 gal/hr) biomass-to-alcohol still was built at the Raft River Geothermal Site to investigate difficulties in geothermal assisted biomass conversion. The unit was successfully operated, producing 95% (190 proof) ethanol from sugar beet juice. The unit was designed and built in less than eight weeks from surplus equipment using commercially available design information. This small-scale still demonstrated that 95% ethanol can be produced from sugar beet beer containing 8 to 10% alcohol using geothermal energy and present commercial technology. The geothermal resource provided both an energy source and process water. Recently, Bechtel National, Incorporated, of San Francisco, California completed a study to analyze the economic feasibility of producing ethanol from potatoes, wheat, and sugar beets using geothermal resources available in the Raft River Region of Idaho. The study concluded that a 20 million gallon per year facility can be built that will supply alcohol at $1.78 per gallon using geothermal energy. (MHR)

  2. Poster session: Fifth users meeting for the Advanced Photon Source

    SciTech Connect

    Not Available

    1992-11-01

    The Advanced Photon Source (APS), which is currently under construction as a national user facility at Argonne National Laboratory is a third-generation synchrotron x-ray source, one of only three in the world. It is expected to produce x-rays that are 10,000 times brighter than any currently produced elsewhere for use in research in a wide range of scientific areas. Users from industry, national laboratories, universities, and business will be able to come to the APS to conduct research either as members of Collaborative Access Teams (CATS) or as Independent Investigators. Principal users will be members of CATS, which will be building and operating all of the beamlines present in the first phase of APS beamline development. The first set of CATs has been selected through a competitive proposal process involving peer scientific review, thorough technical evaluation, and significant management oversight by the APS. This document is a compilation of posters presented at the Fifth Users Meeting for the Advanced Photon Source, held at Argonne National Laboratory on October 14--15, 1992. All CATs whose scientific cases were approved by the APS Proposal Evaluation Board are included. In addition, this document contains a poster from the Center for Synchrotron Radiation and Research and Instrumentation at the Illinois Institute of Technology.

  3. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  4. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  5. Status report on the Advanced Light Source control system, 1993

    SciTech Connect

    Young, J.; Brown, W. Jr.; Cork, C.

    1993-10-01

    The Advanced Light Source (ALS), under construction for the past seven years, has become operational. The accelerator has been successfully commissioned using a control system based on hundreds of controllers of our own design and high performance personal computers which are the operator interface. The first beamlines are being commissioned using a control system based on VME hardware and the Experimental Physics and Industrial Control System (EPICS) software. The two systems are being integrated, and this paper reports on the current work being done.

  6. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  7. Insertion devices for the Advanced Light Source at LBL

    SciTech Connect

    Hassenzahl, W.; Chin, J.; Halbach, K.; Hoyer, E.; Humphries, D.; Kincaid, B.; Savoy, R.

    1989-03-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab.

  8. Man-machine interface builders at the Advanced Photon Source

    SciTech Connect

    Anderson, M.D.

    1991-01-01

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs.

  9. Man-machine interface builders at the Advanced Photon Source

    SciTech Connect

    Anderson, M.D.

    1991-12-31

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs.

  10. Advanced Simulator Development for Power Flow and Sources

    DTIC Science & Technology

    2006-02-01

    specifications for sub-system (primary energy store, water pulse compression/transmission lines, vacuum power flow) design. Using our experience with pulsed ...also enable beneficial upgrades to existing simulator facilities. 14. SUBJECT TERMS 15. NUMBER OF PAGES 109 Marx Generator Plasma Radiation Source Pulsed ...minimize cost for large dose X area products. Based upon simple scaling from existing pulsed power simulators , we assumed that we could achieve yields

  11. Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997

    SciTech Connect

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

    1998-07-01

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

  12. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  13. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

  14. Power and Energy Architecture for Army Advanced Energy Initiative

    DTIC Science & Technology

    2006-11-01

    requirement for power and energy in a rapidly modernized, highly digital, and network -centric Army is growing exponentially. Simultaneously the ability to...concept will provide synergy to requirements, platforms, network architectures and technologies based upon visibility, direction and standardization...In short, we must move from a “stranded” energy architecture to a “ networked or grid” architecture. The Army needs to view battlefield energy

  15. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  16. Thermospheric Density Model Including High-Latitude Energy Sources

    NASA Astrophysics Data System (ADS)

    Moe, O. K.; Moe, M. M.

    2006-12-01

    As was predicted long ago by Sydney Chapman, there is a major contribution to thermospheric energy from the magnetosphere at all times. The contribution of this magnetospheric energy source produces a neutral density bulge at high latitudes even during geomagnetically quiet times. We present an analytical, semi- empirical model of the global neutral density at such quiet times. The total density is expressed as the sum of two terms: The first term describes the combined effects of the solar ultra-violet heating and various other contributions like the semi-annual variation; the second term gives the contribution to the density associated with particle precipitation and joule heating coming from magnetospheric sources during times of low geomagnetic activity. The region of density enhancement at high latitudes is associated with the locations of the dayside cusps. Therefore the model produces a density distribution which depends on universal time as well as on altitude, latitude, local time, and the usual solar UV energy source. The numerical values of the parameters in the empirical model were originally determined 30 years ago from density data collected by the Bell-MESA accelerometer on the LOGACS satellite and the pressure gauge on the SPADES satellite. As an example of the model output, we show a Mercator projection of the global density distribution at 400 km altitude at 12 hours GMT in late May at a time of moderate solar activity and low geomagnetic activity. The parameters in the model can now be substantially improved by using recent advances like the latest description of the semi-annual variation and by incorporating the precise density measurements made by the accelerometers on board the CHAMP and GRACE satellites. In the original model, density values at times of high geomagnetic activity were included in the second density term. The parameters in that term can also be improved as accurate storm-time densities become available.

  17. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  18. Advanced energy systems annual report, 1997

    SciTech Connect

    Alm, K.; Kajatie, A.

    1998-02-01

    Contents: introduction; laboratory staff; research; radiation physics; new and renewable energy systems; fusion and plasma physics; laser physics and applications; teaching activities; academic degrees and theses; course selection; publications; scientific visits and professional activities; visitors to the laboratory; and visits and activities of the staff.

  19. EDITORIAL: Special Issue on advanced and emerging light sources Special Issue on advanced and emerging light sources

    NASA Astrophysics Data System (ADS)

    Haverlag, Marco; Kroesen, Gerrit; Ferguson, Ian

    2011-06-01

    -based light sources. However, the progress in the last few years in LED and OLED sources has been even greater. In the editorial for the LS-11 conference by previous guest editor David Wharmby, it was stated that most LED lighting was still mostly used for signalling and decorative sources. In the three years that have passed, things have changed considerably and we now see LED light sources entering every application, ranging from street lighting and parking lots to shop lighting and even greenhouses. Currently LED prices for traditional lighting applications are high, but they are dropping rapidly. The papers published in this special issue give some indications of things to come. The paper by Jamil et al deals with the possibility of using silicon wafers as substrate material instead of the now commonly used (but more expensive) sapphire substrates. This is attractive from a cost price point of view, but leads to an increased lattice mismatch and therefore strain-induced defects. In this paper it is shown that when using intermediate matching layers it is possible to retain the same electrical and optical properties as with structures on sapphire. Another aspect that directly relates to cost is efficiency and droop in green InGaN devices, which is addressed in the paper by Lee et al. They show that by providing a flow of trymethylindium prior to the growth of the quantum wells it is possible to significantly increase the internal quantum efficiency of green LEDs. Improvement of the optical out-coupling of InGaN LEDs is discussed by Mak et al, and it is found that localized plasmon resonance of metallic nanoparticles (and especially silver) can help to increase the optical out-coupling in the wavelength region of interest. Nanoparticles in the form of ZnO nanorods are described by Willander et al as a possibility for phosphor-free wavelength conversion on polymer (O)LEDs. More advanced functions besides light emission can be achieved with OLEDs and this is demonstrated in

  20. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  1. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect

    Neri, L. Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  2. Improved design of proton source and low energy beam transport line for European Spallation Source

    NASA Astrophysics Data System (ADS)

    Neri, L.; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.; Ciavola, G.

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  3. Analysis of advanced vapor source for cadmium telluride solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Khetani, Tejas Harshadkumar

    A thin film CdS/CdTe solar cell manufacturing line has been developed in the Materials Engineering Laboratory at Colorado State University. The original design incorporated infrared lamps for heating the vapor source. This system has been redesigned to improve the energy efficiency of the system, allow co-sublimation and allow longer run time before the sources have to be replenished. The advanced vapor source incorporates conduction heating with heating elements embedded in graphite. The advanced vapor source was modeled by computational fluid dynamics (CFD). From these models, the required maximum operating temperature of the element was determined to be 720 C for the processing of CdS/CdTe solar cells. Nichrome and Kanthal A1 were primarily selected for this application at temperature of 720 °C in vacuum with oxygen partial pressure. Research on oxidation effects and life due to oxidation as well as creep deformation was done, and Nichrome was found more suitable for this application. A study of the life of the Nichrome heating elements in this application was conducted and the estimate of life is approximately 1900 years for repeated on-off application. This is many orders of magnitude higher than the life of infrared heat lamps. Ceramic cement based on aluminum oxide (Resbond 920) is used for bonding the elements to the graphite. Thermodynamic calculations showed that this cement is inert to the heating element. An earlier design of the advanced source encountered failure of the element. The failed element was studies by scanning electron microscopy and the failure was attributed to loss of adhesion between the graphite and the ceramic element. The design has been modified and the advanced vapor source is currently in operation.

  4. Nanostructured conductive polymers for advanced energy storage.

    PubMed

    Shi, Ye; Peng, Lele; Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-10-07

    Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions.

  5. Nuclear methods of analysis in the advanced neutron source

    SciTech Connect

    Robinson, L.; Dyer, F.F.

    1994-12-31

    The Advanced Neutron Source (ANS) research reactor is presently in the conceptual design phase. The thermal power of this heavy water cooled and moderated reactor will be about 350 megawatts. The core volume of 27 liter is designed to provide the optimum neutron fluence rate for the numerous experimental facilities. The peak thermal neutron fluence rate is expected to be slightly less than 10{sup 20} neutrons/m{sup 2}s. In addition to the more than 40 neutron scattering stations, there will be extensive facilities for isotope production, material irradiation and analytical chemistry including neutron activation analysis (NAA) and a slow positron source. The highlight of this reactor will be the capability that it will provide for conducting research using cold neutrons. Two cryostats containing helium-cooled liquid deuterium will be located in the heavy water reflector tank. Each cryostat will provide low-temperature neutrons to researchers via numerous guides. A hot source with two beam tubes and several thermal beam tubes will also be available. The NAA facilities in the ANS will consist of seven pneumatic tubes, one cold neutron guide for prompt gamma-ray neutron activation analysis (PGNAA), and one cold neutron slanted guide for neutron depth profiling (NDP). In addition to these neutron interrogation systems, a gamma-ray irradiation facility for materials testing will be housed in a spent fuel storage pool. This paper will provide detailed information regarding the design and use of these various experimental systems.

  6. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  7. Energy cost and energy sources during a simulated firefighting activity.

    PubMed

    Perroni, Fabrizio; Tessitore, Antonio; Cortis, Cristina; Lupo, Corrado; D'artibale, Emanuele; Cignitti, Lamberto; Capranica, Laura

    2010-12-01

    This study aimed to 1) analyze the energy requirement (VO2eq) and the contribution of the aerobic (VO2ex), anaerobic alactic (VO2al), and anaerobic lactic (VO2la-) energy sources of a simulated intervention; 2) ascertain differences in mean VO2 and heart rate (HR) during firefighting tasks; and 3) verify the relationship between time of job completion and the fitness level of firefighters. Twenty Italian firefighters (age = 32 ± 6 yr, VO2peak = 43.1 ± 4.9 mL·kg·min) performed 4 consecutive tasks (i.e., child rescue; 250-m run; find an exit; 250-m run) that required a VO2eq of 406.26 ± 73.91 mL·kg (VO2ex = 86 ± 5%; VO2al = 9 ± 3%; VO2la- = 5 ± 3%). After 30 minutes, the recovery HR (108 ± 15 beats·min) and VO2 (8.86±2.67mL·kg·min) were higher (p < 0.0001) than basal values (HR = 66 ± 8 beats·min; VO2 = 4.57 ± 1.07 mL·kg·min), indicating that passive recovery is insufficient in reducing the cardiovascular and thermoregulatory strain of the previous workload. Differences (p < 0.001) between tasks emerged for mean VO2 and HR, with a lack of significant correlation between the time of job completion and the firefighters' aerobic fitness. These findings indicate that unpredictable working conditions highly challenge expert firefighters who need adequate fitness levels to meet the requirements of their work. Practically, to enhance the fitness level of firefighters, specific interval training programs should include a wide variety of tasks requiring different intensities and decision-making strategies.

  8. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  9. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  10. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  11. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  12. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  13. Panchromatic spectral energy distributions of Herschel sources

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2013-03-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8-500 μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of

  14. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  15. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  16. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  17. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  18. Research reactor of the future: The advanced neutron source

    SciTech Connect

    Appleton, B.; West, C.

    1994-12-31

    Agents for cancer detection and treatment, stronger materials, better electronic gadgets, and other consumer and industrial products - these are assured benefits of a research reactor project proposed for Oak Ridge. Just as American companies have again assumed world leadership in producing semiconductor chips as well as cars and trucks, the United States is poised to retake the lead in neutron science by building and operating the $2.9 billion Advanced Neutron Source (ANS) research reactor by the start of the next century. In 1985, the neutron community, led by ORNL researchers, proposed a pioneering project, later called the ANS. Scheduled to begin operation in 2003, the ANS is seen not only as a replacement for the aging HFIR and HFBR but also as the best laboratory in the world for conducting neutron-based research.

  19. Design of the Advanced Light Source timing system

    SciTech Connect

    Fahmie, M.

    1993-05-01

    The Advanced Light Source (ALS) is a third generation synchrotron radiation facility, and as such, has several unique timing requirements. Arbitrary Storage Ring filling patterns and high single bunch purity requirements demand a highly stable, low jitter timing system with the flexibility to reconfigure on a pulse-to-pulse basis. This modular system utilizes a highly linear Gauss Clock with ``on the fly`` programmable setpoints to track a free-running Booster ramping magnet and provides digitally programmable sequencing and delay for Electron Gun, Linac, Booster Ring, and Storage Ring RF, Pulsed Magnet, and Instrumentation systems. It has proven itself over the last year of accelerator operation to be reliable and rock solid.

  20. Radiation doses to insertion devices at the Advanced Photon Source

    SciTech Connect

    Moog, E.R.; Den Hartog, P.K.; Semones, E.J.; Job, P.K.

    1997-09-01

    Dose measurements made on and around the insertion devices (IDs) at the Advanced Photon Source are reported. Attempts are made to compare these dose rates to dose rates that have been reported to cause radiation-induced demagnetization, but comparisons are complicated by such factors as the particular magnet material and the techniques used in its manufacture, the spectrum and type of radiation, and the demagnetizing field seen by the magnet. The spectrum of radiation at the IDs. It has almost no effect on the dose to the downstream ends of the IDs, however, since much of the radiation travels through the ID vacuum chamber and cannot be readily shielded. Opening the gaps of the IDs during injection and at other times also helps decrease the radiation exposure.

  1. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-06-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  2. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-01-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  3. Performance of Advanced Light Source particle beam diagnostics

    SciTech Connect

    Hinkson, J.

    1993-05-01

    The Advanced Light Source (ALS), a third-generation synchrotron radiation facility, is complete. The particle beam diagnostics have been installed and tested. The beam injection systems have been running for two years. We have performance data on beam position monitors, beam intensity monitors, scintillators, beam collimators, a 50 {Omega} Faraday cup, and broad-band striplines and kickers used in the linac, transport lines, and the booster synchrotron. The single-turn monitoring capability of the booster beam position monitoring system has been particularly useful for studying beam dynamics. Beam diagnostics for the storage ring are being commissioned. In this paper we describe each instrument, show its performance, and outline how the instruments are controlled and their output data displayed.

  4. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  5. Recent advances in statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Heron, K. H.

    1992-01-01

    Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.

  6. Advanced materials manufacturing for solar energy

    NASA Astrophysics Data System (ADS)

    van Mierlo, Frank

    2012-02-01

    The US has a robust technical roadmap to get to a 1/W total installed cost with several potential winners in the race. We dominate in the new technology arena and there is a good chance that tomorrow's winning technology will be from the current crop of contenders. One potential breakthrough is Direct Wafer^TM a new manufacturing technique to make silicon wafers at a fraction of the traditional cost. Current wafer manufacturing is a multi-step, energy- and capital-intensive process that wastes half of the valuable silicon feedstock. 1366's Direct Wafer technology forms a standard, 156mm multi-crystalline wafer directly from molten silicon in a semi-continuous, efficient, high-throughput process that eliminates silicon waste. Direct Wafer^TM cuts the amount of consumables by a factor of four and requires only half the capital per GigaWatt production capacity thus enabling solar to compete successfully with coal generated electricity.

  7. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  8. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  9. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  10. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  11. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    PubMed

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies.

  12. Energy accounting for solar and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Devine, W. D., Jr.

    Shortcomings in energy data collection, display and accounting practices are of minor consequence in an economy of today in which most end use services are provided via fossil fuels and electricity. However, the emergence of a variety of alternative technologies that might be used to provide these services suggests that present accounting practices be reexamined and a more appropriate system devised. The paper proposes an energy accounting framework based upon the actual services provided to end users. An energy service is a measure of the service actually provided to ultimate consumers by their own use of energy, quantified, for example, using units of work or of heat at various temperatures. Fifteen categories of energy service are described and some of their characteristics are identified. The proposed energy accounting framework consists of two matrices - an energy service matrix and an energy carrier matrix. The energy service matrix displays quantities of energy carriers used to provide energy services. The energy carrier matrix displays quantities of energy carriers used to produce and distribute energy carriers to ultimate consumers.

  13. Advanced Energy Storage Management in Distribution Network

    SciTech Connect

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu; Starke, Michael R; Ollis, T Ben; King, Daniel J; Irminger, Philip; Tomsovic, Kevin

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  14. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  15. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper

  16. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  17. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  18. Alternate policies for alternate energy sources

    SciTech Connect

    Hall, F.F.

    1985-09-01

    Some ''alternates within alternates'' are studied and possible improvement of our energy policies are explored. The viability of a hydrogen fuel economy is reviewed. Methanol, ethanol or ammonia versus hydrogen is one area of interest. Others include liquid hydrogen versus jet fuels, the use of geothermal, solar, wind or water energy for production of hydrogen gas versus development of deep earth supplies of natural gas is another. Energy enhancement as opposed to energy conservation is investigated with regard to polar climate and what might be done to improve natural energy balances, particularly in the northern hemisphere. Pumping Arctic Ocean water out into the Pacific Ocean via the Bering Strait would be an energy debit as opposed to energy gains such as biomass conversion of future plant growth throughout the Siberian and Canadian tundra regions and presently very arid desert regions, improved access to northern region fuel, metal ore and mineral resources, year-round shipping and fishing fleet operations in the Arctic Ocean and development of the tremendous Greenland hydro-electric power potential.

  19. The advanced neutron source research and development plan

    SciTech Connect

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  20. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  1. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  2. Effect of Carbon and Energy Source on Bacterial Chromate Reduction

    SciTech Connect

    Smith, William Aaron; Apel, William Arnold; Petersen, J. N.; Peyton, Brent Michael

    2002-07-01

    Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.

  3. A double-multilayer monochromator using a modular design for the Advanced Photon Source

    SciTech Connect

    Shu, D.; Yun, W.; Lai, B.; Barraza, J.; Kuzay, T.M.

    1994-12-01

    A novel double-multilayer monochromator has been designed for the Advanced Photon Source X-ray undulator beamline at Argonne National Laboratory. The monochromator consists of two ultra high-vacuum (UHV) compatible modular vessels, each with a sine-bar driving structure and a water-cooled multilayer holder. A high precision Y-Z stage is used to provide compensating motion for the second multilayer from outside the vacuum chamber so that the monochromator can fix the output monochromatic beam direction and angle during the energy scan in a narrow range. The design details for this monochromator are presented in this paper.

  4. Novel particle and radiation sources and advanced materials

    NASA Astrophysics Data System (ADS)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  5. Experiments with radioactive samples at the Advanced Photon Source.

    SciTech Connect

    Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

    2000-11-01

    The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

  6. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  7. Analysis of Different Methods for Computing Source Energy in the Context of Zero Energy Buildings

    SciTech Connect

    Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David; Pless, Shanti

    2016-08-26

    Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from site energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.

  8. Center for Advanced Power and Energy Research (CAPEC)

    DTIC Science & Technology

    2015-01-01

    University structured through a cooperative research agreement. Our organizational focuses include: 1. Modeling of plasma physics 2. Modeling fuel cells 3...Testing new innovation and ideas for advanced fuel cells 4. Development of energy related issue for micro air vehicles (MAVs). 15. SUBJECT TERMS plasma ...1 2 Plasma Modeling

  9. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  10. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  11. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  12. Alarm handler for the advanced photon source control system

    SciTech Connect

    Kraimer, M.R.; Cha, B.K.; Anderson, M.

    1991-01-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory, will have a control system employing graphics workstations at the operator interface level and VME-based microprocessors operating with a distributed database at the field level. The alarm handler is an application utilizing X-Windows running on one or more operator interface workstations which monitors alarms generated by the VME-based microprocessors. Alarms can be grouped in a hierarchical manner. The operator can monitor, acknowledge, and mask alarms either individually or aggregately. Alarm changes of state and all operator modifications are logged. When alarms occur, display windows are automatically generated conveying system and subsystem relationships and severity. Menus are used to modify the alarm action configuration files and to obtain help. Since alarm groups are defined via an alarm configuration file, the alarm handler is a general purpose application which can be customized to monitor a single subsystem or configured to monitor the entire accelerator complex. 2 refs., 2 figs.

  13. Water cooled metal optics for the Advanced Light Source

    SciTech Connect

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-10-28

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

  14. Advanced neutron source reactor probabilistic flow blockage assessment

    SciTech Connect

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

  15. Flow excursion time scales in the advanced neutron source reactor

    SciTech Connect

    Sulfredge, C.D.

    1995-04-01

    Flow excursion transients give rise to a key thermal limit for the proposed Advanced Neutron Source (ANS) reactor because its core involves many parallel flow channels with a common pressure drop. Since one can envision certain accident scenarios in which the thermal limits set by flow excursion correlations might be exceeded for brief intervals, a key objective is to determine how long a flow excursion would take to bring about a system failure that could lead to fuel damage. The anticipated time scale for flow excursions has been examined by subdividing the process into its component phenomena: bubble nucleation and growth, deceleration of the resulting two-phase flow, and finally overcoming thermal inertia to heat up the reactor fuel plates. Models were developed to estimate the time required for each individual stage. Accident scenarios involving sudden reduction in core flow or core exit pressure have been examined, and the models compared with RELAP5 output for the ANS geometry. For a high-performance reactor like the ANS, flow excursion time scales were predicted to be in the millisecond range, so that even very brief transients might lead to fuel damage. These results should prove useful whenever one must determine the time involved in any portion of a flow excursion transient.

  16. Assessment of the roles of the Advanced Neutron Source Operators

    SciTech Connect

    Hill, W.E.; Houser, M.M.; Knee, H.E.; Spelt, P.F.

    1995-03-01

    The Advanced Neutron Source (ANS) is unique in the extent to which human factors engineering (HFE) principles are being applied at the conceptual design stage. initial HFE accomplishments include the development of an ANS HFE program plan, operating philosophy, and functional analysis. In FY 1994, HFE activities focused on the role of the ANS control room reactor operator (RO). An operator-centered control room model was used in conjunction with information gathered from existing ANS system design descriptions and other literature to define a list of RO responsibilities. From this list, a survey instrument was developed and administered to ANS design engineers, operations management personnel at Oak Ridge National Laboratory`s High Flux Isotope Reactor (HFIR), and HFIR ROs to detail the nature of the RO position. Initial results indicated that the RO will function as a high-level system supervisor with considerable monitoring, verification, and communication responsibilities. The relatively high level of control automation has resulted in a reshaping of the RO`s traditional safety and investment protection roles.

  17. Advanced Neutron Source: Plant Design Requirements. Revision 4

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  18. Fuel qualification plan for the Advanced Neutron Source Reactor

    SciTech Connect

    Copeland, G.L.

    1995-07-01

    This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

  19. Measurements of Intra-Beam Scattering at Low Emittance in the Advanced Light Source

    SciTech Connect

    Byrd, J.; Corlett, J.; Nishimura, H.; Robin, D.; De Santis, S.; Steier, C.; Wolski, A.; Wu, Y.; Bane, K.; Raubenheimer, T.; Ross, M.; Sheppard, J.; Smith, T.; /SLAC

    2006-03-13

    The beam emittance at the interaction point of linear colliders is expected to be strongly influenced by the emittance of the beams extracted from the damping rings. Intra-beam scattering (IBS) potentially limits the minimum emittance of low-energy storage rings, and this effect strongly influences the choice of energy of damping rings [1]. Theoretical analysis suggests that the NLC damping rings will experience modest emittance growth at 1.98 GeV, however there is little experimental data of IBS effects for very low-emittance machines in the energy regime of interest. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is a third-generation synchrotron light source operating with high-intensity, low-emittance beams at energies of approximately 1-2 GeV, and with emittance coupling capability of 1% or less. We present measurements of the beam growth in three dimensions as a function of current, for normalized natural horizontal emittance of approximately 1-10 mm-mrad at energies of 0.7-1.5 GeV, values comparable to the parameters in an NLC damping ring. Using a dedicated diagnostic beamline with an x-ray scintillator imaging system, measurements of the transverse beamsize are made, and bunch length measurements are made using an optical streak camera. Emittance growth as a function of bunch current is determined, and compared with preliminary calculation estimates.

  20. HH55 and its energy source

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Graham, J. A.

    1990-01-01

    Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star.

  1. HH55 and its energy source

    SciTech Connect

    Heyer, M.H.; Graham, J.A. )

    1990-02-01

    Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star. 28 refs.

  2. Advanced light source at Lawrence Berkeley Laboratory (invited)

    NASA Astrophysics Data System (ADS)

    Cornacchia, M.

    1989-07-01

    The 1-2-GeV synchrotron radiation source will be a national user-based facility providing photon beams of unprecedented brightness in the ultraviolet and soft x-ray region of the electromagnetic spectrum. The facility design is optimized to emphasize the use of undulators to provide high-spectral brilliance in the few electron volt to 1-keV spectral range; wigglers provide high flux up to approximately 10 keV. Beam structure of a few tens of picoseconds will be available for time-resolved experiments. The facility is designed for operational flexibility and to assure rapid commissioning. The initial complement of experimental stations consists of five insertion devices (four undulators and our wiggler) and associated beamlines, and two white light beams from bend magnets. Six other straight sections are available for additional insertion devices, and the design provides for up to 48 ports for beams from bending magnets. The storage ring is optimized for operation at 1.5 GeV with a maximum energy of 1.9 GeV. The injection system includes a 1-Hz, 1.5-GeV booster synchrotron for full energy injection at the nominal operating energy of the storage ring. Filling time for the maximum stored current of 400 mA is expected to be 2 min, and the beam half-life will be about 6 h. Attention is being given to the severe requirements for beam stability and the need to independently control photon beam alignment. We describe the important characteristics of the facility, significant aspects of the technical design of accelerator systems, insertion devices and photon beamlines, and considerations related to addressing projected user needs in the development of the project.

  3. Education and Training in New and Renewable Sources of Energy.

    ERIC Educational Resources Information Center

    Beresovski, T.; And Others

    1981-01-01

    Identifies past and present efforts and future directions for UNESCO activities related to energy but focusing on alternative energy sources. Reports results of an international survey and analysis of programs, facilities, and needs in alternative energy education and training. Outlines curricula for policymakers, specialists, and technicians. (DC)

  4. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    SciTech Connect

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

  5. High-energy X-ray spectra of five sources.

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  6. Center for Advanced Energy Studies (CAES) Strategic Plan

    SciTech Connect

    Kevin Kostelnik; Keith Perry

    2007-07-01

    Twenty-first century energy challenges include demand growth, national energy security, and global climate protection. The Center for Advanced Energy Studies (CAES) is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE) and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding the educational opportunities at the Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed this strategic plan based on the Balanced Scorecard approach. A Strategy Map (Section 7) summarizes the CAES vision, mission, customers, and strategic objectives. Identified strategic objectives encompass specific outcomes related to three main areas: Research, Education, and Policy. Technical capabilities and critical enablers needed to support these objectives are also identified. This CAES strategic plan aligns with and supports the strategic objectives of the four CAES institutions. Implementation actions are also presented which will be used to monitor progress towards fulfilling these objectives.

  7. Electric Discharge Excitation and Energy Source Integration.

    DTIC Science & Technology

    1985-01-06

    only one side of the machined bar connecting the mounting plate to the cathode. An electrical schematic of the PFN utilized for the discharge studies...for the initial charge voltage to be 2 VG for optimum energy transfer is still present. All arrangements of transmision lines studied showed the... side of the anode screen are used to achieve a smooth physical transition and, thereby, minimize flow-generated turbulence. With this arrangement the

  8. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    SciTech Connect

    Marland, S. )

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  9. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    SciTech Connect

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  10. Advance Notice of Proposed Rule Making for Minor Source Permitting in Indian Country - Oil and Gas

    EPA Pesticide Factsheets

    Advance Notice of Proposed Rulemaking to solicit broad feedback on the most effective and efficient means of implementing the EPA's Indian Country Minor New Source Review program for sources in the oil and natural gas production segment.

  11. Alternative energy sources could support life on Europa

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Irwin, Louis N.

    Energy pervades the solar system in a variety of forms, including electromagnetic and particle radiation, magnetism, heat, kinetic motion, and gravitational interactions. Life on Earth is sustained by the conversion of light and chemical energy into proton gradients across membranes that drive the phosphorylation of high-energy intermediate metabolites.The use of light and reduced chemical bonds as energy sources is not surprising on Earth, where the intensity of light is strong and an oxidizing atmosphere favors energy-yielding chemical reactions. However, any naturally occurring energy gradient that generates charge separation across boundary layers could theoretically yield the free energy needed to sustain life. Using specific, plausible examples from Jupiter's ice-covered satellite Europa, we propose that alternative energy sources could sustain life where neither light nor an oxidizing atmosphere is available.

  12. Advanced Light Source activity report 1996/97

    SciTech Connect

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  13. Flow blockage analysis for the advanced neutron source reactor

    SciTech Connect

    Stovall, T.K.; Crabtree, J.A.; Felde, D.K.; Park, J.E.

    1996-01-01

    The Advanced Neutron Source (ANS) reactor was designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design required high-speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris disrupts the fluid flow to the plate surfaces and can prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate so that any flow disruption would recover, thus providing adequate heat removal from the downstream, heated portions of the fuel plates. As part of the safety analysis, the adequacy of this unheated entrance length was assessed using both analytical models and experimental measurements. The Flow Blockage Test Facility (FBTF) was designed and built to conduct experiments in an environment closely matching the ANS channel geometry. The FBTF permitted careful measurements of both heat transfer and hydraulic parameters. In addition to these experimental efforts, a thin, rectangular channel was modeled using the Fluent computational fluid dynamics computer code. The numerical results were compared with the experimental data to benchmark the hydrodynamics of the model. After this comparison, the model was extended to include those elements of the safety analysis that were difficult to measure experimentally. These elements included the high wall heat flux pattern and variable fluid properties. The results were used to determine the relationship between potential blockage sizes and the unheated entrance length required.

  14. The Advanced Light Source at the Lawrence Berkeley Laboratory (ALS, LBL)

    SciTech Connect

    Jackson, A.

    1990-08-01

    The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.

  15. History of energy sources and their utilization in Nigeria

    SciTech Connect

    Ogunsola, O.I. )

    1990-01-01

    Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956 and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.

  16. The energy situation. [emphasizing various energy sources, costs, and environmental effects

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Energy reserves from the principal energy sources other than petroleum and natural gas are summarized. It was found that energy sources are being consumed at rates which exceed the ability to replace them through new discoveries and technology improvements. The costs and implications to environment for using coal and nuclear energy are discussed. Tables are presented on energy consumption, cost of reclamation, and water power capacity.

  17. Intra-beam Scattering and Minimum Achievable Emittance in the Advanced Light Source

    SciTech Connect

    Bane, Karl LF

    2002-08-13

    Intra-beam scattering (IBS) potentially limits the minimum emittance of low-energy storage rings, and this effect strongly influences the choice of energy of damping rings for linear colliders. The Advanced Light Source (ALS) is the third-generation synchrotron light source operating in high-intensity, low-emittance beams at energies up to 2 GeV. It can operate with an emittance coupling of below 1%. We present measurements of the beam growth in three dimensions as a function of current, for normalized natural horizontal emittances approximately 1-10 mm-mrad at energies of 0.7-1.5 GeV, values comparable to the parameters in an NLC damping ring [1]. Using a dedicated diagnostic beamline with an x-ray scintillator imaging system, measurements of the transverse beamsize are made, simultaneously with bunch length measurements using an optical streak camera. The bunch volume growth as a function of bunch current is compared with theoretical estimates, for a parameter space of IBS, where very little experimental data exists so far.

  18. Redox Disproportionation of Glucose as a Major Biosynthetic Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1996-01-01

    Previous studies have concluded that very little if any energy is required for the microbial biosynthesis of amino acids and lipids from glucose -- processes that yield almost as much ATP (adenosine triphosphate) as they consume. However, these studies did not establish the strength nor the nature of the energy source driving these biological transformations. To identify and estimate the strength of the energy source behind these processes, we calculated the free energy change due to the redox disproportionation of substrate carbon of (a) 26 redox-balanced fermentation reactions, and (b) the biosynthesis of amino acids, lipids, and nucleotides of E. coli from glucose. A plot of the negative free energy of these reactions per mmole of carbon as a function of the number of disproportionative electron transfers per mmol of carbon showed that the energy yields of these fermentations and biosyntheses were directly proportional to the degree of redox disproportionation of carbon. Since this linear relationship showed that redox disproportionation was the dominant energy source of these reactions, we were able to establish that amino acid and lipid biosynthesis obtained most of their energy from redox disproportionation (greater than 94%). In contrast nucleotide biosynthesis was not driven by redox disproportionation of carbon, and consequently depended completely on ATP for energy. This crucial and previously unrecognized role of sugars as an energy source of biosynthesis suggests that sugars were involved at the earliest stage in the origin of anabolic metabolism.

  19. A new synchrotron light source at Louisiana State University's Center for Advanced Microstructures and Devices

    NASA Astrophysics Data System (ADS)

    Stockbauer, Roger L.; Ajmera, Pratul; Poliakoff, Erwin D.; Craft, Ben C.; Saile, Volker

    1990-05-01

    A 1.2-GeV synchrotron light source is being constructed at the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University. The expressed purpose of the center, which has been funded by a grant from the US Department of Energy, is to develop X-ray lithography techniques for manufacturing microcircuits, although basic science programs are also being established. The storage ring will be optimized for the soft-X-ray region and will be the first commercially manufactured electron storage ring in the United States. The magnetic lattice is based on a design developed by Chasman and Green and will allow up to three insertion devices to be installed for higher-energy and higher-intensity radiation. In addition to the lithography effort, experimental programs are being established in physics, chemistry, and related areas.

  20. Depleted uranium hexafluoride: The source material for advanced shielding systems

    SciTech Connect

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  1. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    SciTech Connect

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  2. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    NASA Astrophysics Data System (ADS)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  3. Development of Electricity Generation from Renewable Energy Sources in Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  4. Internal energy and fragmentation of ions produced in electrospray sources.

    PubMed

    Gabelica, Valérie; De Pauw, Edwin

    2005-01-01

    This review addresses the determination of the internal energy of ions produced by electrospray ionization (ESI) sources, and the influence of the internal energy on analyte fragmentation. A control of the analyte internal energy is crucial for several applications of electrospray mass spectrometry, like structural studies, construction of reproducible and exportable spectral libraries, analysis of non-covalent complexes. Sections II and III summarize the Electrospray mechanisms and source design considerations which are relevant to the problem of internal energy, and Section IV gives an overview of the inter-relationships between ion internal energy, reaction time scale, and analyte fragmentation. In these three sections we tried to make the most important theoretical elements understandable by all ESI users, and their understanding requires a minimal background in physical chemistry. We then present the different approaches used to experimentally determine the ion internal energy, as well as various attempts in modeling the internal energy uptake in electrospray sources. Finally, a tentative comparison between electrospray and other ionization sources is made. As the reader will see, although many reports appeared on the subject, the knowledge in the field of internal energy of ions produced by soft ionization sources is still scarce, because of the complexity of the system, and this is what makes this area of research so interesting. The last section presents some perspectives for future research.

  5. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  6. Comparative studies of energy sources in gynecologic laparoscopy.

    PubMed

    Law, Kenneth S K; Lyons, Stephen D

    2013-01-01

    Energy sources incorporating "vessel sealing" capabilities are being increasingly used in gynecologic laparoscopic surgery although conventional monopolar and bipolar electrosurgery remain popular. The preference for one device over another is based on a combination of factors, including the surgeon's subjective experience, availability, and cost. Although comparative clinical studies and meta-analyses of laparoscopic energy sources have reported small but statistically significant differences in volumes of blood loss, the clinical significance of such small volumes is questionable. The overall usefulness of the various energy sources available will depend on a number of factors including vessel burst pressure and seal time, lateral thermal spread, and smoke production. Animal studies and laboratory-based trials are useful in providing a controlled environment to investigate such parameters. At present, there is insufficient evidence to support the use of one energy source over another.

  7. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  8. [Applications of GIS in biomass energy source research].

    PubMed

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  9. Cassava as an energy source: a selected bibliography

    SciTech Connect

    Sherman, C.

    1980-01-01

    This selected bibliography includes 250 articles on cassava as a potential energy source. Factors included are things which influence cassava growth; such as weeding, fertilizer, diseases and genetic selection, as well as the conversion of cassava to ethanol. (DP)

  10. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  11. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  12. UV emissions from low energy artificial light sources.

    PubMed

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses.

  13. Scalable Deployment of Advanced Building Energy Management Systems

    DTIC Science & Technology

    2013-05-01

    January 2011, respectively. These savings were smaller compared with savings opportunities in the cooling season because of the cold weather during the...FINAL REPORT Scalable Deployment of Advanced Building Energy Management Systems ESTCP Project EW-201015 MAY 2013 Veronica Adetola... Management Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

  14. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  15. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  16. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  17. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  18. Sources of high-energy protons in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Simpson, J. A.

    1980-01-01

    The passage of Pioneer 11 through Saturn's magnetosphere revealed an especially intense region of high-energy particle fluxes that places unique constraints on models for sources of high-energy protons in the innermost radiation zones. Of special interest is the flux of protons with energies above 35 MeV which was measured with a fission cell in the innermost magnetosphere between the A ring and the orbit of Mimas. The negative phase space density gradients derived from the proton and electron observations in this region imply that steady-state inward diffusion from the outer magnetosphere is not an adequate source for these high-energy protons. In the present paper, the nature of the Crand source at Saturn is examined, and its significance for injection of high-energy protons into the region inside L = 4 is estimated.

  19. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.

  20. USAF advanced terrestrial energy study. Volume 1: Project summary

    NASA Astrophysics Data System (ADS)

    Daniels, E. J.; Yudow, B. D.; Donakowski, T. D.

    1983-04-01

    The objective of this project was to develop a data base of technical and economic performance parameters of selected energy conversion and energy storage devices. The data base includes not only the state-of-the-art (1980) values of performance parameters, but also the expected values of performance parameters in 1985, 1990, and 2000. For energy conversion technologies, performance parameters were developed over a power output from 1.5 to 5000.0 kW. For energy storage technologies, performance parameters were developed over an energy output range equivalent to the power output at continuous annual operation. The following energy conversion technologies were characterized in this data base: Gas turbines -- Closed cycle and Open cycle, (recuperative and nonrecuperative); Diesels -- Turbocompounded, Turbocharged and Adiabatic; Stirlings -- Free piston and Kinematic; Organic Rankine Cycles; Fuel cells -Phosphoric acid, Solid polymer electrolyte and Molten carbonate; Photovoltaics -- Flat plate, Actively cooled and Photochemical; and Wind turbines -- Vertical and horizontal axes. The following energy storage technologies were characterized: Batteries -- Zn/Cl2, Zn/Br2, Ni/Fe, Li-Al/FeS2, Na/S, Advanced sealed lead/acids and Redox Cr-Fe; and Thermal energy storage devices -- CaCl26H2O, Na2SO410H2O, Na2S2O35H2O, Olivine and Magnesite ceramic brick, and Form-stable polyethylene.

  1. Biogas as a source of rural energy

    SciTech Connect

    Kalia, A.K.

    2000-01-01

    The hilly state of Himachal Pradesh, with nearly 2.15 million cattle and 0.7 million buffalo, has the potential to install 0.64 million biogas plants of 1 m{sup 3} size. These plants could generate nearly 4.90 x 105 m{sup 3} of biogas, equivalent to 3.07 x 10{sup 5} L kerosene per day to meet domestic energy needs of nearly one-fourth of its rural population. During 1982--1998, only 12.8% of this potential was achieved. The percent of possible potential achieved in plant installations in 12 districts of this state, namely, Bilaspur, Chamba, Hamirpur, Kangra, Kinnaur, Kullu, Lahul-Spiti, Mandi, Shimla, Sirmour, Solan, and Una, are 35.35, 1.70, 20.96, 8.67, 1.54, 6.96, 0.00, 18.49, 3.84, 8.521, 18.29, and 13.23%, respectively. There is a need to strengthen biogas promotion, particularly in the districts of Kangra, Mandi, Solan, and Una, which range from mid-hill to low-hill terrain and which have large potential due to high concentration of bovine population. Increased costs and comparatively low rate of subsidies has resulted in a decreasing rate of plant installation annually, from 3,500 during 1987--1992 to fewer than 1,200 during 1995--1998. The percentage of functioning plants was 82% in 1987--1988 but has decreased to 63%. To ensure proper installation and functionality of plants, the authors discuss the needed improvements in the biogas promotion program.

  2. Proceedings of the conference on alternative energy sources for Texas

    SciTech Connect

    Rothman, I.N.

    1981-01-01

    Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospects for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.

  3. Alternative energy sources and new energy technologies for Turkish rural areas

    SciTech Connect

    Ultanir, M.O.

    1983-12-01

    Modern agriculture is an energy consumer sector, also agriculture is an energy conversion process. In addition to biomass energy's raw materials are harvested by agriculture. The concept of energy in agriculture, energy is one of the main and outstanding factor which renders the realization of the overall development of the agriculture and rural areas. Agricultural income depends on total mechanical power in agricultural mechanization; general energy consumption of rural sector; cultural energy consumption by agricultural inputs which are fertilizer, pesticides, indirect energy in machinery, irrigation equipments, buildings and other services; direct energy consumption in agricultural mechanization which are fuel and electricity etc. In general, energy input in the rural areas is classified as direct and indirect. Direct energy input reflects demands for mechanical energy, electrical energy and heat energy. Indirect energy consists of inputs which have been produced by industrial sector and introduced into rural sector. Although conventional energy sources, especially petroleum products are used in meeting direct energy input requirements, alternative energy sources may be used as well in this respect. Especially emphasis is being given to new and renewable alternative sources for heat and electrical energy requirements.

  4. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    SciTech Connect

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  5. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect

    Not Available

    2013-02-01

    The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

  6. Writable electrochemical energy source based on graphene oxide

    PubMed Central

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  7. Writable electrochemical energy source based on graphene oxide.

    PubMed

    Wei, Di

    2015-10-14

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm(3) and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  8. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  9. Space-time dependence between energy sources and climate related energy production

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  10. Multi-source energy harvester for wildlife tracking

    NASA Astrophysics Data System (ADS)

    Wu, You; Zuo, Lei; Zhou, Wanlu; Liang, Changwei; McCabe, Michael

    2014-03-01

    Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional way of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking device with multi-source energy harvester with advantage of high efficiency and reliability is investigated and developed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will remarkably extend the duration of wild life tracking. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. The rotational electromagnetic energy harvester can mechanically rectify the irregular bidirectional motion into unidirectional motion has been modeled and demonstrated.

  11. Energy sources, self-organization, and the origin of life.

    PubMed

    Boiteau, Laurent; Pascal, Robert

    2011-02-01

    The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.

  12. Energy Sources, Self-organization, and the Origin of Life

    NASA Astrophysics Data System (ADS)

    Boiteau, Laurent; Pascal, Robert

    2011-02-01

    The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.

  13. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  14. 7-GeV advanced photon source beamline initiative: Conceptual design report

    SciTech Connect

    Not Available

    1993-05-01

    The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

  15. Harsh environment sensor development for advanced energy systems

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.; Maley, Susan M.

    2013-05-01

    Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.

  16. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  17. Energy-Based Acoustic Source Localization Methods: A Survey

    PubMed Central

    Meng, Wei; Xiao, Wendong

    2017-01-01

    Energy-based source localization is an important problem in wireless sensor networks (WSNs), which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE) and nonlinear-least-squares (NLS) methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions. PMID:28212281

  18. Energy-Based Acoustic Source Localization Methods: A Survey.

    PubMed

    Meng, Wei; Xiao, Wendong

    2017-02-15

    Energy-based source localization is an important problem in wireless sensor networks (WSNs), which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE) and nonlinear-least-squares (NLS) methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions.

  19. Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Pierce, David L. (Technical Monitor)

    2002-01-01

    The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.

  20. Advanced X-Ray Sources Ensure Safe Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.

  1. Advanced building energy management system demonstration for Department of Defense buildings.

    PubMed

    O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong

    2013-08-01

    This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success.

  2. Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source

    SciTech Connect

    Sutton, Stephen R.; Lanzirotti, Antonio; Newville, Matthew; Rivers, Mark L.; Eng, Peter; Lefticariu, Liliana

    2017-01-01

    X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the insertion device port, effectively doubling the available undulator beam time and extending the operating energy of the branch supporting the XRM down to the sulfur K edge (2.3 keV). Capabilities include rapid, high-resolution, elemental imaging including fluorescence microtomography, microscale X-ray absorption fine structure spectroscopy including sulfur K edge capability, and microscale X-ray diffraction. These capabilities are advantageous for (i) two-dimensional elemental mapping of relatively large samples at high resolution, with the dwell times typically limited only by the count times needed to obtain usable counting statistics for low concentration elements, (ii) three-dimensional imaging of internal elemental distributions in fragile hydrated specimens, such as biological tissues, avoiding the need for physical slicing, (iii) spatially resolved speciation determinations of contaminants in environmental materials, and (iv) identification of contaminant host phases. In this paper, we describe the XRM instrumentation, techniques, applications demonstrating these capabilities, and prospects for further improvements associated with the proposed upgrade of the APS.

  3. High temperature electrical energy storage: advances, challenges, and frontiers.

    PubMed

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO4, and LiMn2O4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  4. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  5. Advanced Strained-Superlattice Photocathodes for Polarized Electron Sources

    SciTech Connect

    Dr. Aaron Moy

    2005-01-31

    Polarized electrons have been essential for high-energy parity-violating experiments and measurements of the nucleon spin structure. The availability of a polarized electron beam was crucial to the success of the Stanford Linear Collider (SLC) in achieving a precise measurement of the electroweak mixing angle, and polarized electron beams will be required for all future linear colliders. Polarized electrons are readily produced by GaAs photocathode sources. When a circularly polarized laser beam tuned to the bandgap minimum is directed to the negative-electron-affinity (NEA) surface of a GaAs crystal, longitudinally polarized electrons are emitted into vacuum. The electron polarization is easily reversed by reversing the laser polarization. The important properties of these photocathodes for accelerator applications are: degree of polarization of the extracted beam; ability to extract sufficient charge to meet accelerator pulse-structure requirements; efficiency and stability of operation; and absence of any asymmetries in the beam properties (charge, position, energy, etc.) upon polarization reversal. The performance of GaAs photocathodes has improved significantly since they were first introduced in 1978 [1]. The theoretical maximum polarization of 50% for natural GaAs was first exceeded in 1991 using the lattice mismatch of a thin InGaAs layer epitaxially grown over a GaAs substrate to generate a strain in the former that broke the natural degeneracy between the heavy- and light-hole valence bands [2]. Polarizations as high as 78% were produced for the SLC from photocathodes based on a thin GaAs epilayer grown on GaAsP [3,4]. After 10 years of experience with many cathode samples at several laboratories [5], the maximum polarization using the GaAs/GaAsP single strained-layer cathode remained limited to 80%, while the quantum efficiency (QE) for a 100-nm epilayer is only 0.3% or less. Two factors were known to limit the polarization of these cathodes: (1) the

  6. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  7. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  8. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  9. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  10. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  11. Geothermal, an alternate energy source for power generation

    SciTech Connect

    Espinosa, H.A.

    1985-02-01

    The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

  12. Phase contrast medical imaging with compact X-ray sources at the Munich-Centre for Advance Photonics (MAP)

    NASA Astrophysics Data System (ADS)

    Coan, P.; Gruener, F.; Glaser, C.; Schneider, T.; Bravin, A.; Reiser, M.; Habs, D.

    2009-09-01

    In this paper, the excellence cluster "Munich-Centre for Advance Photonics" (MAP) is presented. One of the aims of the project is the development of innovative X-ray-based diagnostics imaging techniques to be implemented at an ultra-compact high-energy and high-brilliance X-ray source. The basis of the project and the developments towards the clinical application of phase contrast imaging applied to mammography and cartilage studies will be presented and discussed.

  13. The Advanced Light Source U8 beam line, 20--300 eV

    SciTech Connect

    Heimann, P.; Warwick, T.; Howells, M.; McKinney, W.; Digennaro, D.; Gee, B.; Yee, D.; Kincaid, B.

    1991-10-01

    The U8 is a beam line under construction at the Advanced Light Source (ALS). The beam line will be described along with calculations of its performance and its current status. An 8 cm period undulator is followed by two spherical collecting mirrors, an entrance slit, spherical gratings having a 15{degree} deviation angle, a moveable exit slit, and refocusing and branching mirrors. Internal water cooling is provided to the metal M1 and M2 mirrors as well as to the gratings. Calculations have been made of both the flux output and the resolution over its photon energy range of 20--300 eV. The design goal was to achieve high intensity, 10{sup 12} photons/sec, at a high resolving power of 10,000. The U8 Participating Research Team (PRT) is planning experiments involving the photoelectron spectroscopy of gaseous atoms and molecules, the spectroscopy of ions and actinide spectroscopy.

  14. The advanced light source — a new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.

    1991-03-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory in Berkeley, California, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Undulators will generate high-brightness, partially coherent, plane polarized, soft x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will generate high fluxes of x-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms.

  15. The advanced light source: A new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.

    1990-09-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory in Berkeley, California, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Undulators will generate high-brightness, partially coherent, plane polarized, soft-x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will generate high fluxes of x-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms.

  16. An aberration corrected photoemission electron microscope at the advanced light source

    SciTech Connect

    Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N.; Marcus, M.; Munson, D.; Padmore, H.; Petermann, K.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2003-11-01

    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.

  17. Vacuum system development status for the APS (Advanced Photon Source) storage ring

    SciTech Connect

    Wherle, R.; Nielson, R.; Kim, S.

    1989-01-01

    The status of the design and fabrication of a prototype sector of the storage ring vacuum system for the Advanced Photon Source is described. The 26.5-m-long prototype sector will be assembled within a full-scale magnet and tunnel mockup to study interspacial component relationships for maintenance, as well as the vacuum system operational performance. Each completed vacuum section is mounted as an integral part of the modular structure that contains the magnets and magnet power supplies on a common base. Unique automatic machine welding designs and techniques are employed in the fabrication of the aluminium vacuum chambers from extrusions. Special chamber bending procedures and measurements checks are used to maintain the required flatness of the insider chamber light gap surfaces. Photo-electron yields due to low-energy photons in the narrow channel gap of the vacuum chamber and their potential effects on the overall outgassing rate are found to be negligible. 9 refs., 5 figs.

  18. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J.

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  19. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs.

  20. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    SciTech Connect

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  1. An efficient time advancing strategy for energy-preserving simulations

    NASA Astrophysics Data System (ADS)

    Capuano, F.; Coppola, G.; de Luca, L.

    2015-08-01

    Energy-conserving numerical methods are widely employed within the broad area of convection-dominated systems. Semi-discrete conservation of energy is usually obtained by adopting the so-called skew-symmetric splitting of the non-linear convective term, defined as a suitable average of the divergence and advective forms. Although generally allowing global conservation of kinetic energy, it has the drawback of being roughly twice as expensive as standard divergence or advective forms alone. In this paper, a general theoretical framework has been developed to derive an efficient time-advancement strategy in the context of explicit Runge-Kutta schemes. The novel technique retains the conservation properties of skew-symmetric-based discretizations at a reduced computational cost. It is found that optimal energy conservation can be achieved by properly constructed Runge-Kutta methods in which only divergence and advective forms for the convective term are used. As a consequence, a considerable improvement in computational efficiency over existing practices is achieved. The overall procedure has proved to be able to produce new schemes with a specified order of accuracy on both solution and energy. The effectiveness of the method as well as the asymptotic behavior of the schemes is demonstrated by numerical simulation of Burgers' equation.

  2. Analysis of energy sources for Mycoplasma penetrans gliding motility.

    PubMed

    Jurkovic, Dominika A; Hughes, Michael R; Balish, Mitchell F

    2013-01-01

    Mycoplasma penetrans, a potential human pathogen found mainly in HIV-infected individuals, uses a tip structure for both adherence and gliding motility. To improve our understanding of the molecular mechanism of M. penetrans gliding motility, we used chemical inhibitors of energy sources associated with motility of other organisms to determine which of these is used by M. penetrans and also tested whether gliding speed responded to temperature and pH. Mycoplasma penetrans gliding motility was not eliminated in the presence of a proton motive force inhibitor, a sodium motive force inhibitor, or an agent that depletes cellular ATP. At near-neutral pH, gliding speed increased as temperature increased. The absence of a clear chemical energy source for gliding motility and a positive correlation between speed and temperature suggest that energy derived from heat provides the major source of power for the gliding motor of M. penetrans.

  3. Note: Localization based on estimated source energy homogeneity

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Eriksen, Fredrik Kvalheim; Lengliné, Olivier; Daniel, Guillaume; Flekkøy, Eirik G.; Mâløy, Knut Jørgen

    2016-09-01

    Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz). We compare the performance of this technique with classic source localization algorithms: arrival time localization, time reversal localization, and localization based on energy amplitude. Our technique is highly versatile and out-performs the conventional techniques in terms of error minimization and cost (both computational and financial).

  4. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  5. Understanding and accepting fusion as an alternative energy source

    NASA Astrophysics Data System (ADS)

    Goerz, D. A.

    1987-12-01

    Fusion, the process that powers our Sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on Earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the Moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical.

  6. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    SciTech Connect

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

  7. Canted Undulator Upgrade for GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source

    SciTech Connect

    Sutton, Stephen

    2013-02-02

    Support for the beamline component of the canted undulator upgrade of Sector 13 (GeoSoilEnviroCARS; managed and operated by the University of Chicago) at the Advanced Photon Source (APS; Argonne National Laboratory) was received from three agencies (equally divided): NASA-SRLIDAP (now LARS), NSF-EAR-IF (ARRA) and DOE-Single Investigator Small Group (SISGR). The associated accelerator components (undulators, canted front end) were provided by the APS using DOE-ARRA funding. The intellectual merit of the research enabled by the upgrade lies in advancing our knowledge of the composition, structure and properties of earth materials; the processes they control; and the processes that produce them. The upgrade will facilitate scientific advances in the following areas: high pressure mineral physics and chemistry, non-crystalline and nano-crystalline materials at high pressure, chemistry of hydrothermal fluids, reactions at mineral-water interfaces, biogeochemistry, oxidation states of magmas, flow dynamics of fluids and solids, and cosmochemistry. The upgrade, allowing the microprobe to operate 100% of the time and the high pressure and surface scattering and spectroscopy instruments to receive beam time increases, will facilitate much more efficient use of the substantial investment in these instruments. The broad scientific community will benefit by the increase in the number of scientists who conduct cutting-edge research at GSECARS. The user program in stations 13ID-C (interface scattering) and 13ID-D (laser heated diamond anvil cell and large volume press) recommenced in June 2012. The operation of the 13ID-E microprobe station began in the Fall 2012 cycle (Oct.-Dec 2012). The upgraded canted beamlines double the amount of undulator beam time at Sector 13 and provide new capabilities including extended operations of the X-ray microprobe down to the sulfur K edge and enhanced brightness at high energy. The availability of the upgraded beamlines will advance the

  8. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  9. Development of a continuous broad-energy-spectrum electron source

    NASA Technical Reports Server (NTRS)

    Adamo, R. C.; Nanevicz, J. E.

    1985-01-01

    The development of a practical prototype, large-area, continuous-spectrum, multienergy electron source to simulate the lower energy (approx = 1 to 30 keV) portion of the geosynchronous orbit electron environment was investigated. The results of future materials-charging tests using this multienergy source should significantly improve the understanding of actual in-orbit charging processes and should help to resolve some of the descrepancies between predicted and observed spacecraft materials performance.

  10. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  11. Scientific and technological advancements in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.

    2013-10-01

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. This synergy is summarized here, and future scientific studies are detailed.

  12. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  13. Scientific and technological advancements in inertial fusion energy

    DOE PAGES

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  14. Energy sources in gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  15. Exploiting Unique Features of Nanodiamonds as an Advanced Energy Source

    DTIC Science & Technology

    2009-04-01

    from the frequency shift of the ruby R1 fluorescence line (6). Raman spectra were obtained from an Ar+ ion laser operating at 514.5 nm with an...separation of the particles, with the various polyatomic moieties departing from the sheared region of the NDs into the 7 vacuum. The material at

  16. The source of multi spectral energy of solar energetic electron

    SciTech Connect

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  17. An Overview of Novel Power Sources for Advanced Munitions

    DTIC Science & Technology

    2009-04-27

    unique and special set of properties. [5, 6] High Rate and High Energy Oxyhalide Battery In the last two decades, lithium -based batteries have become...the predominant energy system for the electronic fuzes used in large caliber artillery applications. These batteries typically use lithium metal as...the anode, thionyl chloride (SOCl2) or sulfuryl chloride (SO2Cl2) as the electrolyte/liquid cathode (catholyte), and porous teflonated† carbon pads as

  18. The use of hydrazine as an alternate source of energy

    NASA Technical Reports Server (NTRS)

    Carvalho, J. A., Jr.; Bressan, C.; Ferreira, J. L.

    1984-01-01

    The potentials of using hydrazine as an alternative source of energy was studied. Three chemical reactions are considered: oxidation with air, oxidation with hydrogen peroxide, and thermocatalytic decomposition. Performance data of gasoline, ethylic alcohol, and propane are compared. An item about the NO(x) emissions by the various investigated reactions is included. Promising results are shown, mainly those regarding the available energy per unit volume of unburned gases (vaporized fuel and oxidizer).

  19. Renewable energy sources for sustainable tourism in the Carpathian region

    NASA Astrophysics Data System (ADS)

    Mandryk, O. M.; Arkhypova, L. M.; Pobigun, O. V.; Maniuk, O. R.

    2016-08-01

    The use of renewable energy in sustainable tourism development of the region is grounded in the paper. There are three stages of selecting areas for projects of renewable energy sources: selection of potentially suitable area; consideration of exclusion criteria, detailed assessment of potential sites or areas. The factors of impact on spatial constraints and opportunities for building wind, solar and small hydro power plants on the parameters of sustainable tourism development in the Carpathian region were determined.

  20. Energy: Sources and Issues. Science Syllabus for Middle and Junior High Schools. Block I.

    ERIC Educational Resources Information Center

    Cappiello, Jane E.; O'Neil, Karen E.

    This syllabus provides a list of concepts and understandings related to four areas of energy. They are: (1) the nature of energy (an energy definition, basic categories of energy, forms of energy, laws of energy conversion, and measuring energy); (2) energy sources of the past and present (history of energy use and present major sources of…

  1. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    SciTech Connect

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  2. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  3. Recent advances in counter PRNU based source attribution and beyond

    NASA Astrophysics Data System (ADS)

    KaraküÒ«ük, Ahmet; Dirik, Ahmet E.; Sencar, Hüsrev T.; Memon, Nasir D.

    2015-03-01

    Photo response noise uniformity (PRNU) based source attribution has proven to be a powerful technique in multimedia forensics. The increasing prominence of this technique, combined with its introduction as evidence in the court, brought with it the need for it to withstand anti-forensics. Although robustness under common signal processing operations and geometrical transformations have been considered as potential attacks on this technique, new adversarial settings that curtail the performance of this technique are constantly being introduced. Starting with an overview of proposed approaches to counter PRNU based source attribution, this work introduces photographic panoramas as one such approach and discusses how to defend against it.

  4. Commentary: Advances in Research on Sourcing-Source Credibility and Reliable Processes for Producing Knowledge Claims

    ERIC Educational Resources Information Center

    Chinn, Clark A.; Rinehart, Ronald W.

    2016-01-01

    In our commentary on this excellent set of articles on "Sourcing in the Reading Process," we endeavor to synthesize the findings from the seven articles and discuss future research. We discuss significant contributions related to source memory, source evaluation, use of sources in action and belief, integration of information from…

  5. ADVANCED TOOLS FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS AND SOURCE WATERS

    EPA Science Inventory

    The purpose of this poster is to present the application and assessment of advanced technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs (azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, and methylenedioxy...

  6. Advanced post-acceleration methodology for pseudospark-sourced electron beam

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Yin, H.; Zhang, L.; Shu, G.; He, W.; Zhang, Q.; Phelps, A. D. R.; Cross, A. W.

    2017-02-01

    During its conductive phase, a pseudospark discharge is able to generate a low energy electron beam with a higher combined current density and brightness compared with electron beams formed from any other known type of electron source. In this paper, a configuration is proposed to post-accelerate an electron beam extracted from a single-gap pseudospark discharge cavity in order to achieve high quality high energy intense electron beams. The major advancement is that the triggering of the pseudospark discharge, the pseudospark discharge itself, and the post-accelerating of the electron beam are all driven by a single high voltage pulse. An electron beam with a beam current of ˜20 A, beam voltage of 40 kV, and duration of ˜180 ns has been generated using this structure. The beam energy can be adjusted through adjusting the amplitude of the voltage pulse and the operating voltage of the whole structure, which can be varied from 24 to 50 kV with an efficient triggering method under fixed gas pressure below ˜10 Pa.

  7. Testing Special Relativity at High Energies with Astrophysical Sources

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  8. Annual meeting of the Advanced Light Source Users` Association

    SciTech Connect

    1995-02-01

    This report contains papers on the following topics: ALS Director`s Report; ALS Operations Update; Recent Results in Machine Physics; Progress in Beamline Commissioning and Overview of New Projects; The ALS Scientific Program; First Results from the SpectroMicroscopy Beamline; Soft X-ray Fluorescence Spectroscopy of Solids; Soft X-Ray Fluorescence Spectroscopy of Molecules; Microstructures and Micromachining at the ALS; High-Resolution Photoemission from Simple Atoms and Molecules; X-Ray Diffraction at the ALS; Utilizing Synchrotron Radiation in Advanced Materials Industries; Polymer Microscopy: About Balls, Rocks and Other ``Stuff``; Infrared Research and Applications; and ALS User Program.

  9. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  10. Energy sources of the high latitude upper atmosphere

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1981-01-01

    Electrodynamic (Joule) dissipation and plasma wave heating are reviewed as sources of energy for the upper atmosphere at high latitudes. Electrodynamic heating in the thermosphere is described by a generalized energy balance equation taking into account a variety of inelastic processes and energy losses, and the use of height-integrated values of the Joule heating rate to estimate the importance of electrodynamic heating at high latitudes is discussed. Observations of electrons between 95 and 115 km altitude that are up to 1000 K hotter than the neutral atmosphere is presented as evidence for atmospheric heating due to unstable plasma waves arising from the Farley-Buneman modified two-stream instability.

  11. In Theory: Dark Energy as a Power Source

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.; Russell, David; Tangmatitham, Matipon

    2017-01-01

    In theory, it is possible to use the dark energy of the universe as a power source. In practice, the amount of energy that could be liberated in a local setting is many orders of magnitude too small to be useful or even detectable. Nevertheless, in the interests of education and amusement, simple machines that could, in theory, extract local power from the gravitationally repulsive cosmological constant are discussed. The gravitational neutral buoyancy distance -- the distance where local Newtonian gravity balances cosmological dark energy in a concordance cosmology -- is computed between two point objects of low mass.

  12. Using Alternate Energy Sources. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with using alternate energy sources. The following topics are covered in the individual lessons:…

  13. A Directory of Federal Sources of Information on Solar Energy.

    ERIC Educational Resources Information Center

    Dierker, Janet

    This directory lists federal solar energy programs and sources of information. Each listing gives a brief description of the nature of the program or type of information that is available. In addition, names, addresses, and phone numbers of contact personnel are given. The listings are grouped by agency or branch of the government. (BB)

  14. High energy pulsewidth tunable CPA free picosecond source

    NASA Astrophysics Data System (ADS)

    Pouysegur, Julien; Guichard, Florent; Zaouter, Yoann; Hanna, Marc; Druon, Frédéric; Hönninger, Clemens; Mottay, Eric; Georges, Patrick

    2016-03-01

    A hybrid ytterbium-doped fiber - bulk laser source generating up to 116MW peak power for 3ps pulse duration at 50kHz repetition rate and 1030nm wavelength is presented. Tunability of the pulse duration is made by spectral compression occurring into the seeder. Divided Pulse Amplification scheme is investigated to study energy capabilities of the setup.

  15. EnergyPlus Air Source Integrated Heat Pump Model

    SciTech Connect

    Shen, Bo; Adams, Mark B.; New, Joshua Ryan

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  16. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  17. Cassava: a basic energy source in the tropics

    SciTech Connect

    Cock, J.H.

    1982-11-19

    Cassava (Manihot esculenta) is the fourth most important source of food energy in the tropics. More than two-thirds of the total production of this crop is used as food for humans, with lesser amounts being used for animal feed and industrial purposes. The ingestion of high levels of cassava has been associated with chronic cyanide toxicity in parts of Africa, but this appears to be related to inadequate processing of the root and poor overall nutrition. Although cassava is not a complete food it is important as a cheap source of calories. The crop has a high yield potential under good conditions, and compared to other crops it excels under suboptimal conditions, thus offering the possibility of using marginal land to increase total agricultural production. Breeding programs that bring together germ plasm from different regions coupled with improved agronomic practices can markedly increase yields. The future demand for fresh cassava may depend on improved storage methods. The markets for cassava as a substitute for cereal flours in bakery products and as an energy source in animal feed rations are likely to expand. The use of cassava as a source of ethanol for fuel depends on finding an efficient source of energy for distillation or an improved method of separating ethanol from water. 7 figures, 8 tables.

  18. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Tartz, M.; Scholze, F.; Leiter, H. J.; Scortecci, F.; Gnizdor, R. Y.; Neumann, H.

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  19. Energy Efficiency: Information Sources for New and Emerging Technologies

    SciTech Connect

    Parker, Steven A.

    2007-12-31

    The purpose of this article is to share a list of useful organizations that provide reliable information on new and emerging energy-efficient technologies based on research and experience. Experienced energy managers may use the information provided by these organizations to enhance their knowledge and understanding, thereby improving their energy management programs. The scope is limited to publicly-available and open-membership organizations that deal with new and emerging, energy-efficient technologies, strategies, and products. The sources identified should not be considered exhaustive but rather a first step “go to” list suggested by the author when searching for useful information on new and emerging energy-efficient technologies.

  20. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  1. Advanced RF Sources Based on Novel Nonlinear Transmission Lines

    DTIC Science & Technology

    2015-01-26

    Green’s function on a slow wave structure. We derive the scaling laws for the contact resistance of both bulk contact and thin film contact , with general...aspect ratios and vastly different resistivity in the different contact members. We discover a voltage scale, which depends only on material property...vacuum transistor”, a high-speed transistor envisioned for the future. High power mirowave sources, electrical contact , surface heating U U U 23 Y

  2. Preserving Source Location Privacy for Energy Harvesting WSNs.

    PubMed

    Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng

    2017-03-30

    Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes.

  3. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  4. Eddy energy sources and flux in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  5. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  6. A quest for sources of ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kotera, Kumiko

    2012-03-01

    The origin of ultrahigh energy cosmic rays (UHECRs, particles arriving on the Earth with energy 10^17- 10^21 eV) is still a mystery. I will review the experimental and theoretical efforts that are being deployed by the community to solve this long-standing enigma, including the recent results from the Auger Observatory. I will discuss the observable signatures that help narrow down the list of possible candidate sources, namely the distribution of the arrival directions of UHECRs in the sky, their energy spectrum, their chemical composition, and their multi-messenger signatures (in neutrinos, gamma-rays and gravitational waves). I will focus in particular on one candidate source that has been little discussed in the literature: young rotation-powered pulsars. The production of UHECRs in these objects could give a picture that is surprisingly consistent with the latest data measured with the Auger Observatory.

  7. Constraining high-energy cosmic neutrino sources: Implications and prospects

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Waxman, Eli

    2016-11-01

    We consider limits on the local (z =0 ) density (n0) of extragalactic neutrino sources set by the nondetection of steady high-energy neutrino sources producing ≳50 TeV muon multiplets in the present IceCube data, taking into account the redshift evolution, luminosity function, and neutrino spectrum of the sources. We show that the lower limit depends moderately on source spectra and strongly on redshift evolution. We find n0≳10-8- 10-7 Mpc-3 for standard candle sources evolving rapidly, ns∝(1+z ) 3 , and n0≳10-6- 10-5 Mpc-3 for nonevolving sources. The corresponding upper limits on their neutrino luminosity are Lνμ eff≲1 042- 1 043 erg s-1 and Lνμ eff≲1 041- 1 042 erg s-1 , respectively. Applying these results to a wide range of classes of potential sources, we show that powerful "blazar" jets associated with active galactic nuclei are unlikely to be the dominant sources. For almost all other steady candidate source classes (including starbursts, radio galaxies, and galaxy clusters and groups), an order of magnitude increase in the detector sensitivity at ˜0.1 - 1 PeV will enable a detection (as point sources) of the few brightest objects. Such an increase, which may be provided by next-generation detectors like IceCube-Gen2 and an upgraded KM3NET, can improve the limit on n0 by more than 2 orders of magnitude. Future gamma-ray observations (by Fermi, the High-Altitude Water Cherenkov Observatory, and the Cherenkov Telescope Array) will play a key role in confirming the association of the neutrinos with their sources.

  8. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  9. The Consortium for Advancing Renewable Energy Technology (CARET)

    NASA Technical Reports Server (NTRS)

    Gordon, E. M.; Henderson, D. O.; Buffinger, D. R.; Fuller, C. W.; Uribe, R. M.

    1998-01-01

    The Consortium for Advancing Renewable Energy (CARET) is a research and education program which uses the theme of renewable energy to build a minority scientist pipeline. CARET is also a consortium of four universities and NASA Lewis Research Center working together to promote science education and research to minority students using the theme of renewable energy. The consortium membership includes the HBCUs (Historically Black Colleges and Universities), Fisk, Wilberforce and Central State Universities as well as Kent State University and NASA Lewis Research Center. The various stages of this pipeline provide participating students experiences with a different emphasis. Some emphasize building enthusiasm for the classroom study of science and technology while others emphasize the nature of research in these disciplines. Still others focus on relating a practical application to science and technology. And, of great importance to the success of the program are the interfaces between the various stages. Successfully managing these transitions is a requirement for producing trained scientists, engineers and technologists. Presentations describing the CARET program have been given at this year's HBCU Research Conference at the Ohio Aerospace Institute and as a seminar in the Solar Circle Seminar series of the Photovoltaic and Space Environments Branch at NASA Lewis Research Center. In this report, we will describe the many positive achievements toward the fulfillment of the goals and outcomes of our program. We will begin with a description of the interactions among the consortium members and end with a description of the activities of each of the member institutions .

  10. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  11. Advanced Range Safety System for High Energy Vehicles

    NASA Technical Reports Server (NTRS)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  12. Proceedings of the fourth users meeting for the advanced photon source

    SciTech Connect

    Not Available

    1992-02-01

    The Fourth Users Meeting for the Advanced Photon Source (APS) was held on May 7--8, 1991 at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project; critical issues for APS operation; advances in synchrotron radiation applications; users perspectives, and funding perspectives. The actions taken at the 1991 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  13. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    SciTech Connect

    Wade, M.C.; Socolof, M.L.; Rosensteel, B.; Awl, D.

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy`s (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action.

  14. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    SciTech Connect

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  15. Multiwavelength observations of unidentified high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with catalogued objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. This two year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x-ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. This second year was devoted to studies of unidentified gamma-ray sources from the first EGRET catalog, similar to previous observations. Efforts have concentrated on the sources at low and intermediate Galactic latitudes, which are the most plausible pulsar candidates.

  16. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  17. Efficiency of utilization of various sources of energy for growth.

    PubMed Central

    Donato, K; Hegsted, D M

    1985-01-01

    The relative efficiency of dietary sucrose, protein sources, and fats in depositing body protein and fat (total energy) was directly estimated in young rats by feeding graded levels of each as supplements to a fixed amount of a basal diet that was presumably adequate in all essential nutrients except for energy. Under these conditions, the net gain in total body energy was a linear function of the amount of supplement added and the data fulfill the criteria of a valid slope-ratio bioassay. The available energy measured by this technique for sucrose and protein were similar, as would be expected. Dietary fat, however, was a more efficient source of energy. Compared to sucrose with 3.94 kcal/g (1 cal = 4.184 J), the average potency of dietary fat was 11.1 kcal/g, or approximately 124% of the expected value of 9 kcal/g. Fat supplements increased the deposition of body fat even when total energy intake was severely limited. The Atwater value of 9 kcal per g of fat is not appropriate under these conditions and probably not under other conditions. PMID:3860827

  18. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  19. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  20. Candidate advanced energy storage concepts for multimegawatt burst power systems

    NASA Astrophysics Data System (ADS)

    Boretz, John E.; Sollo, Charles

    Three candidate advanced energy storage systems are reviewed and compared with the Thermionic Operating Reactor (THOR) concept. The three systems considered are the flywheel generator, the lithium-metal sulfide battery and the alkaline fuel cell. From a minimum mass viewpoint, only the regenerative fuel cell (RFC) can result in a lighter system than THOR. Because of its lower operating temperature, as compared to THOR, a considerable reduction in materials problems is to be expected when compared to the extremely high operating temperatures of the THOR system. Frozen heat pipes and their impact on response time as well as the complexity of the required retraction/extension mechanism of the THOR system would tend to place the RFC system in a much lower category of development risk. Finally, if spot shielding of sensitive electronic and power conditioning equipment becomes necessary for the reactor radiation environment of the THOR system, the weight advantage of the RFC system may become even greater.

  1. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema

    Tijana Rajh

    2016-07-12

    Dr. Rajh will present a general talk on nanotechnology – an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  2. Carbon-based electrocatalysts for advanced energy conversion and storage.

    PubMed

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-08-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance.

  3. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  4. Behaviour of advanced materials impacted by high energy particle beams

    NASA Astrophysics Data System (ADS)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  5. Radioactivity as a significant energy source in prebiotic synthesis.

    PubMed

    Garzón, L; Garzón, M L

    2001-01-01

    Radioactivity in the continental crust (due mainly to the isotopes 238U, 235U, 232Th and 40K), as a energy source for chemical evolution in the early Archean (between 3.5 and approximately 4 Ga bp), is reviewed. The most important radioactive source in the continental crust is due to the production and accumulation of radioactive gases within the crust voids (porosity). The study of such mechanism has allowed us to reach a deeper understanding about the nature of the radioactive source and to describe its behavior, particularly with regard to prebiotic chemical evolution. An effective total energy of 3 x 10(18) Ja-1 has been obtained for a depth of 1 km, 4 Ga ago. If a depth of 30 km is taken, the obtained value is almost equal to the UV solar energy radiation (lambda < 150 nm). Within the voids the radioactive source of the continental crust played a relevant role in prebiotic synthesis. In uranium deposits of the same age, the role of radioactivity must have been even more relevant in favoring chemical evolution.

  6. Fossil energy: From laboratory to marketplace. Part 2, The role of advanced research

    SciTech Connect

    Not Available

    1992-03-01

    The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R&D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R&D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

  7. XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop

    NASA Astrophysics Data System (ADS)

    This was the eleventh edition of the series of Frascati Workshops on "Multifrequency Behaviour of High Energy Cosmic Sources" undoubtedly a largely accepted biennial meeting in which an updated experimental and theoretical panorama is depicted. This edition took place on the 31st anniversary of the first historical "multifrequency" workshop about "Multifrequency Behaviour of Galactic Accreting Sources", held in Vulcano in September 1984. This surely renders the Frascati Workshop Series the oldest among the many devoted to "Multifrequency Studies of Cosmic Sources". The study of the physics governing the cosmic sources was the main goal of the workshop. A session devoted to the ongoing and next generation ground- and space-based experiments gave the actual prospects for the first decades of this millennium. The following items have been reviewed: Cosmology: Cosmic Background, Clusters of Galaxies Extragalactic Sources: Active Galaxies, Normal Galaxies Gamma-Rays Burst: Experiments versus Theories Galactic Sources: Pre-Main-Sequence and Main-Sequence Stars, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources,Nucleosynthesis. The Astrophysics with the Ongoing and Future Experiments: Space-Based Experiments, Ground-Based Experiments. The workshop included a few 30-minute general review talks to introduce the current problems, and typically 20-minute talks discussing new experimental and theoretical results. A series of 20-minute talks discussed the ongoing and planned ground- and space-based experiments. The cadence of the workshop is biennial. The participation is only by invitation.

  8. Evaluation of Computed Tomography of Mock Uranium Fuel Rods at the Advanced Photon Source

    DOE PAGES

    Hunter, James F.; Brown, Donald William; Okuniewski, Maria

    2015-06-01

    This study discusses a multi-year effort to evaluate the utility of computed tomography at the Advanced Photon Source (APS) as a tool for non-destructive evaluation of uranium based fuel rods. The majority of the data presented is on mock material made with depleted uranium which mimics the x-ray attenuation characteristics of fuel rods while allowing for simpler handling. A range of data is presented including full thickness (5mm diameter) fuel rodlets, reduced thickness (1.8mm) sintering test samples, and pre/post irradiation samples (< 1mm thick). These data were taken on both a white beam (bending magnet) beamline and a high energy,more » monochromatic beamline. This data shows the utility of a synchrotron type source in the evealuation of manufacturing defects (pre-irradiation) and lays out the case for in situ CT of fuel pellet sintering. Finally, in addition data is shown from small post-irradiation samples and a case is made for post-irradiation CT of larger samples.« less

  9. Evaluation of Computed Tomography of Mock Uranium Fuel Rods at the Advanced Photon Source

    SciTech Connect

    Hunter, James F.; Brown, Donald William; Okuniewski, Maria

    2015-06-01

    This study discusses a multi-year effort to evaluate the utility of computed tomography at the Advanced Photon Source (APS) as a tool for non-destructive evaluation of uranium based fuel rods. The majority of the data presented is on mock material made with depleted uranium which mimics the x-ray attenuation characteristics of fuel rods while allowing for simpler handling. A range of data is presented including full thickness (5mm diameter) fuel rodlets, reduced thickness (1.8mm) sintering test samples, and pre/post irradiation samples (< 1mm thick). These data were taken on both a white beam (bending magnet) beamline and a high energy, monochromatic beamline. This data shows the utility of a synchrotron type source in the evealuation of manufacturing defects (pre-irradiation) and lays out the case for in situ CT of fuel pellet sintering. Finally, in addition data is shown from small post-irradiation samples and a case is made for post-irradiation CT of larger samples.

  10. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    SciTech Connect

    Not Available

    1990-02-01

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  11. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.

    PubMed

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  12. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  13. Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

    SciTech Connect

    Pisharody, M.; Job, P.K.; Magill, S.

    1997-03-01

    High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m{sub 0}c{sub 2}/E) radian with respect to the electron beam path, where m{sub 0}c{sup 2} is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10{sup -9} Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air.

  14. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    SciTech Connect

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

  15. Environmental Science Program at the Advanced Light Source

    SciTech Connect

    Hubbard, Susan; Shuh, David; Nico, Peter

    2005-06-01

    Synchrotron Radiation (SR)-based techniques have become an essential and fundamental research tool in Molecular Environmental Science (MES) research. MES is an emerging scientific field that has largely evolved from research interactions at the U.S. Department of Energy (U.S. DOE) SR laboratories in response to the pressing need for understanding fundamental molecular-level chemical and biological processes that involve the speciation, properties, and behavior of contaminants, within natural systems. The role of SR-based investigations in MES and their impact on environmental problems of importance to society has been recently documented in Molecular Environmental Science: An Assessment of Research Accomplishment, Available Synchrotron Radiation Facilities, and Needs (EnviroSync, 2003).

  16. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect

    Not Available

    2013-12-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

  17. Dust Obscured Blazars as sources of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Maggi, G.; de Vries, K. D.; van Eijndhoven, N.

    2016-08-01

    Active Galactic Nuclei (AGN) are believed to be among the most promising sources of the ultra-high-energy cosmic ray flux. A hadronic component which is accelerated in the high energy environment of an AGN immediately implies the production of high-energy neutrinos. Nevertheless, no clear correlation between AGN and the high-energy cosmic-neutrino flux obtained by IceCube has been found so-far, putting strong limits on the neutrino production at AGN. We discuss a specific type of AGN for which an enhanced neutrino production is expected. This specific sub-set is given by AGN with their high-energy jet directed toward Earth, which is obscured by surrounding dust or gas, defining Dust Obscured Blazars. This type of AGN is predicted to have an enhanced neutrino emission due to the interaction of a possible hadronic component inside the AGN-jet with the surrounding matter. From two different galaxy catalogs, we have selected a sample of nearby sources with the characteristics of Dust Obscured Blazars. This selection is based on observations in the X-ray and radio bands. The data is consequently used to investigate the column density of the surrounding matter, providing an estimate for the neutrino production enhancement due to the nucleon-matter interactions in a beam dump scenario for various dust or gas compositions.

  18. Single-layer mirrors for advanced research light sources

    NASA Astrophysics Data System (ADS)

    Störmer, M.; Horstmann, C.; Siewert, F.; Scholze, F.; Krumrey, M.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-01

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  19. Single-layer mirrors for advanced research light sources

    SciTech Connect

    Stoermer, M.; Horstmann, C.; Siewert, F.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-23

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  20. Vacuum system for the LBL Advanced Light Source (ALS)

    SciTech Connect

    Kennedy, K.; Henderson, T.; Meneghetti, J. )

    1989-03-01

    A 1.5 to 1.9 GeV synchrotron light source is being built at LBL. The vacuum system is designed to permit most synchrotron photons to escape the electron channel and be absorbed in an antechamber. The gas generated by the photons hitting the absorbers in the antechambers will be pumped by titanium sublimation pumps located directly under the absorbers. The electron channel and the antechamber are connected by a 10-mm-high slot that offers good electrodynamic isolation of the two chambers of frequencies affecting the store electron orbit. Twelve 10-meter-long vessels constitute the vacuum chambers for all the lattice magnets. Each chamber will be machined from two thick plates of 5083-H321 aluminum and welded at the perimeter. Machining both the inside and outside of the vacuum chamber permits the use of complex and accurate surfaces. The use of thick plates allows flanges to be machined directly into the wall of each chamber, thus avoiding much welding. 1 ref., 3 figs.

  1. 78 FR 9446 - Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc.), ANTS Software, Inc., Beauty Brands Group, Inc., Beijing Century Health Medical, Inc., Chocolate Candy Creations, Inc., Crystallex...

  2. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    NASA Astrophysics Data System (ADS)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  3. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  4. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    PubMed Central

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-01-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source. PMID:28181544

  5. Energy conservation in ethanol production from renewable resources and non-petroleum energy sources

    SciTech Connect

    Not Available

    1981-03-01

    The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

  6. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  7. Energy sources for detritivorous fishes in the Amazon.

    PubMed

    Araujo-Lima, C A; Forsberg, B R; Victoria, R; Martinelli, L

    1986-12-05

    Detritivorous fishes form an important part of the ichthyomass in the Amazon basin. Most of these fishes are contained in the orders Characiformes and Siluriformes (catfishes). The Characiformes constitute more than 30% of the total fish yield in the Amazon basin, whereas the catfishes are of minor importance. Stable isotope data indicate that Characiformes species receive most of their carbon through food chains originating with phytoplankton, while the Siluriformes receive a significant part of their energy from other plant sources.

  8. Directory of financing sources for foreign energy projects

    SciTech Connect

    La Ferla, L.

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  9. Advanced carbon manufacturing for energy and biological applications

    NASA Astrophysics Data System (ADS)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  10. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    SciTech Connect

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  11. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  12. Electron Microscopy in the Catalysis of Alkane Oxidation, Environmental Control, and Alternative Energy Sources

    NASA Astrophysics Data System (ADS)

    Gai, Pratibha L.; Calvino, Jose J.

    2005-08-01

    The key role of electron microscopy in understanding and creating advanced catalyst materials and processes in selective alkane oxidation, environmental control, and alternative energy sources is reviewed. In many technological processes, catalysts are increasingly nanoscale heterogeneous materials. With growing regulatory guidelines requiring efficient and environmentally compatible catalytic processes, it is crucial to have a fundamental understanding of the catalyst nanostructure and modes of operation under reaction conditions to design novel catalysts and processes. The review highlights the pioneering development and applications of atomic resolution in situ-environmental transmission electron microscopy (ETEM) for probing dynamic catalysis directly at the atomic level, high-resolution electron microscopy, and analytical spectroscopic methods in the development of alkane catalyzation, environmental protection, and new energy sources.

  13. Surgical Ablation of Atrial Fibrillation Using Energy Sources.

    PubMed

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery.

  14. Surgical Ablation of Atrial Fibrillation Using Energy Sources

    PubMed Central

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery. PMID:26934404

  15. Embrace the Dark Side: Advancing the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  16. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  17. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  18. Dietary sources of energy and macronutrient intakes among Flemish preschoolers.

    PubMed

    De Keyzer, Willem; Lin, Yi; Vereecken, Carine; Maes, Lea; Van Oyen, Herman; Vanhauwaert, Erika; De Backer, Guy; De Henauw, Stefaan; Huybrechts, Inge

    2011-11-01

    This study aims to identify major food sources of energy and macronutrients among Flemish preschoolers as a basis for evaluating dietary guidelines. Three-day estimated diet records were collected from a representative sample of 696 Flemish preschoolers (2.5-6.5 years old; participation response rate: 50%). For 11 dietary constituents, the contribution of 57 food groups was computed by summing the amount provided by the food group for all individuals divided by the total intake of the respective nutrient for all individuals. Bread (12%), sweet snacks (12%), milk (6%), flavoured milk drinks (9%), and meat products (6%) were the top five energy contributors. Sweet snacks were among the top contributors to energy, total fat, all fatty acids, cholesterol, and complex and simple carbohydrates. Fruit juices and flavoured milk drinks are the main contributors to simple carbohydrates (respectively 14% and 18%). All principal food groups like water, bread and cereals, vegetables, fruit, milk and spreadable fats were under-consumed by more than 30% of the population, while the food groups that were over-consumed consisted only of low nutritious and high energy dense foods (sweet snacks, sugared drinks, fried potatoes, sauces and sweet spreads). From the major food sources and gaps in nutrient and food intakes, some recommendations to pursue the nutritional goals could be drawn: the intake of sweet snacks and sugar-rich drinks (incl. fruit juices) should be discouraged, while consumption of fruits, vegetables, water, bread and margarine on bread should be encouraged.

  19. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    SciTech Connect

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  20. The Potential of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Sakipova, S.; Jakovics, A.; Gendelis, S.

    2016-02-01

    The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.