Sample records for advanced evolutionary stage

  1. Onto-phylogenetic aspect of myotomal myogenesis in Chordata.

    PubMed

    Kiełbówna, Leokadia; Daczewska, Małgorzata

    2004-01-01

    This paper presents an onto- and phylogenetic aspect of myotoamal myogenesis in Chordata. A comparative analysis of early stages of myotomal myogenesis in Chordata indicates that the myogenic process in this phylum underwent evolutionary changes. The first stage of the process is myogenesis leading to development of mononucleate mature muscle cells, the most advanced stage is formation of multinucleate muscle fibres.

  2. Treatment resistance in urothelial carcinoma: an evolutionary perspective.

    PubMed

    Vlachostergios, Panagiotis J; Faltas, Bishoy M

    2018-05-02

    The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

  3. Evolution and the Growth Process: Natural Selection of Entrepreneurial Traits.

    PubMed

    Galor, Oded; Michalopoulos, Stelios

    2012-03-01

    This research suggests that a Darwinian evolution of entrepreneurial spirit played a significant role in the process of economic development and the dynamics of inequality within and across societies. The study argues that entrepreneurial spirit evolved non-monotonically in the course of human history. In early stages of development, risk-tolerant, growth promoting traits generated an evolutionary advantage and their increased representation accelerated the pace of technological progress and the process of economic development. In mature stages of development, however, risk-averse traits gained an evolutionary advantage, diminishing the growth potential of advanced economies and contributing to convergence in economic growth across countries.

  4. Evolution and the Growth Process: Natural Selection of Entrepreneurial Traits*

    PubMed Central

    Galor, Oded; Michalopoulos, Stelios

    2013-01-01

    This research suggests that a Darwinian evolution of entrepreneurial spirit played a significant role in the process of economic development and the dynamics of inequality within and across societies. The study argues that entrepreneurial spirit evolved non-monotonically in the course of human history. In early stages of development, risk-tolerant, growth promoting traits generated an evolutionary advantage and their increased representation accelerated the pace of technological progress and the process of economic development. In mature stages of development, however, risk-averse traits gained an evolutionary advantage, diminishing the growth potential of advanced economies and contributing to convergence in economic growth across countries. PMID:25089059

  5. Using concepts from biology to improve problem-solving methods

    NASA Astrophysics Data System (ADS)

    Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.

    2011-06-01

    Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.

  6. Evoecotoxicology: Environmental Changes and Life Features Development during the Evolutionary Process—the Record of the Past at Developmental Stages of Living Organisms

    PubMed Central

    Herkovits, Jorge

    2006-01-01

    For most of evolutionary history, scientific understanding of the environment and life forms is extremely limited. In this commentary I discuss the hypothesis that ontogenetic features of living organisms can be considered biomarkers of coevolution between organisms and physicochemical agents during Earth’s history. I provide a new vision of evolution based on correlations between metabolic features and stage-dependent susceptibility of organisms to physicochemical agents with well-known environmental signatures. Thus, developmental features potentially reflect environmental changes during evolution. From this perspective, early multicellular life forms would have flourished in the anoxic Earth more than 2 billion years ago, which is at least 1.2 billion years in advance of available fossil evidence. The remarkable transition to aerobic metabolism in gastrula-stage embryos potentially reflects evolution toward tridermic organisms by 2 billion years ago. Noteworthy changes in embryonic resistance to physicochemical agents at different developmental stages that can be observed in living organisms potentially reflect the influence of environmental stress conditions during different periods of evolutionary history. Evoecotoxicology, as a multidisciplinary and transdisciplinary approach, can enhance our understanding of evolution, including the phylogenetic significance of differences in susceptibility/resistance to physicochemical agents in different organisms. PMID:16882515

  7. Evolutionary perspectives on ageing.

    PubMed

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Propulsion requirements for reusable single-stage-to-orbit rocket vehicles

    NASA Astrophysics Data System (ADS)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1994-05-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  9. The Unique Dorsal Brood Pouch of Thermosbaenacea (Crustacea, Malacostraca) and Description of an Advanced Developmental Stage of Tulumella unidens from the Yucatan Peninsula (Mexico), with a Discussion of Mouth Part Homologies to Other Malacostraca

    PubMed Central

    Olesen, Jørgen; Boesgaard, Tom; Iliffe, Thomas M.

    2015-01-01

    The Thermosbaenacea, a small taxon of crustaceans inhabiting subterranean waters, are unique among malacostracans as they brood their offspring dorsally under the carapace. This habit is of evolutionary interest but the last detailed report on thermosbaenacean development is more than 40 years old. Here we provide new observations on an ovigerous female of Tulumella unidens with advanced developmental stages in its brood chamber collected from an anchialine cave at the Yucatan Peninsula, which is only the third report on developmental stages of Thermosbaenacea and the first for the genus Tulumella. Significant in a wider crustacean context, we report and discuss hitherto unexplored lobate structures inside the brood chamber of the female originating at the first (maxilliped) and second thoracic segments, which are most likely modified epipods, perhaps serving as gills. At the posterior margin of carapace of the female are rows of large spines preventing the developing stages from falling out. The external morphology of the advanced developmental stages is described in much detail, providing information on e.g., carapace formation and early limb morphology. Among the hitherto unknown structures in the advanced developmental stages provided by this study are the presence of an embryonic dorsal organ and rudimentary ‘naupliar processes’ of the second antennae. Since most hypotheses on crustacean (and malacostracan and peracaridan) relationship rest on external limb morphology, we use early limb bud morphology of Tulumella to better establish thermosbaenacean limb homologies to those of other crustaceans, which is a necessary basis for future morphology based phylogenetic considerations. PMID:25901753

  10. The Unique Dorsal Brood Pouch of Thermosbaenacea (Crustacea, Malacostraca) and Description of an Advanced Developmental Stage of Tulumella unidens from the Yucatan Peninsula (Mexico), with a Discussion of Mouth Part Homologies to Other Malacostraca.

    PubMed

    Olesen, Jørgen; Boesgaard, Tom; Iliffe, Thomas M

    2015-01-01

    The Thermosbaenacea, a small taxon of crustaceans inhabiting subterranean waters, are unique among malacostracans as they brood their offspring dorsally under the carapace. This habit is of evolutionary interest but the last detailed report on thermosbaenacean development is more than 40 years old. Here we provide new observations on an ovigerous female of Tulumella unidens with advanced developmental stages in its brood chamber collected from an anchialine cave at the Yucatan Peninsula, which is only the third report on developmental stages of Thermosbaenacea and the first for the genus Tulumella. Significant in a wider crustacean context, we report and discuss hitherto unexplored lobate structures inside the brood chamber of the female originating at the first (maxilliped) and second thoracic segments, which are most likely modified epipods, perhaps serving as gills. At the posterior margin of carapace of the female are rows of large spines preventing the developing stages from falling out. The external morphology of the advanced developmental stages is described in much detail, providing information on e.g., carapace formation and early limb morphology. Among the hitherto unknown structures in the advanced developmental stages provided by this study are the presence of an embryonic dorsal organ and rudimentary 'naupliar processes' of the second antennae. Since most hypotheses on crustacean (and malacostracan and peracaridan) relationship rest on external limb morphology, we use early limb bud morphology of Tulumella to better establish thermosbaenacean limb homologies to those of other crustaceans, which is a necessary basis for future morphology based phylogenetic considerations.

  11. Four stages of a scientific discipline; four types of scientist.

    PubMed

    Shneider, Alexander M

    2009-05-01

    In this article I propose the classification of the evolutionary stages that a scientific discipline evolves through and the type of scientists that are the most productive at each stage. I believe that each scientific discipline evolves sequentially through four stages. Scientists at stage one introduce new objects and phenomena as subject matter for a new scientific discipline. To do this they have to introduce a new language adequately describing the subject matter. At stage two, scientists develop a toolbox of methods and techniques for the new discipline. Owing to this advancement in methodology, the spectrum of objects and phenomena that fall into the realm of the new science are further understood at this stage. Most of the specific knowledge is generated at the third stage, at which the highest number of original research publications is generated. The majority of third-stage investigation is based on the initial application of new research methods to objects and/or phenomena. The purpose of the fourth stage is to maintain and pass on scientific knowledge generated during the first three stages. Groundbreaking new discoveries are not made at this stage. However, new ways to present scientific information are generated, and crucial revisions are often made of the role of the discipline within the constantly evolving scientific environment. The very nature of each stage determines the optimal psychological type and modus operandi of the scientist operating within it. Thus, it is not only the talent and devotion of scientists that determines whether they are capable of contributing substantially but, rather, whether they have the 'right type' of talent for the chosen scientific discipline at that time. Understanding the four different evolutionary stages of a scientific discipline might be instrumental for many scientists in optimizing their career path, in addition to being useful in assembling scientific teams, precluding conflicts and maximizing productivity. The proposed model of scientific evolution might also be instrumental for society in organizing and managing the scientific process. No public policy aimed at stimulating the scientific process can be equally beneficial for all four stages. Attempts to apply the same criteria to scientists working on scientific disciplines at different stages of their scientific evolution would be stimulating for one and detrimental for another. In addition, researchers operating at a certain stage of scientific evolution might not possess the mindset adequate to evaluate and stimulate a discipline that is at a different evolutionary stage. This could be the reason for suboptimal implementation of otherwise well-conceived scientific policies.

  12. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    DTIC Science & Technology

    2012-09-30

    influences on TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation...and applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge

  13. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    DTIC Science & Technology

    2011-09-30

    influences on TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been...and extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies...assimilation, and applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our

  14. Joint attention and language evolution

    NASA Astrophysics Data System (ADS)

    Kwisthout, Johan; Vogt, Paul; Haselager, Pim; Dijkstra, Ton

    2008-06-01

    This study investigates how more advanced joint attentional mechanisms, rather than only shared attention between two agents and an object, can be implemented and how they influence the results of language games played by these agents. We present computer simulations with language games showing that adding constructs that mimic the three stages of joint attention identified in children's early development (checking attention, following attention, and directing attention) substantially increase the performance of agents in these language games. In particular, the rates of improved performance for the individual attentional mechanisms have the same ordering as that of the emergence of these mechanisms in infants' development. These results suggest that language evolution and joint attentional mechanisms have developed in a co-evolutionary way, and that the evolutionary emergence of the individual attentional mechanisms is ordered just like their developmental emergence.

  15. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    DTIC Science & Technology

    2013-09-30

    TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown to be an... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation, and...applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge, this

  16. Co-niche construction between hosts and symbionts: ideas and evidence.

    PubMed

    Borges, Renee M

    2017-07-01

    Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host phenotype, such as resource acquisition, protection from predation by acquisition of toxicity, as well as behaviour. Once symbiosis is established, its fidelity between generations must be ensured. Hosts evolve various mechanisms to screen unwanted symbionts and to facilitate faithful transmission of mutualistic partners between generations. Microbes are the most important symbionts that have influenced plant and animal phenotypes; multicellular organisms engage in developmental symbioses with microbes at many stages in ontogeny. The co-construction of niches may result in composite organisms that are physically nested within each other. While it has been advocated that these composite organisms need new evolutionary theories and perspectives to describe their properties and evolutionary trajectories, it appears that standard evolutionary theories are adequate to explore selection pressures on their composite or individual traits. Recent advances in our understanding of composite organisms open up many important questions regarding the stability and transmission of these units.

  17. Evolutionary molecular medicine.

    PubMed

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  18. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  19. Evolution in Stage-Structured Populations

    PubMed Central

    Barfield, Michael; Holt, Robert D.; Gomulkiewicz, Richard

    2016-01-01

    For many organisms, stage is a better predictor of demographic rates than age. Yet no general theoretical framework exists for understanding or predicting evolution in stage-structured populations. Here, we provide a general modeling approach that can be used to predict evolution and demography of stage-structured populations. This advances our ability to understand evolution in stage-structured populations to a level previously available only for populations structured by age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates adaptive evolution to population growth, applies to stage-classified populations, assuming only normality and that evolution is slow relative to population dynamics. We extend this theorem to allow for different means or variances among stages. Our next major result is the formulation of Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world population and thereby show their practical potential to generate accurate projections of evolutionary and population dynamics. Finally, we use our framework to compare rates of evolution in age- versus stage-structured populations, which shows how our methods can yield biological insights about evolution in stage-structured populations. PMID:21460563

  20. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004

  1. Cavopulmonary assist: (Em)powering the univentricular Fontan circulation

    PubMed Central

    Rodefeld, Mark D; Frankel, Steven H; Giridharan, Guruprasad A

    2011-01-01

    Since the Fontan/Kreutzer procedure was introduced, evolutionary clinical advances via a staged surgical reconstructive approach have markedly improved outcomes for patients with functional single ventricle. However, significant challenges remain. Early stage mortality risk seems impenetrable. Serious morbidities - construed as immutable consequences of palliation - have hardly been addressed. Late functional status is increasingly linked to pathophysiologic consequences of prior staged procedures. As more single ventricle patients survive into adulthood, Fontan failure is emerging as an intractable problem for which there is no targeted therapy. Incremental solutions to address these ongoing problems have not had a measurable impact. Therefore, a fundamental reconsideration of the overall approach is reasonable and warranted. The ability to provide a modest pressure boost (2-6 mmHg) to existing blood flow at the total cavopulmonary connection can effectively restore more stable biventricular status. This would impact not only treatment of late Fontan failure, but also facilitate early surgical repair. A realistic means to provide such a pressure boost has never been apparent. Recent advances are beginning to unravel the unique challenges which must be addressed to realize this goal, with promise to open single ventricle palliation to new therapeutic vistas. PMID:21444049

  2. An integrative approach to understanding bird origins.

    PubMed

    Xu, Xing; Zhou, Zhonghe; Dudley, Robert; Mackem, Susan; Chuong, Cheng-Ming; Erickson, Gregory M; Varricchio, David J

    2014-12-12

    Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a premier example of how paleontological and neontological data can interact to reveal the complexity of major innovations, to answer key evolutionary questions, and to lead to new research directions. A better understanding of bird origins requires multifaceted and integrative approaches, yet fossils necessarily provide the final test of any evolutionary model. Copyright © 2014, American Association for the Advancement of Science.

  3. Attachment in Middle Childhood: An Evolutionary-Developmental Perspective

    ERIC Educational Resources Information Center

    Del Giudice, Marco

    2015-01-01

    Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an…

  4. The Evolutionary Process of Secondary Innovation in the Context of Globalization: A Case Study

    ERIC Educational Resources Information Center

    Wu, Xiaobo; Xu, Guannan; Ma, Rufei; Du, Jian

    2008-01-01

    This paper examines the evolutionary process of secondary innovation in a typical Chinese equipment manufacturing firm in the context of globalization and elaborates how to achieve latecomer's advantage from imitation to innovation. Four stages are identified in the process of international manufacturing: the equipment import stage, the production…

  5. Solar Electric and Chemical Propulsion for a Titan Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun E.; Donahue, Benjamin B.; Coverstone, Victoria L.

    2005-01-01

    Systems analyses were performed for a Titan Explorer Mission characterized by Earth-Saturn transfer stages using solar electric power generation and propulsion systems for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their effect on the payload delivery capability to Titan. The effect of varying launch vehicle type, solar array power level, ion thruster number, specific impulse, trip time, and Titan capture stage chemical propellant choice was investigated. The major purpose of the study was to demonstrate the efficacy of applying advanced ion propulsion system technologies like NASA's Evolutionary Xenon Thruster (NEXT), coupled with state-of-the-art (SOA) and advanced chemical technologies to a Flagship class mission. This study demonstrated that a NASA Design Reference Mission (DRM) payload of 406 kg could be successfully delivered to Titan using the baseline advanced ion propulsion system in conjunction with SOA chemical propulsion for Titan capture. In addition, the SEPS/Chemical system of this study is compared to an all- chemical NASA DRM mission. Results showed that the NEXT- based SEPS/Chemical system was able to deliver the required payload to Titan in 5 years less transfer time and on a smaller launch vehicle than the SOA chemical option.

  6. What have humans done for evolutionary biology? Contributions from genes to populations.

    PubMed

    Briga, Michael; Griffin, Robert M; Berger, Vérane; Pettay, Jenni E; Lummaa, Virpi

    2017-11-15

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. © 2017 The Author(s).

  7. What have humans done for evolutionary biology? Contributions from genes to populations

    PubMed Central

    Briga, Michael; Griffin, Robert M.; Berger, Vérane; Pettay, Jenni E.

    2017-01-01

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. PMID:29118130

  8. Advanced Targeting Cost Function Design for Evolutionary Optimization of Control of Logistic Equation

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Zelinka, Ivan; Davendra, Donald; Oplatkova, Zuzana

    2010-06-01

    This research deals with the optimization of the control of chaos by means of evolutionary algorithms. This work is aimed on an explanation of how to use evolutionary algorithms (EAs) and how to properly define the advanced targeting cost function (CF) securing very fast and precise stabilization of desired state for any initial conditions. As a model of deterministic chaotic system, the one dimensional Logistic equation was used. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and targeting CF.

  9. STAR-FORMING ACTIVITY IN THE H ii REGIONS ASSOCIATED WITH THE IRAS 17160–3707 COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandakumar, G.; Veena, V. S.; Vig, S.

    2016-11-01

    We present a multiwavelength investigation of star formation activity toward the southern H ii regions associated with IRAS 17160–3707, located at a distance of 6.2 kpc with a bolometric luminosity of 8.3 × 10{sup 5} L {sub ⊙}. The ionized gas distribution and dust clumps in the parental molecular cloud are examined in detail using measurements at infrared, submillimeter and radio wavelengths. The radio continuum images at 1280 and 610 MHz obtained using the Giant Metrewave Radio Telescope reveal the presence of multiple compact sources as well as nebulous emission. At submillimeter wavelengths, we identify seven dust clumps and estimate their physical properties suchmore » as temperature: 24–30 K, mass: 300–4800 M {sub ⊙} and luminosity: 9–317 × 10{sup 2} L {sub ⊙} using modified blackbody fits to the spectral energy distributions (SEDs) between 70 and 870 μ m. We find 24 young stellar objects (YSOs) in the mid-infrared, with a few of them coincident with the compact radio sources. The SEDs of the YSOs have been fitted by the Robitaille models and the results indicate that those having radio compact sources as counterparts host massive objects in early evolutionary stages with best fit age ≤0.2 Myr. We compare the relative evolutionary stages of clumps using various signposts such as masers, ionized gas, presence of YSOs and infrared nebulosity, and find six massive star-forming clumps and one quiescent clump. Of the former, five are in a relatively advanced stage and one in an earlier stage.« less

  10. Co-creation and Co-innovation in a Collaborative Networked Environment

    NASA Astrophysics Data System (ADS)

    Klen, Edmilson Rampazzo

    Leveraged by the advances in communication and information Technologies, producers and consumers are developing a new behavior. Together with the new emerging collaborative manifestations this behavior may directly impact the way products are developed. This powerful combination indicates that consumers will be involved in a very early stage in product development processes supporting even more the creation and innovation of products. This new way of collaboration gives rise to a new collaborative networked environment based on co-creation and co-innovation. This work will present some evolutionary steps that point to the development of this environment where prosumer communities and virtual organizations interact and collaborate.

  11. Modular Approach to Launch Vehicle Design Based on a Common Core Element

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike

    2010-01-01

    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

  12. The core mass-radius relation for giants - A new test of stellar evolution theory

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.; Lewis, W.

    1987-01-01

    It is demonstrated here that the measurable properties of systems containing degenerate dwarfs can be used as a direct test of the core mass-radius relation for moderate-mass giants if the final stages of the loss of the envelope of the progenitor giant occurred via stable critical lobe overflow. This relation directly probes the internal structure of stars at a relatively advanced evolutionary state and is only modestly influenced by adjustable parameters. The measured properties of six binary systems, including such diverse systems as Sirius and Procyon and two millisecond pulsars, are utilized to derive constraints on the empirical core mass-radius relation, and the constraints are compared to the theoretical relation. The possibility that the final stages of envelope ejection of the giant progenitor of Sirius B occurred via critical lobe overflow in historical times is considered.

  13. Core principles of evolutionary medicine

    PubMed Central

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  14. Core principles of evolutionary medicine: A Delphi study.

    PubMed

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  15. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  16. Eco-Evo PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    EPA Science Inventory

    We synthesize how advances in computational methods and population genomics can be combined within an Ecological-Evolutionary (Eco-Evo) PVA model. Eco-Evo PVA models are powerful new tools for understanding the influence of evolutionary processes on plant and animal population pe...

  17. Evo-devo of human adolescence: beyond disease models of early puberty

    PubMed Central

    2013-01-01

    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research. PMID:23627891

  18. Strong gravitational lensing of gravitational waves from double compact binaries—perspectives for the Einstein Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong

    Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previousmore » paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.« less

  19. Conservation Evo-Devo: Preserving Biodiversity by Understanding Its Origins.

    PubMed

    Campbell, Calum S; Adams, Colin E; Bean, Colin W; Parsons, Kevin J

    2017-10-01

    Unprecedented rates of species extinction increase the urgency for effective conservation biology management practices. Thus, any improvements in practice are vital and we suggest that conservation can be enhanced through recent advances in evolutionary biology, specifically advances put forward by evolutionary developmental biology (i.e., evo-devo). There are strong overlapping conceptual links between conservation and evo-devo whereby both fields focus on evolutionary potential. In particular, benefits to conservation can be derived from some of the main areas of evo-devo research, namely phenotypic plasticity, modularity and integration, and mechanistic investigations of the precise developmental and genetic processes that determine phenotypes. Using examples we outline how evo-devo can expand into conservation biology, an opportunity which holds great promise for advancing both fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Maturation experiments reveal bias in the fossil record of feathers

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Field, Daniel

    2016-04-01

    The evolutionary history of birds and feathers is a major focus in palaeobiology and evolutionary biology. Diverse exceptionally preserved birds and feathered dinosaurs from Jurassic and Cretaceous biotas in China have provided pivotal evidence of early feathers and feather-like integumentary features, but the true nature of many of these fossil soft tissues is still debated. Interpretations of feathers at intermediate developmental stages (i.e. Stages II, III and IV) and of simple quill-like (Stage I) feathers are particularly controversial. This reflects key uncertainties relating to the preservation potential of feathers at different evolutionary-developmental stages, and to the relative preservation potential of diagnostic features of Stage I feathers and hair. To resolve these issues, we used high pressure-high temperature autoclave experiments to simulate the effects of burial on modern feathers from the Black Coucal (Centropus grilii) and Common Starling (Sturnus vulgaris), and on human hair. Our results reveal profound differences in the recalcitrance of feathers of different types during maturation: Stage I and Stage V feathers retain diagnostic morphological and ultrastructural details following maturation, whereas other feather types do not. Further, the morphology and arrangement of certain ultrastructural features diagnostic of Stages III and IV, e.g. barbules, are preferentially lost during maturation. These results indicate a pervasive bias in the fossil record of feathers, whereby preservation of feathers at Stages I and V is favored. Critical stages in the evolution of feathers, i.e. Stages II, III and IV, are less likely to be preserved and more likely to be misinterpreted as feathers at earlier developmental stages. Our discovery has major implications for our understanding of the fidelity of the fossil record of feathers and provides a framework for testing the significance of putative examples of fossil feathers at different developmental stages.

  1. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process

    PubMed Central

    Woese, Carl R.; Olsen, Gary J.; Ibba, Michael; Söll, Dieter

    2000-01-01

    The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the “gemini group.” (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense. PMID:10704480

  2. Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium.

    PubMed

    Williams, Caroline M; Ragland, Gregory J; Betini, Gustavo; Buckley, Lauren B; Cheviron, Zachary A; Donohue, Kathleen; Hereford, Joe; Humphries, Murray M; Lisovski, Simeon; Marshall, Katie E; Schmidt, Paul S; Sheldon, Kimberly S; Varpe, Øystein; Visser, Marcel E

    2017-11-01

    Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. Physical properties of high-mass star-forming clumps in different evolutionary stages from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian; Shirley, Yancy; Rosolowsky, Erik; Dunham, Miranda; Ellsworth-Bowers, Timothy; Ginsburg, Adam

    2013-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolutionary sequence for high mass star forming regions is poorly understood. Recent Galactic plane surveys are providing the first systematic view of high-mass star-forming regions in all evolutionary phases across the Milky Way. We present observations of the 22.23 GHz H2O maser transition J(Ka,Kc) = 6(1,6)→5(2,3) transition toward 1398 clumps identified in the Bolocam Galactic Plane Survey using the 100m Green Bank Telescope (GBT). We detect 392 H2O masers, 279 (71%) newly discovered. We show that H2O masers can identify the presence of protostars which were not previously identified by Spitzer/MSX Galactic plane IR surveys: 25% of IR-dark clumps have an H2O maser. We compare the physical properties of the clumps in the Bolocam Galactic Plane Survey (BGPS) with observations of diagnostics of star formation activity: 8 and 24 um YSO candidates, H2O and CH3OH masers, shocked H2, EGOs, and UCHII regions. We identify a sub-sample of 400 clumps with no star formation indicators representing the largest and most robust sample of pre-protocluster candidates from an unbiased survey to date. The different evolutionary stages show strong separations in HCO+ linewidth and integrated intensity, surface mass density, and kinetic temperature. Monte Carlo techniques are applied to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate the distribution of derived quantities for clumps in different evolutionary stages. Surface area and dust mass show weak separations above > 2 pc^2 and > 3x10^3 solar masses. An observed breakdown occurs in the size-linewidth relationship with no differentiation by evolutionary stage. Future work includes adding evolutionary indicators (MIPSGAL, HiGal, MMB) and expanding DPDF priors (HI self-absorption, Galactic structure) for more well-resolved KDAs.

  4. The SW Sex Phenomenon as an Evolutionary Stage of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Schmidtobreick, L.

    From recent large observing campaigns, one finds that nearly all non- or weakly magnetic cataclysmic variables in the orbital period range between 2.8 and 4 hours are of SW Sex type and as such experience very high mass transfer rates. The evolution of cataclysmic variables as for any interacting binary is driven by angular momentum loss which results in a decrease of the orbital period on evolutionary time scales. In particular, all long-period systems need to cross the SW Sex regime of the orbital period distribution before entering the period gap. This makes the SW Sex phenomenon an evolutionary stage in the life of a cataclysmic variable. Here, I present a short overview of the current state of research on these systems.

  5. Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

    NASA Astrophysics Data System (ADS)

    Mehmanpazir, Farhad; Asadi, Shahrokh

    2017-03-01

    The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.

  6. Recent advances in the evolutionary engineering of industrial biocatalysts.

    PubMed

    Winkler, James D; Kao, Katy C

    2014-12-01

    Evolutionary engineering has been used to improve key industrial strain traits, such as carbon source utilization, tolerance to adverse environmental conditions, and resistance to chemical inhibitors, for many decades due to its technical simplicity and effectiveness. The lack of need for prior genetic knowledge underlying the phenotypes of interest makes this a powerful approach for strain development for even species with minimal genotypic information. While the basic experimental procedure for laboratory adaptive evolution has remained broadly similar for many years, a range of recent advances show promise for improving the experimental workflows for evolutionary engineering by accelerating the pace of evolution, simplifying the analysis of evolved mutants, and providing new ways of linking desirable phenotypes to selectable characteristics. This review aims to highlight some of these recent advances and discuss how they may be used to improve industrially relevant microbial phenotypes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

    PubMed Central

    Abbosh, Christopher; Birkbak, Nicolai J.; Wilson, Gareth A.; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M.; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D.; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Quinn, Anne Marie; Crosbie, Phil; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-sellers, Melanie; Prakash, Vineet; Lester, Jason; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S.; Van Loo, Peter; Dive, Caroline; Lin, Jimmy; Rabinowitz, Matthew; Aerts, Hugo JWL; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G.; Swanton, Charles

    2017-01-01

    Summary The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a tumour-specific phylogenetic approach to ctDNA profiling in the first 100 TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study participants, including one patient co-recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and perform tumor volume limit of detection analyses. Through blinded profiling of post-operative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients destined to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastases, providing a new approach for ctDNA driven therapeutic studies PMID:28445469

  8. PROBING THE MSP PRENATAL STAGE: THE OPTICAL IDENTIFICATION OF THE X-RAY BURSTER EXO 1745-248 IN TERZAN 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, F. R.; Pallanca, C.; Lanzoni, B.

    2015-07-01

    We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting Hubble Space Telescope/Advanced Camera for Surveys images acquired in Director's Discretionary Time shortly after (approximately one month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that is currently brightened by ∼3 mag, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the turn-off/sub-giant-branch region of Terzan 5.more » This supports the scenario that the companion should have recently filled its Roche Lobe. Such a system represents the prenatal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.« less

  9. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    PubMed Central

    Irie, Naoki; Kuratani, Shigeru

    2011-01-01

    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719

  10. Sublgacial Antarctic Lake Environments (SALE)

    NASA Astrophysics Data System (ADS)

    Kennicutt, M. C.; Bell, R. E.; Priscu, J. C.

    2004-12-01

    Subglacial Antarctic lake environments are emerging as one of the new frontiers targeted for exploration during the IPY 2007-2009. Several campaigns by various nations are in the early stages of planning and implementation with timelines that will coincide with the IPY. The ambitious interdisciplinary objectives will best be realized by multiple exploration programs investigating diverse subglacial environments continent-wide over the next decade or more. A concerted, multi-target approach wil be taken to advance our understanding of the range of possible lake evolutionary histories; the character of the physical, chemical, and biological niches; the interconnectivity of subglacial lake environments; the coupling of the ice sheet, climate and the evolution of life under the ice; the tectonic settings; and the interplay of biogeochemical cycles. Research and exploration programs spanning the continent will investigate subglacial lake environments of differing ages, evolutionary histories, and biogeochemical settings. The combined efforts will provide a holistic view of these environments over millions of years and under changing climatic conditions. The IPY will provide an opportunity for an intense period of initial exploration that will advance scientific discoveries in glaciology, biogeochemistry, paleoclimate, biology, geology and tectonics, and ecology. While early discoveries and exciting findings are expected during the IPY 2007-2009, a long term sustained program of research and exploration will continue far beyond the IPY. Within the five year period that spans the IPY, specific accomplishments will be targeted, accelerating the research agenda and setting a framework for follow-on studies. Four phases of exploration and discovery are envisioned.

  11. Grand challenges in evolutionary and population genetics: The importance of integrating epigenetics, genomics, modeling, and experimentation

    Treesearch

    Samuel A. Cushman

    2014-01-01

    This is a time of explosive growth in the fields of evolutionary and population genetics, with whole genome sequencing and bioinformatics driving a transformative paradigm shift (Morozova and Marra, 2008). At the same time, advances in epigenetics are thoroughly transforming our understanding of evolutionary processes and their implications for populations, species and...

  12. The eyes have it: A Problem-Based Learning Exercise in Molecular Evolution.

    PubMed

    White, Harold B

    2007-05-01

    Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related evolutionary trade offs of gene sharing versus gene duplication among their corresponding genes. It has directive elements that require students to find and read classic articles, review thermodynamic principles, and apply their understanding to a mythical world wherein dinosaurs continued to evolve. The science fiction writing assignment that brings closure to the problem transformed the problem with respect to student interest and engagement. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.

  13. Evolución de estrellas de varias masas: Cálculo de los pulsos térmicos

    NASA Astrophysics Data System (ADS)

    Panei, J. A.; Althaus, L. G.; Benvenuto, O. G.; Serenelli, A. M.

    We present stellar evolutionary calculations for models with stellar masses ranging from 1.2 to 20 Msolar. We follow the calculations from the Main Sequence up to the phase of thermal pulses. The emphasis is placed mainly on the analysis of the behaviour of a 5 Msolar model. The evolutionary code is based on the Kippenhahn, Weigert, & Hofmeister (1967) method to compute stellar evolution. The structure and stellar evolution equations for the stellar interior are integrated using the standard Henyey method. The degree of superadiabaticity is computed from the mixing length theory of convection (Böhm - Vitense 1958). The equation of state we employed takes into account partial ionization, radiation pressure and relativistic degeneracy for electrons at finite temperature. Radiative opacities with metallicity Z=0.02 are taken from Rogers & Iglesias (1996). Conductive opacities for the low - density regime are from the fits of Iben (1975) to the calculations of Hubbard & Lampe (1969). For higher densities we use the results of Itoh et. al (1983). The molecular opacities are those of Alexander & Ferguson (1994). The different mechanisms of neutrino emission are also taken account. In particular, photo and pair neutrinos are from Itoh et al. (1989); plasma neutrinos from Itoh et al. (1989) and Bremsstrahlung from Itoh et al. (1992). Because the aim in this work has been to calculate the stages corresponding to the thermal pulses, particular attention has been devoted to the treatment of the numerical difficulties appearing in this kind of calculation. To this end, we solve the equations describing the structure and evolution of a star in terms of differences with respect to time, instead of iterating the value of the physical variables directly. This change has allowed us to calculate advanced evolutionary stages such as the thermal pulses. In this regard, we find that our models experiencies up to 10 thermal flashes.

  14. Does selection on increased cold tolerance in the adult stage confer resistance throughout development?

    PubMed

    Dierks, A; Kölzow, N; Franke, K; Fischer, K

    2012-08-01

    Artificial selection is a powerful approach to unravel constraints on genetic adaptation. Although it has been frequently used to reveal genetic trade-offs among different fitness-related traits, only a few studies have targeted genetic correlations across developmental stages. Here, we test whether selection on increased cold tolerance in the adult stage increases cold resistance throughout ontogeny in the butterfly Bicyclus anynana. We used lines selected for decreased chill-coma recovery time and corresponding controls, which had originally been set up from three levels of inbreeding (outbred control, one or two full-sib matings). Four generations after having terminated selection, a response to selection was found in 1-day-old butterflies (the age at which selection took place). Older adults showed a very similar although weaker response. Nevertheless, cold resistance did not increase in either egg, larval or pupal stage in the selection lines but was even lower compared to control lines for eggs and young larvae. These findings suggest a cost of increased adult cold tolerance, presumably reducing resource availability for offspring provisioning and thereby stress tolerance during development, which may substantially affect evolutionary trajectories. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  15. Rapid evolution and gene expression: a rapidly evolving Mendelian trait that silences field crickets has widespread effects on mRNA and protein expression.

    PubMed

    Pascoal, S; Liu, X; Ly, T; Fang, Y; Rockliffe, N; Paterson, S; Shirran, S L; Botting, C H; Bailey, N W

    2016-06-01

    A major advance in modern evolutionary biology is the ability to start linking phenotypic evolution in the wild with genomic changes that underlie that evolution. We capitalized on a rapidly evolving Hawaiian population of crickets (Teleogryllus oceanicus) to test hypotheses about the genomic consequences of a recent Mendelian mutation of large effect which disrupts the development of sound-producing structures on male forewings. The resulting silent phenotype, flatwing, persists because of natural selection imposed by an acoustically orienting parasitoid, but it interferes with mate attraction. We examined gene expression differences in developing wing buds of wild-type and flatwing male crickets using RNA-seq and quantitative proteomics. Most differentially expressed (DE) transcripts were down-regulated in flatwing males (625 up vs. 1716 down), whereas up- and down-regulated proteins were equally represented (30 up and 34 down). Differences between morphs were clearly not restricted to a single pathway, and we recovered annotations associated with a broad array of functions that would not be predicted a priori. Using a candidate gene detection test based on homology, we identified 30% of putative Drosophila wing development genes in the cricket transcriptome, but only 10% were DE. In addition to wing-related annotations, endocrine pathways and several biological processes such as reproduction, immunity and locomotion were DE in the mutant crickets at both biological levels. Our results illuminate the breadth of genetic pathways that are potentially affected in the early stages of adaptation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict.

    PubMed

    Parker, Geoff A

    2014-08-21

    After brief historic overviews of sexual selection and sexual conflict, I argue that pre-ejaculatory sexual selection (the form of sexual selection discussed by Darwin) arose at a late stage in an inevitable succession of transitions flowing from the early evolution of syngamy to the evolution of copulation and sex roles. If certain conditions were met, this "sexual cascade" progressed inevitably, if not, sexual strategy remained fixed at a given stage. Prolonged evolutionary history of intense sperm competition/selection under external fertilization preceded the rise of advanced mobility, which generated pre-ejaculatory sexual selection, followed on land by internal fertilization and reduced sperm competition in the form of postcopulatory sexual selection. I develop a prospective model of the early evolution of mobility, which, as Darwin realized, was the catalyst for pre-ejaculatory sexual selection. Stages in the cascade should be regarded as consequential rather than separate phenomena and, as such, invalidate much current opposition to Darwin-Bateman sex roles. Potential for sexual conflict occurs throughout, greatly increasing later in the cascade, reaching its peak under precopulatory sexual selection when sex roles become highly differentiated. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. The Sexual Cascade and the Rise of Pre-Ejaculatory (Darwinian) Sexual Selection, Sex Roles, and Sexual Conflict

    PubMed Central

    Parker, Geoff A.

    2014-01-01

    After brief historic overviews of sexual selection and sexual conflict, I argue that pre-ejaculatory sexual selection (the form of sexual selection discussed by Darwin) arose at a late stage in an inevitable succession of transitions flowing from the early evolution of syngamy to the evolution of copulation and sex roles. If certain conditions were met, this “sexual cascade” progressed inevitably, if not, sexual strategy remained fixed at a given stage. Prolonged evolutionary history of intense sperm competition/selection under external fertilization preceded the rise of advanced mobility, which generated pre-ejaculatory sexual selection, followed on land by internal fertilization and reduced sperm competition in the form of postcopulatory sexual selection. I develop a prospective model of the early evolution of mobility, which, as Darwin realized, was the catalyst for pre-ejaculatory sexual selection. Stages in the cascade should be regarded as consequential rather than separate phenomena and, as such, invalidate much current opposition to Darwin–Bateman sex roles. Potential for sexual conflict occurs throughout, greatly increasing later in the cascade, reaching its peak under precopulatory sexual selection when sex roles become highly differentiated. PMID:25147177

  18. Morphological constraints on changing avian migration phenology.

    PubMed

    Møller, A P; Rubolini, D; Saino, N

    2017-06-01

    Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  19. Cambrian Evolutionary Radiation: Context, correlation, and chronostratigraphy—Overcoming deficiencies of the first appearance datum (FAD) concept

    NASA Astrophysics Data System (ADS)

    Landing, Ed; Geyer, Gerd; Brasier, Martin D.; Bowring, Samuel A.

    2013-08-01

    Use of the first appearance datum (FAD) of a fossil to define a global chronostratigraphic unit's base can lead to intractable correlation and stability problems. FADs are diachronous—they reflect species' evolutionary history, dispersal, biofacies, preservation, collection, and taxonomy. The Cambrian Evolutionary Radiation is characterised by diachronous FADs, biofacies controls, and provincialism of taxa and ecological communities that confound a stable Lower Cambrian chronostratigraphy. Cambrian series and stage definitions require greater attention to assemblage zone successions and non-biostratigraphic, particularly carbon isotope, correlation techniques such as those that define the Ediacaran System base. A redefined, basal Cambrian Trichophycus pedum Assemblage Zone lies above the highest Ediacaran-type biotas (vendobionts, putative metazoans, and calcareous problematica such as Cloudina) and the basal Asteridium tornatum-Comasphaeridium velvetum Zone (acritarchs). This definition and the likely close correspondence of evolutionary origin and local FAD of T. pedum preserves the Fortune Head, Newfoundland, GSSP of the Cambrian base and allows the presence of sub-Cambrian, branched ichnofossils. The sub-Tommotian-equivalent base of Stage 2 (a suggested "Laolinian Stage") should be defined by the I'/L4/ZHUCE δ13C positive peak, bracketed by the lower ranges of Watsonella crosbyi and Aldanella attleborensis (molluscs) and the Skiagia ornata-Fimbrioglomerella membranacea Zone (acritarchs). The W. crosbyi and A. attleborensis FADs cannot define a Stage 2 base as they are diachronous even in the Newfoundland "type" W. crosbyi Zone. The Series 2 base cannot be based on a species' FAD owing to the provincialism of skeletalised metazoans in the Terreneuvian-Series 2 boundary interval and global heterochrony of the oldest trilobites. A Series 2 and Stage 3 (a suggested "Lenaldanian Series" and "Zhurinskyan Stage," new) GSSP base is proposed at the Siberian lower Atdabanian δ13C IV peak—which correlates into South China, Avalonia, and Morocco and assigns the oldest trilobites to the terminal Terreneuvian Series.

  20. Classification of TP53 Mutations and HPV Predict Survival in Advanced Larynx Cancer

    PubMed Central

    Scheel, Adam; Bellile, Emily; McHugh, Jonathan B.; Walline, Heather M.; Prince, Mark E.; Urba, Susan; Wolf, Gregory T.; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E.; Bradford, Carol

    2016-01-01

    OBJECTIVE Assess TP53 functional mutations in the context of other biomarkers in advanced larynx cancer. STUDY DESIGN Prospective analysis of pretreatment tumor TP53, HPV, Bcl-xL and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. METHODS TP53 exons 4-9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl and cyclin D1 expression. RESULTS TP53 Mutations were found in 22/58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13/58 (22.4%) patients, nonsense mutations in 4/58 (6.9%), and deletions in 5/58 (8.6%). High risk HPV was found in 20/52 (38.5%) tumors. A classification based on crystal Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low risk mutations (p=0.0315). A model including this TP53 classification, HPV status, cyclin D1 and Bcl-xL staining significantly predicts survival (p=0.0017). CONCLUSION EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. PMID:27345657

  1. Two bumblebee genomes illuminate the route to advanced social living

    USDA-ARS?s Scientific Manuscript database

    Social living represents a major evolutionary transition. Primitively eusocial bumblebees are uniquely placed to illuminate the evolutionary route from solitary to highly eusocial insect societies, for which molecular level information is largely lacking. Additionally, bumblebees are invaluable natu...

  2. NexGen PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    EPA Science Inventory

    We examine how the integration of evolutionary and ecological processes in population dynamics – an emerging framework in ecology – could be incorporated into population viability analysis (PVA). Driven by parallel, complementary advances in population genomics and computational ...

  3. Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred

    2008-01-01

    Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.

  4. [Factors associated with advanced thyroid cancer in pediatric patients in a high specialty medical unit in Northeast Mexico].

    PubMed

    García-Castillo, Lizbeth Ariana; Bahena-García, Ana Laura; Sánchez-Sánchez, Luz María; del Carmen Palacios-Saucedo, Gerardo

    2015-01-01

    Thyroid cancer represents 2% of all childhood malignances. Its incidence rises 1.1% per year. In comparison with adults, childhood thyroid cancer is detected in a more advanced stage, but with a survival rate above 95%. The objective of this study was to evaluate whether there are factors associated with advanced stages of thyroid cancer in pediatric patients. Nineteen patients were included, 13 (68.4%) were female and six male, all between 7-15 years, with a median of 11 years. Fifteen in advanced and four in early stage. The median age of patients in advanced stage at time of diagnosis was 10.6 years (7-15) and 13.2 (12-14) were in early stage (p=0.075). There was a delay of nine months to get a diagnosis in advanced stage, and 7.2 in early stage (p=0.931). Three of the patients with advanced stage and two with early stage were from Nuevo León (Mexico) and the rest were foreign (p=0.567). In the group with advanced stage, two had thyroid cancer familiar history, and none in the early stage group (p=0.452). Nine patients in advanced stage and three in early stage presented thyroid nodule as the first sign of illness. Six patients in advanced stage and one in early stage presented goiter (p=0.590). None of the studied patients had radiation history. Six patients in advanced stage and one in early stage suffered from Hashimoto's Thyroiditis (p=0.590). Eleven in advanced stage and one in early stage had papillary histologic variety. Four in advanced stage and three in early stage had papillary histologic variety with a follicular patter (p=0.083). Eight patients presented lung metastasis at time of diagnosis (p=0.061). There are no factors associated with advanced stage thyroid cancer in pediatric populations. Although half of studied patients presented lung metastasis, treatment response and survival is satisfactory.

  5. Properties of Starless Clumps through Protoclusters from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy

    2014-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolution of physical properties for high-mass star-forming regions remains unclear. We sort a sample of ~4668 molecular cloud clumps from the Bolocam Galactic Plane Survey (BGPS) into different evolutionary stages by combining the BGPS 1.1 mm continuum and observational diagnostics of star-formation activity from a variety of Galactic plane surveys: 70 um compact sources, mid-IR color-selected YSOs, H2O and CH3OH masers, EGOs, and UCHII regions. We apply Monte Carlo techniques to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate distributions for derived quantities of clumps in different evolutionary stages. We also present a combined NH3 and H2O maser catalog for ~1590 clumps from the literature and our own GBT 100m observations. We identify a sub-sample of 440 dense clumps with no star-formation indicators, representing the largest and most robust sample of pre-protocluster candidates from a blind survey to date. Distributions of I(HCO+), I(N2H+), dv(HCO+), dv(N2H+), mass surface density, and kinetic temperature show strong progressions when separated by evolutionary stage. No progressions are found in size or dust mass; however, weak progressions are observed in area > 2 pc^2 and dust mass > 3 10^3 Msun. An observed breakdown occurs in the size-linewidth relationship and we find no improvement when sampling by evolutionary stage.

  6. The evolutionary development of plant-feeding insects and their nutritional endosymbionts.

    PubMed

    Skidmore, Isabel H; Hansen, Allison K

    2017-12-01

    Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen-poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore-endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect-symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect-plant interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  7. Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C.

    PubMed

    Stoean, Ruxandra; Stoean, Catalin; Lupsor, Monica; Stefanescu, Horia; Badea, Radu

    2011-01-01

    Hepatic fibrosis, the principal pointer to the development of a liver disease within chronic hepatitis C, can be measured through several stages. The correct evaluation of its degree, based on recent different non-invasive procedures, is of current major concern. The latest methodology for assessing it is the Fibroscan and the effect of its employment is impressive. However, the complex interaction between its stiffness indicator and the other biochemical and clinical examinations towards a respective degree of liver fibrosis is hard to be manually discovered. In this respect, the novel, well-performing evolutionary-powered support vector machines are proposed towards an automated learning of the relationship between medical attributes and fibrosis levels. The traditional support vector machines have been an often choice for addressing hepatic fibrosis, while the evolutionary option has been validated on many real-world tasks and proven flexibility and good performance. The evolutionary approach is simple and direct, resulting from the hybridization of the learning component within support vector machines and the optimization engine of evolutionary algorithms. It discovers the optimal coefficients of surfaces that separate instances of distinct classes. Apart from a detached manner of establishing the fibrosis degree for new cases, a resulting formula also offers insight upon the correspondence between the medical factors and the respective outcome. What is more, a feature selection genetic algorithm can be further embedded into the method structure, in order to dynamically concentrate search only on the most relevant attributes. The data set refers 722 patients with chronic hepatitis C infection and 24 indicators. The five possible degrees of fibrosis range from F0 (no fibrosis) to F4 (cirrhosis). Since the standard support vector machines are among the most frequently used methods in recent artificial intelligence studies for hepatic fibrosis staging, the evolutionary method is viewed in comparison to the traditional one. The multifaceted discrimination into all five degrees of fibrosis and the slightly less difficult common separation into solely three related stages are both investigated. The resulting performance proves the superiority over the standard support vector classification and the attained formula is helpful in providing an immediate calculation of the liver stage for new cases, while establishing the presence/absence and comprehending the weight of each medical factor with respect to a certain fibrosis level. The use of the evolutionary technique for fibrosis degree prediction triggers simplicity and offers a direct expression of the influence of dynamically selected indicators on the corresponding stage. Perhaps most importantly, it significantly surpasses the classical support vector machines, which are both widely used and technically sound. All these therefore confirm the promise of the new methodology towards a dependable support within the medical decision-making. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling.

    PubMed

    Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua

    2017-01-01

    Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.

  9. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling

    PubMed Central

    Deng, Qianwang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua

    2017-01-01

    Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed. PMID:28458687

  10. Estado evolutivo de estrellas con fenómeno B[e

    NASA Astrophysics Data System (ADS)

    Aidelman, Y. J.; Cidale, L.; Borges Fernandes, M.; Kraus, M.

    The B[e] phenomenon is related to certain peculiar features observed in the spectrum of some B stars, which are mainly linked to the physical conditions of their circumstellar medium. As these stars are embedded in dense and optically thick circumstellar media, the determination of the spectral type and luminosity class of the central objects is quite difficult. As a consequence, their evolutionary stage and distances present huge uncertainties. In this work we study 4 B[e] stars and discuss their stellar fundamental parameters and evolutionary stages using the BCD spectrophotometric system. FULL TEXT IN SPANISH

  11. Humanism and multiculturalism: an evolutionary alliance.

    PubMed

    Comas-Diaz, Lillian

    2012-12-01

    Humanism and multiculturalism are partners in an evolutionary alliance. Humanistic and multicultural psychotherapies have historically influenced each other. Humanism represents the third force in psychotherapy, while multiculturalism embodies the fourth developmental stage. Multiculturalism embraces humanistic values grounded in collective and social justice contexts. Examples of multicultural humanistic constructs include contextualism, holism, and liberation. Certainly, the multicultural-humanistic connection is a necessary shift in the evolution of psychotherapy. Humanism and multiculturalism participate in the development of an inclusive and evolutionary psychotherapy. (c) 2012 APA, all rights reserved.

  12. Intelligent monitoring and diagnosis systems for the Space Station Freedom ECLSS

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, James R.

    1991-01-01

    Specific activities in NASA's environmental control and life support system (ECLSS) advanced automation project that is designed to minimize the crew and ground manpower needed for operations are discussed. Various analyses and the development of intelligent software for the initial and evolutionary Space Station Freedom (SSF) ECLSS are described. The following are also discussed: (1) intelligent monitoring and diagnostics applications under development for the ECLSS domain; (2) integration into the MSFC ECLSS hardware testbed; and (3) an evolutionary path from the baseline ECLSS automation to the more advanced ECLSS automation processes.

  13. Eocene evolution of whale hearing.

    PubMed

    Nummela, Sirpa; Thewissen, J G M; Bajpai, Sunil; Hussain, S Taseer; Kumar, Kishor

    2004-08-12

    The origin of whales (order Cetacea) is one of the best-documented examples of macroevolutionary change in vertebrates. As the earliest whales became obligately marine, all of their organ systems adapted to the new environment. The fossil record indicates that this evolutionary transition took less than 15 million years, and that different organ systems followed different evolutionary trajectories. Here we document the evolutionary changes that took place in the sound transmission mechanism of the outer and middle ear in early whales. Sound transmission mechanisms change early on in whale evolution and pass through a stage (in pakicetids) in which hearing in both air and water is unsophisticated. This intermediate stage is soon abandoned and is replaced (in remingtonocetids and protocetids) by a sound transmission mechanism similar to that in modern toothed whales. The mechanism of these fossil whales lacks sophistication, and still retains some of the key elements that land mammals use to hear airborne sound.

  14. Radiation transfer of models of massive star formation. III. The evolutionary sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi, E-mail: yichen.zhang@yale.edu, E-mail: jt@astro.ufl.edu, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp

    2014-06-20

    We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core massmore » M{sub c} , the mass surface density of the ambient clump Σ{sub cl}, and the ratio of the core's initial rotational to gravitational energy β {sub c}. Evolutionary sequences with various M{sub c} , Σ{sub cl}, and β {sub c} are constructed. We find that in a fiducial model with M{sub c} = 60 M {sub ☉}, Σ{sub cl} = 1 g cm{sup –2}, and β {sub c} = 0.02, the final mass of the protostar reaches at least ∼26 M {sub ☉}, making the final star formation efficiency ≳ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σ{sub cl}, with higher temperatures in a higher Σ{sub cl} core, but only weakly on M{sub c} . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at ≲ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σ{sub cl} and β {sub c} (which determines disk size) are discussed. We find that, despite scatter caused by different M{sub c} , Σ{sub cl}, β {sub c}, and inclinations, sources at a given evolutionary stage appear in similar regions of color-color diagrams, especially when using colors with fluxes at ≳ 70 μm, where scatter due to inclination is minimized, implying that such diagrams can be useful diagnostic tools for identifying the evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution and can thus act as additional diagnostics of the massive star formation process.« less

  15. The conceptual framework of evolutionary morphology in the studies of Ernst Haeckel and Fritz Müller.

    PubMed

    Breidbach, Olaf

    2006-03-01

    In his Gastraea studies Ernst Haeckel characterized the initial stages of the animal embryo, describing complete and incomplete cleavages in various groups, until the gastrula stage. Thereby, he was able to point out various degrees of developmental diversification in these initial stages of development. As the functional meaning of such cleavages was not clear however, it was difficult to argue about putative functional adaptations. Information about the consequences for tissue formation initiated in this primary phase of development was simply lacking. Haeckel could only provide a vague picture of a highly diversified but systematically inconsistent distribution of various types of early embryogenesis. Thereby he discusses phylogenetically preserved (palingenetic) stages of development and adaptations to certain specific situations of the embryo (cenogenesis). To decide whether such types, in the initial stages of embryogenesis, are ceno- or phaenogenetic is quite difficult. Reference to the highly diversified distribution of certain types within specific groups is an indication that there is no strict adaptive pressure on these early parts of embryonic development. This makes it possible to formulate - as Haeckel did it - the idea, that in these initial phases palingenetic attributes are dominant. Thus, he tried to use these early phases of development for the classification of larger systematic units. The result is a concept of an evolutionary morphology, that was, however, never elaborated in detail by Haeckel. Therefore, it remained without effect for evolutionary biology. On the contrary, following the Darwinian approach towards a comparative analysis of embryogenesis, Fritz Müller presented a series of examples for a comparative developmental biology that allowed one to interpret certain morphological characteristics as the outcome of common evolutionary histories within different species. For various crustacean species, he was able to demonstrate that certain attributes are not to be characterized as functionally relevant adaptations, but are evolutionarily inherited.

  16. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    PubMed

    Abbosh, Christopher; Birkbak, Nicolai J; Wilson, Gareth A; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Marie Quinn, Anne; Crosbie, Phil A; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean A; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-Sellers, Melanie; Prakash, Vineet; Lester, Jason F; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S; Van Loo, Peter; Dive, Caroline; Lin, C Jimmy; Rabinowitz, Matthew; Aerts, Hugo J W L; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G; Swanton, Charles

    2017-04-26

    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.

  17. The extended evolutionary synthesis: its structure, assumptions and predictions

    PubMed Central

    Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-01-01

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  18. NASA Space Launch System (SLS) Progress Report

    NASA Technical Reports Server (NTRS)

    Williams, Tom

    2012-01-01

    The briefing objectives are: (1) Explain the SLS current baseline architecture and the SLS block-upgrade approach. (2) Summarize the SLS evolutionary path in relation to the Advanced Booster and Advanced Development NASA Research Announcements.

  19. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  20. Life on Mars? 1: The chemical environment

    NASA Technical Reports Server (NTRS)

    Banin, A.; Mancinelli, R. L.

    1995-01-01

    The origin of life at its abiotic evolutionary stage, requires a combination of constituents and environmental conditions that enable the synthesis of complex replicating macromolecules from simpler monomeric molecules. It is very likely that the early stages of this evolutionary process have been spontaneous, rapid and widespread on the surface of the primitive Earth, resulting in the formation of quite sophisticated living organisms within less than a billion years. To what extend did such conditions prevail on Mars? Two companion-papers will review and discuss the available information related to the chemical, physical and environmental conditions on Mars and assess it from the perspective of potential exobiological evolution.

  1. EGFR mutations in early-stage and advanced-stage lung adenocarcinoma: Analysis based on large-scale data from China.

    PubMed

    Pi, Can; Xu, Chong-Rui; Zhang, Ming-Feng; Peng, Xiao-Xiao; Wei, Xue-Wu; Gao, Xing; Yan, Hong-Hong; Zhou, Qing

    2018-05-02

    EGFR-tyrosine kinase inhibitors play an important role in the treatment of advanced non-small cell lung cancer (NSCLC). EGFR mutations in advanced NSCLC occur in approximately 35% of Asian patients and 60% of patients with adenocarcinoma. However, the frequency and type of EGFR mutations in early-stage lung adenocarcinoma remain unclear. We retrospectively collected data on patients diagnosed with lung adenocarcinoma tested for EGFR mutation. Early stage was defined as pathological stage IA-IIIA after radical lung cancer surgery, and advanced stage was defined as clinical stage IIIB without the opportunity for curative treatment or stage IV according to the American Joint Committee on Cancer Staging Manual, 7th edition. A total of 1699 patients were enrolled in this study from May 2014 to May 2016; 750 were assigned to the early-stage and 949 to the advanced-stage group. Baseline characteristics of the two groups were balanced, except that there were more smokers in the advanced-stage group (P < 0.001). The total EGFR mutation rate in the early-stage group was similar to that in the advanced-stage group (53.6% vs. 51.4%, respectively; P = 0.379). There was no significant difference in EGFR mutation type between the two groups. In subgroup analysis of smoking history, there was no difference in EGFR mutation frequency or type between the early-stage and advanced-stage groups. Early-stage and advanced-stage groups exhibited the same EGFR mutation frequencies and types. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Embryonic Cleavage Cycles: How Is a Mouse Like a Fly?

    PubMed Central

    O’Farrell, Patrick H.; Stumpff, Jason; Su, Tin Tin

    2009-01-01

    The evolutionary advent of uterine support of embryonic growth in mammals is relatively recent. Nonetheless, striking differences in the earliest steps of embryogenesis make it difficult to draw parallels even with other chordates. We suggest that use of fertilization as a reference point misaligns the earliest stages and masks parallels that are evident when development is aligned at conserved stages surrounding gastrulation. In externally deposited eggs from representatives of all the major phyla, gastrulation is preceded by specialized extremely rapid cleavage cell cycles. Mammals also exhibit remarkably fast cell cycles in close association with gastrulation, but instead of beginning development with these rapid cycles, the mammalian egg first devotes itself to the production of extraembryonic structures. Previous attempts to identify common features of cleavage cycles focused on post-fertilization divisions of the mammalian egg. We propose that comparison to the rapid peri-gastrulation cycles is more appropriate and suggest that these cycles are related by evolutionary descent to the early cleavage stages of embryos such as those of frog and fly. The deferral of events in mammalian embryogenesis might be due to an evolutionary shift in the timing of fertilization. PMID:14711435

  3. Retired flies, hidden plateaus, and the evolution of senescence in Drosophila melanogaster.

    PubMed

    Curtsinger, James W

    2016-06-01

    Late-life plateaus in age-specific mortality have been an evolutionary and biodemographic puzzle for decades. Although classic theory on the evolution of senescence predicts late-life walls of death, observations in experimental organisms document the opposite trend: a slowing in the rate of increase of mortality at advanced ages. Here, I analyze published life-history data on individual Drosophila melanogaster females and argue for a fundamental change in our understanding of mortality in this important model system. Mortality plateaus are not, as widely assumed, exclusive to late life, and are not explained by population heterogeneity-they are intimately connected to individual fecundity. Female flies begin adult life in the working stage, a period of active oviposition and low but accelerating mortality. Later they transition to the retired stage, a terminal period characterized by limited fecundity and relatively constant mortality. Because ages of transition differ between flies, age-synchronized cohorts contain a mix of working and retired flies. Early- and mid-life plateaus are obscured by the presence of working flies, but can be detected when cohorts are stratified by retirement status. Stage-specificity may be an important component of Drosophila life-history evolution. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis showmore » consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.« less

  5. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students.

    PubMed

    Jordan, Tuajuanda C; Burnett, Sandra H; Carson, Susan; Caruso, Steven M; Clase, Kari; DeJong, Randall J; Dennehy, John J; Denver, Dee R; Dunbar, David; Elgin, Sarah C R; Findley, Ann M; Gissendanner, Chris R; Golebiewska, Urszula P; Guild, Nancy; Hartzog, Grant A; Grillo, Wendy H; Hollowell, Gail P; Hughes, Lee E; Johnson, Allison; King, Rodney A; Lewis, Lynn O; Li, Wei; Rosenzweig, Frank; Rubin, Michael R; Saha, Margaret S; Sandoz, James; Shaffer, Christopher D; Taylor, Barbara; Temple, Louise; Vazquez, Edwin; Ware, Vassie C; Barker, Lucia P; Bradley, Kevin W; Jacobs-Sera, Deborah; Pope, Welkin H; Russell, Daniel A; Cresawn, Steven G; Lopatto, David; Bailey, Cheryl P; Hatfull, Graham F

    2014-02-04

    Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.

  6. ATLASGAL-selected massive clumps in the inner Galaxy. III. Dust continuum characterization of an evolutionary sample

    NASA Astrophysics Data System (ADS)

    König, C.; Urquhart, J. S.; Csengeri, T.; Leurini, S.; Wyrowski, F.; Giannetti, A.; Wienen, M.; Pillai, T.; Kauffmann, J.; Menten, K. M.; Schuller, F.

    2017-03-01

    Context. Massive-star formation and the processes involved are still poorly understood. The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive-star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected by their infrared and radio properties to be representative for the whole range of evolutionary stages. Aims: The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. Methods: We determine flux densities from mid-infrared to submillimeter wavelength (8-870 μm) images and use these values to fit their spectral energy distributions and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. Results: We define four distinct source classes from the available continuum data and arrange these into an evolutionary sequence. This begins with sources found to be dark at 70 μm, followed by 24 μm weak sources with an embedded 70 μm source, continues through mid-infrared bright sources and ends with infrared bright sources associated with radio emission (I.e., H II regions). We find trends for increasing temperature, luminosity, and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. Our sources span temperatures from approximately 11 to 41 K, with bolometric luminosities in the range 57 L⊙-3.8 × 106L⊙. The highest masses reach 4.3 × 104M⊙ and peak column densities up to 1.1 × 1024 cm-1, and therefore have the potential to form the most massive O-type stars. We show that at least 93 sources (85%) of this sample have the ability to form massive stars and that most are gravitationally unstable and hence likely to be collapsing. Conclusions: The highest column density ATLASGAL sources cover the whole range of evolutionary stages from the youngest to the most evolved high-mass-star forming clumps. Study of these clumps provides a unique starting point for more in-depth research on massive-star formation in four distinct evolutionary stages whose well defined physical parameters afford more detailed studies. As most of the sample is closer than 5 kpc, these sources are also ideal for follow-up observations with high spatial resolution. Full Table 1, including fluxes, is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A139

  7. Chemical characterization of the early evolutionary phases of high-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas

    2014-10-01

    The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with environment.

  8. Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies

    PubMed Central

    2010-01-01

    Background Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited. Results Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at pre-anthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves. Conclusions Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots. PMID:20950453

  9. Testing Models of Stellar Structure and Evolution I. Comparison with Detached Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2018-05-01

    We present the results of an analysis aimed at testing the accuracy and precision of the PARSEC v1.2S library of stellar evolution models, combined with a Bayesian approach, to infer stellar parameters. We mainly employ the online DEBCat catalogue by Southworth, a compilation of detached eclipsing binary systems with published measurements of masses and radii to ˜ 2 per cent precision. We select a sample of 318 binary components, with masses between 0.10 and 14.5 solar units, and distances between 1.3 pc and ˜ 8 kpc for Galactic objects and ˜ 44-68 kpc for the extragalactic ones. The Bayesian analysis applied takes on input effective temperature, radius, and [Fe/H], and their uncertainties, returning theoretical predictions for other stellar parameters. From the comparison with dynamical masses, we conclude inferred masses are precisely derived for stars on the main-sequence and in the core-helium-burning phase, with respective uncertainties of 4 per cent and 7 per cent, on average. Subgiants and red giants masses are predicted within 14 per cent, and early asymptotic giant branch stars within 24 per cent. These results are helpful to further improve the models, in particular for advanced evolutionary stages for which our understanding is limited. We obtain distances and ages for the binary systems and compare them, whenever possible, with precise literature estimates, finding excellent agreement. We discuss evolutionary effects and the challenges associated with the inference of stellar ages from evolutionary models. We also provide useful polynomial fittings to theoretical zero-age main-sequence relations.

  10. Evolutionary principles and their practical application

    PubMed Central

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  11. Evolutionary principles and their practical application.

    PubMed

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  12. Evolutionary awareness.

    PubMed

    Gorelik, Gregory; Shackelford, Todd K

    2014-08-27

    In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  13. Geometric morphometrics and virtual anthropology: advances in human evolutionary studies.

    PubMed

    Rein, Thomas R; Harvati, Katerina

    2014-01-01

    Geometric morphometric methods have been increasingly used in paleoanthropology in the last two decades, lending greater power to the analysis and interpretation of the human fossil record. More recently the advent of the wide use of computed tomography and surface scanning, implemented in combination with geometric morphometrics (GM), characterizes a new approach, termed Virtual Anthropology (VA). These methodological advances have led to a number of developments in human evolutionary studies. We present some recent examples of GM and VA related research in human evolution with an emphasis on work conducted at the University of Tübingen and other German research institutions.

  14. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Pavel V., E-mail: pvm@ispms.tsc.ru

    An evolutionary approach to earthquake development is proposed. A medium under loading is treated as a multiscale nonlinear dynamic system. Its failure involves a number of stages typical of any dynamic system: dynamic chaos, self-organized criticality, and global stability loss in the final stage of its evolution. In the latter stage, the system evolves in a blow-up mode accompanied by catastrophic superfast movements of the elements of this geomedium.

  16. Characterizing the thermal distributions of warm molecular hydrogen in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin

    2016-01-01

    Probing the surviving molecular gas within the inner regions of protoplanetary disks (PPDs) around T Tauri stars (1 - 10 Myr) provides insight into the conditions in which planet formation and migration occurs while the gas disk is still present. Recent studies done by Hoadley et al. 2015 and Banzatti & Pontipoddan 2015 suggest that gas in the inner disks of PPDs appear to "respond" to the loss of small dust grains with evolving PPD stage, and IR-CO emission may either be thermally or photo-excited by stellar UV radiation, depending on PPD evolutionary stage. Because far-UV H2 emission lines are dominantly photo-excited by stellar HI-Lyman alpha photons, we observe H2 absorption features against the stellar Lyman alpha wings in a large sample of PPDs at various evolutionary stages. We aim to characterize whether the inner disk H2 environment is in thermal equilibrium at various stages of PPD evolution. We use a sophisticated first-principles approach to fitting multiple absorption features along the red- and blue-wings of the observed stellar Lyman alpha profiles to extract column density estimates of H2 along the line of sight to the target. We find that the high kinetic energy H2 observed in absorption against the LyA wing may be described as a part of the thermal distribution with high kinetic temperature - a potential indication of an inner disk molecular hazy "envelope" around the cooler bulk disk. Ongoing research may help determine the state of the gas and whether it evolves with disk evolutionary stage.

  17. An overview of a free-market approach to climate change and conservation.

    PubMed

    Sandor, Richard L; Bettelheim, Eric C; Swingland, Ian R

    2002-08-15

    This paper describes the convergence of environmental and financial markets, reviews the evolution of market-based environmental programmes as an example of the seven-stage evolutionary process witnessed in a variety of markets and summarizes the emergence of greenhouse-gas-mitigation markets and their potential role in advancing land stewardship, biodiversity and other environmental services. Emissions trading has been developed to meet the demand to reduce pollution while avoiding economic disruption. Consistent with the seven-stage pattern of market evolution, the US programme to reduce the damage from acid rain established a standardized environmental commodity, developed 'evidence of ownership' necessary for financial instruments and provided the infrastructure to efficiently transfer title. The success of the system in reducing pollution at low cost has provided a model for other market-based environmental protection initiatives. The demand for cost-effective action to reduce the threat of climate change has initiated the same evolutionary process for markets to reduce greenhouse-gas emissions. Many of the land- and forest-management practices that can capture and store atmospheric CO(2) can also provide other environmental benefits, such as biodiversity preservation and enhanced water quality. The presence of a carbon-trading market will introduce a clear financial value for capture and mitigation of CO(2) emissions, thus introducing a new source of funding for land stewardship and forest rehabilitation. The market is now emerging through a variety of 'bottom-up' developments being undertaken through governmental, multilateral, private-sector and non-governmental-organization initiatives. The extension of markets to other emerging environmental issues is now underway, and the linkages between environmental sustainability and capital markets are being more deeply understood. The early evidence indicates that environmental sustainability can be compatible with maximization of shareholder value.

  18. How evolutionary principles improve the understanding of human health and disease.

    PubMed

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  19. How evolutionary principles improve the understanding of human health and disease

    PubMed Central

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-01-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies. PMID:25567971

  20. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  1. Evolutionary and mechanistic theories of aging.

    PubMed

    Hughes, Kimberly A; Reynolds, Rose M

    2005-01-01

    Senescence (aging) is defined as a decline in performance and fitness with advancing age. Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. Here we present a concise review of both evolutionary and mechanistic theories of aging. We describe the development of the general evolutionary theory, along with the mutation accumulation, antagonistic pleiotropy, and disposable soma versions of the evolutionary model. The review of the mechanistic theories focuses on the oxidative stress resistance, cellular signaling, and dietary control mechanisms of life span extension. We close with a discussion of how an approach that makes use of both evolutionary and molecular analyses can address a critical question: Which of the mechanisms that can cause variation in aging actually do cause variation in natural populations?

  2. Phenological shifts in North American red squirrels: disentangling the roles of phenotypic plasticity and microevolution.

    PubMed

    Lane, Jeffrey E; McAdam, Andrew G; McFarlane, S Eryn; Williams, Cory T; Humphries, Murray M; Coltman, David W; Gorrell, Jamieson C; Boutin, Stan

    2018-06-01

    Phenological shifts are the most widely reported ecological responses to climate change, but the requirements to distinguish their causes (i.e. phenotypic plasticity vs. microevolution) are rarely met. To do so, we analysed almost two decades of parturition data from a wild population of North American red squirrels (Tamiasciurus hudsonicus). Although an observed advance in parturition date during the first decade provided putative support for climate change-driven microevolution, a closer look revealed a more complex pattern. Parturition date was heritable [h 2  = 0.14 (0.07-0.21 (HPD interval)] and under phenotypic selection [β = -0.14 ± 0.06 (SE)] across the full study duration. However, the early advance reversed in the second decade. Further, selection did not act on the genetic contribution to variation in parturition date, and observed changes in predicted breeding values did not exceed those expected due to genetic drift. Instead, individuals responded plastically to environmental variation, and high food [white spruce (Picea glauca) seed] production in the first decade appears to have produced a plastic advance. In addition, there was little evidence of climate change affecting the advance, as there was neither a significant influence of spring temperature on parturition date or evidence of a change in spring temperatures across the study duration. Heritable traits not responding to selection in accordance with quantitative genetic predictions have long presented a puzzle to evolutionary ecologists. Our results on red squirrels provide empirical support for one potential solution: phenotypic selection arising from an environmental, as opposed to genetic, covariance between the phenotypic trait and annual fitness. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  3. Optimising operational amplifiers by evolutionary algorithms and gm/Id method

    NASA Astrophysics Data System (ADS)

    Tlelo-Cuautle, E.; Sanabria-Borbon, A. C.

    2016-10-01

    The evolutionary algorithm called non-dominated sorting genetic algorithm (NSGA-II) is applied herein in the optimisation of operational transconductance amplifiers. NSGA-II is accelerated by applying the gm/Id method to estimate reduced search spaces associated to widths (W) and lengths (L) of the metal-oxide-semiconductor field-effect-transistor (MOSFETs), and to guarantee their appropriate bias levels conditions. In addition, we introduce an integer encoding for the W/L sizes of the MOSFETs to avoid a post-processing step for rounding-off their values to be multiples of the integrated circuit fabrication technology. Finally, from the feasible solutions generated by NSGA-II, we introduce a second optimisation stage to guarantee that the final feasible W/L sizes solutions support process, voltage and temperature (PVT) variations. The optimisation results lead us to conclude that the gm/Id method and integer encoding are quite useful to accelerate the convergence of the evolutionary algorithm NSGA-II, while the second optimisation stage guarantees robustness of the feasible solutions to PVT variations.

  4. Star formation history: Modeling of visual binaries

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  5. The evolutionary origin of the vertebrate body plan: the problem of head segmentation.

    PubMed

    Onai, Takayuki; Irie, Naoki; Kuratani, Shigeru

    2014-01-01

    The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).

  6. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    PubMed

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  7. Dermoscopy of Pigmented Actinic Keratosis of the Face: A Study of 232 Cases.

    PubMed

    Kelati, A; Baybay, H; Moscarella, E; Argenziano, G; Gallouj, S; Mernissi, F Z

    2017-11-01

    The diagnosis of pigmented actinic keratosis (PAK) is often challenging because of overlapping features with lentigo maligna. To investigate dermoscopic patterns of PAK according to their different evolutionary stages, and to correlate the pattern with clinical characteristics of the patients. Descriptive and analytical study of 232 PAK. Dermoscopic patterns were divided into two categories: the follicule surroundings' abnormalities (FSA) and follicular keratosis' abnormalities (FKA). FSA and FKA dermoscopic patterns were related to male gender, except for star-like appearance, double white clods and dermoscopic horn (p≤0.04). Rhomboidal, annular granular pattern, gray halo, white circle and double clods were dermoscopic pattern significantly related to xeroderma pigmentosum's type of skin. Based on the evolutionary stages of PAK, the jelly sign was significantly related to thin patches of PAK. Central crusts and scales were related to thick plaques and the star-like appearance to hypertrophic PAK. The presence of 2 or more dermoscopic signs in both FSA and FKA was noticed in 99.1% of lesions. The dermoscopic diagnosis of PAK vary according to the evolutionary stages of the disease, this will increase the diagnosis accuracy, with therapeutic implications. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. The Evolution of the Human Genome

    PubMed Central

    Simonti, Corinne N.; Capra, John A.

    2015-01-01

    Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick. PMID:26338498

  9. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia.

    PubMed

    Wang, Jiguang; Khiabanian, Hossein; Rossi, Davide; Fabbri, Giulia; Gattei, Valter; Forconi, Francesco; Laurenti, Luca; Marasca, Roberto; Del Poeta, Giovanni; Foà, Robin; Pasqualucci, Laura; Gaidano, Gianluca; Rabadan, Raul

    2014-12-11

    Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.

  10. Identifying predictors of time-inhomogeneous viral evolutionary processes.

    PubMed

    Bielejec, Filip; Baele, Guy; Rodrigo, Allen G; Suchard, Marc A; Lemey, Philippe

    2016-07-01

    Various factors determine the rate at which mutations are generated and fixed in viral genomes. Viral evolutionary rates may vary over the course of a single persistent infection and can reflect changes in replication rates and selective dynamics. Dedicated statistical inference approaches are required to understand how the complex interplay of these processes shapes the genetic diversity and divergence in viral populations. Although evolutionary models accommodating a high degree of complexity can now be formalized, adequately informing these models by potentially sparse data, and assessing the association of the resulting estimates with external predictors, remains a major challenge. In this article, we present a novel Bayesian evolutionary inference method, which integrates multiple potential predictors and tests their association with variation in the absolute rates of synonymous and non-synonymous substitutions along the evolutionary history. We consider clinical and virological measures as predictors, but also changes in population size trajectories that are simultaneously inferred using coalescent modelling. We demonstrate the potential of our method in an application to within-host HIV-1 sequence data sampled throughout the infection of multiple patients. While analyses of individual patient populations lack statistical power, we detect significant evidence for an abrupt drop in non-synonymous rates in late stage infection and a more gradual increase in synonymous rates over the course of infection in a joint analysis across all patients. The former is predicted by the immune relaxation hypothesis while the latter may be in line with increasing replicative fitness during the asymptomatic stage.

  11. Manager’s Guide to Technology Transition in an Evolutionary Acquisition Environment

    DTIC Science & Technology

    2005-06-01

    program managers, product managers, staffs, and organizations that manage the development , procurement, production, and fielding of systems...rapidly advancing technologies. Technology transitions can occur during the development of systems, or even after a system has been in the field ...Documentation Evolutionary acquisition is an acquisition strategy that defines, develops , produces or acquires, and fields an initial hardware or software

  12. The Evolution of Different Forms of Sociality: Behavioral Mechanisms and Eco-Evolutionary Feedback

    PubMed Central

    van der Post, Daniel J.; Verbrugge, Rineke; Hemelrijk, Charlotte K.

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from “leader-follower” societies to “fission-fusion” societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313

  13. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    PubMed

    van der Post, Daniel J; Verbrugge, Rineke; Hemelrijk, Charlotte K

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.

  14. Synthetic transitions: towards a new synthesis

    PubMed Central

    Solé, Ricard

    2016-01-01

    The evolution of life in our biosphere has been marked by several major innovations. Such major complexity shifts include the origin of cells, genetic codes or multicellularity to the emergence of non-genetic information, language or even consciousness. Understanding the nature and conditions for their rise and success is a major challenge for evolutionary biology. Along with data analysis, phylogenetic studies and dedicated experimental work, theoretical and computational studies are an essential part of this exploration. With the rise of synthetic biology, evolutionary robotics, artificial life and advanced simulations, novel perspectives to these problems have led to a rather interesting scenario, where not only the major transitions can be studied or even reproduced, but even new ones might be potentially identified. In both cases, transitions can be understood in terms of phase transitions, as defined in physics. Such mapping (if correct) would help in defining a general framework to establish a theory of major transitions, both natural and artificial. Here, we review some advances made at the crossroads between statistical physics, artificial life, synthetic biology and evolutionary robotics. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431516

  15. The genetic covariance between life cycle stages separated by metamorphosis

    PubMed Central

    Aguirre, J. David; Blows, Mark W.; Marshall, Dustin J.

    2014-01-01

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G (gobsmax), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. PMID:24966319

  16. OF TRYPANOSOMATIDS. ENDOTRANSFORMATIONS AND ABERRATIONS].

    PubMed

    Frolov, A O; Malysheva, M N; Kostygov, A Yu

    2016-01-01

    Endotransformations and aberrations of the life cycle in the evolutionary history of trypanosomatids (Kinetoplastea: Trypanosomatidae) are analyzed. We treat the term "endotransformations" as evolutionarily fixed changes of phases and/or developmental stages of parasites. By contrast, we treat aberrations as evolutionary unstable, periodically arising deformations of developmental phases of trypanosomatids, never leading to life cycle changes. Various examples of life cycle endotransformations and aberrations in representatives of the family Trypanosomatidae are discussed.

  17. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    PubMed

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  18. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer.

    PubMed

    Scheel, Adam; Bellile, Emily; McHugh, Jonathan B; Walline, Heather M; Prince, Mark E; Urba, Susan; Wolf, Gregory T; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E; Bradford, Carol

    2016-09-01

    Assess tumor suppressor p53 (TP53) functional mutations in the context of other biomarkers in advanced larynx cancer. Prospective analysis of pretreatment tumor TP53, human papillomavirus (HPV), Bcl-xL, and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. TP53 exons 4 through 9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl, and cyclin D1 expression. TP53 mutations were found in 22 of 58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13 of 58 (22.4%) patients, nonsense mutations in four of 58 (6.9%), and deletions in five of 58 (8.6%). High-risk HPV was found in 20 of 52 (38.5%) tumors. A classification based on Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low-risk mutations (P = 0.0315). A model including this TP53 classification, HPV status, cyclin D1, and Bcl-xL staining significantly predicts survival (P = 0.0017). EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. NA. Laryngoscope, 126:E292-E299, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Flower Development

    PubMed Central

    Alvarez-Buylla, Elena R.; Benítez, Mariana; Corvera-Poiré, Adriana; Chaos Cador, Álvaro; de Folter, Stefan; Gamboa de Buen, Alicia; Garay-Arroyo, Adriana; García-Ponce, Berenice; Jaimes-Miranda, Fabiola; Pérez-Ruiz, Rigoberto V.; Piñeyro-Nelson, Alma; Sánchez-Corrales, Yara E.

    2010-01-01

    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies. PMID:22303253

  20. New insights into the earliest stages of colorectal tumorigenesis.

    PubMed

    Sievers, Chelsie K; Grady, William M; Halberg, Richard B; Pickhardt, Perry J

    2017-08-01

    Tumors in the large intestine have been postulated to arise via a stepwise accumulation of mutations, a process that takes up to 20 years. Recent advances in lineage tracing and DNA sequencing, however, are revealing new evolutionary models that better explain the vast amount of heterogeneity observed within and across colorectal tumors. Areas covered: A review of the literature supporting a novel model of colorectal tumor evolution was conducted. The following commentary examines the basic science and clinical evidence supporting a modified view of tumor initiation and progression in the colon. Expert commentary: The proposed 'cancer punctuated equilibrium' model of tumor evolution better explains the variability seen within and across polyps of the colon and rectum. Small colorectal polyps (6-9mm) followed longitudinally by interval imaging with CT colonography have been reported to have multiple fates: some growing, some remaining static in size, and others regressing in size over time. This new model allows for this variability in growth behavior and supports the hypothesis that some tumors can be 'born to be bad' as originally postulated by Sottoriva and colleagues, with very early molecular events impacting tumor fitness and growth behavior in the later stages of the disease process.

  1. Introducing survival ethics into engineering education and practice.

    PubMed

    Verharen, C; Tharakan, J; Middendorf, G; Castro-Sitiriche, M; Kadoda, G

    2013-06-01

    Given the possibilities of synthetic biology, weapons of mass destruction and global climate change, humans may achieve the capacity globally to alter life. This crisis calls for an ethics that furnishes effective motives to take global action necessary for survival. We propose a research program for understanding why ethical principles change across time and culture. We also propose provisional motives and methods for reaching global consensus on engineering field ethics. Current interdisciplinary research in ethics, psychology, neuroscience and evolutionary theory grounds these proposals. Experimental ethics, the application of scientific principles to ethical studies, provides a model for developing policies to advance solutions. A growing literature proposes evolutionary explanations for moral development. Connecting these approaches necessitates an experimental or scientific ethics that deliberately examines theories of morality for reliability. To illustrate how such an approach works, we cover three areas. The first section analyzes cross-cultural ethical systems in light of evolutionary theory. While such research is in its early stages, its assumptions entail consequences for engineering education. The second section discusses Howard University and University of Puerto Rico/Mayagüez (UPRM) courses that bring ethicists together with scientists and engineers to unite ethical theory and practice. We include a syllabus for engineering and STEM (Science, Technology, Engineering and Mathematics) ethics courses and a checklist model for translating educational theory and practice into community action. The model is based on aviation, medicine and engineering practice. The third and concluding section illustrates Howard University and UPRM efforts to translate engineering educational theory into community action. Multidisciplinary teams of engineering students and instructors take their expertise from the classroom to global communities to examine further the ethicality of prospective technologies and the decision-making processes that lead to them.

  2. The Role of Major Gas-rich Mergers on the Evolution of Galaxies from the Blue Cloud to the Red Sequence

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, X. Y.; Mao, Shude; Shi, Yong

    2016-07-01

    With the aim of exploring the fast evolutionary path from the blue cloud of star-forming galaxies to the red sequence of quiescent galaxies in the local universe, we select a local advanced merging infrared luminous and ultraluminous galaxy (adv-merger (U)LIRGs) sample and perform careful dust extinction corrections to investigate their positions in the star formation rate-M *, u - r, and NUV - r color-mass diagrams. The sample consists of 89 (U)LIRGs at the late merger stage, obtained from cross-correlating the Infrared Astronomical Satellite Point Source Catalog Redshift Survey and 1 Jy ULIRGs samples with the Sloan Digital Sky Survey DR7 database. Our results show that 74 % +/- 5 % of adv-merger (U)LIRGs are localized above the 1σ line of the local star-forming galaxy main sequence. We also find that all adv-merger (U)LIRGs are more massive than and as blue as the blue cloud galaxies after corrections for Galactic and internal dust extinctions, with 95 % +/- 2 % and 81 % +/- 4 % of them outside the blue cloud on the u - r and NUV - r color-mass diagrams, respectively. These results, combined with the short timescale for exhausting the molecular gas reservoir in adv-merger (U)LIRGs (3× {10}7 to 3× {10}8 years), imply that the adv-merger (U)LIRGs are likely at the starting point of the fast evolutionary track previously proposed by several groups. While the number density of adv-merger (U)LIRGs is only ˜ 0.1 % of the blue cloud star-forming galaxies in the local universe, this evolutionary track may play a more important role at high redshift.

  3. Camelid genomes reveal evolution and adaptation to desert environments.

    PubMed

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  4. (Why) Does Evolution Favour Embryogenesis?

    PubMed

    Rensing, Stefan A

    2016-07-01

    Complex multicellular organisms typically possess life cycles in which zygotes (formed by gamete fusion) and meiosis occur. Canonical animal embryogenesis describes development from zygote to birth. It involves polarisation of the egg/zygote, asymmetric cell divisions, establishment of axes, symmetry breaking, formation of organs, and parental nutrition (at least in early stages). Similar developmental patterns have independently evolved in other eukaryotic lineages, including land plants and brown algae. The question arises whether embryo-like structures and associated developmental processes recurrently emerge because they are local optima of the evolutionary landscape. To understand which evolutionary principles govern complex multicellularity, we need to analyse why and how similar processes evolve convergently - von Baer's and Haeckel's phylotypic stage revisited in other phyla. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Deep evolutionary origins of neurobiology

    PubMed Central

    Mancuso, Stefano

    2009-01-01

    It is generally assumed, both in common-sense argumentations and scientific concepts, that brains and neurons represent late evolutionary achievements which are present only in more advanced animals. Here we overview recently published data clearly revealing that our understanding of bacteria, unicellular eukaryotic organisms, plants, brains and neurons, rooted in the Aristotelian philosophy is flawed. Neural aspects of biological systems are obvious already in bacteria and unicellular biological units such as sexual gametes and diverse unicellular eukaryotic organisms. Altogether, processes and activities thought to represent evolutionary ‘recent’ specializations of the nervous system emerge rather to represent ancient and fundamental cell survival processes. PMID:19513267

  6. Sorafenib Tosylate and Pembrolizumab in Treating Patients With Advanced or Metastatic Liver Cancer

    ClinicalTrials.gov

    2018-06-04

    Advanced Adult Hepatocellular Carcinoma; Child-Pugh Class A; Stage III Hepatocellular Carcinoma; Stage IIIA Hepatocellular Carcinoma; Stage IIIB Hepatocellular Carcinoma; Stage IIIC Hepatocellular Carcinoma; Stage IV Hepatocellular Carcinoma; Stage IVA Hepatocellular Carcinoma; Stage IVB Hepatocellular Carcinoma

  7. Dilemma strength as a framework for advancing evolutionary game theory. Reply to comments on "Universal scaling for the dilemma strength in evolutionary games"

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Kokubo, Satoshi; Jusup, Marko; Tanimoto, Jun

    2015-09-01

    While comprehensive reviews of the literature, by gathering in one place most of the relevant information, undoubtedly steer the development of every scientific field, we found that the comments in response to a review article can be as informative as the review itself, if not more. Namely, reading through the comments on the ideas expressed in Ref. [1], we could identify a number of pressing problems for evolutionary game theory, indicating just how much space there still is for major advances and breakthroughs. In an attempt to bring a sense of order to a multitude of opinions, we roughly classified the comments into three categories, i.e. those concerned with: (i) the universality of scaling in heterogeneous topologies, including empirical dynamic networks [2-8], (ii) the universality of scaling for more general game setups, such as the inclusion of multiple strategies and external features [4,9-11], and (iii) experimental confirmations of the theoretical developments [2,12,13].

  8. Bridging the physical scales in evolutionary biology: From protein sequence space to fitness of organisms and populations

    PubMed Central

    Bershtein, Shimon; Serohijos, Adrian W.R.; Shakhnovich, Eugene I.

    2016-01-01

    Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. PMID:27810574

  9. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian Wr; Shakhnovich, Eugene I

    2017-02-01

    Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.

  11. Effects of evolving quality of landfill leachate on microbial fuel cell performance.

    PubMed

    Li, Simeng; Chen, Gang

    2018-01-01

    Microbial fuel cell (MFC) is a novel technology for landfill leachate treatment with simultaneous electric power generation. In recent years, more and more modern landfills are operating as bioreactors to shorten the time required for landfill stabilization and improve the leachate quality. For landfills to operate as biofilters, leachate is recirculated back to the landfill, during which time the organics of the leachate can be decomposed. Continuous recirculation typically results in evolving leachate quality, which chronologically corresponds to evolution stages such as hydrolysis, acidogenesis, acetogenesis, methanogenesis, and maturation. In this research, variable power generation (160 to 230 mW m -2 ) by MFC was observed when leachate of various evolutionary stages was used as the feed. The power density followed a Monod-type kinetic model with the chemical oxygen demand (COD) equivalent of the volatile fatty acids (VFAs) ( p < 0.001). The coulombic efficiency decreased from 20% to 14% as the leachate evolved towards maturation. The maximum power density linearly decreased with the increase of internal resistance, resulting from the change of the conductivity of the solution. The decreased conductivity boosted the internal resistance and consequently limited the power generation. COD removal as high as 90% could be achieved with leachate extracted from appropriate evolutionary stages, with a maximum energy yield of 0.9 kWh m -3 of leachate. This study demonstrated the importance of the evolving leachate quality in different evolutionary stages for the performance of leachate-fed MFCs. The leachate extracted from acidogenesis and acetogenesis were optimal for both COD reduction and energy production in MFCs.

  12. Ecological and phylogenetic variability in the spinalis muscle of snakes.

    PubMed

    Tingle, J L; Gartner, G E A; Jayne, B C; Garland, T

    2017-11-01

    Understanding the origin and maintenance of functionally important subordinate traits is a major goal of evolutionary physiologists and ecomorphologists. Within the confines of a limbless body plan, snakes are diverse in terms of body size and ecology, but we know little about the functional traits that underlie this diversity. We used a phylogenetically diverse group of 131 snake species to examine associations between habitat use, sidewinding locomotion and constriction behaviour with the number of body vertebrae spanned by a single segment of the spinalis muscle, with total numbers of body vertebrae used as a covariate in statistical analyses. We compared models with combinations of these predictors to determine which best fit the data among all species and for the advanced snakes only (N = 114). We used both ordinary least-squares models and phylogenetic models in which the residuals were modelled as evolving by the Ornstein-Uhlenbeck process. Snakes with greater numbers of vertebrae tended to have spinalis muscles that spanned more vertebrae. Habitat effects dominated models for analyses of all species and advanced snakes only, with the spinalis length spanning more vertebrae in arboreal species and fewer vertebrae in aquatic and burrowing species. Sidewinding specialists had shorter muscle lengths than nonspecialists. The relationship between prey constriction and spinalis length was less clear. Differences among clades were also strong when considering all species, but not for advanced snakes alone. Overall, these results suggest that muscle morphology may have played a key role in the adaptive radiation of snakes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  13. Evolutionary ethics from Darwin to Moore.

    PubMed

    Allhoff, Fritz

    2003-01-01

    Evolutionary ethics has a long history, dating all the way back to Charles Darwin. Almost immediately after the publication of the Origin, an immense interest arose in the moral implications of Darwinism and whether the truth of Darwinism would undermine traditional ethics. Though the biological thesis was certainly exciting, nobody suspected that the impact of the Origin would be confined to the scientific arena. As one historian wrote, 'whether or not ancient populations of armadillos were transformed into the species that currently inhabit the new world was certainly a topic about which zoologists could disagree. But it was in discussing the broader implications of the theory...that tempers flared and statements were made which could transform what otherwise would have been a quiet scholarly meeting into a social scandal' (Farber 1994, 22). Some resistance to the biological thesis of Darwinism sprung from the thought that it was incompatible with traditional morality and, since one of them had to go, many thought that Darwinism should be rejected. However, some people did realize that a secular ethics was possible so, even if Darwinism did undermine traditional religious beliefs, it need not have any effects on moral thought. Before I begin my discussion of evolutionary ethics from Darwin to Moore, I would like to make some more general remarks about its development. There are three key events during this history of evolutionary ethics. First, Charles Darwin published On the Origin of the Species (Darwin 1859). Since one did not have a fully developed theory of evolution until 1859, there exists little work on evolutionary ethics until then. Shortly thereafter, Herbert Spencer (1898) penned the first systematic theory of evolutionary ethics, which was promptly attacked by T.H. Huxley (Huxley 1894). Second, at about the turn of the century, moral philosophers entered the fray and attempted to demonstrate logical errors in Spencer's work; such errors were alluded to but never fully brought to the fore by Huxley. These philosophers were the well known moralists from Cambridge: Henry Sidgwick (Sidgwick 1902, 1907) and G.E. Moore (Moore 1903), though their ideas hearkened back to David Hume (Hume 1960). These criticisms were so strong that the industry of evolutionary ethics was largely abandoned (though with some exceptions) for many years. Third, E.O. Wilson, a Harvard entomologist, published Sociobiology: The New Synthesis in 1975 (Wilson E.O. 1975), which sparked renewed interest in evolutionary ethics and offered new directions of investigation. These events suggest the following stages for the history of evolutionary ethics: development, criticism and abandonment, revival. In this paper, I shall focus on the first two stages, since those are the ones on which the philosophical merits have already been largely decided. The revival stage is still in progress and we shall eventually find out whether it was a success.

  14. On evolutionary systems.

    PubMed

    Alvarez de Lorenzana, J M; Ward, L M

    1987-01-01

    This paper develops a metatheoretical framework for understanding evolutionary systems (systems that develop in ways that increase their own variety). The framework addresses shortcomings seen in other popular systems theories. It concerns both living and nonliving systems, and proposes a metahierarchy of hierarchical systems. Thus, it potentially addresses systems at all descriptive levels. We restrict our definition of system to that of a core system whose parts have a different ontological status than the system, and characterize the core system in terms of five global properties: minimal length interval, minimal time interval, system cycle, total receptive capacity, and system potential. We propose two principles through the interaction of which evolutionary systems develop. The Principle of Combinatorial Expansion describes how a core system realizes its developmental potential through a process of progressive differentiation of the single primal state up to a limit stage. The Principle of Generative Condensation describes how the components of the last stage of combinatorial expansion condense and become the environment for and components of new, enriched systems. The early evolution of the Universe after the "big bang" is discussed in light of these ideas as an example of the application of the framework.

  15. Methoxyamine, Cisplatin, and Pemetrexed Disodium in Treating Patients With Advanced Solid Tumors or Mesothelioma That Cannot Be Removed by Surgery or Mesothelioma That Is Refractory to Pemetrexed Disodium and Cisplatin or Carboplatin

    ClinicalTrials.gov

    2018-04-23

    Advanced Malignant Solid Neoplasm; Advanced Peritoneal Malignant Mesothelioma; Advanced Pleural Malignant Mesothelioma; Recurrent Peritoneal Malignant Mesothelioma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; Thymoma; Unresectable Solid Neoplasm

  16. The placentation of eulipotyphla-reconstructing a morphotype of the Mammalian placenta.

    PubMed

    Ferner, Kirsten; Siniza, Swetlana; Zeller, Ulrich

    2014-10-01

    Placentation determines the developmental status of the neonate, which can be considered as the most vulnerable stage in the mammalian life cycle. In this respect, the different evolutionary and ecological adaptations of marsupial and placental mammals have most likely been associated with the different reproductive strategies of the two therian clades. The morphotypes of marsupial and placental neonates, as well as the placental stem species pattern of Marsupialia, have already been reconstructed. To contribute to a better understanding of the evolution of Placentalia, a histological and ultrastructural investigation of the placenta in three representatives of Eulipotyphla, that is, core insectivores, has been carried out in this study. We studied the Musk shrew (Suncus murinus), the four-toed hedgehog (Atelerix albiventris), and the Iberian mole (Talpa occidentalis). As a result, a eulipotyphlan placental morphotype consisting of a compact and invasive placenta was reconstructed. This supports the widely accepted hypothesis that the stem lineage of Placentalia is characterized by an invasive, either endothelio- or hemochorial placenta. Evolutionary transformations toward a diffuse, noninvasive placenta occurred in the stem lineages of lower primates and cetartiodactyles and were associated with prolonged gestation and the production of few and highly precocial neonates. Compared to the choriovitelline placenta of Marsupialia, the chorioallantoic placenta of Placentalia allows for a more intimate contact and is associated with more advanced neonates. © 2014 Wiley Periodicals, Inc.

  17. Ecological perspectives on synthetic biology: insights from microbial population biology

    PubMed Central

    Escalante, Ana E.; Rebolleda-Gómez, María; Benítez, Mariana; Travisano, Michael

    2015-01-01

    The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems. PMID:25767468

  18. Linking micro- and macro-evolution at the cell type level: a view from the lophotrochozoan Platynereis dumerilii.

    PubMed

    Simakov, Oleg; Larsson, Tomas A; Arendt, Detlev

    2013-09-01

    Ever since the origin of the first metazoans over 600 million years ago, cell type diversification has been driven by micro-evolutionary processes at population level, leading to macro-evolution changes above species level. In this review, we introduce the marine annelid Platynereis dumerilii, a member of the lophotrochozoan clade (a key yet most understudied superphylum of bilaterians), as a suitable model system for the simultaneous study, at cellular resolution, of macro-evolutionary processes across phyla and of micro-evolutionary processes across highly polymorphic populations collected worldwide. Recent advances in molecular and experimental techniques, easy maintenance and breeding, and the fast, synchronous and stereotypical development have facilitated the establishment of Platynereis as one of the leading model species in the eco-evo-devo field. Most importantly, Platynereis allows the combination of expression profiling, morphological and physiological characterization at the single cell level. Here, we discuss recent advances in the collection of -omics data for the lab strain and for natural populations collected world-wide that can be integrated with population-specific cellular analyses to result in a cellular atlas integrating genetic, phenotypic and ecological variation. This makes Platynereis a tractable system to begin understanding the interplay between macro- and micro-evolutionary processes and cell type diversity.

  19. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes

    PubMed Central

    Charmantier, Anne; Gienapp, Phillip

    2014-01-01

    There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change versus changes due to individual plasticity, that is, the capacity of an individual to adjust its phenology to environmental variables. Within the abundant literature on climate change effects on bird phenology, only a small fraction of studies are based on individual data, yet individual data are required to quantify the relative importance of plastic versus evolutionary responses. While plasticity seems common and often adaptive, no study so far has provided direct evidence for an evolutionary response of bird phenology to current climate change. This assessment leads us to notice the alarming lack of tests for microevolutionary changes in bird phenology in response to climate change, in contrast with the abundant claims on this issue. In short, at present we cannot draw reliable conclusions on the processes underlying the observed patterns of advanced phenology in birds. Rapid improvements in techniques for gathering and analysing individual data offer exciting possibilities that should encourage research activity to fill this knowledge gap. PMID:24454545

  20. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  1. Evolutionary Technologies: Fundamentals and Applications to Information/Communication Systems and Manufacturing/Logistics Systems

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma

    As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.

  2. Contributions of experimental protobiogenesis to the theory of evolution

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1976-01-01

    Inferences from experiments in protobiogenesis are examined as a forward extension of the theory of evolutionary biology. A nondiscontinuous, intraconsistent theory of general evolution embracing both protobiology and biology is outlined. This overview emphasizes Darwinian selection in the later stages of evolution, and stereochemical molecular selection in some of its earlier stages. It incorporates the concept of limitation of the scope of evolution by internal constraints on variation, based on the argument that internally limiting constraints observed in experiments with molecules are operative in organisms, if chemical processes occur within biological processes and biological processes are assumed to be exponentializations of chemical processes. Major evolutionary events might have occurred by rapid self-assembly processes analogous to those observed in the formation of phase-separated microspheres from amorphous powder or supersaturated solutions.

  3. Revising the Evolutionary Stage of HD 163899: The Effects of Convective Overshooting and Rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrowski, Jakub; Daszyńska-Daszkiewicz, Jadwiga; Cugier, Henryk, E-mail: ostrowski@astro.uni.wroc.pl

    We revise the evolutionary status of the B-type supergiant HD 163899 based on the new determinations of the mass–luminosity ratio, effective temperature, and rotational velocity, as well as on the interpretation of the oscillation spectrum of the star. The observed value of the nitrogen-to-carbon abundance fixes the value of the rotation rate of the star. Now, more massive models are strongly preferred than those previously considered, and it is very likely that the star is still in the main-sequence stage. The rotationally induced mixing manifests as the nitrogen overabundance in the atmosphere, which agrees with our analysis of the HARPSmore » spectra. Thus, HD 163899 probably belongs to a group of evolved nitrogen-rich main-sequence stars.« less

  4. Metal-poor stars. IV - The evolution of red giants.

    NASA Technical Reports Server (NTRS)

    Rood, R. T.

    1972-01-01

    Detailed evolutionary calculations for six Population-II red giants are presented. The first five of these models are followed from the zero age main sequence to the onset of the helium flash. The sixth model allows the effect of direct electron-neutrino interactions to be estimated. The updated input physics and evolutionary code are described briefly. The results of the calculations are presented in a manner pertinent to later stages of evolutions and suitable for comparison with observations.

  5. Heritability and social brood effects on personality in juvenile and adult life-history stages in a wild passerine.

    PubMed

    Winney, I S; Schroeder, J; Nakagawa, S; Hsu, Y-H; Simons, M J P; Sánchez-Tójar, A; Mannarelli, M-E; Burke, T

    2018-01-01

    How has evolution led to the variation in behavioural phenotypes (personalities) in a population? Knowledge of whether personality is heritable, and to what degree it is influenced by the social environment, is crucial to understanding its evolutionary significance, yet few estimates are available from natural populations. We tracked three behavioural traits during different life-history stages in a pedigreed population of wild house sparrows. Using a quantitative genetic approach, we demonstrated heritability in adult exploration, and in nestling activity after accounting for fixed effects, but not in adult boldness. We did not detect maternal effects on any traits, but we did detect a social brood effect on nestling activity. Boldness, exploration and nestling activity in this population did not form a behavioural syndrome, suggesting that selection could act independently on these behavioural traits in this species, although we found no consistent support for phenotypic selection on these traits. Our work shows that repeatable behaviours can vary in their heritability and that social context influences personality traits. Future efforts could separate whether personality traits differ in heritability because they have served specific functional roles in the evolution of the phenotype or because our concept of personality and the stability of behaviour needs to be revised. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  6. The genetic covariance between life cycle stages separated by metamorphosis.

    PubMed

    Aguirre, J David; Blows, Mark W; Marshall, Dustin J

    2014-08-07

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G: (gobsmax ), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Developmental plasticity: Friend or foe?

    PubMed

    Michels, Karin B

    2017-01-01

    Developmental plasticity - the concept that adaptation to changing and unfavorable environmental conditions are possible but may come at the price of compromised health potentials - has evolutionary grounding as it facilitates survival but dissents with fundamental evolutionary principles in that it may advance the lesser fit. It is an important cornerstone of the Developmental Origins of Health and Disease (DOHaD). Unlike evolutionary adaptation developmental plasticity may be short-lived and restricted to one or few generations and inheritance is uncertain. Potential mechanisms include epigenetic modifications adopted in utero which may not transmit to the next generation; future insights may allow adjustments of the outcomes of developmental plasticity.

  8. Do arms races punctuate evolutionary stasis? Unified insights from phylogeny, phylogeography and microevolutionary processes.

    PubMed

    Toju, Hirokazu; Sota, Teiji

    2009-09-01

    One of the major controversies in evolutionary biology concerns the processes underlying macroevolutionary patterns in which prolonged stasis is disrupted by rapid, short-term evolution that leads species to new adaptive zones. Recent advances in the understanding of contemporary evolution have suggested that such rapid evolution can occur in the wild as a result of environmental changes. Here, we examined a novel hypothesis that evolutionary stasis is punctuated by co-evolutionary arms races, which continuously alter adaptive peaks and landscapes. Based on the phylogeny of long-mouthed weevils in the genus Curculio, likelihood ratio tests showed that the macroevolutionary pattern of the weevils coincides with the punctuational evolution model. A coalescent analysis of a species, Curculio camelliae, the mouthpart of which has diverged considerably among populations because of an arms race with its host plant, further suggested that major evolutionary shifts had occurred within 7000 generations. Through a microevolutionary analysis of the species, we also found that natural selection acting through co-evolutionary interactions is potentially strong enough to drive rapid evolutionary shifts between adaptive zones. Overall, we posit that co-evolution is an important factor driving the history of organismal evolution.

  9. NEXT Ion Propulsion System Development Status and Capabilities

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.

  10. Tilting at Quixotic Trait Loci (QTL): An Evolutionary Perspective on Genetic Causation

    PubMed Central

    Weiss, Kenneth M.

    2008-01-01

    Recent years have seen great advances in generating and analyzing data to identify the genetic architecture of biological traits. Human disease has understandably received intense research focus, and the genes responsible for most Mendelian diseases have successfully been identified. However, the same advances have shown a consistent if less satisfying pattern, in which complex traits are affected by variation in large numbers of genes, most of which have individually minor or statistically elusive effects, leaving the bulk of genetic etiology unaccounted for. This pattern applies to diverse and unrelated traits, not just disease, in basically all species, and is consistent with evolutionary expectations, raising challenging questions about the best way to approach and understand biological complexity. PMID:18711218

  11. Darwin and Evolution: A Set of Activities Based on the Evolution of Mammals

    ERIC Educational Resources Information Center

    Haresnape, Janet M.

    2010-01-01

    These activities, prepared for key stage 5 students (ages 16-18) and also suitable for key stage 4 (ages 14-16), show that physical appearance is not necessarily the best way to classify mammals. DNA structure is examined to show how similarities and differences between DNA sequences of mammals can be used to establish evolutionary relationships.…

  12. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes.

    PubMed

    Ma, Wen-Juan; Veltsos, Paris; Toups, Melissa A; Rodrigues, Nicolas; Sermier, Roberto; Jeffries, Daniel L; Perrin, Nicolas

    2018-06-12

    Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.

  13. Using the Principles of SoTL to Redesign an Advanced Evolutionary Biology Course

    ERIC Educational Resources Information Center

    deBraga, Michael; Boyd, Cleo; Abdulnour, Shahad

    2015-01-01

    A primary goal of university instruction is the students' demonstration of improved, highly developed critical thinking (CT) skills. However, how do faculty encourage CT and its potential concomitant increase in student workload without negatively impacting student perceptions of the course? In this investigation, an advanced biology course is…

  14. The Test and Evaluation of Unmanned and Autonomous Systems

    DTIC Science & Technology

    2008-12-01

    robotic/ intelli - gent machines for the U.S. Department of Defense (DoD). Although the technology is still nascent and advancing, we are faced with the...evolutionary nature of UAS acquisition must be met with evolutionary test capabilities yet to be discovered and developed. Test capabilities must be deployed...at a faster pace than UAS deployment to satisfy the demand for warfighter improvements. The DoD is stimulating this new area of innovation with

  15. Evolutionary Nephrology.

    PubMed

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  16. Evolutionary transitions towards eusociality in snapping shrimps.

    PubMed

    Chak, Solomon Tin Chi; Duffy, J Emmett; Hultgren, Kristin M; Rubenstein, Dustin R

    2017-03-20

    Animal social organization varies from complex societies where reproduction is dominated by a single individual (eusociality) to those where reproduction is more evenly distributed among group members (communal breeding). Yet, how simple groups transition evolutionarily to more complex societies remains unclear. Competing hypotheses suggest that eusociality and communal breeding are alternative evolutionary endpoints, or that communal breeding is an intermediate stage in the transition towards eusociality. We tested these alternative hypotheses in sponge-dwelling shrimps, Synalpheus spp. Although species varied continuously in reproductive skew, they clustered into pair-forming, communal and eusocial categories based on several demographic traits. Evolutionary transition models suggested that eusocial and communal species are discrete evolutionary endpoints that evolved independently from pair-forming ancestors along alternative paths. This 'family-centred' origin of eusociality parallels observations in insects and vertebrates, reinforcing the role of kin selection in the evolution of eusociality and suggesting a general model of animal social evolution.

  17. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans.

    PubMed

    Sinha, Amit; Sommer, Ralf J; Dieterich, Christoph

    2012-06-19

    An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution.

  18. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans

    PubMed Central

    2012-01-01

    Background An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. Results We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Conclusion Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution. PMID:22712530

  19. Next gen perception and cognition: augmenting perception and enhancing cognition through mobile technologies

    NASA Astrophysics Data System (ADS)

    Goma, Sergio R.

    2015-03-01

    In current times, mobile technologies are ubiquitous and the complexity of problems is continuously increasing. In the context of advancement of engineering, we explore in this paper possible reasons that could cause a saturation in technology evolution - namely the ability of problem solving based on previous results and the ability of expressing solutions in a more efficient way, concluding that `thinking outside of brain' - as in solving engineering problems that are expressed in a virtual media due to their complexity - would benefit from mobile technology augmentation. This could be the necessary evolutionary step that would provide the efficiency required to solve new complex problems (addressing the `running out of time' issue) and remove the communication of results barrier (addressing the human `perception/expression imbalance' issue). Some consequences are discussed, as in this context the artificial intelligence becomes an automation tool aid instead of a necessary next evolutionary step. The paper concludes that research in modeling as problem solving aid and data visualization as perception aid augmented with mobile technologies could be the path to an evolutionary step in advancing engineering.

  20. Ecological and evolutionary genomics of marine photosynthetic organisms.

    PubMed

    Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric

    2013-02-01

    Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.

  1. From the "Modern Synthesis" to cybernetics: Ivan Ivanovich Schmalhausen (1884-1963) and his research program for a synthesis of evolutionary and developmental biology.

    PubMed

    Levit, Georgy S; Hossfeld, Uwe; Olsson, Lennart

    2006-03-15

    Ivan I. Schmalhausen was one of the central figures in the Russian development of the "Modern Synthesis" in evolutionary biology. He is widely cited internationally even today. Schmalhausen developed the main principles of his theory facing the danger of death in the totalitarian Soviet Union. His great services to evolutionary and theoretical biology are indisputable. However, the received view of Schmalhausen's contributions to evolutionary biology makes an unbiased reading of his texts difficult. Here we show that taking all of his works into consideration (including those only available in Russian) paints a much more dynamic and exciting picture of what he tried to achieve. Schmalhausen pioneered the integration of a developmental perspective into evolutionary thinking. A main tool for achieving this was his approach to living objects as complex multi-level self-regulating systems. Schmalhausen put enormous effort into bringing this idea into fruition during the final stages of his career by combining evolutionary theory with cybernetics. His results and ideas remain thought-provoking, and his texts are of more than just historical interest. Copyright 2006 Wiley-Liss, Inc.

  2. ON THE CHALLENGING VARIABILITY OF LS IV-14{sup 0}116: PULSATIONAL INSTABILITIES EXCITED BY THE {epsilon}-MECHANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller Bertolami, M. M.; Corsico, A. H.; Althaus, L. G., E-mail: mmiller@fcaglp.unlp.edu.ar

    2011-11-01

    We investigate the pulsation driving mechanism responsible for the long-period photometric variations observed in LS IV-14{sup 0}116, a subdwarf B star showing a He-enriched atmospheric composition. To this end, we perform detailed nonadiabatic pulsation computations over fully evolutionary post-He-core-flash stellar structure models, appropriate for hot subdwarf stars at evolutionary phases previous to the He-core burning stage. We found that the variability of LS IV-14{sup 0}116 can be attributed to non-radial g-mode pulsations excited by the {epsilon}-mechanism acting in the He-burning shells that appear before the star settles in the He-core burning stage. Even more interestingly, our results show that LSmore » IV-14{sup 0}116 could be the first known pulsating star in which the {epsilon}-mechanism of mode excitation is operating. Last but not the least, we find that the period range of destabilized modes is sensitive to the exact location of the burning shell, something that might help in distinguishing between the different evolutionary scenarios proposed for the formation of this star.« less

  3. Selumetinib and Cyclosporine in Treating Patients With Advanced Solid Tumors or Advanced or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2018-03-23

    Recurrent Colorectal Carcinoma; Solid Neoplasm; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7

  4. The painted turtle, Chrysemys picta: a model system for vertebrate evolution, ecology, and human health.

    PubMed

    Valenzuela, Nicole

    2009-07-01

    Painted turtles (Chrysemys picta) are representatives of a vertebrate clade whose biology and phylogenetic position hold a key to our understanding of fundamental aspects of vertebrate evolution. These features make them an ideal emerging model system. Extensive ecological and physiological research provide the context in which to place new research advances in evolutionary genetics, genomics, evolutionary developmental biology, and ecological developmental biology which are enabled by current resources, such as a bacterial artificial chromosome (BAC) library of C. picta, and the imminent development of additional ones such as genome sequences and cDNA and expressed sequence tag (EST) libraries. This integrative approach will allow the research community to continue making advances to provide functional and evolutionary explanations for the lability of biological traits found not only among reptiles but vertebrates in general. Moreover, because humans and reptiles share a common ancestor, and given the ease of using nonplacental vertebrates in experimental biology compared with mammalian embryos, painted turtles are also an emerging model system for biomedical research. For example, painted turtles have been studied to understand many biological responses to overwintering and anoxia, as potential sentinels for environmental xenobiotics, and as a model to decipher the ecology and evolution of sexual development and reproduction. Thus, painted turtles are an excellent reptilian model system for studies with human health, environmental, ecological, and evolutionary significance.

  5. Parenteral Nutrition for Patients Treated for Locally Advanced Inoperable Tumors of the Head and Neck

    ClinicalTrials.gov

    2018-03-28

    Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Laryngeal Squamous Cell Carcinoma Stage III; Laryngeal Squamous Cell Carcinoma Stage IV; Oropharyngeal Squamous Cell Carcinoma Stage III; Oropharyngeal Squamous Cell Carcinoma Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV; Locally Advanced Malignant Neoplasm

  6. Evolutionary Determinants of Cancer

    PubMed Central

    Greaves, Mel

    2015-01-01

    ‘Nothing in biology makes sense except in the light of evolution’ Th. Dobzhansky, 1973 Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as complex, dynamic and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints facilitating increasing complexity and longevity of species. But our own has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. PMID:26193902

  7. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.

  8. Cultural aspects of the search for extraterrestrial intelligence

    NASA Astrophysics Data System (ADS)

    Billingham, J.

    SETI is an acronym which stands for the Search for Extraterrestrial Intelligence. The NASA SETI High Resolution Microwave Survey Project is a new and comprehensive search for evidence of microwave signals from extraterrestrial civilizations. It will formally begin on October 12, 1992, and last to the end of the century. The discovery of another form of intelligent life would be an important milestone for our civilization. In addition to the new scientific knowledge that we might acquire on the chemistry, physiology, behavior and evolutionary history of extraterrestrial life forms, we may also learn of the cultural achievements of another civilization, or indeed of many other civilizations. It is likely that the society that we detect will be much in advance of our own, so that they may long ago have passed through the evolutionary stage we are at now. The implications of such a discovery would have important consequences for our own future. This paper presents an analysis of some of the important areas which will require study as we approach the beginning of the NASA search. There are significant questions about the ease or difficulty of incorporating the new knowledge into the belief structures of different religions. Sociological and educational changes over time may equal or exceed those of the Copernican revolution. The status of the other civilization relative to ours is a challenging question for international space law. There are institutional and international questions on who will represent Earth in any future interstellar communication endeavors that we may attempt. There may be challenges in how we absorb the knowledge of an advanced technology. In political science we may have much to learn from their history, and what influence it may have on our own future. Last but not least, there is the effect of the discovery on individual and group psychology. These are the cultural aspects of SETI. Each area warrants further study, and recommendations are made as to the mechanisms which could be used to undertake such studies.

  9. Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions.

    PubMed

    Zenni, Rafael Dudeque; Dickie, Ian A; Wingfield, Michael J; Hirsch, Heidi; Crous, Casparus J; Meyerson, Laura A; Burgess, Treena I; Zimmermann, Thalita G; Klock, Metha M; Siemann, Evan; Erfmeier, Alexandra; Aragon, Roxana; Montti, Lia; Le Roux, Johannes J

    2016-12-30

    Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of research suggests that invasive populations often undergo phenotypic and ecological divergence from their native sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree invasions, and place them in the context of the unified framework for biological invasions. The processes and mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics, and second-genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better equipped to predict, understand, and manage biological invasions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  10. Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions

    PubMed Central

    Dickie, Ian A.; Wingfield, Michael J.; Hirsch, Heidi; Crous, Casparus J.; Meyerson, Laura A.; Burgess, Treena I.; Zimmermann, Thalita G.; Klock, Metha M.; Siemann, Evan; Erfmeier, Alexandra; Aragon, Roxana; Montti, Lia; Le Roux, Johannes J.

    2017-01-01

    Abstract Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of research suggests that invasive populations often undergo phenotypic and ecological divergence from their native sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree invasions, and place them in the context of the unified framework for biological invasions. The processes and mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics and second-genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better equipped to predict, understand and manage biological invasions. PMID:28039118

  11. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  12. An Evolutionary Examination of Telemedicine: A Health and Computer-Mediated Communication Perspective

    PubMed Central

    Breen, Gerald-Mark; Matusitz, Jonathan

    2009-01-01

    Telemedicine, the use of advanced communication technologies in the healthcare context, has a rich history and a clear evolutionary course. In this paper, the authors identify telemedicine as operationally defined, the services and technologies it comprises, the direction telemedicine has taken, along with its increased acceptance in the healthcare communities. The authors also describe some of the key pitfalls warred with by researchers and activists to advance telemedicine to its full potential and lead to an unobstructed team of technicians to identify telemedicine’s diverse utilities. A discussion and future directions section is included to provide fresh ideas to health communication and computer-mediated scholars wishing to delve into this area and make a difference to enhance public understanding of this field. PMID:20300559

  13. Gene networks, occlusal clocks, and functional patches: new understanding of pattern and process in the evolution of the dentition.

    PubMed

    Polly, P David

    2015-05-01

    Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.

  14. Island biogeography: Taking the long view of nature's laboratories.

    PubMed

    Whittaker, Robert J; Fernández-Palacios, José María; Matthews, Thomas J; Borregaard, Michael K; Triantis, Kostas A

    2017-09-01

    Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos. Emergent patterns of diversity include predictable variation in island species-area relationships, progression rule colonization from older to younger land masses, and syndromes including loss of dispersability and secondary woodiness in herbaceous plant lineages. Further developments in Earth system science, molecular biology, and trait data for islands hold continued promise for unlocking many of the unresolved questions in evolutionary biology and biogeography. Copyright © 2017, American Association for the Advancement of Science.

  15. Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria).

    PubMed

    Govindarajan, Annette F; Boero, Ferdinando; Halanych, Kenneth M

    2006-03-01

    The Campanulariidae is a group of leptomedusan hydroids (Hydrozoa, Cnidaria) that exhibit a diverse array of life cycles ranging from species with a free medusa stage to those with a reduced or absent medusa stage. Perhaps the best-known member of the taxon is Obelia which is often used as a textbook model of hydrozoan life history. However, Obelia medusae have several unique features leading to a hypothesis that Obelia arose, in a saltational fashion, from an ancestor that lacked a medusa, possibly representing an example of a rare evolutionary reversal. To address the evolution of adult sexual stages in Campanulariidae, a molecular phylogenetic approach was employed using two nuclear (18S rDNA and calmodulin) and two mitochondrial (16S rDNA and cytochrome c oxidase subunit I) genes. Prior to the main analysis, we conducted a preliminary analysis of leptomedusan taxa which suggests that Campanulariidae as presently considered needs to be redefined. Campanulariid analyses are consistent with morphological understanding in that three major clades are recovered. However, several recognized genera are not monophyletic calling into question some "diagnostic" features. Furthermore, ancestral states were reconstructed using parsimony, and a sensitivity analysis was conducted to investigate possible evolutionary transitions in life-history stages. The results indicate that life-cycle transitions have occurred multiple times, and that Obelia might be derived from an ancestor with Clytia-like features.

  16. Dynamics of Galaxies in Compact Groups II.

    NASA Astrophysics Data System (ADS)

    Amram, P.; Mendes de Oliveira, C.

    We show partial results of a program based on Fabry-Perot Hα velocity field data of compact groups taken at the ESO and the CFH 3.6m telescopes in order to analyze the kinematics of compact group galaxies. This project has three main goals: 1. determine the evolutionary stages of the groups; 2. search for tidal dwarf galaxies and 3. determine the Tully-Fisher relation for the group galaxies. We classify the compact groups studied so far into the following subclasses : (1) merging groups, (2) strongly interacting, (3) mildly interacting, (4) kinematically undisturbed and (5) false groups/single galaxy (details are given in the companion paper Mendes de Oliveira and Amram, 2000). We present examples of velocity fields of galaxies in compact groups that are in different evolutionary stages as classified from the kinematic disturbances. Spiral-only groups have often been considered chance alignments or groups in the very early stages of dynamical evolution. However, we find that the kinematics of the member galaxies for spiral-only groups in classes (1), (2) and (3) above display peculiarities which suggest that the galaxies know of the presence of their neighbors.

  17. Chemistry in Infrared Dark Cloud Clumps: A Molecular Line Survey at 3 mm

    NASA Astrophysics Data System (ADS)

    Sanhueza, Patricio; Jackson, James M.; Foster, Jonathan B.; Garay, Guido; Silva, Andrea; Finn, Susanna C.

    2012-09-01

    We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines does not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N2H+ line is optically thin, the C2H line is moderately optically thick, and HNC and HCO+ are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C2H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.

  18. Catching Galactic open clusters in advanced stages of dynamical evolution

    NASA Astrophysics Data System (ADS)

    Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.

    2018-04-01

    During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely: ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7 and ESO 065-7. We employed Markov chain Monte-Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams (CMDs) cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12 and NGC 6573 resulted to be of nearly the same young age (8.2 ≤log(t yr-1) ≤ 8.3); ESO 260-7 and ESO065-7 are of intermediate age (9.2 ≤log(t yr-1) ≤ 9.4). All studied OCs are located at similar Galactocentric distances (RG ˜ 6 - 6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.

  19. Catching Galactic open clusters in advanced stages of dynamical evolution

    NASA Astrophysics Data System (ADS)

    Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.

    2018-07-01

    During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7, and ESO 065-7. We employed Markov chain Monte Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12, and NGC 6573 resulted to be of nearly the same young age [8.2 ≤log(t yr-1) ≤ 8.3]; ESO 260-7 and ESO065-7 are of intermediate age [9.2 ≤log(t yr-1) ≤ 9.4]. All studied OCs are located at similar Galactocentric distances (RG ˜6-6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.

  20. The pathway between conflict and reconciliation: coexistence as an evolutionary process.

    PubMed

    Sluzki, Carlos E

    2010-02-01

    A normative sequence of six stages is proposed to describe the process of evolution from open conflict to harmonious coexistence, as well at its devolution from the latter to the former. The stages may be termed Confrontation, Truce, Collaboration, Cooperation, Interdependence and Integration. Each of the six stages constitutes an amalgam of practices, narratives and prevalent emotions in a relational "game" that tends to resist change. At the stage of Confrontation, each party assumes that any act of the other is motivated by ill intent, and active hostility prevails. In Truce or Freeze, acts of hostility are curtailed by a real or virtual "neutral zone" controlled by powerful third parties. The dominant emotions are resentment, anger, and mistrust. Collaboration retains some assumptions of ill intent while certain activities in common are carried out. The third party looses visibility, and the dominant emotions include ambivalence. Cooperation entails the assumption of neutral intent of self and other, while activities in common are planned and carried out. Key emotions include cautious compassion for the other. Interdependence is characterized by active involvement in planning toward the common good. The dominant emotions are trust and forgiveness. At the other end of the spectrum, parties at the stage of Integration are actively involved in projects aimed at the common good and each supports the other's growth. The dominant emotions are solidarity and a friendly trust. Movement from one stage to another shares certain characteristics with other complex systems. For professionals aiming to facilitate evolutionary change, whether in interpersonal or in international relations, the systemic cohesion of each stage constitutes the main challenge, and the promise of similar cohesion at the next stage provides the main hope.

  1. Riluzole and Sorafenib Tosylate in Treating Patients With Advanced Solid Tumors or Melanoma

    ClinicalTrials.gov

    2018-05-15

    Advanced Malignant Solid Neoplasm; Recurrent Melanoma; Refractory Malignant Solid Neoplasm; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  2. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.

    PubMed

    Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A

    2014-11-21

    To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.

  3. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Social defense: an evolutionary-developmental model of children's strategies for coping with threat in the peer group.

    PubMed

    Martin, Meredith J; Davies, Patrick T; MacNeill, Leigha A

    2014-04-29

    Navigating the ubiquitous conflict, competition, and complex group dynamics of the peer group is a pivotal developmental task of childhood. Difficulty negotiating these challenges represents a substantial source of risk for psychopathology. Evolutionary developmental psychology offers a unique perspective with the potential to reorganize the way we think about the role of peer relationships in shaping how children cope with the everyday challenges of establishing a social niche. To address this gap, we utilize the ethological reformulation of the emotional security theory as a guide to developing an evolutionary framework for advancing an understanding of the defense strategies children use to manage antagonistic peer relationships and protect themselves from interpersonal threat (Davies and Sturge-Apple, 2007). In this way, we hope to illustrate the value of an evolutionary developmental lens in generating unique theoretical insight and novel research directions into the role of peer relationships in the development of psychopathology.

  5. Incorporating evolutionary processes into population viability models.

    PubMed

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. © 2014 Society for Conservation Biology.

  6. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  7. Sorafenib Tosylate With or Without Doxorubicin Hydrochloride in Treating Patients With Locally Advanced or Metastatic Liver Cancer

    ClinicalTrials.gov

    2018-04-03

    Advanced Adult Hepatocellular Carcinoma; Non-Resectable Hepatocellular Carcinoma; Recurrent Hepatocellular Carcinoma; Stage III Hepatocellular Carcinoma AJCC v7; Stage IIIA Hepatocellular Carcinoma AJCC v7; Stage IIIB Hepatocellular Carcinoma AJCC v7; Stage IIIC Hepatocellular Carcinoma AJCC v7; Stage IV Hepatocellular Carcinoma AJCC v7; Stage IVA Hepatocellular Carcinoma AJCC v7; Stage IVB Hepatocellular Carcinoma AJCC v7

  8. Evolutionary foundations for cancer biology.

    PubMed

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  9. Evolutionary foundations for cancer biology

    PubMed Central

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles—cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations—provide a foundation for understanding, preventing, and treating cancer. PMID:23396885

  10. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects

    PubMed Central

    Oppenheim, Sara J; Baker, Richard H; Simon, Sabrina; DeSalle, Rob

    2015-01-01

    Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile. PMID:25524309

  11. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu, E-mail: nmorrell@lco.cl

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans asmore » they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.« less

  12. Laughter as a scientific problem: An adventure in sidewalk neuroscience.

    PubMed

    Provine, Robert R

    2016-06-01

    Laughter is a stereotyped, innate, human play vocalization that provides an ideal simple system for neurobehavioral analyses of the sort usually associated with such animal models as walking, wing-flapping, and bird song. Laughter research is in its early stages, where the frontiers are near and accessible to simple observational procedures termed "sidewalk neuroscience." The basic, nontechnical approach of describing the act of laughter and when humans do it has revealed a variety of phenomena of social and neurological significance. Findings include the acoustic structure of laughter, the minimal voluntary control of laughter, contagiousness, the "punctuation effect" that describes the placement of laughter in conversation, the dominance of speech over laughter, the role of breath control in the evolution of speech, the evolutionary trajectory of laughter in primates, and the role of laughter in human matching and mating. If one knows where to look and how to see, advances in neuroscience are accessible to anyone and require minimal resources. © 2015 Wiley Periodicals, Inc.

  13. Cardiac autonomic modulation impairments in advanced breast cancer patients.

    PubMed

    Arab, Claudia; Vanderlei, Luiz Carlos Marques; da Silva Paiva, Laércio; Fulghum, Kyle Levi; Fristachi, Carlos Elias; Nazario, Afonso Celso Pinto; Elias, Simone; Gebrim, Luiz Henrique; Ferreira Filho, Celso; Gidron, Yori; Ferreira, Celso

    2018-05-02

    To compare cardiac autonomic modulation in early- versus advanced-stage breast cancer patients before any type of cancer treatment and investigate associated factors. This cross-sectional study included women (30-69 years old) with primary diagnosis of breast cancer and women with benign breast tumors. We evaluated cardiac modulation by heart rate variability and assessed factors of anxiety, depression, physical activity, and other relevant medical variables. Patients were divided into three groups based on TNM staging of cancer severity: early-stage cancer (n = 42), advanced-stage cancer (n = 37), or benign breast tumors to serve as a control (n = 37). We analyzed heart rate variability in time and frequency domains. The advanced-stage cancer group had lower vagal modulation than early-stage and benign groups; also, the advance-stage group had lower overall heart rate variability when compared to benign conditions. Heart rate variability was influenced by age, menopausal status, and BMI. Heart rate variability seems to be a promising, non-invasive tool for early diagnosis of autonomic dysfunction in breast cancer and detection of cardiovascular impairments at cancer diagnosis. Cardiac autonomic modulation is inversely associated with breast cancer staging.

  14. Darwinian natural selection: its enduring explanatory power

    PubMed Central

    2012-01-01

    Evolutionary theory has never had a stronger scientific foundation than it does today. In a short review I hope to portray the deep commitment of today's biologists to Darwinian natural selection and to discoveries made since Darwin's time. In spite of the scientific advances in the century and a half since the publication of On the Origin of Species, Darwin still remains the principal author of modern evolutionary theory. He is one of the greatest contributors of all time to our understanding of nature. PMID:22481845

  15. Laboratory evolution of protein conformational dynamics.

    PubMed

    Campbell, Eleanor C; Correy, Galen J; Mabbitt, Peter D; Buckle, Ashley M; Tokuriki, Nobuhiko; Jackson, Colin J

    2017-11-08

    This review focuses on recent work that has begun to establish specific functional roles for protein conformational dynamics, specifically how the conformational landscapes that proteins can sample can evolve under laboratory based evolutionary selection. We discuss recent technical advances in computational and biophysical chemistry, which have provided us with new ways to dissect evolutionary processes. Finally, we offer some perspectives on the emerging view of conformational dynamics and evolution, and the challenges that we face in rationally engineering conformational dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Tissue Biomarkers in Melanoma Patients Treated with TIL

    PubMed Central

    Knol, Anne-Chantal; Nguyen, Jean-Michel; Pandolfino, Marie-Christine; Quéreux, Gaëlle; Brocard, Anabelle; Peuvrel, Lucie; Saint-Jean, Mélanie; Saiagh, Soraya; Khammari, Amir; Dréno, Brigitte

    2012-01-01

    While treating stage III melanoma patients with autologous therapeutic TIL in an adjuvant setting, we previously reported a significant benefit of treatment on both progression-free survival and overall survival in patients with only one invaded lymph node (early stage III) compared to patients with more than one invaded lymph nodes (advanced stage III). In this context, in order to understand the difference of activity of TIL therapy according to the progression of the illness at stage III, the first objective of the present study was to determine potential differences in the characteristics of TIL populations obtained from an early stage III and a more advanced stage III when tumor burden is more important. The second objective was to determine possible differences in tissue expression level of several molecules involved in interactions between tumor cells and T cells between early and advanced stage III considering that the tumor microenvironment of invaded lymph nodes could become more tolerant with the progression of the disease. A total of 47 samples of melanoma invaded LN from stage IIIb (AJCC 2007) melanoma patients treated with TIL plus IL-2 were included in this study. We confirmed that both PFS and OS were significantly associated to the presence of tumor-reactive T-cells among TIL injected to the patients and that these tumor reactive T cells were more frequently observed at the early stage III. Moreover, while analyzing the expression of 17 markers on 34/47 tumor specimens using immunohistochemistry, we identified that 3 tissue markers involved in interactions between melanoma cells and T cells have a significant difference of expression between early and advanced stage III: MHC class I, adhesion molecule ICAM-1 and the co-stimulation molecule LFA-3 had a significantly weaker expression in melanoma tissue specimens from advanced stage III. In addition, the expression of the alpha chain of the IL-2 receptor (CD25) and the nuclear transcription factor Foxp3 was significantly increased in the melanoma tissue specimens from advanced stage III. Our results suggest differences in the immunological status of the tumor microenvironment between early and advanced stage III, which could explain the difference in clinical response to TIL infusion in an adjuvant setting between early and advanced stage III. PMID:23284620

  17. Tissue biomarkers in melanoma patients treated with TIL.

    PubMed

    Knol, Anne-Chantal; Nguyen, Jean-Michel; Pandolfino, Marie-Christine; Quéreux, Gaëlle; Brocard, Anabelle; Peuvrel, Lucie; Saint-Jean, Mélanie; Saiagh, Soraya; Khammari, Amir; Dréno, Brigitte

    2012-01-01

    While treating stage III melanoma patients with autologous therapeutic TIL in an adjuvant setting, we previously reported a significant benefit of treatment on both progression-free survival and overall survival in patients with only one invaded lymph node (early stage III) compared to patients with more than one invaded lymph nodes (advanced stage III). In this context, in order to understand the difference of activity of TIL therapy according to the progression of the illness at stage III, the first objective of the present study was to determine potential differences in the characteristics of TIL populations obtained from an early stage III and a more advanced stage III when tumor burden is more important. The second objective was to determine possible differences in tissue expression level of several molecules involved in interactions between tumor cells and T cells between early and advanced stage III considering that the tumor microenvironment of invaded lymph nodes could become more tolerant with the progression of the disease. A total of 47 samples of melanoma invaded LN from stage IIIb (AJCC 2007) melanoma patients treated with TIL plus IL-2 were included in this study. We confirmed that both PFS and OS were significantly associated to the presence of tumor-reactive T-cells among TIL injected to the patients and that these tumor reactive T cells were more frequently observed at the early stage III. Moreover, while analyzing the expression of 17 markers on 34/47 tumor specimens using immunohistochemistry, we identified that 3 tissue markers involved in interactions between melanoma cells and T cells have a significant difference of expression between early and advanced stage III: MHC class I, adhesion molecule ICAM-1 and the co-stimulation molecule LFA-3 had a significantly weaker expression in melanoma tissue specimens from advanced stage III. In addition, the expression of the alpha chain of the IL-2 receptor (CD25) and the nuclear transcription factor Foxp3 was significantly increased in the melanoma tissue specimens from advanced stage III. Our results suggest differences in the immunological status of the tumor microenvironment between early and advanced stage III, which could explain the difference in clinical response to TIL infusion in an adjuvant setting between early and advanced stage III.

  18. States of Terror: Understanding Evolving Islamist Terrorist Organizations and the Threat They Pose

    DTIC Science & Technology

    2016-09-01

    Afghanistan, for instance, a force of religious students (talibs) became politically known as the Taliban and then as the official national government of...motivated by religious , political, or other ideological beliefs, to instill fear and coerce governments or societies in pursuit of goals that are usually...several well-documented evolutionary stages. The first stage included the shift from nationalist-centered terrorism to religious terrorism. The next

  19. Selection of reliable reference genes for normalization of quantitative RT-PCR from different developmental stages and tissues in amphioxus

    PubMed Central

    Zhang, Qi-Lin; Zhu, Qian-Hua; Liao, Xin; Wang, Xiu-Qiang; Chen, Tao; Xu, Han-Ting; Wang, Juan; Yuan, Ming-Long; Chen, Jun-Yuan

    2016-01-01

    Amphioxus is a closest living proxy to the ancestor of cephalochordates with vertebrates, and key animal for novel understanding in the evolutionary origin of vertebrate body plan, genome, tissues and immune system. Reliable analyses using quantitative real-time PCR (qRT-PCR) for answering these scientific questions is heavily dependent on reliable reference genes (RGs). In this study, we evaluated stability of thirteen candidate RGs in qRT-PCR for different developmental stages and tissues of amphioxus by four independent (geNorm, NormFinder, BestKeeper and deltaCt) and one comparative algorithms (RefFinder). The results showed that the top two stable RGs were the following: (1) S20 and 18 S in thirteen developmental stages, (2) EF1A and ACT in seven normal tissues, (3) S20 and L13 in both intestine and hepatic caecum challenged with lipopolysaccharide (LPS), and (4) S20 and EF1A in gill challenged with LPS. The expression profiles of two target genes (EYA and HHEX) in thirteen developmental stages were used to confirm the reliability of chosen RGs. This study identified optimal RGs that can be used to accurately measure gene expression under these conditions, which will benefit evolutionary and functional genomics studies in amphioxus. PMID:27869224

  20. Evolutionary speed of species invasions.

    PubMed

    García-Ramos, Gisela; Rodríguez, Diego

    2002-04-01

    Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for ecological changes related to global warming.

  1. Embryo Development inside Female Salamander (Ambystoma jeffersonianum-laterale) Prior to Egg Laying

    PubMed Central

    Charney, Noah D.; Castorino, John J.; Dobro, Megan J.; Steely, Sarah L.

    2014-01-01

    The length of embryo retention prior to oviposition is a critical evolutionary trait. In all oviparous salamanders, which include the vast majority of species in the order, fertilization is thought to occur at the time of egg laying. Embryos then enter the first cleavage stage several hours after being deposited. This pattern holds for previously studied individuals in the Ambystoma jeffersonianum-laterale complex. Here, we document an instance in which a female Ambystoma jeffersonianum-laterale was carrying embryos internally that had already reached stage 10 of development. Development likely began several days prior to the start of migration to the breeding pond. This is the first such record for any egg-laying salamander, and suggests a degree of plasticity in the timing of fertilization and development not previously recognized. Further work is needed to ascertain the prevalence, mechanics, and evolutionary significance of this phenomenon. PMID:24651275

  2. Evolutional schemes for objects with active nuclei

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1979-01-01

    The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.

  3. Attachment in Middle Childhood: An Evolutionary-Developmental Perspective.

    PubMed

    Del Giudice, Marco

    2015-01-01

    Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an integrated biological model of middle childhood and discussing the neurobiological mechanisms that support the middle childhood transition. I examine the potential role of adrenal androgens, focusing on their activational effects in interaction with early exposure to sex hormones. I then discuss three insights arising from the integrated model and apply them to the development of attachment in middle childhood. I consider the changing functions of attachment in light of social competition, the emergence of sex differences in attachment, and the model's implications for the genetics of attachment in middle childhood. © 2015 Wiley Periodicals, Inc.

  4. An evolutionary solution to anesthesia automated record keeping.

    PubMed

    Bicker, A A; Gage, J S; Poppers, P J

    1998-08-01

    In the course of five years the development of an automated anesthesia record keeper has evolved through nearly a dozen stages, each marked by new features and sophistication. Commodity PC hardware and software minimized development costs. Object oriented analysis, programming and design supported the process of change. In addition, we developed an evolutionary strategy that optimized motivation, risk management, and maximized return on investment. Besides providing record keeping services, the system supports educational and research activities and through a flexible plotting paradigm, supports each anesthesiologist's focus on physiological data during and after anesthesia.

  5. The Environmental Control and Life Support System (ECLSS) advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  6. Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: Effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model

    PubMed Central

    Scarisbrick, Julia J.; Prince, H. Miles; Vermeer, Maarten H.; Quaglino, Pietro; Horwitz, Steven; Porcu, Pierluigi; Stadler, Rudolf; Wood, Gary S.; Beylot-Barry, Marie; Pham-Ledard, Anne; Foss, Francine; Girardi, Michael; Bagot, Martine; Michel, Laurence; Battistella, Maxime; Guitart, Joan; Kuzel, Timothy M.; Martinez-Escala, Maria Estela; Estrach, Teresa; Papadavid, Evangelia; Antoniou, Christina; Rigopoulos, Dimitis; Nikolaou, Vassilki; Sugaya, Makoto; Miyagaki, Tomomitsu; Gniadecki, Robert; Sanches, José Antonio; Cury-Martins, Jade; Miyashiro, Denis; Servitje, Octavio; Muniesa, Cristina; Berti, Emilio; Onida, Francesco; Corti, Laura; Hodak, Emilia; Amitay-Laish, Iris; Ortiz-Romero, Pablo L.; Rodríguez-Peralto, Jose L.; Knobler, Robert; Porkert, Stefanie; Bauer, Wolfgang; Pimpinelli, Nicola; Grandi, Vieri; Cowan, Richard; Rook, Alain; Kim, Ellen; Pileri, Alessandro; Patrizi, Annalisa; Pujol, Ramon M.; Wong, Henry; Tyler, Kelly; Stranzenbach, Rene; Querfeld, Christiane; Fava, Paolo; Maule, Milena; Willemze, Rein; Evison, Felicity; Morris, Stephen; Twigger, Robert; Talpur, Rakhshandra; Kim, Jinah; Ognibene, Grant; Li, Shufeng; Tavallaee, Mahkam; Hoppe, Richard T.; Duvic, Madeleine; Whittaker, Sean J.; Kim, Youn H.

    2015-01-01

    Purpose Advanced-stage mycosis fungoides (MF; stage IIB to IV) and Sézary syndrome (SS) are aggressive lymphomas with a median survival of 1 to 5 years. Clinical management is stage based; however, there is wide range of outcome within stages. Published prognostic studies in MF/SS have been single-center trials. Because of the rarity of MF/SS, only a large collaboration would power a study to identify independent prognostic markers. Patients and Methods Literature review identified the following 10 candidate markers: stage, age, sex, cutaneous histologic features of folliculotropism, CD30 positivity, proliferation index, large-cell transformation, WBC/lymphocyte count, serum lactate dehydrogenase, and identical T-cell clone in blood and skin. Data were collected at specialist centers on patients diagnosed with advanced-stage MF/SS from 2007. Each parameter recorded at diagnosis was tested against overall survival (OS). Results Staging data on 1,275 patients with advanced MF/SS from 29 international sites were included for survival analysis. The median OS was 63 months, with 2- and 5-year survival rates of 77% and 52%, respectively. The median OS for patients with stage IIB disease was 68 months, but patients diagnosed with stage III disease had slightly improved survival compared with patients with stage IIB, although patients diagnosed with stage IV disease had significantly worse survival (48 months for stage IVA and 33 months for stage IVB). Of the 10 variables tested, four (stage IV, age > 60 years, large-cell transformation, and increased lactate dehydrogenase) were independent prognostic markers for a worse survival. Combining these four factors in a prognostic index model identified the following three risk groups across stages with significantly different 5-year survival rates: low risk (68%), intermediate risk (44%), and high risk (28%). Conclusion To our knowledge, this study includes the largest cohort of patients with advanced-stage MF/SS and identifies markers with independent prognostic value, which, used together in a prognostic index, may be useful to stratify advanced-stage patients. PMID:26438120

  7. Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: Effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model.

    PubMed

    Scarisbrick, Julia J; Prince, H Miles; Vermeer, Maarten H; Quaglino, Pietro; Horwitz, Steven; Porcu, Pierluigi; Stadler, Rudolf; Wood, Gary S; Beylot-Barry, Marie; Pham-Ledard, Anne; Foss, Francine; Girardi, Michael; Bagot, Martine; Michel, Laurence; Battistella, Maxime; Guitart, Joan; Kuzel, Timothy M; Martinez-Escala, Maria Estela; Estrach, Teresa; Papadavid, Evangelia; Antoniou, Christina; Rigopoulos, Dimitis; Nikolaou, Vassilki; Sugaya, Makoto; Miyagaki, Tomomitsu; Gniadecki, Robert; Sanches, José Antonio; Cury-Martins, Jade; Miyashiro, Denis; Servitje, Octavio; Muniesa, Cristina; Berti, Emilio; Onida, Francesco; Corti, Laura; Hodak, Emilia; Amitay-Laish, Iris; Ortiz-Romero, Pablo L; Rodríguez-Peralto, Jose L; Knobler, Robert; Porkert, Stefanie; Bauer, Wolfgang; Pimpinelli, Nicola; Grandi, Vieri; Cowan, Richard; Rook, Alain; Kim, Ellen; Pileri, Alessandro; Patrizi, Annalisa; Pujol, Ramon M; Wong, Henry; Tyler, Kelly; Stranzenbach, Rene; Querfeld, Christiane; Fava, Paolo; Maule, Milena; Willemze, Rein; Evison, Felicity; Morris, Stephen; Twigger, Robert; Talpur, Rakhshandra; Kim, Jinah; Ognibene, Grant; Li, Shufeng; Tavallaee, Mahkam; Hoppe, Richard T; Duvic, Madeleine; Whittaker, Sean J; Kim, Youn H

    2015-11-10

    Advanced-stage mycosis fungoides (MF; stage IIB to IV) and Sézary syndrome (SS) are aggressive lymphomas with a median survival of 1 to 5 years. Clinical management is stage based; however, there is wide range of outcome within stages. Published prognostic studies in MF/SS have been single-center trials. Because of the rarity of MF/SS, only a large collaboration would power a study to identify independent prognostic markers. Literature review identified the following 10 candidate markers: stage, age, sex, cutaneous histologic features of folliculotropism, CD30 positivity, proliferation index, large-cell transformation, WBC/lymphocyte count, serum lactate dehydrogenase, and identical T-cell clone in blood and skin. Data were collected at specialist centers on patients diagnosed with advanced-stage MF/SS from 2007. Each parameter recorded at diagnosis was tested against overall survival (OS). Staging data on 1,275 patients with advanced MF/SS from 29 international sites were included for survival analysis. The median OS was 63 months, with 2- and 5-year survival rates of 77% and 52%, respectively. The median OS for patients with stage IIB disease was 68 months, but patients diagnosed with stage III disease had slightly improved survival compared with patients with stage IIB, although patients diagnosed with stage IV disease had significantly worse survival (48 months for stage IVA and 33 months for stage IVB). Of the 10 variables tested, four (stage IV, age > 60 years, large-cell transformation, and increased lactate dehydrogenase) were independent prognostic markers for a worse survival. Combining these four factors in a prognostic index model identified the following three risk groups across stages with significantly different 5-year survival rates: low risk (68%), intermediate risk (44%), and high risk (28%). To our knowledge, this study includes the largest cohort of patients with advanced-stage MF/SS and identifies markers with independent prognostic value, which, used together in a prognostic index, may be useful to stratify advanced-stage patients. © 2015 by American Society of Clinical Oncology.

  8. Chinese Herbal Formulation PHY906 and Sorafenib Tosylate in Treating Patients With Advanced Liver Cancer

    ClinicalTrials.gov

    2018-05-07

    Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Advanced Adult Hepatocellular Carcinoma; BCLC Stage B Adult Hepatocellular Carcinoma; BCLC Stage C Adult Hepatocellular Carcinoma

  9. Asian consensus workshop report: expert consensus guideline for the management of intermediate and advanced hepatocellular carcinoma in Asia.

    PubMed

    Han, Kwang-Hyub; Kudo, Masatochi; Ye, Sheng-Long; Choi, Jong Young; Poon, Roonni Tung-Ping; Seong, Jinsil; Park, Joong-Won; Ichida, Takafumi; Chung, Jin Wook; Chow, Pierce; Cheng, Ann-Lii

    2011-01-01

    Hepatocellular carcinoma (HCC) is a highly prevalent disease in many Asian countries, accounting for 80% of victims worldwide. Screening programs improve the detection of early HCC and have a positive impact on survival, but the majority of HCC patients in Asia still present with advanced stage disease. The treatment outcomes of HCC are affected by multiple variables, including liver function, performance status of the patient, and tumor stage. Therefore, it is not easy to apply a multidisciplinary therapeutic approach for optimal management. At present, limited numbers of HCC patients are eligible for curative therapies such as surgery or ablation in Asia. Therefore, most patients are eligible for only palliative treatments. For optimal management, the treatment choice is guided by staging systems and treatment guidelines. Numerous staging systems have been proposed and treatment guidelines vary by region. According to the Barcelona Clinic Liver Cancer (BCLC) guideline based on evidence from randomized clinical trials, only transarterial chemoembolization (TACE) is recommended for intermediate stage HCC and sorafenib for advanced stage HCC. However, treatment guidelines from Asian countries have adopted several other therapeutic modalities such as a surgical approach, hepatic arterial infusion chemotherapy, external radiation, and their combinations based on clinical experiences for intermediate and advanced stage HCC. Although TACE is the main therapeutic modality in the intermediate stage, overall therapeutic outcomes depend on the tumor size. In the advanced stage, the prognosis depends on the tumor status, e.g. major vessel invasion or extrahepatic spread. Thus, a new staging system representing prognoses suitable for Asian HCC patients and a corresponding optimal treatment algorithm should be further investigated using evidence-based data, which will finally bring about an Asian consensus for the management of intermediate and advanced stage HCC. Copyright © 2011 S. Karger AG, Basel.

  10. Clinical and Cost Implications of Universal Versus Locally Advanced-Stage and Advanced-Stage-Only Molecular Testing for Epidermal Growth Factor Receptor Mutations and Anaplastic Lymphoma Kinase Rearrangements in Non-Small Cell Lung Carcinoma: A Tertiary Academic Institution Experience.

    PubMed

    Sauter, Jennifer L; Butnor, Kelly J

    2016-04-01

    Although epidermal growth factor receptor (EGFR)- and anaplastic lymphoma kinase (ALK)-directed therapies are not approved for patients with early-stage non-small cell lung carcinoma (NSCLC), many institutions perform EGFR and ALK testing for all patients with NSCLC at the time of initial diagnosis. Current consensus guidelines recommend EGFR testing and suggest ALK testing at the time of initial diagnosis for patients with advanced disease. To examine the cost and clinical impact of EGFR and ALK testing of patients with early-stage NSCLC. Records from all patients with a diagnosis of NSCLC made on a nonresection specimen at our institution during a single calendar year (2012) were reviewed, and a cost analysis was performed. Of 133 total patients, 47 (35%) had early-stage (stage I or II) disease and 86 (65%) had locally advanced (stage III) or advanced (stage IV) disease at presentation. Eight of 47 patients with early-stage disease (17%) had progression/recurrence during 18 to 30 months of follow-up, 6 of 8 (75%) of whom had pathologic confirmation of progression/recurrence. The estimated additional cost of EGFR and ALK testing for all newly diagnosed patients with NSCLC at our institution is $75,200 per year, compared to testing only patients with locally advanced and advanced-stage disease. The cost of universal molecular testing of NSCLC is substantial. EGFR and ALK testing of patients with early-stage disease appears to have negligible clinical impact, as most patients do not have disease recurrence/progression. Those whose disease recurs/progresses typically undergo rebiopsy. Our findings do not support the practice of universal EGFR and ALK testing in NSCLC at the time of initial diagnosis.

  11. The temporal aspect of the drake equation and SETI.

    PubMed

    Cirković, Milan M

    2004-01-01

    We critically investigate some evolutionary aspects of the famous Drake equation, which is usually presented as the central guide for research on extraterrestrial intelligence. It is shown that the Drake equation tacitly relies on unverified assumptions on both the physicochemical history of our galaxy and the properties of advanced intelligent communities. In this manner, the conventional approach fails to take into account various evolutionary processes forming prerequisites for quantification of the Drake equation parameters. The importance of recent results of Lineweaver and collaborators on chemical build-up of inhabitable planets for the search for extraterrestrial intelligence is emphasized. Two important evolutionary effects are briefly discussed, and the resolution of the difficulties within the context of the phase-transition astrobiological models is sketched.

  12. Advances in understanding tumour evolution through single-cell sequencing.

    PubMed

    Kuipers, Jack; Jahn, Katharina; Beerenwinkel, Niko

    2017-04-01

    The mutational heterogeneity observed within tumours poses additional challenges to the development of effective cancer treatments. A thorough understanding of a tumour's subclonal composition and its mutational history is essential to open up the design of treatments tailored to individual patients. Comparative studies on a large number of tumours permit the identification of mutational patterns which may refine forecasts of cancer progression, response to treatment and metastatic potential. The composition of tumours is shaped by evolutionary processes. Recent advances in next-generation sequencing offer the possibility to analyse the evolutionary history and accompanying heterogeneity of tumours at an unprecedented resolution, by sequencing single cells. New computational challenges arise when moving from bulk to single-cell sequencing data, leading to the development of novel modelling frameworks. In this review, we present the state of the art methods for understanding the phylogeny encoded in bulk or single-cell sequencing data, and highlight future directions for developing more comprehensive and informative pictures of tumour evolution. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus

    PubMed Central

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression in eukaryotes modulating a large diversity of biological processes. The discovery of miRNAs has provided new opportunities to understand the biology of a number of species. The cattle tick, Rhipicephalus (Boophilus) microplus, causes significant economic losses in cattle production worldwide and this drives us to further understand their biology so that effective control measures can be developed. To be able to provide new insights into the biology of cattle ticks and to expand the repertoire of tick miRNAs we utilized Illumina technology to sequence the small RNA transcriptomes derived from various life stages and selected organs of R. microplus. Results To discover and profile cattle tick miRNAs we employed two complementary approaches, one aiming to find evolutionary conserved miRNAs and another focused on the discovery of novel cattle-tick specific miRNAs. We found 51 evolutionary conserved R. microplus miRNA loci, with 36 of these previously found in the tick Ixodes scapularis. The majority of the R. microplus miRNAs are perfectly conserved throughout evolution with 11, 5 and 15 of these conserved since the Nephrozoan (640 MYA), Protostomian (620MYA) and Arthropoda (540 MYA) ancestor, respectively. We then employed a de novo computational screening for novel tick miRNAs using the draft genome of I. scapularis and genomic contigs of R. microplus as templates. This identified 36 novel R. microplus miRNA loci of which 12 were conserved in I. scapularis. Overall we found 87 R. microplus miRNA loci, of these 15 showed the expression of both miRNA and miRNA* sequences. R. microplus miRNAs showed a variety of expression profiles, with the evolutionary-conserved miRNAs mainly expressed in all life stages at various levels, while the expression of novel tick-specific miRNAs was mostly limited to particular life stages and/or tick organs. Conclusions Anciently acquired miRNAs in the R. microplus lineage not only tend to accumulate the least amount of nucleotide substitutions as compared to those recently acquired miRNAs, but also show ubiquitous expression profiles through out tick life stages and organs contrasting with the restricted expression profiles of novel tick-specific miRNAs. PMID:21699734

  14. Design options for advanced manned launch systems

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  15. Integrating evo-devo with ecology for a better understanding of phenotypic evolution

    PubMed Central

    Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.

    2015-01-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411

  16. Integrating evo-devo with ecology for a better understanding of phenotypic evolution.

    PubMed

    Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman

    2015-11-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.

  17. The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community.

    PubMed

    Bassar, Ronald D; Simon, Troy; Roberts, William; Travis, Joseph; Reznick, David N

    2017-02-01

    Species coexistence may result by chance when co-occurring species do not strongly interact or it may be an evolutionary outcome of strongly interacting species adapting to each other. Although patterns like character displacement indicate that coexistence has often been an evolutionary outcome, it is unclear how often the evolution of coexistence represents adaptation in only one species or reciprocal adaptation among all interacting species. Here, we demonstrate a strong role for evolution in the coexistence of guppies and killifish in Trinidadian streams. We experimentally recreated the temporal stages in the invasion and establishment of guppies into communities that previously contained only killifish. We combined demographic responses of guppies and killifish with a size-based integral projection model to calculate the fitness of the phenotypes of each species in each of the stages of community assembly. We show that guppies from locally adapted populations that are sympatric with killifish have higher fitness when paired with killifish than guppies from allopatric populations. This elevated fitness involves effects traceable to both guppy and killifish evolution. We discuss the implications of our results to the study of species coexistence and how it may be mediated through eco-evolutionary feedbacks. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  19. Why an extended evolutionary synthesis is necessary

    PubMed Central

    2017-01-01

    Since the last major theoretical integration in evolutionary biology—the modern synthesis (MS) of the 1940s—the biosciences have made significant advances. The rise of molecular biology and evolutionary developmental biology, the recognition of ecological development, niche construction and multiple inheritance systems, the ‘-omics’ revolution and the science of systems biology, among other developments, have provided a wealth of new knowledge about the factors responsible for evolutionary change. Some of these results are in agreement with the standard theory and others reveal different properties of the evolutionary process. A renewed and extended theoretical synthesis, advocated by several authors in this issue, aims to unite pertinent concepts that emerge from the novel fields with elements of the standard theory. The resulting theoretical framework differs from the latter in its core logic and predictive capacities. Whereas the MS theory and its various amendments concentrate on genetic and adaptive variation in populations, the extended framework emphasizes the role of constructive processes, ecological interactions and systems dynamics in the evolution of organismal complexity as well as its social and cultural conditions. Single-level and unilinear causation is replaced by multilevel and reciprocal causation. Among other consequences, the extended framework overcomes many of the limitations of traditional gene-centric explanation and entails a revised understanding of the role of natural selection in the evolutionary process. All these features stimulate research into new areas of evolutionary biology. PMID:28839929

  20. Nanoparticle Albumin-Bound Rapamycin in Treating Patients With Advanced Cancer With mTOR Mutations

    ClinicalTrials.gov

    2018-06-01

    Advanced Malignant Neoplasm; Cervical Squamous Cell Carcinoma; Endometrial Carcinoma; Malignant Uterine Neoplasm; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Cervical Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Malignant Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Solid Neoplasm; Stage III Bladder Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Breast Cancer; Stage IIIC Ovarian Cancer; Stage IV Breast Cancer; Stage IV Ovarian Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IVA Bladder Cancer; Stage IVA Cervical Cancer; Stage IVB Bladder Cancer; Stage IVB Cervical Cancer

  1. Content of Advance Directives for Individuals with Advanced Dementia

    PubMed Central

    Black, Betty S.; Phillips, Hilary; Fahrendorf, Sarah Richardson; Schwartz, Jack; Angelino, Andrew F.; Anderson, Danielle; Rabins, Peter V.

    2010-01-01

    Objectives To examine how people with end-stage dementia have conveyed their wishes for end-of-life care in advance directives. Methods The documents of 123 residents of three Maryland nursing homes, all with end-stage dementia, were reviewed. Results More years of education and White race were significantly associated with having an advance directive. With the exceptions of comfort care and pain treatment, advance directives were used primarily to restrict, not request, many forms of care at the end-of-life. Decisions about care for end-stage conditions such as Alzheimer's dementia are less often addressed in these documents than for terminal conditions and persistent vegetative state. Discussion In order for advance directives to better reflect a person's wishes, discussions with individuals and families about advance directives should include a range of care issues in the settings of terminal illness, persistent vegetative state or end-stage illness. These documents should be reviewed periodically to make certain they convey accurately the person's treatment preferences. PMID:18625761

  2. Complex life cycles and the responses of insects to climate change.

    PubMed

    Kingsolver, Joel G; Woods, H Arthur; Buckley, Lauren B; Potter, Kristen A; MacLean, Heidi J; Higgins, Jessica K

    2011-11-01

    Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  3. Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity.

    PubMed

    Engel, M S

    2001-02-13

    Advanced eusociality sometimes is given credit for the ecological success of termites, ants, some wasps, and some bees. Comprehensive study of bees fossilized in Baltic amber has revealed an unsuspected middle Eocene (ca. 45 million years ago) diversity of eusocial bee lineages. Advanced eusociality arose once in the bees with significant post-Eocene losses in diversity, leaving today only two advanced eusocial tribes comprising less than 2% of the total bee diversity, a trend analogous to that of hominid evolution. This pattern of changing diversity contradicts notions concerning the role of eusociality for evolutionary success in insects.

  4. Evolutionary medicine and its implications for endocrinological issues (e.g. menopause).

    PubMed

    Kirchengast, Sylvia; Rühli, Frank

    2013-06-01

    Evolutionary medicine, which was formalized in the early 1990s, investigates evolutionary causes of recent human disease, disorders and malfunctions but also the influence of changing living conditions and modernization on health and disease. Evolutionary medicine can also provide insights into endocrinological disorders and in particular in the process of female reproductive senescence. Female reproductive senescence, i.e. menopausal transition is physiologically caused by the decline of estrogen secretion, which is associated with various somatic and psychic discomforts making this stage of life extremely uncomfortable. From the viewpoint of evolutionary medicine, these menopausal symptoms are the result from the sudden decrease of very high lifetime estrogen levels to zero during postmenopause, a situation which is quite new in our evolution and history. While women in recent developed countries experience menarche early, menopause late, few pregnancies, short periods of lactation and consequently low life time estrogen levels. The opposite is true of women living in traditional societies, whose living conditions may be interpreted as a mirror of the situation in our history. From this viewpoint we can conclude that menopausal symptoms may are the result of a mismatch between female reproductive physiology and recent living conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Development of antibiotic regimens using graph based evolutionary algorithms.

    PubMed

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Trametinib or Combination Chemotherapy in Treating Patients With Refractory or Advanced Biliary or Gallbladder Cancer or That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2017-08-11

    Adult Cholangiocarcinoma; Advanced Adult Hepatocellular Carcinoma; BCLC Stage C Adult Hepatocellular Carcinoma; BCLC Stage D Adult Hepatocellular Carcinoma; Hilar Cholangiocarcinoma; Localized Non-Resectable Adult Liver Carcinoma; Recurrent Adult Liver Carcinoma; Recurrent Childhood Liver Cancer; Recurrent Extrahepatic Bile Duct Carcinoma; Recurrent Gallbladder Carcinoma; Stage II Gallbladder Cancer; Stage III Childhood Hepatocellular Carcinoma; Stage IIIA Gallbladder Cancer; Stage IIIB Gallbladder Cancer; Stage IV Childhood Hepatocellular Carcinoma; Stage IV Distal Bile Duct Cancer; Stage IVA Gallbladder Cancer; Stage IVB Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Carcinoma

  7. Variation in advanced stage at diagnosis of lung and female breast cancer in an English region 2006-2009.

    PubMed

    Lyratzopoulos, G; Abel, G A; Barbiere, J M; Brown, C H; Rous, B A; Greenberg, D C

    2012-03-13

    Understanding variation in stage at diagnosis can inform interventions to improve the timeliness of diagnosis for patients with different cancers and characteristics. We analysed population-based data on 17,836 and 13,286 East of England residents diagnosed with (female) breast and lung cancer during 2006-2009, with stage information on 16,460 (92%) and 10,435 (79%) patients, respectively. Odds ratios (ORs) of advanced stage at diagnosis adjusted for patient and tumour characteristics were derived using logistic regression. We present adjusted ORs of diagnosis in stages III/IV compared with diagnosis in stages I/II. For breast cancer, the frequency of advanced stage at diagnosis increased stepwise among old women (ORs: 1.21, 1.46, 1.68 and 1.78 for women aged 70-74, 75-79, 80-84 and ≥85, respectively, compared with those aged 65-69 , P<0.001). In contrast, for lung cancer advanced stage at diagnosis was less frequent in old patients (ORs: 0.82, 0.74, 0.73 and 0.66, P<0.001). Advanced stage at diagnosis was more frequent in more deprived women with breast cancer (OR: 1.23 for most compared with least deprived, P=0.002), and in men with lung cancer (OR: 1.14, P=0.011). The observed patterns were robust to sensitivity analyses approaches for handling missing stage data under different assumptions. Interventions to help improve the timeliness of diagnosis of different cancers should be targeted at specific age groups.

  8. Effect of hydronephrosis on survival in advanced stage cervical cancer.

    PubMed

    Goklu, Mehmet Rıfat; Seckin, Kerem Doga; Togrul, Cihan; Goklu, Yasemin; Tahaoglu, Ali Emre; Oz, Murat; Ertas, Ibrahim Egemen

    2015-01-01

    Hydronephrosis is frequently encountered in advanced stage cervical cancers, and may be associated with mortality. In the present study, we aimed to demonstrate the effect of hydronephrosis on survival in patients with inoperable advanced stage cervical cancer. The study data were acquired by retrospective analysis of the patient records belonging to 165 women with FIGO (International Federation of Gynecology and Obstetrics) stage-IIIB or more advanced cervical cancer, which were not surgical candidates. Parameters including patient age, pathological diagnosis, disease stage, pelvic sidewall extension, presence of hydronephrosis and administration of chemoradiation were analyzed. Further, the effects of these variables on survival were assessed. P values less than 0.05 were considered statistically significant. The distribution of the study patients according to disease stage was as follows: 131 (79.4%) had stage-IIIB, 18 (10.9%) had stage-IVB and 16 (% 9.7) patients had stage-IVA disease. Hydronephrosis was not evident in 91 (55.2%) of these patients, whereas 41 (24.8%) had unilateral and 33 (20%) patients had bilateral hydronephrosis. When compared to mean survival in patients who did not have hydronephrosis, survival was significantly shortened in patients who had bilateral and unilateral hydronephrosis (p<0.05). There was no significant survival difference between patients with unilateral and bilateral hydronephrosis (p>0.05). Although patient age, pathological type, pelvic involvement, and chemotherapy treatment rates were similar (p>0.05), radiotherapy requirement rate and disease stage were significantly different among the study groups (p<0.05). Hydronephrosis was found to be a significant predictor of poor survival in patients with advanced stage cervical cancer, irrespective of unilateral or bilateral involvement.While waiting for future studies with larger sample sizes, we believe that the FIGO stages in advanced cervical cancer could further be stratified into subgroups according to presence or absence of hydronephrosis.

  9. Ontogenetic shifts in plant-plant interactions in a rare cycad within angiosperm communities.

    PubMed

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Dovčiak, Martin

    2014-06-01

    Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant-plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.

  10. IRAS 23385 & 6053: A Prototype Massive Class O Object

    NASA Technical Reports Server (NTRS)

    Molinari, S.; Testi, L.; Brand, J.; Cesaroni, R.; Palla, F.

    1998-01-01

    The last few years have seen a rapid growth in observations aimed at identifying intermediate and high-mass star forming sites in a wide range of evolutionary stages ranging from Hot Cores to ultracompact regions, to proto-Ae/Be stars.

  11. Disabling disability amid competing ideologies.

    PubMed

    Koch, Tom

    2017-08-28

    This paper critiques current arguments advancing the potential for transhumanism and a range of biological and pharmacological enhancements to better human flourishing. It does so from a historical perspective weighing the individualistic and competitive evolutionary theories of Darwin with the cooperative and communal theories of Prince Peter Kropotkin a generation later. In doing so it proposes the transhumanist and enhancement enthusiasts operate within a paradigm similar to Darwin's, one that is atomist and individualistic. The critique, which considers the status of those with cognitive, sensory and physical limits, advances a vision of society as a cooperative and communal rather than individualistic and competitive. Within this framework the argument is not one of either/or but on the lexicographical superiority of the communal and social over the individualistic and competitive ethos underlying both Darwin and most contemporary transhumanist literature. This reordering of priorities, it is argued, reflects advances in contemporary biology and evolutionary thinking. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    NASA Astrophysics Data System (ADS)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We calculated the temporal variation of the radial profiles of these COMs for different hot core models. These profiles resemble the so-called jump profiles with relative abundances higher than 10-9 within the evaporation font will furthermore be useful to model the observed spectra of hot cores. We present the simulated spectra of these COMs for different hot core models at various evolutionary timescales. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 105 year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time; this feature can be used to constrain the relative desorption energies of the molecules that mainly form on the grain surface and return to the gas phase via thermal desorption. The detailed modeling of the thermal structure of hot cores with similar masses along with the characterization of the desorption energies of different molecules can be used to constrain the luminosity evolution of the central protostars. The model predictions can be compared with high resolution observation that can probe scales of a few thousand AU in high-mass star forming regions such as from Atacama Large Millimeter/submillimeter Array (ALMA). We used a spectral fitting method to analyze the simulated spectra and find that it significantly underestimates some of the physical parameters such as temperature. The coupling of chemical evolution with radiative transfer models will be particularly useful to decipher the physical structure of hot cores and also to constrain the initial evolutionary stages of high-mass star formation. Appendices are available in electronic form at http://www.aanda.org

  13. Afatinib Dimaleate and Capecitabine in Treating Patients With Advanced Refractory Solid Tumors, Pancreatic Cancer or Biliary Cancer

    ClinicalTrials.gov

    2017-10-26

    Advanced Malignant Solid Neoplasm; Bile Duct Carcinoma; Recurrent Malignant Solid Neoplasm; Recurrent Pancreatic Carcinoma; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IVA Pancreatic Cancer; Stage IVB Pancreatic Cancer

  14. Racial/Ethnic, socioeconomic, and geographic disparities of cervical cancer advanced-stage diagnosis in Texas.

    PubMed

    Zhan, F Benjamin; Lin, Yan

    2014-01-01

    Advanced-stage diagnosis is among the primary causes of mortality among cervical cancer patients. With the wide use of Pap smear screening, cervical cancer advanced-stage diagnosis rates have decreased. However, disparities of advanced-stage diagnosis persist among different population groups. A challenging task in cervical cancer disparity reduction is to identify where underserved population groups are. Based on cervical cancer incidence data between 1995 and 2008, this study investigated advanced-stage cervical cancer disparities in Texas from three social domains: Race/ethnicity, socioeconomic status (SES), and geographic location. Effects of individual and contextual factors, including age, tumor grade, race/ethnicity, as well as contextual SES, spatial access to health care, sociocultural factors, percentage of African Americans, and insurance expenditures, on these disparities were examined using multilevel logistic regressions. Significant variations by race/ethnicity and SES were found in cervical cancer advanced-stage diagnosis. We also found a decline in racial/ethnic disparities of advanced cervical cancer diagnosis rate from 1995 to 2008. However, the progress was slower among African Americans than Hispanics. Geographic disparities could be explained by age, race/ethnicity, SES, and the percentage of African Americans in a census tract. Our findings have important implications for developing effective cervical cancer screening and control programs. We identified the location of underserved populations who need the most assistance with cervical cancer screening. Cervical cancer intervention programs should target Hispanics and African Americans, as well as individuals from communities with lower SES in geographic areas where higher advanced-stage diagnosis rates were identified in this study. Copyright © 2014 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  15. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules

    PubMed Central

    Ashkenazy, Haim; Abadi, Shiran; Martz, Eric; Chay, Ofer; Mayrose, Itay; Pupko, Tal; Ben-Tal, Nir

    2016-01-01

    The degree of evolutionary conservation of an amino acid in a protein or a nucleic acid in DNA/RNA reflects a balance between its natural tendency to mutate and the overall need to retain the structural integrity and function of the macromolecule. The ConSurf web server (http://consurf.tau.ac.il), established over 15 years ago, analyses the evolutionary pattern of the amino/nucleic acids of the macromolecule to reveal regions that are important for structure and/or function. Starting from a query sequence or structure, the server automatically collects homologues, infers their multiple sequence alignment and reconstructs a phylogenetic tree that reflects their evolutionary relations. These data are then used, within a probabilistic framework, to estimate the evolutionary rates of each sequence position. Here we introduce several new features into ConSurf, including automatic selection of the best evolutionary model used to infer the rates, the ability to homology-model query proteins, prediction of the secondary structure of query RNA molecules from sequence, the ability to view the biological assembly of a query (in addition to the single chain), mapping of the conservation grades onto 2D RNA models and an advanced view of the phylogenetic tree that enables interactively rerunning ConSurf with the taxa of a sub-tree. PMID:27166375

  16. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    PubMed Central

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  17. Determination of physical parameters of magnetic active regions in stars with different evolutionary stages

    NASA Astrophysics Data System (ADS)

    Biazzo, K.

    2006-11-01

    Understanding stellar magnetic activity phenomena is of paramount importance for stellar evolution and for planetary systems formation and their atmosphere and climate. The dynamo process that generates magnetic fields in stars is well understood and there is still no comprehensive model of solar and stellar magnetic activity. Stellar activity is characterized by tracers such as spots, plages, flares and winds. These features are the fingerprints of magnetic field lines and their detailed analysis provides constraints for theoretical models. Our knowledge can only advance if the active stars besides the Sun are included in our study. Therefore, it is essential to accomplish comprehensive studies of active stars with a wide range of stellar parameters and a variety of activity phenomena. In this thesis, I concentrate on emergence of active regions at photospheric and chromospheric levels, namely spots and plages, in stars with different evolutionary stages. Spots are cool areas on the surface of the stars and are supposed to be the result of the blocking effect on convection caused by magnetic flux-tube emersion. Plages are bright areas linked to emersion of magnetic flux tubes from the sub-photospheric convective level. Starspot temperature represents an important parameter for the investigation of stellar magnetic activity, but its precise determination, relying only on light curve inversion techniques, is strongly hampered by the lack of solution uniqueness. Therefore, a method based on line-depth ratios as temperature discriminant has been developed. This technique is capable of resolving temperature differences less than 10 K. Moreover, combining temperature and light curve solutions, I am able to determine in a univocal way starspot temperature and area. Using the net Halpha emission as indicator of plage presence, I have also studied the spot and plage association. As a matter of fact, the residual Halpha profiles, obtained as the difference between the observed spectra and non-active templates, allows to study the chromospheric structures simultaneously to the photospheric ones. In addition, I have also detected the intensity of the HeI-D3 line to analyse the presence of surface features in the high chromosphere. The observations of both standard and target stars have been performed with different instruments. In particular, the spectra have been acquired at Catania Astrophysical Observatory (Italy), Observatoire de Haute-Provence (France) and Nordic Optical Observatory (Canarian Islands). The photometric observations have been obtained at Catania Astrophysical Observatory, Fairnborn Observatory (USA) and Ege University Observatory (Turkey). Finally, starspot and plage physical parameters have been obtained for sixteen stars of different effective temperature and gravity and different evolutionary stages. The main results can be summarized as follows: - starspot temperatures are more similar to solar penumbrae; - dwarf stars tend to have smaller spots compared to giant stars; - stars with higher gravity seem to have cooler (relative to their photosphere) spots compared to stars with lower gravity; - spatial association exists between surface inhomogeneities at different atmospheric levels.

  18. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  19. Multiple rings around Wolf-Rayet evolution

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1995-01-01

    We present optical narrow-band imaging of multiple rings existing around galactic Wolf-Rayet (WR) stars. The existence of multiple rings of material around Wolf-Rayet stars clearly illustrates the various phases of evolution that massive stars go through. The objects presented here show evidence of a three stage evolution. O stars produce an outer ring with the cavity being partially filled by ejecta from a red supergiant of luminous blue variable phase. A wind from the Wolf-Rayet star then passes into the ejecta materials. A simple model is presented for this three stage evolution. Using observations of the size and dynamics of the rings allows estimates of time scales for each stage of the massive star evolution. These are consistent with recent theoretical evolutionary models. Mass estimates for the ejecta, from the model presented, are consistent with previous ring nebula mass estimates from IRAS data, showing a number of ring nebulae to have large masses, most of which must in be in the form of neutral material. Finally, we illustrate how further observations will allow the determination of many of the parameters of the evolution of massive stars such as total mass loss, average mass loss rates, stellar abundances, and total time spent in each evolutionary phase.

  20. [MiRNA system in unicellular eukaryotes and its evolutionary implications].

    PubMed

    Zhang, Yan-Qiong; Wen, Jian-Fan

    2010-02-01

    microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.

  1. Modeling Tumor Clonal Evolution for Drug Combinations Design.

    PubMed

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2016-03-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs.

  2. Evolutionary biology through the lens of budding yeast comparative genomics.

    PubMed

    Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R

    2017-10-01

    The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.

  3. Field Guide to Plant Model Systems

    PubMed Central

    Chang, Caren; Bowman, John L.; Meyerowitz, Elliot M.

    2016-01-01

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. PMID:27716506

  4. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    PubMed

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Evolutionary Game Model Study of Construction Green Supply Chain Management under the Government Intervention

    NASA Astrophysics Data System (ADS)

    Xing, Yuanzhi; Deng, Xiaoyi

    2017-11-01

    The paper first has defined the concepts of green supply chain management and evolution game theory, and pointed out the characteristics of green supply chain management in construction. The main participants and key links of the construction green supply chain management are determined by constructing the organization framework. This paper established the evolutionary game model between construction enterprises and recycling enterprises for the green supply chain closed-loop structure. The waste recycling evolutionary stability equilibrium solution is obtained to explore the principle and effective scope of government policy intervention. This paper put forward the relevant countermeasures to the green supply chain management in construction recycling stage from the government point of view. The conclusion has reference value and guidance to the final product construction enterprises, recycling enterprises and the government during green supply chain.

  6. Investigation of the Relationship between Anterior Knee Pain and Chondromalacia Patellae and Patellofemoral Malalignment.

    PubMed

    Aysin, Idil Kurut; Askin, Ayhan; Mete, Berna Dirim; Guvendi, Ece; Aysin, Murat; Kocyigit, Hikmet

    2018-02-01

    The study aimed to investigate whether there is any association of anterior knee pain and knee function with chondromalacia stage and patellofemoral alignment in patients with anterior knee pain for over a month and with chondromalacia patellae (CMP) detected by magnetic resonance imaging (MRI). We reviewed the medical records of 38 patients who underwent a knee MRI examination and were diagnosed with chondromalacia based on the MRI. Knee MRI images were evaluated by a radiologist for chondromalacia staging. Patients were divided into two groups as early stage (stage 1-2) and advanced stage (stage 3-4) chondromalacia. Patients' demographical data (age, sex, and occupation), clinical features, physical examination findings and patellofemoral pain severity scale, kujala patellofemoral scoring system, and functional index questionnaire scores were obtained from their medical records. Trochlear sulcus angle, sulcus depth, lateral patellofemoral angle, patellar translation, and Insall-Salvati index were measured using the MRI images. The mean patient age was higher in the advanced stage CMP group compared to the early stage CMP group (p=0.038). There was no statistically significant difference regarding other demographical data (p>0.05). MRI measurement parameters did not show difference between the groups (p>0.05). Patients in the advanced stage CMP group had higher patellofemoral pain severity score, lower kujala patellofemoral score, and lower functional index questionnaire score compared to the early stage CMP group. The differences were statistically significant (p=0.008, p=0.012, and p=0.026, respectively). As chondromalacia stage advances, the symptom severity worsens and knee functions decline; however, MRI measurements do not show difference between early and advanced stage CMP patients.

  7. Investigation of the Relationship between Anterior Knee Pain and Chondromalacia Patellae and Patellofemoral Malalignment

    PubMed Central

    Aysin, Idil Kurut; Askin, Ayhan; Mete, Berna Dirim; Guvendi, Ece; Aysin, Murat; Kocyigit, Hikmet

    2018-01-01

    Objective: The study aimed to investigate whether there is any association of anterior knee pain and knee function with chondromalacia stage and patellofemoral alignment in patients with anterior knee pain for over a month and with chondromalacia patellae (CMP) detected by magnetic resonance imaging (MRI). Materials and Methods: We reviewed the medical records of 38 patients who underwent a knee MRI examination and were diagnosed with chondromalacia based on the MRI. Knee MRI images were evaluated by a radiologist for chondromalacia staging. Patients were divided into two groups as early stage (stage 1–2) and advanced stage (stage 3–4) chondromalacia. Patients’ demographical data (age, sex, and occupation), clinical features, physical examination findings and patellofemoral pain severity scale, kujala patellofemoral scoring system, and functional index questionnaire scores were obtained from their medical records. Trochlear sulcus angle, sulcus depth, lateral patellofemoral angle, patellar translation, and Insall–Salvati index were measured using the MRI images. Results: The mean patient age was higher in the advanced stage CMP group compared to the early stage CMP group (p=0.038). There was no statistically significant difference regarding other demographical data (p>0.05). MRI measurement parameters did not show difference between the groups (p>0.05). Patients in the advanced stage CMP group had higher patellofemoral pain severity score, lower kujala patellofemoral score, and lower functional index questionnaire score compared to the early stage CMP group. The differences were statistically significant (p=0.008, p=0.012, and p=0.026, respectively). Conclusion: As chondromalacia stage advances, the symptom severity worsens and knee functions decline; however, MRI measurements do not show difference between early and advanced stage CMP patients. PMID:29531488

  8. Imprinting, latchment and displacement: a mini review of early instinctual behaviour in newborn infants influencing breastfeeding success.

    PubMed

    Mobbs, Elsie J; Mobbs, George A; Mobbs, Anthony E D

    2016-01-01

    Instinctive behaviours have evolved favouring the mother-infant dyad based on fundamental processes of neurological development, including oral tactile imprinting and latchment. Latchment is the first stage of emotional development based on the successful achievement of biological imprinting. The mechanisms underpinning imprinting are identified and the evolutionary benefits discussed. It is proposed that the oral tactile imprint to the breast is a keystone for optimal latchment and breastfeeding, promoting evolutionary success. ©2015 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  9. Isolating Escherichia coli strains for recombinant protein production.

    PubMed

    Schlegel, Susan; Genevaux, Pierre; de Gier, Jan-Willem

    2017-03-01

    Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.

  10. Evolution of the indoor biome.

    PubMed

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Patterns and Processes of Vertebrate Evolution

    NASA Astrophysics Data System (ADS)

    Carroll, Robert Lynn

    1997-04-01

    This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.

  12. A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids.

    PubMed

    McGee, Matthew D; Borstein, Samuel R; Neches, Russell Y; Buescher, Heinz H; Seehausen, Ole; Wainwright, Peter C

    2015-11-27

    Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion. Copyright © 2015, American Association for the Advancement of Science.

  13. The significance and scope of evolutionary developmental biology: a vision for the 21st century.

    PubMed

    Moczek, Armin P; Sears, Karen E; Stollewerk, Angelika; Wittkopp, Patricia J; Diggle, Pamela; Dworkin, Ian; Ledon-Rettig, Cristina; Matus, David Q; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D; Chiu, Chi-Hua; Cohen, C Sarah; Tomaso, Anthony W De; Gilbert, Scott F; Hall, Brian; Love, Alan C; Lyons, Deirdre C; Sanger, Thomas J; Smith, Joel; Specht, Chelsea; Vallejo-Marin, Mario; Extavour, Cassandra G

    2015-01-01

    Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century. © 2015 Wiley Periodicals, Inc.

  14. Terminal addition in a cellular world.

    PubMed

    Torday, J S; Miller, William B

    2018-07-01

    Recent advances in our understanding of evolutionary development permit a reframed appraisal of Terminal Addition as a continuous historical process of cellular-environmental complementarity. Within this frame of reference, evolutionary terminal additions can be identified as environmental induction of episodic adjustments to cell-cell signaling patterns that yield the cellular-molecular pathways that lead to differing developmental forms. Phenotypes derive, thereby, through cellular mutualistic/competitive niche constructions in reciprocating responsiveness to environmental stresses and epigenetic impacts. In such terms, Terminal Addition flows according to a logic of cellular needs confronting environmental challenges over space-time. A reconciliation of evolutionary development and Terminal Addition can be achieved through a combined focus on cell-cell signaling, molecular phylogenies and a broader understanding of epigenetic phenomena among eukaryotic organisms. When understood in this manner, Terminal Addition has an important role in evolutionary development, and chronic disease might be considered as a form of 'reverse evolution' of the self-same processes. Copyright © 2017. Published by Elsevier Ltd.

  15. T Cell Receptors and the Evolution of Recognition Mechanisms in Immunity.

    ERIC Educational Resources Information Center

    Inchley, C. J.

    1986-01-01

    Discusses recent advances in the study of mammalian immunology. Explains the roles of two families of lymphocytes, the B cells and T cells. Also examines evolutionary mechanisms related to the immune system. (ML)

  16. Advancements in zebrafish applications for 21st century toxicology.

    PubMed

    Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L

    2016-05-01

    The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Advancements in zebrafish applications for 21st century toxicology

    PubMed Central

    Garcia, Gloria R.; Noyes, Pamela D.; Tanguay, Robert L.

    2016-01-01

    The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. PMID:27016469

  18. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  19. Technology for space station

    NASA Astrophysics Data System (ADS)

    Colladay, R. S.; Carlisle, R. F.

    1984-10-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  20. Evolutionary stability of sex chromosomes in snakes.

    PubMed

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  1. Evolutionary stability of sex chromosomes in snakes

    PubMed Central

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-01-01

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. PMID:26702042

  2. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  3. Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.

    PubMed

    Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C

    2016-01-01

    In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.

  4. The great opportunity: Evolutionary applications to medicine and public health.

    PubMed

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for making medical education more coherent. We conclude with recommendations for actions that would better connect evolutionary biology and medicine in ways that will benefit public health. It is our hope that faculty and students will send this article to their undergraduate and medical school Deans, and that this will initiate discussions about the gap, the great opportunity, and action plans to bring the full power of evolutionary biology to bear on human health problems.

  5. SamePage: Development of a Team Training Tool to Promote Shared Understanding

    DTIC Science & Technology

    2007-07-01

    1. Each stage of learning—from novice to advanced beginner to competent to proficient to expert—can be characterized by further acquisition of...Stage 2 Stage 3 Stage 4 Stage 5 Novice Advanced Beginner Competent Proficient Expert Engages in conscious deliberate planning Sees situation...entire scenario events in an overview story form; (2) an overview flowchart that shows the major frame events and actions required from each team member

  6. Complete response in 5 out of 38 patients with advanced hepatocellular carcinoma treated with stem cell differentiation stage factors: case reports from a single centre.

    PubMed

    Livraghi, Tito; Ceriani, R; Palmisano, A; Pedicini, V; Pich, M G; Tommasini, M A; Torzilli, G

    2011-02-01

    Hepatocellular carcinoma (HCC) represents the third cause of cancer-related death. Because HCC is multi-centric with time, excluding the few transplanted patients, sooner or later it becomes untreatable with loco-regional therapies and, until some years ago, it was not responsive to systemic therapies. In 2005 a randomized trial indicated the efficacy of a product containing stem cell differentiation stage factors (SCDSF) taken from zebra fish embryos during the stage in which the totipotent stem cells are differentiating into the pluripotent adult stem cells. In such a trial the patients, with "intermediate" and "advanced" HCC according to BCLC/AASLD guidelines, presented benefit in terms of performance status (PS) and objective tumoral response, with some cases (2.4%) of complete response (CR). The aim of this cohort study is to report the experience of a tertiary referral center on the evidence of cases of CR in patients with "advanced" stage HCC treated with SCDSF as supportive care. CR was regarded as sustained disappearance of the neoplastic areas or blood supply therein, accompanied by normalization of AFP levels. Out of 49 patients consecutively recruited and retrospectively evaluated, 38 had "advanced" stage and 11 "terminal" stage. In 5 patients with "advanced" stage a sustained CR was reported (13.1%). Improvement on PS was obtained in 17 patients (34.6%). No side effects occurred. SCDSF treatment confirmed its efficacy in patients with "advanced" HCC, in terms of PS and tumoral response.

  7. Trametinib and Navitoclax in Treating Patients With Advanced or Metastatic Solid Tumors

    ClinicalTrials.gov

    2018-06-08

    Advanced Malignant Solid Neoplasm; KRAS Gene Mutation; Metastatic Malignant Solid Neoplasm; NRAS Gene Mutation; Recurrent Colorectal Carcinoma; Recurrent Lung Carcinoma; Recurrent Malignant Solid Neoplasm; Recurrent Pancreatic Carcinoma; Stage III Colorectal Cancer AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Unresectable Malignant Neoplasm

  8. Using genomics to characterize evolutionary potential for conservation of wild populations

    PubMed Central

    Harrisson, Katherine A; Pavlova, Alexandra; Telonis-Scott, Marina; Sunnucks, Paul

    2014-01-01

    Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework. PMID:25553064

  9. The diversification of Heliconius butterflies: what have we learned in 150 years?

    PubMed

    Merrill, R M; Dasmahapatra, K K; Davey, J W; Dell'Aglio, D D; Hanly, J J; Huber, B; Jiggins, C D; Joron, M; Kozak, K M; Llaurens, V; Martin, S H; Montgomery, S H; Morris, J; Nadeau, N J; Pinharanda, A L; Rosser, N; Thompson, M J; Vanjari, S; Wallbank, R W R; Yu, Q

    2015-08-01

    Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  10. The right thalamus may play an important role in anesthesia-awakening regulation in frogs

    PubMed Central

    Fan, Yanzhu; Yue, Xizi; Xue, Fei; Brauth, Steven E.; Tang, Yezhong

    2018-01-01

    Background Previous studies have shown that the mammalian thalamus is a key structure for anesthesia-induced unconsciousness and anesthesia-awakening regulation. However, both the dynamic characteristics and probable lateralization of thalamic functioning during anesthesia-awakening regulation are not fully understood, and little is known of the evolutionary basis of the role of the thalamus in anesthesia-awakening regulation. Methods An amphibian species, the South African clawed frog (Xenopus laevis) was used in the present study. The frogs were immersed in triciane methanesulfonate (MS-222) for general anesthesia. Electroencephalogram (EEG) signals were recorded continuously from both sides of the telencephalon, diencephalon (thalamus) and mesencephalon during the pre-anesthesia stage, administration stage, recovery stage and post-anesthesia stage. EEG data was analyzed including calculation of approximate entropy (ApEn) and permutation entropy (PE). Results Both ApEn and PE values differed significantly between anesthesia stages, with the highest values occurring during the awakening period and the lowest values during the anesthesia period. There was a significant correlation between the stage durations and ApEn or PE values during anesthesia-awakening cycle primarily for the right diencephalon (right thalamus). ApEn and PE values for females were significantly higher than those for males. Discussion ApEn and PE measurements are suitable for estimating depth of anesthesia and complexity of amphibian brain activity. The right thalamus appears physiologically positioned to play an important role in anesthesia-awakening regulation in frogs indicating an early evolutionary origin of the role of the thalamus in arousal and consciousness in land vertebrates. Sex differences exist in the neural regulation of general anesthesia in frogs. PMID:29576980

  11. Evolution of illustrations in anatomy: a study from the classical period in Europe to modern times.

    PubMed

    Ghosh, Sanjib Kumar

    2015-01-01

    Illustrations constitute an essential element of learning anatomy in modern times. However it required a significant evolutionary process spread over centuries, for illustrations to achieve the present status in the subject of anatomy. This review article attempts to outline the evolutionary process by highlighting on the works of esteemed anatomists in a chronological manner. Available literature suggests that illustrations were not used in anatomy during the classical period when the subject was dominated by the descriptive text of Galen. Guido da Vigevano was first to use illustrations in anatomy during the Late Middle Ages and this concept developed further during the Renaissance period when Andreas Vesalius pioneered in illustrations becoming an indispensable tool in conveying anatomical details. Toward later stages of the Renaissance period, Fabricius ab Aquapendente endeavored to restrict dramatization of anatomical illustrations which was a prevalent trend in early Renaissance. During the 18th century, anatomical artwork was characterized by the individual styles of prominent anatomists leading to suppression of anatomical details. In the 19th century, Henry Gray used illustrations in his anatomical masterpiece that focused on depicting anatomical structures and were free from any artistic style. From early part of the 20th century medical images and photographs started to complement traditional handmade anatomical illustrations. Computer technology and advanced software systems played a key role in the evolution of anatomical illustrations during the late 20th century resulting in new generation 3D image datasets that are being used in the 21st century in innovative formats for teaching and learning anatomy. © 2014 American Association of Anatomists.

  12. Reassessing The Fundamentals New Constraints on the Evolution, Ages and Masses of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kızıltan, Bülent

    2011-09-01

    The ages and masses of neutron stars (NSs) are two fundamental threads that make pulsars accessible to other sub-disciplines of astronomy and physics. A realistic and accurate determination of these two derived parameters play an important role in understanding of advanced stages of stellar evolution and the physics that govern relevant processes. Here I summarize new constraints on the ages and masses of NSs with an evolutionary perspective. I show that the observed P-Ṗ demographics is more diverse than what is theoretically predicted for the standard evolutionary channel. In particular, standard recycling followed by dipole spin-down fails to reproduce the population of millisecond pulsars with higher magnetic fields (B > 4 × 108 G) at rates deduced from observations. A proper inclusion of constraints arising from binary evolution and mass accretion offers a more realistic insight into the age distribution. By analytically implementing these constraints, I propose a ``modified'' spin-down age (τ~) for millisecond pulsars that gives estimates closer to the true age. Finally, I independently analyze the peak, skewness and cutoff values of the underlying mass distribution from a comprehensive list of radio pulsars for which secure mass measurements are available. The inferred mass distribution shows clear peaks at 1.35 Msolar and 1.50 Msolar for NSs in double neutron star (DNS) and neutron star-white dwarf (NS-WD) systems respectively. I find a mass cutoff at 2 Msolar for NSs with WD companions, which establishes a firm lower bound for the maximum mass of NSs.

  13. Glembatumumab Vedotin, Nivolumab, and Ipilimumab in Treating Patients With Advanced Metastatic Solid Tumors That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-11

    Advanced Malignant Solid Neoplasm; Estrogen Receptor Negative; GPNMB Positive; HER2/Neu Negative; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Cutaneous Melanoma AJCC v7; Stage III Uveal Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Uveal Melanoma AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Solid Neoplasm

  14. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata

    PubMed Central

    Rehan, Sandra M.; Glastad, Karl M.; Lawson, Sarah P.; Hunt, Brendan G.

    2016-01-01

    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata. This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. PMID:27048475

  15. AOARD Overview Power and Energy Emphasis

    DTIC Science & Technology

    2010-09-01

    Evolutionary Research (Incremental Advances) P&E Materials Including Fluids: - Tunable thermal conductivity - Large CTE material matching - Nanofluids ...Charge Rate Objective: • Investigate 10-20x smaller nano-powder particle sizes to shorten charging rate • Study doping transition metals into the

  16. Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects.

    PubMed

    Tollenaere, C; Laine, A-L

    2013-08-01

    The sexual stage of pathogens governs recombination patterns and often also provides means of surviving the off-season. Despite its importance for evolutionary potential and between-season epidemiology, sexual systems have not been carefully investigated for many important pathogens, and what generates variation in successful sexual reproduction of pathogens remains unexplored. We surveyed the sexually produced resting structures (chasmothecia) across 86 natural populations of fungal pathogen Podosphaera plantaginis (Ascomycota) naturally infecting Plantago lanceolata in the Åland archipelago, southwestern Finland. For this pathosystem, these resting structures are a key life-history stage, as more than half of the local pathogen populations go extinct every winter. We uncovered substantial variation in the level of chasmothecia produced among populations, ranging from complete absence to presence on all infected leaves. We found that chasmothecia developed within clonal isolates (single-strain cultures). Additionally, these clonal isolates all contained both MAT1-1-1 and MAT1-2-1 genes that characterize mating types in Ascomycetes. Hence, contrary to expectations, we conclude that this species is capable of haploid selfing. In controlled inoculations, we discovered that pathogen genotypes varied in their tendency to produce chasmothecia. Production of chasmothecia was also affected by ambient temperature (E) and by the interaction between temperature and pathogen genotype (G × E). These G, E and G × E effects found both at a European scale and within the Åland archipelago may partly explain the high variability observed among populations in chasmothecia levels. Consequently, they may be key drivers of the evolutionary potential and epidemiology of this highly dynamic pathosystem. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  17. The 25 kW power module evolution study. Part 2: Payload supports system evolution

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The addition of system elements for the 25 kW power module and logical evolutionary paths, by discrete growth stages, to provide capability for accommodating the increasing mission requirements through the early 1990's within reasonable resources are conceptualized.

  18. Stage of cancer diagnoses among migrants from the former Soviet Union in comparison to the German population - are diagnoses among migrants delayed?

    PubMed

    Cho, An Bin; Jaehn, Philipp; Holleczek, Bernd; Becher, Heiko; Winkler, Volker

    2018-01-17

    In this study, we compared stage at diagnosis, standardized incidence ratio (SIR) and standardized mortality ratio (SMR) of most frequent cancer diagnoses between re-settlers (Aussiedler) from the former Soviet Union and the general population in the Saarland in Germany to assess possible delays in diagnosis of cancer among this migrant group. Lung cancer, colorectal cancer, breast cancer, prostate cancer, malignant melanoma of the skin and stomach cancer diagnoses among a cohort of 18,619 re-settlers living in the Saarland between 1990 and 2009 were identified by the federal state's cancer registry. Vital status was available for the respective time-period and used to calculate SIR and SMR in comparison to the autochthonous population. Tumor stages were condensed into local and advanced stages. Odds ratios (OR) for an advanced tumor stage were modeled in dependence of re-settler-status and relevant covariates by logistic regression. Missing values were addressed in a sensitivity analysis. The influence of duration of stay in Germany on advanced stage diagnosis was analyzed among re-settlers. SIR and SMR of lung and breast cancer were lower among female re-settlers, while SIR and SMR of colorectal and prostate cancer were lower among male re-settlers. SIR and SMR of stomach cancer were elevated among both sexes. Female re-settlers showed an elevated OR for being diagnosed with advanced stage breast cancer. Both male and female re-settlers showed an elevated OR when observing all six sites combined (OR among males 1.47, p = 0.04; OR among females 1.37, p = 0.05). The result of elevated ORs was supported in the sensitivity analysis. Finally, male re-settlers showed a weak association between duration of stay in Germany and reduced risk for advanced stage diagnosis. Re-settlers were more likely to be diagnosed at an advanced tumor stage. These findings are in line with previous research having shown unfavorable health care utilization of re-settlers. Overall, low mortality rates despite an increased risk of advanced stage at diagnosis argue for a sufficient follow-up care, comparable to the autochthonous population.

  19. The relationship between liver histology and noninvasive markers in primary biliary cirrhosis.

    PubMed

    Olmez, Sehmus; Sayar, Suleyman; Avcioglu, Ufuk; Tenlik, İlyas; Ozaslan, Ersan; Koseoglu, Hasan T; Altiparmak, Emin

    2016-07-01

    Primary biliary cirrhosis (PBC) is a disease that affects liver with various severity and progression rates. It is important to diagnose advanced stage of the disease to lower liver-related morbidity and mortality. Since liver biopsy is an invasive method, liver biopsy tends to be replaced by noninvasive methods. In this study, we aim to show the role of aminotransferase to platelet ratio index (APRI) and fibrosis index on the basis of the four factors (FIB-4) scores, laboratory values, and their effectiveness in predicting advanced disease. PBC patients diagnosed pathologically at Numune Education and Research Hospital were included in the study between the years 1995 and 2013. Patients were grouped according to their fibrosis level: group 1 (early stage) included 18 patients with F1 and F2 fibrosis and group 2 (advanced stage) included 22 patients with F3 and F4 fibrosis. APRI and FIB-4 scores, routine laboratory values, and their proportions were compared. The effectiveness of parameters showing advanced stage was further compared. There were statistically significant differences in APRI, FIB-4 scores, and aspartate aminotransferase (AST) levels between the groups with early and advanced stages of disease. Receiver operating curve analysis was used to determine APRI, FIB-4 and AST levels. The most effective parameters for diagnosing an advanced stage were APRI, AST levels, and FIB-4 scores, respectively. In conclusion, APRI and FIB-4 scores can be calculated simply and easily by routine laboratory tests at low cost and also these scores may be a predictor of advanced stage of the disease in PBC. These tests may be reproducible and may be used to monitor disease progression.

  20. Evolution of early embryogenesis in rhabditid nematodes

    PubMed Central

    Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio

    2009-01-01

    The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102

  1. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)

    PubMed Central

    He, Tianhua; Fowler, William M.; Causley, Casey L.

    2015-01-01

    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493

  2. Does playing pay? The fitness-effect of free play during childhood.

    PubMed

    Greve, Werner; Thomsen, Tamara; Dehio, Cornelia

    2014-04-29

    Evolutionary developmental psychology claims that the sequences and processes of human development, in fact the mere fact of ontogeny itself, have to be viewed as evolutionary products. However, although the functional benefits of childish behavior (child playing) for cognitive and emotional development have been shown repeatedly, claiming evolutionary adaptiveness of playing in childhood suggests that childish play supports evolutionary success in mature stages of development. This hypothesis is tested in a study with N=134 adults (93 females; age range 20-66 years). Participants were asked to recollect their play experiences during childhood in detail, and to report their current developmental status with respect to several aspects of social success. Results show that the opportunity for and the promotion of free play in childhood significantly predict some indicators of social success. Additional analyses strive to explore mediating processes for this relationship. In particular, the mediating role of individual adaptivity (flexibility of goal adjustment) is investigated. Results suggest that freely playing in childhood promotes developmental resources, in particular individual adaptivity in adulthood, which, in turn, promote developmental success.

  3. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    PubMed

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  4. Pembrolizumab in Treating Participants With Metastatic, Recurrent or Locally Advanced Cancer and Genomic Instability

    ClinicalTrials.gov

    2018-03-22

    BRCA1 Gene Mutation; BRCA2 Gene Mutation; Locally Advanced Solid Neoplasm; Metastatic Malignant Solid Neoplasm; POLD1 Gene Mutation; POLE Gene Mutation; Recurrent Malignant Solid Neoplasm; Recurrent Ovarian Carcinoma; Stage III Breast Cancer AJCC v7; Stage III Ovarian Cancer AJCC v8; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v8; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v8; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v8; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Ovarian Cancer AJCC v8; Stage IVA Ovarian Cancer AJCC v8; Stage IVB Ovarian Cancer AJCC v8

  5. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    DTIC Science & Technology

    2016-08-01

    construct evolutionary trees , the characteristics of which will be used to predict whether a tumor will metastasize or not. We established a procedure for...of populations, the evolution of tumor cells within a tumor can be diagrammed on a phylogenetic tree . The more diverse a tumor’s phylogenetic tree ...individual tumor cells from the tumors of a training set of patients (half early stage, half late stage). We will reconstruct each tumor’s phylogenetic tree

  6. Nonmathematical concepts of selection, evolutionary energy, and levels of evolution.

    PubMed

    Darlington, P J

    1972-05-01

    The place of mathematics in hypotheticodeductive processes and in biological research is discussed. (Natural) Selection is defined and described as differential elimination of performed sets at any level. Sets and acting sets are groups of units (themselves sets of smaller units) at any level that may or do interact. A pseudomathematical equation describes directional change (evolution) in sets at any level. Selection is the ram of evolution; it cannot generate, but can only direct, evolutionary energy. The energy of evolution is derived from molecular or chemical levels, is transmitted upwards through the increasingly complex sets of sets that form living systems, and is turned in directions determined by the sum of selective processes, at different levels, which may either supplement or oppose each other. All evolutionary processes conform to the pseudomathematical equation referred to above, use energy as described above, and have a P/OE (ratio of programming to open-endedness) that cannot be measured, but can be related to other P/OE values. Phylogeny and ontogeny are compared as processes af directional change with set selection. Stages in the evolution of multi-cellular individuals are suggested, and are essentially the same as stages in the evolution of some multi-individual insect societies. Thinking is considered as a part of ontogeny involving an irreversible, nonrepetitive process of set selection in the brain.

  7. OH masers towards IRAS 19092+0841

    NASA Astrophysics Data System (ADS)

    Edris, K. A.; Fuller, G. A.; Etoka, S.; Cohen, R. J.

    2017-12-01

    Context. Maser emission is a strong tool for studying high-mass star-forming regions and their evolutionary stages. OH masers in particular can trace the circumstellar material around protostars and determine their magnetic field strengths at milliarcsecond resolution. Aims: We seek to image OH maser emission towards high-mass protostellar objects to determine their evolutionary stages and to locate the detected maser emission in the process of high-mass star formation. Methods: In 2007, we surveyed OH maser emission towards 217 high-mass protostellar objects to study its presence. In this paper, we present follow-up MERLIN observations of a ground-state OH maser emission towards one of these objects, IRAS 19092+0841. Results: We detect emissions from the two OH main spectral lines, 1665 and 1667 MHz, close to the central object. We determine the positions and velocities of the OH maser features. The masers are distributed over a region of 5'' corresponding to 22 400 AU (or 0.1 pc) at a distance of 4.48 kpc. The polarization properties of the OH maser features are determined as well. We identify three Zeeman pairs from which we inferred a magnetic field strength of 4.4 mG pointing towards the observer. Conclusions: The relatively small velocity spread and relatively wide spacial distribution of the OH maser features support the suggestion that this object could be in an early evolutionary state before the presence of disk, jets or outflows.

  8. Acoustic communication at the water's edge: evolutionary insights from a mudskipper.

    PubMed

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an "exaptation hypothesis", i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes.

  9. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology.

    PubMed

    Clutton-Brock, Tim; Sheldon, Ben C

    2010-10-01

    Many important questions in ecology and evolutionary biology can only be answered with data that extend over several decades and answering a substantial proportion of questions requires records of the life histories of recognisable individuals. We identify six advantages that long-term, individual based studies afford in ecology and evolution: (i) analysis of age structure; (ii) linkage between life history stages; (iii) quantification of social structure; (iv) derivation of lifetime fitness measures; (v) replication of estimates of selection; (vi) linkage between generations, and we review their impact on studies in six key areas of evolution and ecology. Our review emphasises the unusual opportunities and productivity of long-term, individual-based studies and documents the important role that they play in research on ecology and evolutionary biology as well as the difficulties they face. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Acoustic Communication at the Water's Edge: Evolutionary Insights from a Mudskipper

    PubMed Central

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A.; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an “exaptation hypothesis”, i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes. PMID:21738663

  11. Barriers to early presentation of breast cancer among women in Soweto, South Africa

    PubMed Central

    McCormack, Valerie Ann; Das, Ishani; Neugut, Alfred I.; Jacobson, Judith S.

    2018-01-01

    Purpose Reported breast cancer incidence is rising in South Africa, where some women are diagnosed late and have poor outcomes. We studied patient and provider factors associated with clinical stage at diagnosis among women diagnosed at the Chris Hani Baragwanath Academic Hospital in Soweto, Johannesburg in 2015–2016. Methods From face-to-face interviewer-administered questionnaires we compared self-reported socioeconomics, demographics, comorbidities, risk factors, personal and health system barriers, and from patient clinical records, clinical staging, receptor subtype, and tumor grade among 499 consecutive women newly diagnosed with advanced stage (III/IV) breast cancer versus those diagnosed early (stage 0/I/II). Logistic regression models were used to identify factors associated with advanced stage at diagnosis. Results Among the women, 243 (49%) were diagnosed at early and 256 (51%) at advanced stages. In the multiple logistic regression adjusted model, completion of high school or beyond (odds ratio (OR) 0.59, and greater breast cancer knowledge and awareness (OR 0.86) were associated with lower stage of breast cancer at presentation. Advanced stage was associated with Luminal B (OR 2.25) and triple-negative subtypes (OR 3.17) compared to luminal A, with delays >3 months from first breast symptoms to accessing the health system (OR 2.79) and with having more than 1 visit within the referral health system (OR 3.19) for 2 visits; OR 2.73 for ≥3 visits). Conclusions Limited patient education, breast cancer knowledge and awareness, and health system inefficiencies were associated with advanced stage at diagnosis. Sustained community and healthcare worker education may down-stage disease and improve cancer outcomes. PMID:29394271

  12. Antibiotic resistance in the wild: an eco-evolutionary perspective.

    PubMed

    Hiltunen, Teppo; Virta, Marko; Laine, Anna-Liisa

    2017-01-19

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Authors.

  13. Antibiotic resistance in the wild: an eco-evolutionary perspective

    PubMed Central

    Virta, Marko

    2017-01-01

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'. PMID:27920384

  14. Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor

    NASA Astrophysics Data System (ADS)

    Bess, John Darrell

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.

  15. Endometrial cancer: socioeconomic status and racial/ethnic differences in stage at diagnosis, treatment, and survival.

    PubMed

    Madison, Terri; Schottenfeld, David; James, Sherman A; Schwartz, Ann G; Gruber, Stephen B

    2004-12-01

    We evaluated the association between socioeconomic status and racial/ ethnic differences in endometrial cancer stage at diagnosis, treatment, and survival. We conducted a population-based study among 3656 women. Multivariate analyses showed that either race/ethnicity or income, but not both, was associated with advanced-stage disease. Age, stage at diagnosis, and income were independent predictors of hysterectomy. African American ethnicity, increased age, aggressive histology, poor tumor grade, and advanced-stage disease were associated with increased risk for death; higher income and hysterectomy were associated with decreased risk for death. Lower income was associated with advanced-stage disease, lower likelihood of receiving a hysterectomy, and lower rates of survival. Earlier diagnosis and removal of barriers to optimal treatment among lower-socioeconomic status women will diminish racial/ethnic differences in endometrial cancer survival.

  16. Advanced Air Traffic Management System Study Overview

    DOT National Transportation Integrated Search

    1975-06-01

    This report summarizes the U.S. Department of Transportation study and development plans for the air traffic management system of the late 1980's and beyond. The plans are presented in the framework of an evolutionary system concept of traffic manage...

  17. Advanced Air Traffic Management System Study : Executive Summary

    DOT National Transportation Integrated Search

    1975-01-01

    This report summarizes the U.S. Department of Transportation study and development plans for the air traffic management system of the late 1980's and beyond. The plans are presented in the framework of an evolutionary system concept of traffic manage...

  18. Advanced Air Traffic Management System Study - Technical Summary

    DOT National Transportation Integrated Search

    1975-03-01

    This report summarizes the U.S. Department of Transportation study and development plans for the air traffic management system of the late 1980's and beyond. The plans are presented in the framework of an evolutionary system concept of traffic manage...

  19. Selection is stronger in early-versus-late stages of divergence in a Neotropical livebearing fish.

    PubMed

    Ingley, Spencer J; Johnson, Jerald B

    2016-03-01

    How selection acts to drive trait evolution at different stages of divergence is of fundamental importance in our understanding of the origins of biodiversity. Yet, most studies have focused on a single point along an evolutionary trajectory. Here, we provide a case study evaluating the strength of divergent selection acting on life-history traits at early-versus-late stages of divergence in Brachyrhaphis fishes. We find that the difference in selection is stronger in the early-diverged population than the late-diverged population, and that trait differences acquired early are maintained over time. © 2016 The Author(s).

  20. The Development of Coordinated Movement.

    ERIC Educational Resources Information Center

    Montanaro, Silvana Quattrocchi

    2002-01-01

    Discusses stages of movement in the first 3 years of life with a philosophical dimension regarding evolutionary aspects of movement as first manifestation of "will." Describes how the early childhood environment is prepared to allow for movement and the connection between movement and brain development. Discusses the contribution of…

  1. Tracing the peopling of the world through genomics

    PubMed Central

    Nielsen, Rasmus; Akey, Joshua M.; Jakobsson, Mattias; Pritchard, Jonathan K.; Tishkoff, Sarah; Willerslev, Eske

    2018-01-01

    Advances in the sequencing and the analysis of the genomes of both modern and ancient peoples have facilitated a number of breakthroughs in our understanding of human evolutionary history. These include the discovery of interbreeding between anatomically modern humans and extinct hominins; the development of an increasingly detailed description of the complex dispersal of modern humans out of Africa and their population expansion worldwide; and the characterization of many of the genetic adaptions of humans to local environmental conditions. Our interpretation of the evolutionary history and adaptation of humans is being transformed by analyses of these new genomic data. PMID:28102248

  2. Modeling Tumor Clonal Evolution for Drug Combinations Design

    PubMed Central

    Zhao, Boyang; Hemann, Michael T.; Lauffenburger, Douglas A.

    2016-01-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs. PMID:28435907

  3. Field Guide to Plant Model Systems.

    PubMed

    Chang, Caren; Bowman, John L; Meyerowitz, Elliot M

    2016-10-06

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fertility-sparing surgery in advanced stage malignant ovarian germ cell tumor: a case report.

    PubMed

    Ghalleb, Montassar; Bouzaiene, Hatem; Slim, Skander; Hadiji, Achraf; Hechiche, Monia; Ben Hassouna, Jamel; Rahal, Khaled

    2017-12-17

    Malignant ovarian germ cell tumor is a rare type of disease, which generally has a good prognosis due to the high chemosensitivity of this type of tumor. Fertility preservation is an important issue because malignant ovarian germ cell tumor commonly affects young women. Although conservation is the standard for early stage, it becomes more debatable as the disease progresses to more advanced stages. Report the case of a patient with an International Federation of Gynecology and Obstetrics Stage IIIc malignant ovarian germ cell tumor, who had conservative surgery and chemotherapy with a good fertility outcome. A 23-year-old North African woman with a left malignant ovarian germ cell tumor stage IIIc was treated by left adnexectomy and omentectomy followed by chemotherapy. A 15-year follow-up showed no signs of relapse, and she completed three full-term natural pregnancies. Malignant ovarian germ cell tumor is a rare ovarian tumor with a good prognosis. It is usually associated with a good fertility outcome in early stages. However, due to the rarity of the disease in advanced stages, the fertility outcome for this group of patients is not clear. This lack of data surrounding advanced stages points to the need for a meta-analysis of all published cases.

  5. Evolutionary medicine--the quest for a better understanding of health, disease and prevention.

    PubMed

    Brüne, Martin; Hochberg, Ze'ev

    2013-04-29

    Clinical medicine has neglected the fact that the make-up of organs and body functions, as well as the human-specific repertoire of behaviors and defenses against pathogens or other potential dangers are the product of adaptation by natural and sexual selection. Even more, for many clinicians it does not seem straightforward to accept a role of evolution in the understanding of disease, let alone, treatment and prevention.Accordingly, this Editorial seeks to set the stage for an article collection that aims at dealing precisely with the question of why evolutionary aspects of health and disease are not only interesting, but necessary to improve clinical medicine.

  6. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-07-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  7. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects.

    PubMed

    Oppenheim, Sara J; Baker, Richard H; Simon, Sabrina; DeSalle, Rob

    2015-04-01

    Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile. © 2014 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  8. Protobiological informatoin, bidirectional recognition and reverse translation

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.; Przybylski, A.; Vaughan, G.

    1986-01-01

    Emergence of protobiological information has been suggested by experiments in which heated mixtures of alpha-amino acids order themselves into a self limited array of thermal proteins. The polymers display selective catalytic, hormonal, and other activities. Interactions of varied cationic thermal proteins with polynucleotides indicate selective recognition in both directions. Reverse translation is partly a missing link in the molecular evolution flowsheet. The self ordering of amino acids serves conceptually as a deterministic evolutionary precursor of the modern coding mechanism. The possibility for the evolution of information at an early nontemplated protein stage is supported by findings of electrical signals from proteinoid microspheres prepared with no DNA/RNA in their history. The deposition of thermal copolyamino acids on lipid membranes in the Mueller-Rudin apparatus has here been found to produce electrical behavior like that evoked by bacterial EIM polypeptide. A new procedure is to make a film of membrane on the electrode; the results provide maximal repeatability. The principle of nonrandom biomacromolecular specificity identified by these studies in molecular evolution have been extrapolated to principles of evolution of advanced organisms.

  9. Blushing and the philosophy of mind.

    PubMed

    Bunge, Mario

    2007-01-01

    The introduction, an imaginary dialogue between a philosopher and a scientist, is followed by a brief discussion of the interactions between science, philosophy, and religion. Next comes an analysis of the three most popular philosophies of mind: classical mind-body dualism, computerism, and psychoneural monism. It is argued that the latter, held by medical psychologists since Hippocrates, and formulated explicitly by Cajal and Hebb, is the philosophy of mind that underlies contemporary cognitive and affective neuroscience. The standard objections to psychoneural monism (or materialism) are examined. Evolutionary psychology, though promissory, is judged to be more fancy than fact at its present stage. The conclusion is that the philosophy of mind is still in a poor shape, but that it can advance if it learns more from the science of mind. It would also help if scientific psychologists were to replace such tacitly dualistic expressions as "organ N instantiates (or subserves) mental function M" with "organ N performs mental function M", just as we say "the legs walk" instead of "walking is subserved by legs," and "the lungs breathe" instead of "the lungs instantiate breathing."

  10. Space and transatmospheric propulsion technology

    NASA Technical Reports Server (NTRS)

    Merkle, Charles; Stangeland, Maynard L.; Brown, James R.; Mccarty, John P.; Povinelli, Louis A.; Northam, G. Burton; Zukoski, Edward E.

    1994-01-01

    This report focuses primarily on Japan's programs in liquid rocket propulsion and propulsion for spaceplane and related transatmospheric areas. It refers briefly to Japan's solid rocket programs and to new supersonic air-breathing propulsion efforts. The panel observed that the Japanese had a carefully thought-out plan, a broad-based program, and an ambitious but achievable schedule for propulsion activity. Japan's overall propulsion program is behind that of the United States at the time of this study, but the Japanese are gaining rapidly. The Japanese are at the forefront in such key areas as advanced materials, enjoying a high level of project continuity and funding. Japan's space program has been evolutionary in nature, while the U.S. program has emphasized revolutionary advances. Projects have typically been smaller in Japan than in the United States, focusing on incremental advances in technology, with an excellent record of applying proven technology to new projects. This evolutionary approach, coupled with an ability to take technology off the shelf from other countries, has resulted in relatively low development costs, rapid progress, and enhanced reliability. Clearly Japan is positioned to be a world leader in space and transatmospheric propulsion technology by the year 2000.

  11. Pair-wise comparison analysis of differential expression of mRNAs in early and advanced stage primary colorectal adenocarcinomas

    PubMed Central

    Lau, Tze Pheng; Roslani, April Camilla; Lian, Lay Hoong; Chai, Hwa Chia; Lee, Ping Chin; Hilmi, Ida; Goh, Khean Lee; Chua, Kek Heng

    2014-01-01

    Objectives To characterise the mRNA expression patterns of early and advanced stage colorectal adenocarcinomas of Malaysian patients. Design Comparative expression analysis. Setting and participants We performed a combination of annealing control primer (ACP)-based PCR and reverse transcription-quantitative real-time PCR for the identification of differentially expressed genes (DEGs) associated with early and advanced stage primary colorectal tumours. We recruited four paired samples from patients with colorectal cancer (CRC) of Dukes’ A and B for the preliminary differential expression study, and a total of 27 paired samples, ranging from CRC stages I to IV, for subsequent confirmatory test. The tumouric samples were obtained from the patients with CRC undergoing curative surgical resection without preoperative chemoradiotherapy. The recruited patients with CRC were newly diagnosed with CRC, and were not associated with any hereditary syndromes, previously diagnosed cancer or positive family history of CRC. The paired non-cancerous tissue specimens were excised from macroscopically normal colonic mucosa distally located from the colorectal tumours. Primary and secondary outcome measures The differential mRNA expression patterns of early and advanced stage colorectal adenocarcinomas compared with macroscopically normal colonic mucosa were characterised by ACP-based PCR and reverse transcription-quantitative real-time PCR. Results The RPL35, RPS23 and TIMP1 genes were found to be overexpressed in both early and advanced stage colorectal adenocarcinomas (p<0.05). However, the ARPC2 gene was significantly underexpressed in early colorectal adenocarcinomas, while the advanced stage primary colorectal tumours exhibited an additional overexpression of the C6orf173 gene (p<0.05). Conclusions We characterised two distinctive gene expression patterns to aid in the stratification of primary colorectal neoplasms among Malaysian patients with CRC. Further work can be done to assess and compare the mRNA expression levels of these identified DEGs between each CRC stage group, stages I–IV. PMID:25107436

  12. Dust formation at low metallicity

    NASA Astrophysics Data System (ADS)

    Ferrarotti, A. S.; Gail, H.-P.

    Stars between 3Modot and 25Modot reach their final stages of stellar evolution either as AGB (asymptotic giant branch) stars and finally become white dwarfs, or end in a supernova explosion. The last evolutionary stages, shortly before the final state, are regularly accompanied by stellar winds which lead to substantial mass loss and develop optically very thick dust shells. Mass loss for smaller and medium sized stars higher up on the AGB depends predominantly on the metallicity of the star. For Pop I metallicity, the mass loss is caused by dust condensation. This process is not possible for stars of small Z. Thus, their final evolution strongly depends on the possibility of dust formation. Our research focuses on the dependence of dust formation of the first stellar generation on Z and on the initial mass of the star. Furthermore, we investigate when dust formation becomes possible in stellar winds and the effects this process has on the evolution of the star at the final evolutionary stages. With synthetic AGB evolution models some important issues in stellar evolution can tried to be answered: (1) mass loss on the AGB, (2) the shift of the limit (γ>1) for the onset of dust driven winds with Z and (3) the critical Z when dust formation becomes possible.

  13. Non-cooperative game theory in biology and cooperative reasoning in humans.

    PubMed

    Kabalak, Alihan; Smirnova, Elena; Jost, Jürgen

    2015-06-01

    The readiness for spontaneous cooperation together with the assumptions that others share this cooperativity has been identified as a fundamental feature that distinguishes humans from other animals, including the great apes. At the same time, cooperativity presents an evolutionary puzzle because non-cooperators do better in a group of cooperators. We develop here an analysis of the process leading to cooperation in terms of rationality concepts, game theory and epistemic logic. We are, however, not attempting to reconstruct the actual evolutionary process. We rather want to provide the logical structure underlying cooperation in order to understand why cooperation is possible and what kind of reasoning and beliefs would lead to cooperative decision-making. Game theory depends on an underlying common belief in non-cooperative rationality of the players, and cooperativity similarly can utilize a common belief in cooperative rationality as its basis. We suggest a weaker concept of rational decision-making in games that encompasses both types of decision-making. We build this up in stages, starting from simple optimization, then using anticipation of the reaction of others, to finally arrive at reflexive and cooperative reasoning. While each stage is more difficult than the preceding, importantly, we also identify a reduction of complexity achieved by the consistent application of higher stage reasoning.

  14. [Clinical Advanced in Early-stage ALK-positive Non-small Cell Lung Cancer Patients].

    PubMed

    Gao, Qiongqiong; Jiang, Xiangli; Huang, Chun

    2017-02-20

    Lung cancer is the leading cause of cancer death in China. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, with the majority of the cases diagnosed at the advanced stage. Molecular targeted therapy is becoming the focus attention for advanced NSCLC. Echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene (EML4-ALK) is among the most common molecular targets of NSCLC; its specific small-molecule tyrosine kinase inhibitors (TKIs) are approved for use in advanced NSCLC cases of ALK-positive. However, the influence of EML4-ALK fusion gene on the outcome of early-stage NSCLC cases and the necessity of application of TKIs for early-stage ALK-positive NSCLC patients are still uncertain. In this paper, we summarized the progression of testing methods for ALK-positive NSCLC patients as well as clinicopathological implication, outcome, and necessity of application of TKIs for early-stage ALK-positive NSCLC patients.

  15. Plant and soil nutrient stoichiometry along primary ecological successions: Is there any link?

    PubMed Central

    Di Palo, Francesca

    2017-01-01

    Ecological stoichiometry suggests that plant Nitrogen (N)-to-Phosphorus (P) ratios respond to changes in both soil N:P stoichiometry and soil N and P availability. Thus we would expect that soil and plant N:P ratios be significantly related along natural gradients of soil development such as those associated with primary ecological successions. Here we explicitly search for linkages between plant and soil N:P stoichiometry along four primary successions distributed across Europe. We measured N and P content in soils and plant compartments (leaf, stem and root) of 72 wild plant species distributed along two sand dune and two glacier successions where soil age ranges from few to thousand years old. Overall we found that soil N:P ratios strongly increased along successional stages, however, plant N:P ratios were neither related to soil N:P stoichiometry nor to changes in soil N and P availability. Instead changes in plant nutrient stoichiometry were “driven” by plant-functional-group identity. Not only N:P ratios differed between legumes, grasses and forbs but each of these plant functional groups maintained N:P ratios relatively constant across pioneer, middle and advanced successional stages. Our evidence is that soil nutrient stoichiometry may not be a good predictor of changes in plant N:P stoichiometry along natural primary ecological successions, which have not reached yet a retrogressive stage. This could be because wild-plants rely on mechanisms of internal nutrient regulation, which make them less dependent to changes in soil nutrient availability under unpredictable environmental conditions. Further studies need to clarify what underlying evolutionary and eco-physiological mechanisms determine changes in nutrient stoichiometry in plant species distributed across natural environmental gradients. PMID:28787437

  16. Developmental constraints shape the evolution of the nematode mid-developmental transition.

    PubMed

    Zalts, Harel; Yanai, Itai

    2017-03-27

    Evolutionary theory assumes that genetic variation is uniform and gradual in nature, yet morphological and gene expression studies have revealed that different life-stages exhibit distinct levels of cross-species conservation. In particular, a stage in mid-embryogenesis is highly conserved across species of the same phylum, suggesting that this stage is subject to developmental constraints, either by increased purifying selection or by a strong mutational bias. An alternative explanation, however, holds that the same 'hourglass' pattern of variation may result from increased positive selection at the earlier and later stages of development. To distinguish between these scenarios, we examined gene expression variation in a population of the nematode Caenorhabditis elegans using an experimental design that eliminated the influence of positive selection. By measuring gene expression for all genes throughout development in 20 strains, we found that variations were highly uneven throughout development, with a significant depletion during mid-embryogenesis. In particular, the family of homeodomain transcription factors, whose expression generally coincides with mid-embryogenesis, evolved under high constraint. Our data further show that genes responsible for the integration of germ layers during morphogenesis are the most constrained class of genes. Together, these results provide strong evidence for developmental constraints as the mechanism underlying the hourglass model of animal evolution. Understanding the pattern and mechanism of developmental constraints provides a framework to understand how evolutionary processes have interacted with embryogenesis and led to the diversity of animal life on Earth.

  17. The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.

  18. Indexing the Comics: A Librarian's Perspective on Comics Research.

    ERIC Educational Resources Information Center

    Scott, Randall W.

    The potential for computers in indexing popular fiction study materials is discussed, and specific examples of comic book indexing are provided through descriptions of projects and a bibliography. The 4-stage evolutionary development of popular fiction studies includes: (1) discovery and reading; (2) bibliography and collecting; (3) cataloging and…

  19. Re-Evaluating Course Evaluations: Clarity, Visibility, and Functionality

    ERIC Educational Resources Information Center

    Richardson, Stephanie Jean; Coleman, Darrell; Stephenson, Jill

    2014-01-01

    This article presents an innovative framework that provides a means to understand and reevaluate student course evaluation systems. We present three major concepts vital to course evaluation systems and explain how they inform five evolutionary stages. Additionally, we show how the major stakeholders--students, faculty and administrators--are…

  20. Long‑term ungulate exclusion reduces fungal symbiont prevalence in native grasslands

    Treesearch

    Jennifer A. Rudgers; Rebecca A. Fletcher; Eric Olivas; Carolyn A. Young; Nikki D. Charlton; Dean E. Pearson; John L. Maron

    2016-01-01

    When symbionts are inherited by offspring, they can have substantial ecological and evolutionary consequences because they occur in all host life stages. Although natural frequencies of inherited symbionts are commonly <100 %, few studies investigate the ecological drivers of variation in symbiont prevalence. In plants, inherited fungal endophytes can...

  1. Biological Analogs for Language Contact Situations

    ERIC Educational Resources Information Center

    Seliger, Herbert W.

    1977-01-01

    This article proposes that language contact can be best understood if the entire range of such situations from second language learning to evolution of dialects and creoles is studied within a framework analogical to the symbiosis of living organisms. Language contact is viewed in terms of dynamic evolutionary stages. (CHK)

  2. Drivers of advanced stage at breast cancer diagnosis in the multicountry African breast cancer – disparities in outcomes (ABC‐DO) study

    PubMed Central

    Zietsman, Annelle; Galukande, Moses; Anele, Angelica; Adisa, Charles; Parham, Groesbeck; Pinder, Leeya; Cubasch, Herbert; Joffe, Maureen; Kidaaga, Frederick; Lukande, Robert; Offiah, Awa U.; Egejuru, Ralph O.; Shibemba, Aaron; Schuz, Joachim; Anderson, Benjamin O.; dos Santos Silva, Isabel; McCormack, Valerie

    2017-01-01

    Breast cancer (BC) survival rates in sub‐Saharan Africa (SSA) are low in part due to advanced stage at diagnosis. As one component of a study of the entire journey of SSA women with BC, we aimed to identify shared and setting‐specific drivers of advanced stage BC. Women newly diagnosed in the multicountry African Breast Cancer–Disparities in Outcomes (ABC‐DO) study completed a baseline interview and their stage information was extracted from medical records. Ordinal logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for advanced stage (I, II, III, IV) in relation to individual woman‐level, referral and biological factors. A total of 1795 women were included from Nigeria, Uganda, Zambia, and the multiracial populations of Namibia and South Africa, 1091 of whom (61%) were stage III/IV. Stage was lower in women with greater BC knowledge (OR 0.77 (95% CI: 0.70, 0.85) per point on a 6 point scale). More advanced stage was associated with being black (4.00 (2.79, 5.74)), having attended

  3. ATLASGAL-selected massive clumps in the inner Galaxy. VI. Kinetic temperature and spatial density measured with formaldehyde

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Henkel, C.; Wyrowski, F.; Giannetti, A.; Menten, K. M.; Csengeri, T.; Leurini, S.; Urquhart, J. S.; König, C.; Güsten, R.; Lin, Y. X.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.

    2018-03-01

    Context. Formaldehyde (H2CO) is a reliable tracer to accurately measure the physical parameters of dense gas in star-forming regions. Aim. We aim to determine directly the kinetic temperature and spatial density with formaldehyde for the 100 brightest ATLASGAL-selected clumps (the TOP100 sample) at 870 μm representing various evolutionary stages of high-mass star formation. Methods: Ten transitions (J = 3-2 and 4-3) of ortho- and para-H2CO near 211, 218, 225, and 291 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope. Results: Using non-LTE models with RADEX, we derived the gas kinetic temperature and spatial density with the measured para-H2CO 321-220/303-202, 422-321/404-303, and 404-303/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO 321-220/303-202 and 422-321/404-303 line ratios are high, ranging from 43 to >300 K with an unweighted average of 91 ± 4 K. Deduced Tkin values from the J = 3-2 and 4-3 transitions are similar. Spatial densities of the gas derived from the para-H2CO 404-303/303-202 line ratios yield 0.6-8.3 × 106 cm-3 with an unweighted average of 1.5 (±0.1) × 106 cm-3. A comparison of kinetic temperatures derived from para-H2CO, NH3, and dust emission indicates that para-H2CO traces a distinctly higher temperature than the NH3 (2, 2)/(1, 1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2CO line widths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2CO increase with time through the evolution of the clumps. The high temperature of the gas traced by H2CO may be mainly caused by radiation from embedded young massive stars and the interaction of outflows with the ambient medium. For Lbol/Mclump ≳ 10 L⊙/M⊙, we find a rough correlation between gas kinetic temperature and this ratio, which is indicative of the evolutionary stage of the individual clumps. The strong relationship between H2CO line luminosities and clump masses is apparently linear during the late evolutionary stages of the clumps, indicating that LH_2CO does reliably trace the mass of warm dense molecular gas. In our massive clumps H2CO line luminosities are approximately linearly correlated with bolometric luminosities over about four orders of magnitude in Lbol, which suggests that the mass of dense molecular gas traced by the H2CO line luminosity is well correlated with star formation. Source and H2CO parameters (Tables A.1-A.7) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A6

  4. Self-Advocacy Serious Game in Advanced Cancer

    ClinicalTrials.gov

    2018-04-05

    Ovarian Cancer Stage III; Ovarian Cancer Stage IV; Breast Cancer Stage IV; Cervical Cancer Stage IIIB; Cervical Cancer Stage IVA; Cervical Cancer Stage IVB; Endometrial Cancer Stage III; Endometrial Cancer Stage IV; Vulvar Cancer, Stage III; Vulvar Cancer, Stage IV; Vaginal Cancer Stage III; Vaginal Cancer Stage IVA; Vaginal Cancer Stage IVB

  5. Endometrial Cancer: Socioeconomic Status and Racial/Ethnic Differences in Stage at Diagnosis, Treatment, and Survival

    PubMed Central

    Madison, Terri; Schottenfeld, David; James, Sherman A.; Schwartz, Ann G.; Gruber, Stephen B.

    2004-01-01

    Objective. We evaluated the association between socioeconomic status and racial/ ethnic differences in endometrial cancer stage at diagnosis, treatment, and survival. Methods. We conducted a population-based study among 3656 women. Results. Multivariate analyses showed that either race/ethnicity or income, but not both, was associated with advanced-stage disease. Age, stage at diagnosis, and income were independent predictors of hysterectomy. African American ethnicity, increased age, aggressive histology, poor tumor grade, and advanced-stage disease were associated with increased risk for death; higher income and hysterectomy were associated with decreased risk for death. Conclusions. Lower income was associated with advanced-stage disease, lower likelihood of receiving a hysterectomy, and lower rates of survival. Earlier diagnosis and removal of barriers to optimal treatment among lower-socioeconomic status women will diminish racial/ethnic differences in endometrial cancer survival. PMID:15569961

  6. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus.

    PubMed

    Yong, Luok Wen; Yu, Jr-Kai

    2016-08-01

    Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change.

    PubMed

    Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten

    2018-03-02

    Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Assessing the impact of electronic health records as an enabler of hospital quality and patient satisfaction.

    PubMed

    Jarvis, Benjamin; Johnson, Tricia; Butler, Peter; O'Shaughnessy, Kathryn; Fullam, Francis; Tran, Lac; Gupta, Richa

    2013-10-01

    To assess the impact of using an advanced electronic health record (EHR) on hospital quality and patient satisfaction. This retrospective, cross-sectional analysis was conducted in 2012 to evaluate the association between advanced EHR use (Healthcare Information Management Systems Society [HIMSS] Stage 6 or 7 as of December 2012) and estimated process and experience of care scores for hospitals under the Medicare Hospital Value-Based Purchasing Program, using data from the American Hospital Association for 2008 to 2010. Generalized linear regression models were fit to test the association between advanced EHR use with process of care and experience of care, controlling for hospital characteristics. In a second analysis, the models included variables to account for HIMSS stage of advanced EHR use. The study included 2,988 hospitals, with 248 (8.3%) classified as advanced EHR users (HIMSS Stage 6 or 7). After controlling for hospital characteristics, advanced EHR use was associated with a 4.2-point-higher process of care score (P < .001). Hospitals with Stage 7 EHRs had 11.7 points higher process of care scores, but Stage 6 users had scores that were not substantially different from those of nonadvanced users. There was no significant difference in estimated experience of care scores by level of advanced EHR use. This study evaluated the effectiveness of the U.S. federal government's investment in hospital information technology infrastructure. Results suggest that the most advanced EHRs have the greatest payoff in improving clinical process of care scores, without detrimentally impacting the patient experience.

  9. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes

    2011-06-01

    This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.

  10. Understanding variation in human fertility: what can we learn from evolutionary demography?

    PubMed

    Sear, Rebecca; Lawson, David W; Kaplan, Hillard; Shenk, Mary K

    2016-04-19

    Decades of research on human fertility has presented a clear picture of how fertility varies, including its dramatic decline over the last two centuries in most parts of the world. Why fertility varies, both between and within populations, is not nearly so well understood. Fertility is a complex phenomenon, partly physiologically and partly behaviourally determined, thus an interdisciplinary approach is required to understand it. Evolutionary demographers have focused on human fertility since the 1980s. The first wave of evolutionary demographic research made major theoretical and empirical advances, investigating variation in fertility primarily in terms of fitness maximization. Research focused particularly on variation within high-fertility populations and small-scale subsistence societies and also yielded a number of hypotheses for why fitness maximization seems to break down as fertility declines during the demographic transition. A second wave of evolutionary demography research on fertility is now underway, paying much more attention to the cultural and psychological mechanisms underpinning fertility. It is also engaging with the complex, multi-causal nature of fertility variation, and with understanding fertility in complex modern and transitioning societies. Here, we summarize the history of evolutionary demographic work on human fertility, describe the current state of the field, and suggest future directions. © 2016 The Author(s).

  11. Understanding variation in human fertility: what can we learn from evolutionary demography?

    PubMed Central

    Sear, Rebecca; Lawson, David W.; Kaplan, Hillard

    2016-01-01

    Decades of research on human fertility has presented a clear picture of how fertility varies, including its dramatic decline over the last two centuries in most parts of the world. Why fertility varies, both between and within populations, is not nearly so well understood. Fertility is a complex phenomenon, partly physiologically and partly behaviourally determined, thus an interdisciplinary approach is required to understand it. Evolutionary demographers have focused on human fertility since the 1980s. The first wave of evolutionary demographic research made major theoretical and empirical advances, investigating variation in fertility primarily in terms of fitness maximization. Research focused particularly on variation within high-fertility populations and small-scale subsistence societies and also yielded a number of hypotheses for why fitness maximization seems to break down as fertility declines during the demographic transition. A second wave of evolutionary demography research on fertility is now underway, paying much more attention to the cultural and psychological mechanisms underpinning fertility. It is also engaging with the complex, multi-causal nature of fertility variation, and with understanding fertility in complex modern and transitioning societies. Here, we summarize the history of evolutionary demographic work on human fertility, describe the current state of the field, and suggest future directions. PMID:27022071

  12. Ecology and evolution of plant–pollinator interactions

    PubMed Central

    Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.

    2009-01-01

    Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881

  13. Ecology and evolution of plant-pollinator interactions.

    PubMed

    Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D

    2009-06-01

    Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.

  14. Individual heterogeneity in life histories and eco-evolutionary dynamics

    PubMed Central

    Vindenes, Yngvild; Langangen, Øystein

    2015-01-01

    Individual heterogeneity in life history shapes eco-evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population-level processes. Recent developments have provided important steps towards their application to study eco-evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long-term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco-evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco-evolutionary dynamics. PMID:25807980

  15. An incidence model of the cost of advanced prostate cancer in Spain.

    PubMed

    Hart, W M; Nazir, J; Baskin-Bey, E

    2014-02-01

    Prostate cancer (PCa) is the second leading cancer diagnosed among men. In Spain the incidence of PCa was 70.75 cases per 100,000 males. Advanced PCa has spread outside of the prostate capsule and may involve other parts of the body. The aim of this study was to estimate the lifetime costs of a cohort of advanced PCa patients diagnosed in Spain in 2012. A partitioned economic model was developed in EXCEL incorporating Spanish incidence, mortality, and cost data supplemented with data from the international literature. Progression from Stage III to Stage IV was permitted. Costs were discounted at the standard rate of 3%. Lifetime costs were presented on an individual basis and for the entire cohort of newly diagnosed Stage III and Stage IV PCa patients. Lifetime costs for advanced PCa were ∼€19,961 per patient (mean survival of 8.4 years). Using the projected incident cases for 2012 (3047), the total cost for the incident cohort of patients in 2012 would amount to €61 million. These results were more sensitive to changes in the ongoing costs (post-initial 12 months) of Stage III PCa, the rate of progression from Stage III to Stage IV, and the discount rate applied to costs. This study provides an estimate of the lifetime costs of advanced PCa in Spain and a framework for further research. The study is limited by the availability of long-term Spanish data and the need to make inferences from international studies. However, until long-term prospective or observational data do become available in Spain, based on the assumptions, the current results indicate that the burden of advanced PCa in Spain is substantial. Any treatments that could potentially reduce the economic burden of the disease should be of interest to healthcare decision makers.

  16. A C597-->A polymorphism in the Norrie disease gene is associated with advanced retinopathy of prematurity in premature Kuwaiti infants.

    PubMed

    Haider, M Z; Devarajan, L V; Al-Essa, M; Kumar, H

    2002-01-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease which occurs in infants with a short gestational age and low birth weight and may lead to retinal detachment and blindness. In some premature infants, ROP progresses to advanced stages despite rigorous intervention, but in the majority, it spontaneously regresses before the threshold stage. Genetic factors, e.g. mutations in the Norrie disease (ND) gene, have been implicated in determining the progression of ROP to advanced stages. We have identified a novel C597A polymorphism of the ND gene; we screened this and another mutation in the ND gene, C110G, in 210 premature Kuwaiti infants using PCR-RFLP, DNA sequence analysis and DNA enzyme immunoassay hybridization to investigate their association with advanced-stage ROP. In this cohort of premature Kuwaiti newborns, 115 of 210 babies had no eye problems and served as controls, while 95 were found to have ROP. In 71 of the 95 ROP cases, the disease spontaneously regressed at or before stage 3, while in 24 of 95 ROP cases, the disease progressed to advanced stages 4 or 5. The incidence of the AA genotype of the C597A polymorphism was considerably higher in advanced-stage ROP cases (83.3%) compared to spontaneously regressing ROP cases (0%) and the normal controls (10.4%) (p < 0.0001). For the other genotypes, no significant difference was detected between the controls and ROP cases. In the case of the C110G mutation in the ND gene, no significant differences were detected between the controls and ROP cases, and the majority of subjects had a CC genotype in all three groups. Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  17. Retinopathy of prematurity: mutations in the Norrie disease gene and the risk of progression to advanced stages.

    PubMed

    Haider, M Z; Devarajan, L V; Al-Essa, M; Srivastva, B S; Kumar, H; Azad, R; Rashwan, N

    2001-04-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease that occurs in infants with short gestational age and low birth weight and may lead to retinal detachment and blindness. Missense mutations in the Norrie disease (ND) gene have been associated with the risk of progression to advanced stages in cases of ROP from the US and also in clinically similar ND and familial exudative vitreoretinopathy. We have screened two ND gene mutations, namely A105T and Val60Glu, by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific PCR methods, respectively, in 210 Kuwaiti premature newborns to replicate these findings in a different ethnic group. In the Kuwaiti premature newborn cohort, 115 of 210 babies had no eye problems and served as controls, while 95 were cases of ROP. In 71 of 95 ROP cases, the disease regressed spontaneously on or before stage 3, while in 24 of 95 ROP cases the disease progressed to advanced stages 4 and 5. In case of missense mutation (A105T), the AA genotype was detected in 96% of controls compared with 87% of ROP cases (NS); similarly no significant difference was found between spontaneously regressed ROP cases and those who progressed to advanced stages. For the Val60Glu mutation, no significant association was detected between the genotype and progression of ROP to advanced stages. Unlike data from the US, our findings from a Kuwaiti cohort of ROP cases and controls suggest a lack of association between the two ND gene mutations (A105T and Val60Glu) and ROP and the risk of progression of the disease to advanced stages.

  18. Selumetinib and Akt Inhibitor MK-2206 in Treating Patients With Refractory or Advanced Gallbladder or Bile Duct Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2014-09-08

    Adenocarcinoma of the Gallbladder; Adenocarcinoma With Squamous Metaplasia of the Gallbladder; Adult Primary Cholangiocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Localized Unresectable Adult Primary Liver Cancer; Metastatic Extrahepatic Bile Duct Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Stage II Gallbladder Cancer; Stage IIIA Gallbladder Cancer; Stage IIIB Gallbladder Cancer; Stage IVA Gallbladder Cancer; Stage IVB Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer

  19. ATLASGAL-selected massive clumps in the inner Galaxy. II. Characterisation of different evolutionary stages and their SiO emission

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Leurini, S.; Wyrowski, F.; Urquhart, J. S.; Menten, K. M.; Walmsley, M.; Bontemps, S.; Wienen, M.; Beuther, H.; Motte, F.; Nguyen-Luong, Q.; Schilke, P.; Schuller, F.; Zavagno, A.; Sanna, C.

    2016-02-01

    Context. The processes leading to the birth of high-mass stars are poorly understood. The key first step to reveal their formation processes is characterising the clumps and cores from which they form. Aims: We define a representative sample of massive clumps in different evolutionary stages selected from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), from which we aim to establish a census of molecular tracers of their evolution. As a first step, we study the shock tracer, SiO, mainly associated with shocks from jets probing accretion processes. In low-mass young stellar objects (YSOs), outflow and jet activity decreases with time during the star formation processes. Recently, a similar scenario was suggested for massive clumps based on SiO observations. Here we analyse observations of the SiO (2-1) and (5-4) lines in a statistically significant sample to constrain the change of SiO abundance and the excitation conditions as a function of evolutionary stage of massive star-forming clumps. Methods: We performed an unbiased spectral line survey covering the 3-mm atmospheric window between 84-117 GHz with the IRAM 30 m telescope of a sample of 430 sources of the ATLASGAL survey, covering various evolutionary stages of massive clumps. A smaller sample of 128 clumps has been observed in the SiO (5-4) transition with the APEX telescope to complement the (2-1) line and probe the excitation conditions of the emitting gas. We derived detection rates to assess the star formation activity of the sample, and we estimated the column density and abundance using both an LTE approximation and non-LTE calculations for a smaller subsample, where both transitions have been observed. Results: We characterise the physical properties of the selected sources, which greatly supersedes the largest samples studied so far, and show that they are representative of different evolutionary stages. We report a high detection rate of >75% of the SiO (2-1) line and a >90% detection rate from the dedicated follow-ups in the (5-4) transition. Up to 25% of the infrared-quiet clumps exhibit high-velocity line wings, suggesting that molecular tracers are more efficient tools to determine the level of star formation activity than infrared colour criteria. We also find infrared-quiet clumps that exhibit only a low-velocity component (FWHM ~ 5-6 km s-1) SiO emission in the (2-1) line. In the current picture, where this is attributed to low-velocity shocks from cloud-cloud collisions, this can be used to pinpoint the youngest, thus, likely prestellar massive structures. Using the optically thin isotopologue (29SiO), we estimate that the (2-1) line is optically thin towards most of the sample. Furthermore, based on the line ratio of the (5-4) to the (2-1) line, our study reveals a trend of changing excitation conditions that lead to brighter emission in the (5-4) line towards more evolved sources. Our models show that a proper treatment of non-LTE effects and beam dilution is necessary to constrain trends in the SiO column density and abundance. Conclusions: We conclude that the SiO (2-1) line with broad line profiles and high detection rates is a powerful probe of star formation activity in the deeply embedded phase of the evolution of massive clumps. The ubiquitous detection of SiO in all evolutionary stages suggests a continuous star formation process in massive clumps. Our analysis delivers a more robust estimate of SiO column density and abundance than previous studies and questions the decrease of jet activity in massive clumps as a function of age. The observed increase of excitation conditions towards the more evolved clumps suggests a higher pressure in the shocked gas towards more evolved or more massive clumps in our sample. Full Tables 4, 6, 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A149

  20. Staging laparoscopy improves treatment decision-making for advanced gastric cancer.

    PubMed

    Hu, Yan-Feng; Deng, Zhen-Wei; Liu, Hao; Mou, Ting-Yu; Chen, Tao; Lu, Xin; Wang, Da; Yu, Jiang; Li, Guo-Xin

    2016-02-07

    To evaluate the clinical value of staging laparoscopy in treatment decision-making for advanced gastric cancer (GC). Clinical data of 582 patients with advanced GC were retrospectively analyzed. All patients underwent staging laparoscopy. The strength of agreement between computed tomography (CT) stage, endoscopic ultrasound (EUS) stage, laparoscopic stage, and final stage were determined by weighted Kappa statistic (Kw). The number of patients with treatment decision-changes was counted. A χ(2) test was used to analyze the correlation between peritoneal metastasis or positive cytology and clinical characteristics. Among the 582 patients, the distributions of pathological T classifications were T2/3 (153, 26.3%), T4a (262, 45.0%), and T4b (167, 28.7%). Treatment plans for 211 (36.3%) patients were changed after staging laparoscopy was performed. Two (10.5%) of 19 patients in M1 regained the opportunity for potential radical resection by staging laparoscopy. Unnecessary laparotomy was avoided in 71 (12.2%) patients. The strength of agreement between preoperative T stage and final T stage was in almost perfect agreement (Kw = 0.838; 95% confidence interval (CI): 0.803-0.872; P < 0.05) for staging laparoscopy; compared with CT and EUS, which was in fair agreement. The strength of agreement between preoperative M stage and final M stage was in almost perfect agreement (Kw = 0.990; 95% CI: 0.977-1.000; P < 0.05) for staging laparoscopy; compared with CT, which was in slight agreement. Multivariate analysis revealed that tumor size (≥ 40 mm), depth of tumor invasion (T4b), and Borrmann type (III or IV) were significantly correlated with either peritoneal metastasis or positive cytology. The best performance in diagnosing P-positive was obtained when two or three risk factors existed. Staging laparoscopy can improve treatment decision-making for advanced GC and decrease unnecessary exploratory laparotomy.

  1. Preventive evolutionary medicine of cancers.

    PubMed

    Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula

    2013-01-01

    Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.

  2. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.

    PubMed

    Jerison, Elizabeth R; Desai, Michael M

    2015-12-01

    Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the repeatability and predictability of evolution by comparing identical replicate populations. Further, we can resurrect ancestral types to examine changes over evolutionary time. Until recently, experimental evolution has been limited to measuring phenotypic changes, or to tracking a few genetic markers over time. However, recent advances in sequencing technology now make it possible to extensively sequence clones or whole-population samples from microbial evolution experiments. Here, we review recent work exploiting these techniques to understand the genomic basis of evolutionary change in experimental systems. We first focus on studies that analyze the dynamics of genome evolution in microbial systems. We then survey work that uses observations of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the epistatic interactions between mutations and the constraints these interactions impose on adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.

    PubMed

    Derrac, Joaquín; Triguero, Isaac; Garcia, Salvador; Herrera, Francisco

    2012-10-01

    Cooperative coevolution is a successful trend of evolutionary computation which allows us to define partitions of the domain of a given problem, or to integrate several related techniques into one, by the use of evolutionary algorithms. It is possible to apply it to the development of advanced classification methods, which integrate several machine learning techniques into a single proposal. A novel approach integrating instance selection, instance weighting, and feature weighting into the framework of a coevolutionary model is presented in this paper. We compare it with a wide range of evolutionary and nonevolutionary related methods, in order to show the benefits of the employment of coevolution to apply the techniques considered simultaneously. The results obtained, contrasted through nonparametric statistical tests, show that our proposal outperforms other methods in the comparison, thus becoming a suitable tool in the task of enhancing the nearest neighbor classifier.

  4. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  5. Can Multilayer Networks Advance Animal Behavior Research?

    PubMed

    Silk, Matthew J; Finn, Kelly R; Porter, Mason A; Pinter-Wollman, Noa

    2018-06-01

    Interactions among individual animals - and between these individuals and their environment - yield complex, multifaceted systems. The development of multilayer network analysis offers a promising new approach for studying animal social behavior and its relation to eco-evolutionary dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Aggression, science, and law: The origins framework. Introduction.

    PubMed

    Victoroff, Jeff

    2009-01-01

    Human societies have formalized instincts for compliance with reciprocal altruism in laws that sanction some aggression and not other aggression. Neuroscience makes steady advances toward measurements of various aspects of brain function pertinent to the aggressive behaviors that laws are designed to regulate. Consciousness, free will, rationality, intent, reality testing, empathy, moral reasoning, and capacity for self-control are somewhat subject to empirical assessment. The question becomes: how should law accommodate the wealth of information regarding these elements of mind that the science of aggression increasingly makes available? This essay discusses the evolutionary purpose of aggression, the evolutionary purpose of law, the problematic assumptions of the mens rea doctrine, and the prospects for applying the neuroscience of aggression toward the goal of equal justice for unequal minds. Nine other essays are introduced, demonstrating how each of them fits into the framework of the permanent debate about neuroscience and justice. It is concluded that advances in the science of human aggression will have vital, but biologically limited, impact on the provision of justice.

  7. Advances in understanding the anxiety disorders: the cognitive-affective neuroscience of 'false alarms'.

    PubMed

    Stein, Dan J

    2006-01-01

    There have been significant advances in our understanding of the anxiety disorders; a range of data is now available on their epidemiology, nosology, psychobiology, and management. An integrative framework is required in order to conceptualize this data and to apply it in the clinic. This is a nonsystematic review of literature on the psychobiology of some the major anxiety disorders, focused on the idea that each of these conditions can be conceptualized in terms of a different "false alarm," mediated by specific neurocircuitry and with a particular evolutionary origin. The "false alarm" concept is able to integrate a range of data on the proximal mechanisms of anxiety disorders (including their mediating neurochemistry and neurogenetics), as well as hypotheses about the distal or evolutionary underpinnings of these conditions. Fortunately, serotonergic antidepressants and cognitive-behavioral psychotherapy appear to be able to normalize the putative "false alarms" in anxiety disorders. A better understanding of the cognitive-affective neuroscience of anxiety disorders will hopefully lead to improved treatments.

  8. Fundulus as the Premier Teleost Model in Environmental Biology: Opportunities for New Insights Using Genomics

    PubMed Central

    Burnett, Karen G.; Bain, Lisa J.; Baldwin, William S.; Callard, Gloria V.; Cohen, Sarah; Di Giulio, Richard T.; Evans, David H.; Gómez-Chiarri, Marta; Hahn, Mark E.; Hoover, Cindi A.; Karchner, Sibel I.; Katoh, Fumi; MacLatchy, Deborah L.; Marshall, William S.; Meyer, Joel N.; Nacci, Diane E.; Oleksiak, Marjorie F.; Rees, Bernard B.; Singer, Thomas D.; Stegeman, John J.; Towle, David W.; Van Veld, Peter A.; Vogelbein, Wolfgang K.; Whitehead, Andrew; Winn, Richard N.; Crawford, Douglas L.

    2007-01-01

    A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms. PMID:18071578

  9. Developmental Gene Regulation and Mechanisms of Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Marine Biological Laboratory and the National Aeronautics and Space Administration have established a cooperative agreement with the formation of a Center for Advanced Studies 'in the Space Life Sciences (CASSLS) at the MBL. This Center serves as an interface between NASA and the basic science community, addressing issues of mutual interest. The Center for Advanced Studies 'in the Space Life Sciences provides a forum for scientists to think and discuss, often for the first time, the role that gravity and aspects of spaceflight may play 'in fundamental cellular and physiologic processes. In addition the Center will sponsor discussions on evolutionary biology. These interactions will inform the community of research opportunities that are of interest to NASA. This workshop is one of a series of symposia, workshops and seminars that will be held at the MBL to advise NASA on a wide variety of topics in the life sciences, including cell biology, developmental biology, mg evolutionary biology, molecular biology, neurobiology, plant biology and systems biology.

  10. Geostationary platform study: Advanced ESGP/evolutionary SSF accommodation study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The implications on the evolutionary space station of accommodating geosynchronous Earth Orbit (GEO) facilities including unmanned satellites and platforms, manned elements, and transportation and servicing vehicles/elements. The latest existing definitions of typical unmanned GEO facilities and transportation and servicing vehicles/elements are utilized. The physical design, functional design, and operations implications at the space station are determined. Various concepts of the space station from past studies are utilized ranging from the IOC Multifunction Space Station to a branched transportation node space station, and the implications of the accommodation the GEO infrastructure of each type are assessed. Where possible, parametric data are provided to show the implications of variations in sizes and quantities of elements, launch rates, crew sizes, etc. The use of advanced automation, robotics equipment, and an efficient mix of manned/automated support for accomplishing necessary activities at the space station are identified and assessed. The products of this study are configuration sketches, resource requirements, trade studies, and parametric data.

  11. Evolutionary Constraints Shaping Streptococcus pyogenes-Host Interactions.

    PubMed

    Wilkening, Reid V; Federle, Michael J

    2017-07-01

    Research on the Gram-positive human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has long focused on invasive illness, the most severe manifestations of GAS infection. Recent advances in descriptions of molecular mechanisms of GAS virulence, coupled with massive sequencing efforts to isolate genomes, have allowed the field to better understand the molecular and evolutionary changes leading to pandemic strains. These findings suggest that it is necessary to rethink the dogma involving GAS pathogenesis, and that the most productive avenues for research going forward may be investigations into GAS in its 'normal' habitat, the nasopharynx, and its ability to either live with its host in an asymptomatic lifestyle or as an agent of superficial infections. This review will consider these advances, focusing on the natural history of GAS, the evolution of pandemic strains, and novel roles for several key virulence factors that may allow the field to better understand their physiological role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ATLASGAL: Chemical evolution of star forming clumps

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, James S.; Wyrowski, Friedrich

    2017-01-01

    Although massive stars are few in number, they impact their host molecular clouds, clusters, and galaxies in profound ways, playing a vital role in regulating star formation in their host galaxy. Understanding the formation of these massive stars is critical to understanding this evolution, but their rapid early development causes them to reach the main sequence while still shrouded in their natal molecular cloud. Many studies have investigated these regions in a targeted manner, but a full understanding necessitates a broader view at all stages of formation across many star forming regions.We have used mid-infrared continuum surveys to guide selection of a statistically large sample of massive dust clumps from the 10,000 such clumps identified in the ATLASGAL Compact Source Catalogue (CSC), ensuring that all stages of the evolutionary process are included. A final sample of 600 fourth-quadrant sources within 1 degree of the Galactic plane were observed with the Mopra telescope with an 8 GHz bandwidth between 85.2 and 93.4 GHz.We present an overview of our results. We have identified over 30 molecular lines, seven of which with detected hyperfine structure, as well as several mm-radio recombination line transitions. Source velocities indicate that these regions trace the Crux-Scutum, Norma, and Carina Sagitarius arms. We have performed an analysis of linewidth and line intensity ratios, correlating these with star formation stages as identified by IR brightness at the 70 and 24 μm bands, and present several molecular pairs whose linewidth and intensity might serve as significant tracers of the evolutionary stage of star formation. We comment on the results of PCA analysis of the measured parameters for the overall population and the star formation stage subgroups with an eye toward characterising early stellar development through molecular line observations.

  13. The EvoDevoCI: A Concept Inventory for Gauging Students’ Understanding of Evolutionary Developmental Biology

    PubMed Central

    Perez, Kathryn E.; Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; French, Donald P.; Terry, Mark; Price, Rebecca M.

    2013-01-01

    The American Association for the Advancement of Science 2011 report Vision and Change in Undergraduate Biology Education encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary developmental biology, or “evo-devo.” To assist in efforts to improve evo-devo instruction among undergraduate biology majors, we designed a concept inventory (CI) for evolutionary developmental biology, the EvoDevoCI. The CI measures student understanding of six core evo-devo concepts using four scenarios and 11 multiple-choice items, all inspired by authentic scientific examples. Distracters were designed to represent the common conceptual difficulties students have with each evo-devo concept. The tool was validated by experts and administered at four institutions to 1191 students during preliminary (n = 652) and final (n = 539) field trials. We used student responses to evaluate the readability, difficulty, discriminability, validity, and reliability of the EvoDevoCI, which included items ranging in difficulty from 0.22–0.55 and in discriminability from 0.19–0.38. Such measures suggest the EvoDevoCI is an effective tool for assessing student understanding of evo-devo concepts and the prevalence of associated common conceptual difficulties among both novice and advanced undergraduate biology majors. PMID:24297293

  14. Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library.

    PubMed

    Ito, Y; Ikeuchi, A; Imamura, C

    2013-01-01

    We aimed at constructing thermostable cellulase variants of cellobiohydrolase II, derived from the mesophilic fungus Phanerochaete chrysosporium, by using an advanced evolutionary molecular engineering method. By aligning the amino acid sequences of the catalytic domains of five thermophilic fungal CBH2 and PcCBH2 proteins, we identified 45 positions where the PcCBH2 genes differ from the consensus sequence of two to five thermophilic fungal CBH2s. PcCBH2 variants with the consensus mutations were obtained by a cell-free translation system that was chosen for easy evaluation of thermostability. From the small library of consensus mutations, advantageous mutations for improving thermostability were found to occur with much higher frequency relative to a random library. To further improve thermostability, advantageous mutations were accumulated within the wild-type gene. Finally, we obtained the most thermostable variant Mall4, which contained all 15 advantageous mutations found in this study. This variant had the same specific cellulase activity as the wild type and retained sufficient activity at 50°C for >72 h, whereas wild-type PcCBH2 retained much less activity under the same conditions. The history of the accumulation process indicated that evolution of PcCBH2 toward improved thermostability was ideally and rapidly accomplished through the evolutionary process employed in this study.

  15. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    ERIC Educational Resources Information Center

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  16. Genetic diversification of chemokine CXCL16 and its receptor CXCR6 in primates.

    PubMed

    Xu, Feifei; He, Dan; Liu, Jiabin; Ni, Qingyong; Lyu, Yongqing; Xiong, Shiqiu; Li, Yan

    2018-08-01

    Chemokine CXCL16 and its receptor CXCR6 are associated with a series of physiological and pathological processes in cooperative and stand-alone fashions. To shed insight into their versatile nature, we studied genetic variations of CXCL16 and CXCR6 in primates. Evolutionary analyses revealed that these genes underwent a similar evolutionary fate. Both genes experienced adaptive diversification with the phylogenetic division of cercopithecoids (Old World monkeys) and hominoids (humans, great apes, and gibbons) from their common ancestor. In contrast, they were conserved in the periods preceding and following the dividing process. In terms of the adaptive diversification between cercopithecoids and hominoids, the adaptive genetic changes have occurred in the mucin-like and chemokine domains of CXCL16 and the N-terminus and transmembrane helixes of CXCR6. In combination with currently available structural and functional information for CXCL16 and CXCR6, the parallels between the evolutionary footprints and the co-occurrence of adaptive diversification at some evolutionary stage suggest that interplay could exist between the diversification-related amino acid sites, or between the domains on which the identified sites are located, in physiological processes such as chemotaxis and/or cell adhesion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Natural course and predictors of severe disability and death in Thai patients with dementia.

    PubMed

    Dharmasaroja, Pornpatr A; Lolekha, Praween; Kulkantrakorn, Kongkiat; Charernboon, Thammanard; Watcharakorn, Arvemas; Piyabhan, Pritsana

    2017-12-01

    More than half of patients with dementia lived in countries with low and middle incomes. However, there have been few studies on the natural course of disease in these countries. The purpose of this study was to study the natural course and the predictive factors of advanced stage and death in Thai patients with dementia. Patients with dementia who were treated in neurologic and psychiatric clinic from September 2004 to February 2016, were included. Data about natural course of diseases, behavioral and psychological symptoms in dementia (BPSD) and complications were studied. 207 patients were included. Mean age was 77years old. Mean Thai Mental State Examination (TMSE) was 17.5. Alzheimer's disease was the most common cause of dementia (55%). With the mean follow-up of 39months (range from 2 to 126months), 64% of the patients had BPSD. Sixty-two patients (30%) had complications required admission. Seven patients died. Fifty-four patients (29%) ended in the advanced stage of dementia. Mean duration from diagnosis to the advanced stage was 49months. Complications that required admission usually occurred in moderate to severe dementia and were strongly associated with the advanced stage or death (OR 6.1, 95%CI 2.57-14.49, p-value<0.0001). Alzheimer's disease was the most common cause of dementia in the study. Most demented patients presented in moderate severity of dementia. Mean duration from diagnosis to the advanced stage of dementia was approximate 4-5years. Complications required admissions related to the progression to advanced stage or death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.

    PubMed

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-06-30

    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision" than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation.

  19. A Star-Formation Laboratory

    NASA Image and Video Library

    2011-05-13

    The dwarf galaxy NGC 4214 is ablaze with young stars and gas clouds. Located around 10 million light-years away in the constellation of Canes Venatici (The Hunting Dogs), the galaxy's close proximity, combined with the wide variety of evolutionary stages among the stars, make it an ideal laboratory to research the triggers of star formation and evolution. Intricate patterns of glowing hydrogen formed during the star-birthing process, cavities blown clear of gas by stellar winds, and bright stellar clusters of NGC 4214 can be seen in this optical and near-infrared image. Observations of this dwarf galaxy have also revealed clusters of much older red supergiant stars. Additional older stars can be seen dotted all across the galaxy. The variety of stars at different stages in their evolution indicates that the recent and ongoing starburst periods are not the first, and the galaxy's abundant supply of hydrogen means that star formation will continue into the future. This color image was taken using the Wide Field Camera 3 in December 2009. Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration Acknowledgment: R. O'Connell (University of Virginia) and the WFC3 Scientific Oversight Committee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. THE INFLOW SIGNATURE TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae

    2016-08-01

    We analyze both HCN J  = 1–0 and HNC J  = 1–0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar objects (HMPOs), and 54 ultra-compact H ii regions (UCHIIs). Inflow asymmetry in the HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in the blue profile. In the case of the HNC spectra, the prevalence of blue sources does not appear, apart from for IRDCs. We suggest that this line is not appropriate to trace the inflow motionmore » in the evolved stages of massive star formation, because the abundance of HNC decreases at high temperatures. This result highlights the importance of considering chemistry in dynamics studies of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., in the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also find that the absorption dips of the HNC spectra in six out of seven blue sources are redshifted relative to their systemic velocities. These redshifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.« less

  1. No evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals.

    PubMed

    Tourmente, M; Delbarco Trillo, J; Roldan, E R S

    2015-10-01

    Post-copulatory sexual selection, in the form sperm competition, has influenced the evolution of several male reproductive traits. However, theory predicts that sperm competition would lead to trade-offs between numbers and size of spermatozoa because increased costs per cell would result in a reduction of sperm number if both traits share the same energetic budget. Theoretical models have proposed that, in large animals, increased sperm size would have minimal fitness advantage compared with increased sperm numbers. Thus, sperm numbers would evolve more rapidly than sperm size under sperm competition pressure. We tested in mammals whether sperm competition maximizes sperm numbers and size, and whether there is a trade-off between these traits. Our results showed that sperm competition maximizes sperm numbers in eutherian and metatherian mammals. There was no evidence of a trade-off between sperm numbers and sperm size in any of the two mammalian clades as we did not observe any significant relationship between sperm numbers and sperm size once the effect of sperm competition was taken into account. Maximization of both numbers and size in mammals may occur because each trait is crucial at different stages in sperm's life; for example size-determined sperm velocity is a key determinant of fertilization success. In addition, numbers and size may also be influenced by diverse energetic budgets required at different stages of sperm formation. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  2. The universal ancestor

    NASA Technical Reports Server (NTRS)

    Woese, C.

    1998-01-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when "genetic temperatures" were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell "crystallized," i.e., became refractory to lateral gene transfer, at different stages of "cooling," with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  3. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology.

    PubMed

    Pennell, Matthew W; Harmon, Luke J

    2013-06-01

    Recent innovations in phylogenetic comparative methods (PCMs) have spurred a renaissance of research into the causes and consequences of large-scale patterns of biodiversity. In this paper, we review these advances. We also highlight the potential of comparative methods to integrate across fields and focus on three examples where such integration might be particularly valuable: quantitative genetics, community ecology, and paleobiology. We argue that PCMs will continue to be a key set of tools in evolutionary biology, shedding new light on how evolutionary processes have shaped patterns of biodiversity through deep time. © 2013 New York Academy of Sciences.

  4. Different evolutionary stages in massive star formation. Centimeter continuum and H2O maser emission with ATCA

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Brand, J.; Molinari, S.; Testi, L.; Burton, M.

    2013-02-01

    Aims: We present Australia Telescope Compact Array (ATCA) observations of the H2O maser line and radio continuum at 18.0 GHz and 22.8 GHz toward a sample of 192 massive star-forming regions containing several clumps already imaged at 1.2 mm. The main aim of this study is to investigate the water maser and centimeter continuum emission (that likely traces thermal free-free emission) in sources at different evolutionary stages, using evolutionary classifications previously published. Methods: We used the recently comissioned Compact Array Broadband Backend (CABB) at ATCA that obtains images with ~20'' resolution in the 1.3 cm continuum and H2O maser emission in all targets. For the evolutionary analysis of the sources we used millimeter continuum emission from the literature and the infrared emission from the MSX Point Source Catalog. Results: We detect centimeter continuum emission in 88% of the observed fields with a typical rms noise level of 0.45 mJy beam-1. Most of the fields show a single radio continuum source, while in 20% of them we identify multiple components. A total of 214 cm continuum sources have been identified, that likely trace optically thin H ii regions, with physical parameters typical of both extended and compact H ii regions. Water maser emission was detected in 41% of the regions, resulting in a total of 85 distinct components. The low angular (~20'') and spectral (~14 km s-1) resolutions do not allow a proper analysis of the water maser emission, but suffice to investigate its association with the continuum sources. We have also studied the detection rate of H ii regions in the two types of IRAS sources defined in the literature on the basis of the IRAS colors: High and Low. No significant differences are found, with high detection rates (>90%) for both High and Low sources. Conclusions: We classify the millimeter and infrared sources in our fields in three evolutionary stages following the scheme presented previously: (Type 1) millimeter-only sources, (Type 2) millimeter plus infrared sources, (Type 3) infrared-only sources. We find that H ii regions are mainly associated with Type 2 and Type 3 objects, confirming that these are more evolved than Type 1 sources. The H ii regions associated with Type 3 sources are slightly less dense and larger in size than those associated with Type 2 sources, as expected if the H ii region expands as it evolves, and Type 3 objects are older than Type 2 objects. The maser emission is mostly found to be associated with Type 1 and Type 2 sources, with a higher detection rate toward Type 2, consistent with the results of the literature. Finally, our results on H ii region and H2O maser association with different evolutionary types confirm the evolutionary classification proposed previously. Appendices are available in electronic form at http://www.aanda.orgTables 3-5, 7-9 are only, and Table 1 is also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A21

  5. Niche construction through phenological plasticity: life history dynamics and ecological consequences.

    PubMed

    Donohue, Kathleen

    2005-04-01

    The ability of an organism to alter the environment that it experiences has been termed 'niche construction'. Plants have several ways whereby they can determine the environment to which they are exposed at different life stages. This paper discusses three of these: plasticity in dispersal, flowering timing and germination timing. It reviews pathways through which niche construction alters evolutionary and ecological trajectories by altering the selective environment to which organisms are exposed, the phenotypic expression of plastic characters, and the expression of genetic variation. It provides examples whereby niche construction creates positive or negative feedbacks between phenotypes and environments, which in turn cause novel evolutionary constraints and novel life-history expression. Copyright New Phytologist (2005).

  6. Tadpoles: the Biology of Anuran Larvae

    USGS Publications Warehouse

    McDiarmid, R.W.; Altig, R.

    1999-01-01

    The recent alarming declines in amphibian populations worldwide and the suitability of amphibians for use in answering research questions in disciplines as diverse as molecular systematics, animal behavior, ecology, and evolutionary biology have focused enormous attention on tadpoles. Yet despite this growing interest, relatively little is known about these fascinating creatures. n this invaluable reference, leading experts on tadpole biology relate what we currently know about tadpoles and what we might learn from them in the future. Tadpoles provides detailed summaries of tadpole morphology, development, behavior, ecology, and environmental physiology; explores the evolutionary consequences of the tadpole stage; synthesizes available information on their biodiversity, and presents a standardized terminology and an exhaustive literature review of tadpole biology.

  7. EXPLOITING GENOME DATA TO UNDERSTAND THE FUNCTION, REGULATION AND EVOLUTIONARY ORIGINS OF TOXICOLOGICALLY RELEVANT GENES

    EPA Science Inventory

    The wealth of new information coming from the many genome sequencing projects is providing unprecedented opportunities for major advances in all areas of biology, including the environmental health sciences. To facilitate this discovery process, experts in the fields of function...

  8. Lessons from Interspecies Mammalian Chimeras.

    PubMed

    Suchy, Fabian; Nakauchi, Hiromitsu

    2017-10-06

    As chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.

  9. [Hygiene and body odors across time].

    PubMed

    Daich, D C

    1998-06-01

    Since Ancient Times, the Middle Ages and Modern times, there have been references to hygiene and body smells as well. According to each time there is a change in hygienic criteria and methods to avoid or diminish these annoying smells. Several beliefs and also science give their explanation to the different evolutionary stages of this process.

  10. Networking and the Role of the Academic Systems Librarian: An Evolutionary Perspective.

    ERIC Educational Resources Information Center

    Lavagnino, Merri Beth

    1997-01-01

    This paper examines the role of academic systems librarians, focusing on the effect of networking technologies. Outlines stages in the evolution of the field derived from the literature and surveys, discusses new administrative and professional tasks and trends resulting from technological change, and speculates about the future of academic…

  11. The Juvenile Transition: A Developmental Switch Point in Human Life History

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Angeleri, Romina; Manera, Valeria

    2009-01-01

    This paper presents a new perspective on the transition from early to middle childhood (i.e., human juvenility), investigated in an integrative evolutionary framework. Juvenility is a crucial life history stage, when social learning and interaction with peers become central developmental functions; here it is argued that the "juvenile transition"…

  12. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    PubMed

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  13. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics.

    PubMed

    Pascal, Robert; Pross, Addy; Sutherland, John D

    2013-11-06

    A sudden transition in a system from an inanimate state to the living state-defined on the basis of present day living organisms-would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages-dynamic kinetic stability (DKS)-which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred.

  14. Soft computing approach to 3D lung nodule segmentation in CT.

    PubMed

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Morphological Characteristics and Phylogenetic Trends of Trematode Cercariae in Freshwater Snails from Nakhon Nayok Province, Thailand

    PubMed Central

    Chontananarth, Thapana; Tejangkura, Thanawan; Wetchasart, Napat; Chimburut, Cherdchay

    2017-01-01

    The prevalence of cercarial infection in freshwater snails and their evolutionary trends were studied in Nakhon Nayok province, Thailand. A total of 2,869 individual snails were examined for parasitic infections. The results showed that 12 snail species were found to host larval stages of trematodes with an overall prevalence of 4.7%. The infected specimens included 7 types at the cercarial stage; cercariae, megalurous cercariae, echinostome cercariae, furcocercous cercariae, parapleurolophocercous cercariae, virgulate cercariae, and xiphidiocercariae. Regarding molecular identification, ITS2 sequence data of each larval trematode were analyzed, and a dendrogram was constructed using the neighbor-joining method with 10,000 replicates. The dendrogram was separated into 6 clades (order/family), including Echinostomatida/Echinostomatidae, Echinostomatida/Philophthalmidae, Opisthorchiida/Heterophyidae, Plagiorchiida/Prosthogonimidae, Plagiorchiida/Lecithodendriidae, and Strigeatida/Cyathocotylidae. These findings were used to confirm morphological characteristics and evolutionary trends of each type of cercariae discovered in Nakhon Nayok province. Furthermore, this investigation confirmed that the ITS2 data of cercariae could be used to study on phylogenetic relationships or to determine classification of this species at order and/or family level when possible. PMID:28285506

  16. From inanimate matter to living systems

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1980-01-01

    Since the early part of this century, the Genesis account of the origin and evolution of life has been explained as an extrapolation of astronomical and geochemical processes. The essence of the answer to date is a protoreproductive protocell of much biochemical and cytophysical competance. The processes of its origin, molecular ordering, and its functions are described. A crucial understanding is that of the nonrandomness of evolutionary processes at all stages (with perhaps a minor statistical component). In this way, evolution conflicts with statistical randomness; the latter is a favorite assumption of both scientific and creationistic critics of the proteinoid theory. The principle contribution of the proteinoid theory to the understanding of general biology is to particularize the view that evolutionary direction is rooted in the shapes of molecules, in stereochemistry. After molecules of the right kind first assembled to protocells, life in its various stages of evolution was an inevitable consequence. It is molecules that continue to assemble as part of living process and, in the role of enzymes, continue to direct life cycle of the cell.

  17. Genetic Analysis-Guided Irinotecan Hydrochloride Dosing of mFOLFIRINOX in Treating Patients With Locally Advanced Gastroesophageal or Stomach Cancer

    ClinicalTrials.gov

    2018-02-06

    Esophageal Adenocarcinoma; Gastric Adenocarcinoma; Stage IIB Gastric Cancer; Stage IIIA Esophageal Adenocarcinoma; Stage IIIA Gastric Cancer; Stage IIIB Esophageal Adenocarcinoma; Stage IIIB Gastric Cancer; Stage IIIC Esophageal Adenocarcinoma; Stage IIIC Gastric Cancer

  18. Assessment of quality of life in patients with advanced non-small cell lung carcinoma treated with a combination of carboplatin and paclitaxel*

    PubMed Central

    Avelino, Camila Uanne Resende; Cardoso, Rafael Marques; de Aguiar, Suzana Sales; da Silva, Mário Jorge Sobreira

    2015-01-01

    OBJECTIVE: Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer. Most patients are diagnosed at an advanced stage, palliative chemotherapy therefore being the only treatment option. This study was aimed at evaluating the health-related quality of life (HRQoL) of advanced-stage NSCLC patients receiving palliative chemotherapy with carboplatin and paclitaxel. METHODS: This was a multiple case study of advanced-stage NSCLC outpatients receiving chemotherapy at a public hospital in Rio de Janeiro, Brazil. The European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire was used in conjunction with its supplemental lung cancer-specific module in order to assess HRQoL. RESULTS: Physical and cognitive functioning scale scores differed significantly among chemotherapy cycles, indicating improved and worsened HRQoL, respectively. The differences regarding the scores for pain, loss of appetite, chest pain, and arm/shoulder pain indicated improved HRQoL. CONCLUSIONS: Chemotherapy was found to improve certain aspects of HRQoL in patients with advanced-stage NSCLC. PMID:25972967

  19. Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Yıldız, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.; Jørgensen, J. K.

    2016-02-01

    Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims: We aim to separate the truly embedded YSOs from more evolved sources. Methods: Maps of HCO+J = 4-3 and C18O J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results: Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions: Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the embedded phase.

  20. The advanced-stage therapy group.

    PubMed

    Berman, A; Weinberg, H

    1998-10-01

    Many authors describe a stage of maturity in the development of groups, but each highlights a different dimension. This article describes the characteristics of the advanced stage and the main axes along which it develops (internalization and containment, symbolization, self and self-other development, differentiation and individuation). It also offers a conceptual explanation for these developments and attempts to identify the conditions necessary for the emergence of this stage of maturity. An understanding of this stage and the conditions required for its development can be used by the group leader as a compass to help him or her navigate the group toward this objective.

  1. Genotype-guided Dosing of mFOLFIRINOX Chemotherapy in Patients With Previously Untreated Advanced Gastrointestinal Malignancies

    ClinicalTrials.gov

    2018-03-08

    Acinar Cell Adenocarcinoma of the Pancreas; Adenocarcinoma of the Gallbladder; Adenocarcinoma of Unknown Primary; Adult Primary Cholangiocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Diffuse Adenocarcinoma of the Stomach; Duct Cell Adenocarcinoma of the Pancreas; Intestinal Adenocarcinoma of the Stomach; Localized Unresectable Adult Primary Liver Cancer; Metastatic Carcinoma of Unknown Primary; Metastatic Extrahepatic Bile Duct Cancer; Mixed Adenocarcinoma of the Stomach; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Newly Diagnosed Carcinoma of Unknown Primary; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage III Pancreatic Cancer; Stage IIIA Colon Cancer; Stage IIIA Gallbladder Cancer; Stage IIIA Gastric Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Gallbladder Cancer; Stage IIIB Gastric Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Gastric Cancer; Stage IIIC Rectal Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IVA Colon Cancer; Stage IVA Gallbladder Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Gallbladder Cancer; Stage IVB Rectal Cancer; Unresectable Extrahepatic Bile Duct Cancer

  2. Antiangiogenic treatment in hepatocellular carcinoma: the balance of efficacy and safety

    PubMed Central

    Welker, Martin-Walter; Trojan, Joerg

    2013-01-01

    Hepatocellular carcinoma (HCC) is a severe complication of advanced liver disease with a worldwide incidence of more than 600,000 patients per year. Liver function, clinical performance status, and tumor size are considered in the Barcelona Clinic Liver Cancer (BCLC) system. While curative treatment options are available for early stages, most patients present with intermediate- or advanced-stage HCC, burdened with a poor prognosis, substantially influenced by the degree of liver-function impairment. Hypervascularization is a major characteristic of HCC, and antiangiogenic treatments are the basis of treatment in noncurative stages, including interventional and pharmacological treatments. Currently, the tyrosine-kinase inhibitor sorafenib is still the only approved drug for HCC. Further improvements in survival in patients with intermediate- and advanced-stage HCC may be anticipated by both multimodal approaches, such as combination of interventional and systemic treatments, and new systemic treatment options. Until now, the Phase III development of other tyrosine-kinase inhibitors in patients with advanced HCC has failed due to minor efficacy and/or increased toxicity compared to sorafenib. However, promising Phase II data have been reported with MET inhibitors in this hard-to-treat population. This review gives a critical overview of antiangiogenic drugs and strategies in intermediate- and advanced-stage HCC, with a special focus on safety. PMID:24204170

  3. Emerging Concepts of Data Integration in Pathogen Phylodynamics.

    PubMed

    Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe

    2017-01-01

    Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.

  4. Emerging Concepts of Data Integration in Pathogen Phylodynamics

    PubMed Central

    Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe

    2017-01-01

    Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics. PMID:28173504

  5. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata.

    PubMed

    Rehan, Sandra M; Glastad, Karl M; Lawson, Sarah P; Hunt, Brendan G

    2016-05-13

    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Chromosomal polymorphism in mammals: an evolutionary perspective.

    PubMed

    Dobigny, Gauthier; Britton-Davidian, Janice; Robinson, Terence J

    2017-02-01

    Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species. © 2015 Cambridge Philosophical Society.

  7. Applications of Evolutionary Technology to Manufacturing and Logistics Systems : State-of-the Art Survey

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin

    Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.

  8. A population genetics perspective on the determinants of intra-tumor heterogeneity

    PubMed Central

    Hu, Zheng; Sun, Ruping; Curtis, Christina

    2017-01-01

    Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. PMID:28274726

  9. Smartphones in ecology and evolution: a guide for the app-rehensive.

    PubMed

    Teacher, Amber G F; Griffiths, David J; Hodgson, David J; Inger, Richard

    2013-12-01

    Smartphones and their apps (application software) are now used by millions of people worldwide and represent a powerful combination of sensors, information transfer, and computing power that deserves better exploitation by ecological and evolutionary researchers. We outline the development process for research apps, provide contrasting case studies for two new research apps, and scan the research horizon to suggest how apps can contribute to the rapid collection, interpretation, and dissemination of data in ecology and evolutionary biology. We emphasize that the usefulness of an app relies heavily on the development process, recommend that app developers are engaged with the process at the earliest possible stage, and commend efforts to create open-source software scaffolds on which customized apps can be built by nonexperts. We conclude that smartphones and their apps could replace many traditional handheld sensors, calculators, and data storage devices in ecological and evolutionary research. We identify their potential use in the high-throughput collection, analysis, and storage of complex ecological information.

  10. The transcension hypothesis: Sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI

    NASA Astrophysics Data System (ADS)

    Smart, John M.

    2012-09-01

    The emerging science of evolutionary developmental ("evo devo") biology can aid us in thinking about our universe as both an evolutionary system, where most processes are unpredictable and creative, and a developmental system, where a special few processes are predictable and constrained to produce far-future-specific emergent order, just as we see in the common developmental processes in two stars of an identical population type, or in two genetically identical twins in biology. The transcension hypothesis proposes that a universal process of evolutionary development guides all sufficiently advanced civilizations into what may be called "inner space," a computationally optimal domain of increasingly dense, productive, miniaturized, and efficient scales of space, time, energy, and matter, and eventually, to a black-hole-like destination. Transcension as a developmental destiny might also contribute to the solution to the Fermi paradox, the question of why we have not seen evidence of or received beacons from intelligent civilizations. A few potential evolutionary, developmental, and information theoretic reasons, mechanisms, and models for constrained transcension of advanced intelligence are briefly considered. In particular, we introduce arguments that black holes may be a developmental destiny and standard attractor for all higher intelligence, as they appear to some to be ideal computing, learning, forward time travel, energy harvesting, civilization merger, natural selection, and universe replication devices. In the transcension hypothesis, simpler civilizations that succeed in resisting transcension by staying in outer (normal) space would be developmental failures, which are statistically very rare late in the life cycle of any biological developing system. If transcension is a developmental process, we may expect brief broadcasts or subtle forms of galactic engineering to occur in small portions of a few galaxies, the handiwork of young and immature civilizations, but constrained transcension should be by far the norm for all mature civilizations. The transcension hypothesis has significant and testable implications for our current and future METI and SETI agendas. If all universal intelligence eventually transcends to black-hole-like environments, after which some form of merger and selection occurs, and if two-way messaging (a send-receive cycle) is severely limited by the great distances between neighboring and rapidly transcending civilizations, then sending one-way METI or probes prior to transcension becomes the only real communication option. But one-way messaging or probes may provably reduce the evolutionary diversity in all civilizations receiving the message, as they would then arrive at their local transcensions in a much more homogenous fashion. If true, an ethical injunction against one-way messaging or probes might emerge in the morality and sustainability systems of all sufficiently advanced civilizations, an argument known as the Zoo hypothesis in Fermi paradox literature, if all higher intelligences are subject to an evolutionary attractor to maximize their local diversity, and a developmental attractor to merge and advance universal intelligence. In any such environment, the evolutionary value of sending any interstellar message or probe may simply not be worth the cost, if transcension is an inevitable, accelerative, and testable developmental process, one that eventually will be discovered and quantitatively described by future physics. Fortunately, transcension processes may be measurable today even without good physical theory, and radio and optical SETI may each provide empirical tests. If transcension is a universal developmental constraint, then without exception all early and low-power electromagnetic leakage signals (radar, radio, television), and later, optical evidence of the exoplanets and their atmospheres should reliably cease as each civilization enters its own technological singularities (emergence of postbiological intelligence and life forms) and recognizes that they are on an optimal and accelerating path to a black-hole-like environment. Furthermore, optical SETI may soon allow us to map an expanding area of the galactic habitable zone we may call the galactic transcension zone, an inner ring that contains older transcended civilizations, and a missing planets problem as we discover that planets with life signatures occur at a much lower frequencies in this inner ring than in the remainder of the habitable zone.

  11. Stage-directed individualized therapy in esophageal cancer.

    PubMed

    Goense, Lucas; van Rossum, Peter S N; Kandioler, Daniela; Ruurda, Jelle P; Goh, Khean-Lee; Luyer, Misha D; Krasna, Mark J; van Hillegersberg, Richard

    2016-10-01

    Esophageal cancer is the eighth most common cancer worldwide, and the incidence of esophageal carcinoma is rapidly increasing. With the advent of new staging and treatment techniques, esophageal cancer can now be managed through various strategies. A good understanding of the advances and limitations of new staging techniques and how these can guide in individualizing treatment is important to improve outcomes for esophageal cancer patients. This paper outlines the recent progress in staging and treatment of esophageal cancer, with particularly attention to endoscopic techniques for early-stage esophageal cancer, multimodality treatment for locally advanced esophageal cancer, assessment of response to neoadjuvant treatment, and the role of cervical lymph node dissection. Furthermore, advances in robot-assisted surgical techniques and postoperative recovery protocols that may further improve outcomes after esophagectomy are discussed. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  12. Afatinib in Advanced Refractory Urothelial Cancer

    ClinicalTrials.gov

    2017-09-28

    Distal Urethral Cancer; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Urethral Cancer; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Stage IV Urethral Cancer; Ureter Cancer

  13. Transcriptomic insights into the genetic basis of mammalian limb diversity.

    PubMed

    Maier, Jennifer A; Rivas-Astroza, Marcelo; Deng, Jenny; Dowling, Anna; Oboikovitz, Paige; Cao, Xiaoyi; Behringer, Richard R; Cretekos, Chris J; Rasweiler, John J; Zhong, Sheng; Sears, Karen E

    2017-03-23

    From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.

  14. Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus

    PubMed Central

    Hornoy, B; Atlan, A; Roussel, V; Buckley, Y M; Tarayre, M

    2013-01-01

    Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. These introductions resulted in the loss of rare alleles but did not significantly reduce genetic diversity and thus the evolutionary potential of this invasive species. PMID:23759725

  15. Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus.

    PubMed

    Hornoy, B; Atlan, A; Roussel, V; Buckley, Y M; Tarayre, M

    2013-11-01

    Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. These introductions resulted in the loss of rare alleles but did not significantly reduce genetic diversity and thus the evolutionary potential of this invasive species.

  16. Hierarchical fragmentation and differential star formation in the Galactic `Snake': infrared dark cloud G11.11-0.12

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; van der Tak, Floris; Wu, Yuefang; Zhang, Huawei; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah E.; Henning, Thomas

    2014-04-01

    We present Submillimeter Array (SMA) λ = 0.88 and 1.3 mm broad-band observations, and Very Large Array (VLA) observations in NH3 (J, K) = (1,1) up to (5,5), H2O and CH3OH maser lines towards the two most massive molecular clumps in infrared dark cloud (IRDC) G11.11-0.12. Sensitive high-resolution images reveal hierarchical fragmentation in dense molecular gas from the ˜1 pc clump scale down to ˜0.01 pc condensation scale. At each scale, the mass of the fragments is orders of magnitude larger than the Jeans mass. This is common to all four IRDC clumps we studied, suggesting that turbulence plays an important role in the early stages of clustered star formation. Masers, shock heated NH3 gas, and outflows indicate intense ongoing star formation in some cores while no such signatures are found in others. Furthermore, chemical differentiation may reflect the difference in evolutionary stages among these star formation seeds. We find NH3 ortho/para ratios of 1.1 ± 0.4, 2.0 ± 0.4, and 3.0 ± 0.7 associated with three outflows, and the ratio tends to increase along the outflows downstream. Our combined SMA and VLA observations of several IRDC clumps present the most in-depth view so far of the early stages prior to the hot core phase, revealing snapshots of physical and chemical properties at various stages along an apparent evolutionary sequence.

  17. Crater lake cichlids individually specialize along the benthic–limnetic axis

    PubMed Central

    Kusche, Henrik; Recknagel, Hans; Elmer, Kathryn Rebecca; Meyer, Axel

    2014-01-01

    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic-as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence. A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of open water (limnetic) species and of shore (benthic) species. Individual specialization can reflect earliest stages of evolutionary and ecological divergence. We here demonstrate individual specialization along the benthic–limnetic axis in a young adaptive radiation of crater lake cichlid fishes. PMID:24772288

  18. Prognostic values of common clinical parameters in advanced pancreatic ductal adenocarcinoma: a large multicenter cohort study of ten years.

    PubMed

    Zhang, Chenyue; Dong, Shu; Wang, Lei; Yu, Songlin; Zheng, Yuwei; Geng, Yanyan; Shen, Xiaoheng; Ying, Haifeng; Guo, Yuanbiao; Yu, Jinming; Deng, Qinglong; Meng, Zhiqiang; Li, Zhaoshen; Chen, Hao; Shen, Yehua; Chen, Qiwen

    2018-03-01

    We conducted a multicenter cohort study to investigate the prognostic value of some commonly-used laboratory indices in advanced pancreatic ductal adenocarcinoma (PDAC). A multicenter cohort study was conducted from 2004 to 2013. The associations between laboratory indices and prognosis of advanced PDAC were examined. This cohort consisted of 553 females (36.2%) and 973 males (63.8%). Patients at cancer stage III and IV were 595 (39.0%) and 931 (61.0%), respectively. The median survival of stage III patients was 9.0 months, with 3-, 6-, and 12-month survival rates of 94.5%, 73.4%, and 28.5%, respectively. The median survival of stage IV patients was 5.4 months, with 3-, 6-, and 12-month survival rates of 79.3%, 42.9%, and 15.0%, respectively. In multivariate analyses, primary tumor diameter, low albumin, and elevated CA19-9 were associated with decreased survival for stage III patients. Age, smoking, primary tumor diameter, elevated ALT or AST, low albumin, and elevated CA19-9 were associated with decreased survival for stage IV patients. Elevated CA19-9 level, decreased albumin level, and tumor size were associated with worse survival in stage III patients. Meanwhile, advanced age, smoking, and ALT or AST level were negatively correlated to prognosis in stage IV patients.

  19. Scaling Up: Adapting a Phage-Hunting Course to Increase Participation of First-Year Students in Research

    ERIC Educational Resources Information Center

    Staub, Nancy L.; Poxleitner, Marianne; Braley, Amanda; Smith-Flores, Helen; Pribbenow, Christine M.; Jaworski, Leslie; Lopatto, David; Anders, Kirk R.

    2016-01-01

    Authentic research experiences are valuable components of effective undergraduate education. Research experiences during the first years of college are especially critical to increase persistence in science, technology, engineering, and mathematics fields. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science…

  20. The N.E.X.T. Thing for Space Travel

    NASA Image and Video Library

    2013-07-26

    The NASA Evolutionary Xenon Thruster or NEXT is an advanced Ion propulsion system developed at Glenn Research Center. Its unmatched fuel efficiency could give a real boost to future deep space exploration missions -- extending the reach of NASA science missions and yielding a higher return on scientific research.

  1. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    ERIC Educational Resources Information Center

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  2. Testicular self-examination and testicular cancer: a cost-utility analysis.

    PubMed

    Aberger, Michael; Wilson, Bradley; Holzbeierlein, Jeffrey M; Griebling, Tomas L; Nangia, Ajay K

    2014-12-01

    The United States Preventive Services Task Force (USPSTF) has recommended against testicular self-examinations (TSE) or clinical examination for testicular cancer screening. However, in this recommendation there was no consideration of the significant fiscal cost of treating advanced disease versus evaluation of benign disease. In this study, a cost-utility validation for TSE was performed. The cost of treatment for an advanced-stage testicular tumor (both seminomatous and nonseminomatous) was compared to the cost of six other scenarios involving the clinical assessment of a testicular mass felt during self-examination (four benign and two early-stage malignant). Medicare reimbursements were used as an estimate for a national cost standard. The total treatment cost for an advanced-stage seminoma ($48,877) or nonseminoma ($51,592) equaled the cost of 313-330 benign office visits ($156); 180-190 office visits with scrotal ultrasound ($272); 79-83 office visits with serial scrotal ultrasounds and labs ($621); 6-7 office visits resulting in radical inguinal orchiectomy for benign pathology ($7,686) or 2-3 office visits resulting in treatment and surveillance of an early-stage testicular cancer ($17,283: seminoma, $26,190: nonseminoma). A large number of clinical evaluations based on the TSE for benign disease can be made compared to the cost of one missed advanced-stage tumor. An average of 2.4 to 1 cost benefit ratio was demonstrated for early detected testicular cancer versus advanced-stage disease. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. Gemcitabine Hydrochloride and Docetaxel With or Without Bevacizumab in Treating Patients With Advanced or Recurrent Uterine Leiomyosarcoma

    ClinicalTrials.gov

    2017-07-13

    Recurrent Uterine Corpus Sarcoma; Stage IIIA Uterine Sarcoma; Stage IIIB Uterine Sarcoma; Stage IIIC Uterine Sarcoma; Stage IVA Uterine Sarcoma; Stage IVB Uterine Sarcoma; Uterine Corpus Leiomyosarcoma

  4. TAS102 in Combination With NAL-IRI in Advanced GI Cancers

    ClinicalTrials.gov

    2018-03-29

    Colorectal Adenocarcinoma; Gastric Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Stage IV Colorectal Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IVA Colorectal Cancer; Stage IVB Colorectal Cancer; Unresectable Pancreatic Carcinoma

  5. No Value for Routine Chest Radiography in the Work-Up of Early Stage Cervical Cancer Patients

    PubMed Central

    Hoogendam, Jacob P.; Zweemer, Ronald P.; Verkooijen, Helena M.; de Jong, Pim A.; van den Bosch, Maurice A. A. J.; Verheijen, René H. M.; Veldhuis, Wouter B.

    2015-01-01

    Aim Evidence supporting the recommendation to include chest radiography in the work-up of all cervical cancer patients is limited. We investigated the diagnostic value of routine chest radiography in cervical cancer staging. Methods All consecutive cervical cancer patients who presented at our tertiary referral center in the Netherlands (January 2006 – September 2013), and for whom ≥6 months follow-up was available, were included. As part of the staging procedure, patients underwent a routine two-directional digital chest radiograph. Findings were compared to a composite reference standard consisting of all imaging studies and histology obtained during the 6 months following radiography. Results Of the 402 women who presented with cervical cancer, 288 (71.6%) underwent chest radiography and had ≥6 months follow-up. Early clinical stage (I/II) cervical cancer was present in 244/288 (84.7%) women, while 44 (15.3%) presented with advanced disease (stage III/IV). The chest radiograph of 1 woman – with advanced pre-radiograph stage (IVA) disease – showed findings consistent with pulmonary metastases. Radiographs of 7 other women – 4 early, 3 advanced stage disease – were suspicious for pulmonary metastases which was confirmed by additional imaging in only 1 woman (with pre-radiograph advanced stage (IIIB) disease) and excluded in 6 cases, including all women with early stage disease. In none of the 288 women were thoracic skeletal metastases identified on imaging or during 6 months follow up. Radiography was unremarkable in 76.4% of the study population, and showed findings unrelated to the cervical carcinoma in 21.2%. Conclusion Routine chest radiography was of no value for any of the early stage cervical cancer patients presenting at our tertiary center over a period of 7.7 years. PMID:26135733

  6. No Value for Routine Chest Radiography in the Work-Up of Early Stage Cervical Cancer Patients.

    PubMed

    Hoogendam, Jacob P; Zweemer, Ronald P; Verkooijen, Helena M; de Jong, Pim A; van den Bosch, Maurice A A J; Verheijen, René H M; Veldhuis, Wouter B

    2015-01-01

    Evidence supporting the recommendation to include chest radiography in the work-up of all cervical cancer patients is limited. We investigated the diagnostic value of routine chest radiography in cervical cancer staging. All consecutive cervical cancer patients who presented at our tertiary referral center in the Netherlands (January 2006 - September 2013), and for whom ≥6 months follow-up was available, were included. As part of the staging procedure, patients underwent a routine two-directional digital chest radiograph. Findings were compared to a composite reference standard consisting of all imaging studies and histology obtained during the 6 months following radiography. Of the 402 women who presented with cervical cancer, 288 (71.6%) underwent chest radiography and had ≥6 months follow-up. Early clinical stage (I/II) cervical cancer was present in 244/288 (84.7%) women, while 44 (15.3%) presented with advanced disease (stage III/IV). The chest radiograph of 1 woman - with advanced pre-radiograph stage (IVA) disease - showed findings consistent with pulmonary metastases. Radiographs of 7 other women - 4 early, 3 advanced stage disease - were suspicious for pulmonary metastases which was confirmed by additional imaging in only 1 woman (with pre-radiograph advanced stage (IIIB) disease) and excluded in 6 cases, including all women with early stage disease. In none of the 288 women were thoracic skeletal metastases identified on imaging or during 6 months follow up. Radiography was unremarkable in 76.4% of the study population, and showed findings unrelated to the cervical carcinoma in 21.2%. Routine chest radiography was of no value for any of the early stage cervical cancer patients presenting at our tertiary center over a period of 7.7 years.

  7. Advanced Hepatocellular Carcinoma: Which Staging Systems Best Predict Prognosis?

    PubMed Central

    Huitzil-Melendez, Fidel-David; Capanu, Marinela; O'Reilly, Eileen M.; Duffy, Austin; Gansukh, Bolorsukh; Saltz, Leonard L.; Abou-Alfa, Ghassan K.

    2010-01-01

    Purpose The purpose of cancer staging systems is to accurately predict patient prognosis. The outcome of advanced hepatocellular carcinoma (HCC) depends on both the cancer stage and the extent of liver dysfunction. Many staging systems that include both aspects have been developed. It remains unknown, however, which of these systems is optimal for predicting patient survival. Patients and Methods Patients with advanced HCC treated over a 5-year period at Memorial Sloan-Kettering Cancer Center were identified from an electronic medical record database. Patients with sufficient data for utilization in all staging systems were included. TNM sixth edition, Okuda, Barcelona Clinic Liver Cancer (BCLC), Cancer of the Liver Italian Program (CLIP), Chinese University Prognostic Index (CUPI), Japan Integrated Staging (JIS), and Groupe d'Etude et de Traitement du Carcinome Hepatocellulaire (GETCH) systems were ranked on the basis of their accuracy at predicting survival by using concordance index (c-index). Other independent prognostic variables were also identified. Results Overall, 187 eligible patients were identified and were staged by using the seven staging systems. CLIP, CUPI, and GETCH were the three top-ranking staging systems. BCLC and TNM sixth edition lacked any meaningful prognostic discrimination. Performance status, AST, abdominal pain, and esophageal varices improved the discriminatory ability of CLIP. Conclusion In our selected patient population, CLIP, CUPI, and GETCH were the most informative staging systems in predicting survival in patients with advanced HCC. Prospective validation is required to determine if they can be accurately used to stratify patients in clinical trials and to direct the appropriate need for systemic therapy versus best supportive care. BCLC and TNM sixth edition were not helpful in predicting survival outcome, and their use is not supported by our data. PMID:20458042

  8. Sorafenib Tosylate in Treating Patients With Liver Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2017-06-30

    Advanced Adult Hepatocellular Carcinoma; Localized Non-Resectable Adult Hepatocellular Carcinoma; Stage III Childhood Hepatocellular Carcinoma; Stage IIIA Hepatocellular Carcinoma; Stage IIIB Hepatocellular Carcinoma; Stage IIIC Hepatocellular Carcinoma; Stage IV Childhood Hepatocellular Carcinoma; Stage IVA Hepatocellular Carcinoma; Stage IVB Hepatocellular Carcinoma

  9. [Prognostic factors of advanced stage non-small-cell lung cancer].

    PubMed

    Kwas, H; Guermazi, E; Khattab, A; Hrizi, C; Zendah, I; Ghédira, H

    2017-09-01

    Primary lung cancer is the leading cause of cancer death in men in the world. Although the introduction of new drugs, new therapeutic strategies and despite therapeutic advances, the prognosis is relatively improved during the last years. To evaluate the prognosis of patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) and to identify prognostic factors at these stages. A retrospective study, including 140 cases of locally advanced or metastatic NSCLC diagnosed in our department between 2003 and 2013. The average age was 61±10 years (35 to 90 years). Sex ratio was 18. The delays management were 80±25 days for presentation, 45±20 days for the diagnostic, while the treatment delay was 8±2.33 days. The cancer was at stage IIIA in 14%, IIIB in 27% and IV in 59%. Six months and one-year survival was between 50 and 74% and between 9 and 25%, respectively. Better survival was observed in patients with NSCLC on stage III, having better performance status, having comorbid conditions, with prolonged delays management, a short therapeutic delay and patients who received specific antitumor treatment. The prognostic factors in locally advanced and metastatic NSCLC in our patients were: stage of cancer, performance status, comorbid conditions, delay of management and specific antitumoral treatment. These factors should be considered in the management of patients with advanced NSCLC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer.

    PubMed

    Grob, Charles S; Danforth, Alicia L; Chopra, Gurpreet S; Hagerty, Marycie; McKay, Charles R; Halberstadt, Adam L; Greer, George R

    2011-01-01

    Researchers conducted extensive investigations of hallucinogens in the 1950s and 1960s. By the early 1970s, however, political and cultural pressures forced the cessation of all projects. This investigation reexamines a potentially promising clinical application of hallucinogens in the treatment of anxiety reactive to advanced-stage cancer. To explore the safety and efficacy of psilocybin in patients with advanced-stage cancer and reactive anxiety. A double-blind, placebo-controlled study of patients with advanced-stage cancer and anxiety, with subjects acting as their own control, using a moderate dose (0.2 mg/kg) of psilocybin. A clinical research unit within a large public sector academic medical center. Twelve adults with advanced-stage cancer and anxiety. In addition to monitoring safety and subjective experience before and during experimental treatment sessions, follow-up data including results from the Beck Depression Inventory, Profile of Mood States, and State-Trait Anxiety Inventory were collected unblinded for 6 months after treatment. Safe physiological and psychological responses were documented during treatment sessions. There were no clinically significant adverse events with psilocybin. The State-Trait Anxiety Inventory trait anxiety subscale demonstrated a significant reduction in anxiety at 1 and 3 months after treatment. The Beck Depression Inventory revealed an improvement of mood that reached significance at 6 months; the Profile of Mood States identified mood improvement after treatment with psilocybin that approached but did not reach significance. This study established the feasibility and safety of administering moderate doses of psilocybin to patients with advanced-stage cancer and anxiety. Some of the data revealed a positive trend toward improved mood and anxiety. These results support the need for more research in this long-neglected field. clinicaltrials.gov Identifier: NCT00302744.

  11. [Staging gastritis with the OLGA system: prevalence of advanced stages of gastric atrophy in Mexican patients].

    PubMed

    Ramírez-Mendoza, P; Ruiz-Castillo, S A; Maroun-Marun, C; Trujillo-Benavides, O; Baltazar-Montúfar, P; Méndez del Monte, R; Angeles-Garay, U

    2011-01-01

    Gastric adenocarcinoma of intestinal type is preceded by inflammation, which produces mucosal atrophy and intestinal metaplasia, progressing eventually to dysplasia and invasive cancer. Recently an international group, the Operative Link on Gastritis Assessment (OLGA) proponed a staging system for gastric biopsies. To recognize the distribution of advanced stages of gastric mucosal atrophy in Mexican patients with dyspepsia according to the OLGA system. We apply the OLGA system for cancer risk (Stages 0 to IV) to 322 gastric biopsies from consecutive patients with dyspepsia. Using the Sydney protocol, we recorded the presence of atrophy, dysplasia and the relationship with ulcer disease. We report the stage of atrophy for each region and the Helicobacter pylori infection status. We documented 72 (22.4%) cases with atrophy, 50 of them (69.4%) were metaplastic-type. Overall, nine biopsies (2.78%) were stage III (all of them with metaplastic-type atrophy) and there was not stage IV cases. We did not find high-grade dysplasia or intramucosal carcinoma. In 8 of subjects with stage III, we observed low-grade dysplasia. We documented gastric ulcer in 5 patients with stage II, 60% of them with associated low-grade dysplasia. Five patients with duodenal ulcer were found in stages 0 and I. We found low prevalence of advanced stages of mucosal gastric atrophy among patients with dyspepsia. However we recognized 9 patients with stage III according to OLGA system worthy of follow-up because the high risk for developing gastric cancer.

  12. TAS-102 in Treating Advanced Biliary Tract Cancers

    ClinicalTrials.gov

    2017-10-23

    Cholangiocarcinoma; Stage III Gallbladder Cancer AJCC v7; Stage IIIA Gallbladder Cancer AJCC v7; Stage IIIB Gallbladder Cancer AJCC v7; Stage IV Gallbladder Cancer AJCC v7; Stage IVA Gallbladder Cancer AJCC v7; Stage IVB Gallbladder Cancer AJCC v7

  13. The Spectral Energy Distribution of the Earliest Phases of Massive Star Formation from the Spizter and Herschel Archives

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie; Henning, Thomas; Chakrabarti, Sukanya; Shenoy, Sachin

    2015-08-01

    Infrared Dark Clouds (IRDCs) are very good candidates for the earliest phases of massive star formation, but can only be found in regions with high infrared background. We have searched for early phases among cold and massive (M>100M⊙) cloud cores by selecting cores from millimeter continuum surveys (Faundez et al. 2004, Sridharan et al. 2005, Klein et al. 2005, Beltran et al. 2006) without associations at short wavelengths. We compared the millimeter continuum peak positions with IR and radio catalogs (2MASS, MSX, IRAS, and NVSS) and excluded cores that had sources associated with the cores' peaks. We compiled a list of 173 cores in over 117 regions that are candidates for very early phases of Massive Star Formation (MSF). Now with the Spitzer and Herschel archives, these cores can be characterized further. The GLIMPSE and MIPSGAL programs alone covered 86 of these regions. The Herschel Archive adds even longer wavelengths. We are compiling this data set to construct the complete spectral energy distribution (SED) in the mid- and far-infrared with good spatial resolution and broad spectral coverage. This allow us to disentangle the complex regions and model the SED of the deeply embedded protostars/clusters.We will be presenting the IR properties of all cores and their embedded source, attempt a characterization, and order the cores in an evolutionary sequence. The resulting properties can be compared to e.g. IRDCs, a class of objects suggested to be the earliest stages of MSF. With the relative large number of cores, we can try to answer questions like: How homogeneous or diverse are our regions in terms of their evolutionary stage? Where do our embedded sources fit in the evolutionary sequence of IRDCs, hot molecular cores, ultra-compact HII regions, etc? How is the MSF shaping the environment and vice versa? Can we extrapolate to the initial conditions of MSF using our evolutionary sequence?

  14. Unexpected skeletal histology of an ichthyosaur from the Middle Jurassic of Patagonia: implications for evolution of bone microstructure among secondary aquatic tetrapods.

    PubMed

    Talevi, Marianella; Fernández, Marta S

    2012-03-01

    During the Mesozoic, one of the most significant evolutionary processes was the secondary adaptation of tetrapods to life in water. Several non-related lineages invaded from the terrestrial realms and from the oceans of the entire world. Among these lineages, ichthyosaurs were particularly successful. Advance parvipelvian ichthyosaurs were the first tetrapods to evolve a fish-shaped body profile. The deep skeletal modifications of their bodies, as well as their biology, depict advance ichthyosaurs as the paradigm of secondary adaptation of reptiles to marine life. Functional inferences point to them as off-shore cruising forms, similar to a living tuna, and some of them were capable of deep diving. Bone histology of some genera such as Temnodontosaurus, Stenopterygius, Ichthyosaurus, and Caypullisaurus, characterized by overall cancellous bone, is consistent with the idea of a fish-shaped ichthyosaurs as fast and far cruisers. Here, we provide histological examination of the ribs of the Middle Jurassic parvipelvian Mollesaurus. Contrasting with the bone histology of other parvipelvian, Mollesaurus ribs are characterized by a compact and thick cortex. Our data indicate that the rib cage was heavy and suggest that not all advanced ichthyosaurs were fast cruisers. The compact and dense ribs in these parvipelvian show that advance ichthyosaurs were ecologically more diverse than previously thought and that the lightening of the skeleton reversed, as also occurred in the evolution of cetacean, at least once along the evolutionary history of ichthyosaurs.

  15. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology

    PubMed Central

    2016-01-01

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753

  16. Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships.

    PubMed

    Baier, F; Copp, J N; Tokuriki, N

    2016-11-22

    The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional "space" have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain "function connectivity" via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.

  17. Robust Design of Biological Circuits: Evolutionary Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523

  18. The evolution of self-control

    PubMed Central

    MacLean, Evan L.; Hare, Brian; Nunn, Charles L.; Addessi, Elsa; Amici, Federica; Anderson, Rindy C.; Aureli, Filippo; Baker, Joseph M.; Bania, Amanda E.; Barnard, Allison M.; Boogert, Neeltje J.; Brannon, Elizabeth M.; Bray, Emily E.; Bray, Joel; Brent, Lauren J. N.; Burkart, Judith M.; Call, Josep; Cantlon, Jessica F.; Cheke, Lucy G.; Clayton, Nicola S.; Delgado, Mikel M.; DiVincenti, Louis J.; Fujita, Kazuo; Herrmann, Esther; Hiramatsu, Chihiro; Jacobs, Lucia F.; Jordan, Kerry E.; Laude, Jennifer R.; Leimgruber, Kristin L.; Messer, Emily J. E.; de A. Moura, Antonio C.; Ostojić, Ljerka; Picard, Alejandra; Platt, Michael L.; Plotnik, Joshua M.; Range, Friederike; Reader, Simon M.; Reddy, Rachna B.; Sandel, Aaron A.; Santos, Laurie R.; Schumann, Katrin; Seed, Amanda M.; Sewall, Kendra B.; Shaw, Rachael C.; Slocombe, Katie E.; Su, Yanjie; Takimoto, Ayaka; Tan, Jingzhi; Tao, Ruoting; van Schaik, Carel P.; Virányi, Zsófia; Visalberghi, Elisabetta; Wade, Jordan C.; Watanabe, Arii; Widness, Jane; Young, Julie K.; Zentall, Thomas R.; Zhao, Yini

    2014-01-01

    Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution. PMID:24753565

  19. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat.

    PubMed

    Senerchia, Natacha; Wicker, Thomas; Felber, François; Parisod, Christian

    2013-01-01

    Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindrica and Ae. geniculata using 454 identified more than 70% of the sequences as known TEs, mainly long terminal repeat (LTR) retrotransposons. Comparing the abundance of reads as well as patterns of sequence diversity and divergence within and among genomes assessed the dynamics of 44 major LTR retrotransposon families of the 165 identified. In particular, molecular population genetics on individual TE copies distinguished recently active from quiescent families and highlighted different evolutionary trajectories of retrotransposons among related species. This work presents a suite of tools suitable for current sequencing data, allowing to address the genome-wide evolutionary dynamics of TEs at the family level and advancing our understanding of the evolution of nonmodel genomes.

  20. Charles Darwin and the Origins of Plant Evolutionary Developmental Biology

    PubMed Central

    Friedman, William E.; Diggle, Pamela K.

    2011-01-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form. PMID:21515816

  1. Charles Darwin and the origins of plant evolutionary developmental biology.

    PubMed

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  2. Robust design of biological circuits: evolutionary systems biology approach.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.

  3. Imaging in the evaluation and follow-up of early and advanced breast cancer: When, why, and how often?

    PubMed

    Bychkovsky, Brittany L; Lin, Nancy U

    2017-02-01

    Imaging in the evaluation and follow-up of patients with early or advanced breast cancer is an important aspect of cancer care. The role of imaging in breast cancer depends on the goal and should only be performed to guide clinical decisions. Imaging is valuable if a finding will change the course of treatment and improve outcomes, whether this is disease-free survival, overall survival or quality-of-life. In the last decade, imaging is often overused in oncology and contributes to rising healthcare costs. In this context, we review the data that supports the appropriate use of imaging for breast cancer patients. We will discuss: 1) the optimal use of staging imaging in both early (Stage 0-II) and locally advanced (Stage III) breast cancer, 2) the role of surveillance imaging to detect recurrent disease in Stage 0-III breast cancer and 3) how patients with metastatic breast cancer should be followed with advanced imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fifteen years' review of advanced childhood neuroblastoma from a single institution in Hong Kong.

    PubMed

    Leung, C K

    1998-05-01

    To assess the progress in the treatment of advanced childhood neuroblastoma. From 1981 to 1996, there were 32 children with neuroblastoma (NB) diagnosed, staged and treated in our institution. There were 4 patients with stage II NB (12%), 5 stage III (16%), 21 stage IV (66%) and 2 stage IV s (6%). The NBs were excised if CT scan indicated that the tumors were operable. For advanced NB, stages III and IV, multiple drug chemotherapy was started first and operability was assessed with serial CT scan examinations. Once the X-ray imaging indicated the tumors were operable, surgical interventions were done. The medical records of the advanced NB were reviewed. In the initial period of the study, 9 patients were treated using the VAC protocol [vincristine (vcr), adriamycin (adria) and cyclophosphamide (cyc)]. No patient was convertible to operable and all died with a mean survival of 10 months. OPEC [vcr, cyc, VM26, cisplatin (cis)], Rapid COJEC (carboplatin, VP16, vcr, cis and cyc) and more recently N6 protocol (cyc, adria, vcr, VP16, cis) was used for 17 patients. 80% of them were converted to operable. In 4 patients, surgical specimens showed only necrotic tissue without viable tumor tissue and 6 (35%) tumors were converted to ganglioneuroma or ganglioneuroblastoma. Although 2 (12%) patients died of fungal septicemia and 1 (6%) developed Fanconi's syndrome after chemotherapy, the mean survival period increased to 27 months. In the 10 survivors (60%), 4 had megatherapy with melphalan followed by autologous peripheral blood stem cell (PBSC) transplantation and 2 were waiting for transplantation. There is a high percentage of advanced NB on presentation in Hong Kong. With more potent multiple drug chemotherapy for advanced stage NB there are (1) improvement in the survival of these patients, (2) opportunities for more operations for tumor excision and (3) opportunities for autologous PBSC transplantation for better tumor eradication.

  5. Prospective Cohort Study Depending on the Use of Palliative Care for Advanced Stage of Cancer Patients

    ClinicalTrials.gov

    2017-09-05

    Stage IV Breast Cancer; Stage IV Pancreatic Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Lung Cancer; Stage IV Liver Cancer; Malignant Hematologic Neoplasm; Biliary Cancer Metastatic; Pediatric Leukemia; Pediatric Lymphoma; Pediatric Brain Tumor; Pediatric Solid Tumor

  6. Combination Chemotherapy With or Without Oregovomab Followed by Stereotactic Body Radiation Therapy and Nelfinavir Mesylate in Treating Patients With Locally Advanced Pancreatic Cancer

    ClinicalTrials.gov

    2018-04-24

    Pancreatic Adenocarcinoma; Resectable Pancreatic Carcinoma; Stage I Pancreatic Cancer; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer; Stage III Pancreatic Cancer

  7. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  8. Decitabine in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2013-02-06

    Male Breast Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Melanoma; Stage III Melanoma; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Unspecified Adult Solid Tumor, Protocol Specific

  9. Vaccine Therapy With or Without Sargramostim in Treating Patients With Advanced or Metastatic Cancer

    ClinicalTrials.gov

    2013-01-24

    Adenocarcinoma of the Colon; Adenocarcinoma of the Gallbladder; Adenocarcinoma of the Pancreas; Adenocarcinoma of the Rectum; Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Gallbladder; Diffuse Adenocarcinoma of the Stomach; Intestinal Adenocarcinoma of the Stomach; Male Breast Cancer; Mixed Adenocarcinoma of the Stomach; Ovarian Endometrioid Adenocarcinoma; Paget Disease of the Breast With Intraductal Carcinoma; Paget Disease of the Breast With Invasive Ductal Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Salivary Gland Adenocarcinoma; Stage II Malignant Testicular Germ Cell Tumor; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Salivary Gland Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Gallbladder Cancer

  10. Phase 2 Sequential and Concurrent Chemoradiation for Advanced Nasopharyngeal Carcinoma (NPC)

    ClinicalTrials.gov

    2016-12-09

    Stage II Lymphoepithelioma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx

  11. Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis

    PubMed Central

    2013-01-01

    Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539

  12. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within microcracks and nearly absent in matrix grains in the well developed C bands. The chemical variation between primary and secondary new-formed micas was clearly identified by the Mg-Ti-Na content. The microstructural analysis documents a progressive decrease in quartz grain size and increasing interconnectivity of K-feldspar and white mica towards more mature shear bands. The contact-frequency analysis demonstrates that the phase distribution in shear bands tends to evolve from quartz aggregate distribution via randomization to K-feldspar aggregate distribution. The boundary preferred orientation is absent in quartz-quartz contacts either inside of outside the C bands, while it changes from random to parallel to the C band for the K-feldspar and and K-feldspar-quartz boundaries. The lack of crystallographic preferred orientation of the individual phases in the mixed matrix of the C planes suggests a dominant diffusion-assisted grain boundary sliding deformation mechanism. In the later stages of shear band development, the deformation is accommodated by crystal plasticity of white mica in micaceous bands. The crystallographic and microstructural data thus indicate two important switches in deformation mechanisms, from (i) brittle to Newtonian viscous behavior in the initial stages of shear band evolution and from (ii) Newtonian viscous to power law in the later evolutionary stages. The evolution of shear bands in the South Armorican Shear Zone thus document the interplay between deformation mechanisms and chemical reactions in deformed granitoids.

  13. Cerebral blood flow laterality derived from arterial spin labeling as a biomarker for assessing the disease severity of parkinson's disease.

    PubMed

    Yamashita, Koji; Hiwatashi, Akio; Togao, Osamu; Kikuchi, Kazufumi; Yamaguchi, Hiroo; Suzuki, Yuriko; Kamei, Ryotaro; Yamasaki, Ryo; Kira, Jun-Ichi; Honda, Hiroshi

    2017-06-01

    To evaluate cerebral blood flow (CBF) laterality derived from arterial spin labeling (ASL) in early-stage Parkinson's disease (PD) patients compared with those with advanced stages. Thirty-eight patients with PD (21 patients in early stages, 17 patients in advanced stages) were retrospectively studied. The CBF maps derived from 3T ASL data were co-registered to the corresponding 3DT1WI using SPM 12 software. Caudate nucleus (CN), putamen (PT), globus pallidus (GP), and thalamus (TH) were manually traced on the representative axial slices of 3DT1WI. CBF of the CN, PT, GP, and TH was measured using corresponding pixels on the co-registered CBF maps. A laterality index (LI) was calculated as the ratio of the contralateral CBF to primary affected side CBF. Each LI was compared between early and advanced stages of PD using the Mann-Whitney U-test. The LIs were also compared between each stage of PD. In the CN, the LIs were significantly higher in early stages (mean LI ± SD, 95% confidence interval = 1.06 ± 0.14, 1.00-1.13) than in advanced stages (0.94 ± 0.14, 0.87-1.01; P < 0.05). We also observed a tendency toward decreased LIs with disease severity (1.10 ± 0.14, 0.99-1.21 for Hoehn and Yahr stage I; 1.04 ± 0.14, 0.92-1.12 for stage II; 0.96 ± 0.11, 0.89-1.10 for stage III; 0.93 ± 0.17, 0.81-1.05 for stage IV). The evaluation of CBF laterality pattern in the CN using ASL may be useful for assessing the disease severity of PD patients. 3 J. MAGN. RESON. IMAGING 2017;45:1821-1826. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana

    PubMed Central

    Fournier-Level, Alexandre; Perry, Emily O.; Wang, Jonathan A.; Braun, Peter T.; Migneault, Andrew; Cooper, Martha D.; Metcalf, C. Jessica E.; Schmitt, Johanna

    2016-01-01

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico “resurrection experiments” showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640

  15. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.

    PubMed

    Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna

    2016-05-17

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.

  16. National heritage areas: examining organizational development and the role of the National Park Service as federal partner

    Treesearch

    Susan Martin-Williams; Steven Selin

    2007-01-01

    Understanding the organizational development of National Heritage Areas (NHAs) and defining the National Park Service's (NPS) role within individual NHAs guided this qualitative study. Information gained during telephone interviews led to the development of an a priori model of the evolutionary stages of NHAs' organizational development and...

  17. Alisertib With or Without Fulvestrant in Treating Patients With Locally Advanced or Metastatic, Endocrine-Resistant Breast Cancer

    ClinicalTrials.gov

    2018-04-03

    Estrogen Receptor Status; HER2/Neu Negative; Invasive Breast Carcinoma; Postmenopausal; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  18. Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism

    PubMed Central

    Werner, Gijsbert D. A.; Cornwell, William K.; Cornelissen, Johannes H. C.; Kiers, E. Toby

    2015-01-01

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they “lock” the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships. PMID:26041807

  19. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism.

    PubMed

    Werner, Gijsbert D A; Cornwell, William K; Cornelissen, Johannes H C; Kiers, E Toby

    2015-08-18

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.

  20. GTI-2040, Oxaliplatin, and Capecitabine in Treating Patients With Locally Advanced or Metastatic Colorectal Cancer or Other Solid Tumors

    ClinicalTrials.gov

    2013-03-26

    Recurrent Colon Cancer; Recurrent Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  1. Pertuzumab, Trastuzumab, and Paclitaxel Albumin-Stabilized Nanoparticle Formulation in Treating Patients With HER2-Positive Advanced Breast Cancer

    ClinicalTrials.gov

    2018-03-15

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Breast Adenocarcinoma; Inflammatory Breast Carcinoma

  2. The evolution of senescence through decelerating selection for system reliability.

    PubMed

    Laird, R A; Sherratt, T N

    2009-05-01

    Senescence is a universal phenomenon in organisms, characterized by increasing mortality and decreasing fecundity with advancing chronological age. Most proximate agents of senescence, such as reactive oxygen species and UV radiation, are thought to operate by causing a gradual build-up of bodily damage. Yet most current evolutionary theories of senescence emphasize the deleterious effects of functioning genes in late life, leaving a gap between proximate and ultimate explanations. Here, we present an evolutionary model of senescence based on reliability theory, in which beneficial genes or gene products gradually get damaged and thereby fail, rather than actively cause harm. Specifically, the model allows organisms to evolve multiple redundant copies of a gene product (or gene) that performs a vital function, assuming that organisms can avoid condition-dependent death so long as at least one copy remains undamaged. We show that organisms with low levels of extrinsic mortality, and high levels of genetic damage, tend to evolve high levels of redundancy, and that mutation-selection balance results in a stable population distribution of the number of redundant elements. In contrast to previous evolutionary models of senescence, the mortality curves that emerge from such populations match empirical senescence patterns in three key respects: they exhibit: (1) an initially low, but rapidly increasing mortality rate at young ages, (2) a plateau in mortality at advanced ages and (3) 'mortality compensation', whereby the height of the mortality plateau is independent of the environmental conditions under which different populations evolved.

  3. Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

    PubMed Central

    Chase, Mark W.; Kim, Joo-Hwan

    2013-01-01

    Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071

  4. Constructing phylogenetic trees using interacting pathways.

    PubMed

    Wan, Peng; Che, Dongsheng

    2013-01-01

    Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.

  5. Evolutionary traps as keys to understanding behavioral maladaptation

    USGS Publications Warehouse

    Robertson, Bruce A.; Chalfoun, Anna

    2016-01-01

    Evolutionary traps are severe cases of behavioral maladaptation that occur when, due to human activity, the cues animals use to guide their behavior become uncoupled from their fitness consequences. The result is that animals can prefer the most dangerous resources or behaviors, even when better options are available. Traps are increasingly common and represent a significant wildlife conservation problem. Understanding of the more proximate sensory-cognitive mechanisms underpinning traps remains poor, which highlights the need for interdisciplinary and collaborative approaches to investigating traps. Key to advancing basic trap theory and its conservation applications will be the development of appropriate and tractable model systems to investigate the mechanisms that cause traps within species, and how mechanisms vary across species.

  6. [Human origin and evolution. A review of advances in paleoanthropology, comparative genetics, and evolutionary psychology].

    PubMed

    Markov, A V

    2009-01-01

    In his main work, "On the origin of species", Darwin has refrained from discusion of the origin of man; be only mentioned that his theory would "throw light" on this problem. This famous Darwin's phrase turned out to be one of the most succesful scientific predictions. In the present paper some of the most important recent adavnces in paleoanthroplogy, comparative genetics and evolutionary psychology are reviewed. These three disciplines currently contribute most to our knowledge of anthropogenesis. The review demonstrates that Darwin's ideas not only "threw light" on human origin and evolution; they provided a comprehensive framework for a great variety of studies concerning different aspects of anthropogenesis.

  7. To evaluate disparity between clinical and pathological tumor-node-metastasis staging in oral cavity squamous cell carcinoma patients and its impact on overall survival: An institutional study.

    PubMed

    Gupta, Karan; Panda, Naresh K; Bakshi, Jaimanti; Das, Ashim

    2015-01-01

    Accurate clinical staging is important for patient counseling, treatment planning, prognostication, and rational design of clinical trials. In head and neck squamous cell carcinoma, discrepancy between clinical and pathological staging has been reported. To evaluate any disparity between clinical and pathological tumor-node-metastasis (TNM) staging in oral cavity squamous cell carcinoma (OCSCC) patients and any impact of the same on survival. Retrospective chart review from year 2007 to 2013, at a tertiary care center. All survival analyses were performed using SPSS for Windows version 15 (Chicago, IL, USA). Disease-free survival curves were generated using Kaplan-Meier algorithm. One hundred and twenty-seven patients with OCSCC were analyzed. Seventy-nine (62.2%) were males and 48 (37.8%) females with a mean age at presentation 43.6 years (29-79 years). The highest congruence between clinical and pathological T-staging seen for clinical stage T1 and T4 at 76.9% and 73.4% with pathological T-stage. Similarly, the highest congruence between clinical and pathological N-stage seen for clinical N0 and N3 at 86.4% and 91.7% with pathological N-stage. Of clinically early stage patients, 67.5% remained early stage, and 32.5% were upstaged to advanced stage following pathological analysis. Of the clinically advanced stage patients, 75% remained advanced, and 25% were pathologically downstaged. This staging discrepancy did not significantly alter the survival. Some disparity exists in clinical and pathological TNM staging of OCSCC, which could affect treatment planning and survival of patients. Hence, more unified and even system of staging for the disease is required for proper decision-making.

  8. Evolutionary Approach of Virtual Communities of Practice: A Reflection within a Network of Spanish Rural Schools

    NASA Astrophysics Data System (ADS)

    Frossard, Frédérique; Trifonova, Anna; Barajas Frutos, Mario

    The isolation of rural communities creates special necessities for teachers and students in rural schools. The present article describes "Rural Virtual School", a Virtual Community of Practice (VCoP) in which Spanish teachers of rural schools share learning resources and teaching methodologies through social software applications. The article arrives to an evolutionary model, in which the use of the social software tools evolves together with the needs and the activities of the VCoP through the different stages of its lifetime. Currently, the community has reached a high level of maturity and, in order to keep its momentum, the members intentionally use appropriate technologies specially designed to enhance rich innovative educational approaches, through which they collaboratively generate creative practices.

  9. 'Racial differences have to be considered': Lauretta Bender, Bellevue Hospital, and the African American psyche, 1936-52.

    PubMed

    Doyle, Dennis

    2010-06-01

    This paper examines one US psychiatrist's engagement between 1936 and 1952 with a racialist strain of evolutionary thought. When Lauretta Bender began working with Bellevue Hospital's disproportionately black population, the psychiatric literature still circulated the crude evolutionary proposition that blacks remained stuck at a more primitive stage of development. In the 1930s, drawing insights from holistic, mechanistic and environmentalist thinking on the relationship between mind and body, Bender developed her own more circumspect racialist position. Although she largely abandoned her underdetermined version of racialism in the 1940s for an approach that left out race as an active factor of analysis, this paper contends that she probably never wrote off black primitivity as a theoretical possibility.

  10. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Peacock, Lori; Macleod, Olivia Js; Kay, Christopher; Gibson, Wendy; Higgins, Matthew K; Carrington, Mark

    2016-04-15

    The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host.

  11. Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium

    PubMed Central

    Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes. PMID:25085493

  12. Inferring evolution of gene duplicates using probabilistic models and nonparametric belief propagation.

    PubMed

    Zeng, Jia; Hannenhalli, Sridhar

    2013-01-01

    Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.

  13. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals

    PubMed Central

    Sunagar, Kartik; Moran, Yehu

    2015-01-01

    Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a ‘two-speed’ mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species–the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia–the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms. PMID:26492532

  14. Effect of implementation of the mass breast cancer screening programme in older women in the Netherlands: population based study.

    PubMed

    de Glas, Nienke A; de Craen, Anton J M; Bastiaannet, Esther; Op 't Land, Ester G; Kiderlen, Mandy; van de Water, Willemien; Siesling, Sabine; Portielje, Johanneke E A; Schuttevaer, Herman M; de Bock, Geertruida Truuske H; van de Velde, Cornelis J H; Liefers, Gerrit-Jan

    2014-09-14

    To assess the incidence of early stage and advanced stage breast cancer before and after the implementation of mass screening in women aged 70-75 years in the Netherlands in 1998. Prospective nationwide population based study. National cancer registry, the Netherlands. Patients aged 70-75 years with a diagnosis of invasive or ductal carcinoma in situ breast cancer between 1995 and 2011 (n=25,414). Incidence rates were calculated using population data from Statistics Netherlands. Incidence rates of early stage (I, II, or ductal carcinoma in situ) and advanced stage (III and IV) breast cancer before and after implementation of screening. Hypotheses were formulated before data collection. The incidence of early stage tumours significantly increased after the extension for implementation of screening (248.7 cases per 100,000 women before screening up to 362.9 cases per 100,000 women after implementation of screening, incidence rate ratio 1.46, 95% confidence interval 1.40 to 1.52, P<0.001). However, the incidence of advanced stage breast cancers decreased to a far lesser extent (58.6 cases per 100,000 women before screening to 51.8 cases per 100,000 women after implementation of screening, incidence rate ratio 0.88, 0.81 to 0.97, P<0.001). The extension of the upper age limit to 75 years has only led to a small decrease in incidence of advanced stage breast cancer, while that of early stage tumours has strongly increased. © de Glas et al 2014.

  15. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    PubMed

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P < 0.05). Cell proliferation was significantly greater (P < 0.05) only in the early undifferentiated cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  16. Autonomy and integration in complex parasite life cycles.

    PubMed

    Benesh, Daniel P

    2016-12-01

    Complex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.

  17. On Budyko curve as a consequence of climate-soil-vegetation equilibrium hypothesis

    NASA Astrophysics Data System (ADS)

    Pande, S.

    2012-04-01

    A hypothesis that Budyko curve is a consequence of stable equilibriums of climate-soil-vegetation co-evolution is tested at biome scale. We assume that i) distribution of vegetation, soil and climate within a biome is a distribution of equilibriums of similar soil-vegetation dynamics and that this dynamics is different across different biomes and ii) soil and vegetation are in dynamic equilibrium with climate while in static equilibrium with each other. In order to test the hypothesis, a two stage regression is considered using MOPEX/Hydrologic Synthesis Project dataset for basins in eastern United States. In the first stage, multivariate regression (Seemingly Unrelated Regression) is performed for each biome with soil (estimated porosity and slope of soil water retention curve) and vegetation characteristics (5-week NDVI gradient) as dependent variables and aridity index, vegetation and soil characteristics as independent variables for respective dependent variables. The regression residuals of the first stage along with aridity index then serve as second stage independent variables while actual vaporization to precipitation ratio (vapor index) serving as dependent variable. Insignificance, if revealed, of a first stage parameter allows us to reject the role of corresponding soil or vegetation characteristics in the co-evolution hypothesis. Meanwhile the significance of second stage regression parameter corresponding to a first stage residual allow us to reject the hypothesis that Budyko curve is a locus "solely" of climate-soil-vegetation co-evolution equilibrium points. Results suggest lack of evidence for soil-vegetation co-evolution in Prairies and Mixed/SouthEast Forests (unlike in Deciduous Forests) though climate plays a dominant role in explaining within biome soil and vegetation characteristics across all the biomes. Preliminary results indicate absence of effects beyond climate-soil-vegetation co-evolution in explaining the ratio of annual total minimum monthly flows to precipitation in Deciduous Forests though other three biome types show presence of effects beyond co-evolutionary. Such an analysis can yield insights into the nature of hydrologic change when assessed along the Budyko curve as well as non co-evolutionary effects such as anthropogenic effects on basin scale annual water balances.

  18. Predicting loss of evolutionary history: Where are we?

    PubMed

    Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine

    2017-02-01

    The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic groups and test the assumption that preserving ED and PD also protects rare species and ecosystem services. Such research will be useful to inform and guide the conservation of Earth's biodiversity and the services it provides. © 2015 Cambridge Philosophical Society.

  19. Reduced-Dose Intensity-Modulated Radiation Therapy With or Without Cisplatin in Treating Patients With Advanced Oropharyngeal Cancer

    ClinicalTrials.gov

    2018-01-08

    Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma; Stage IVB Oropharyngeal Squamous Cell Carcinoma; Stage IVC Oropharyngeal Squamous Cell Carcinoma; Tongue Carcinoma

  20. Genetic characterization drives personalized therapy for early-stage non-small-cell lung cancer (NSCLC) patients and survivors with metachronous second primary tumor (MST): A case report.

    PubMed

    Ding, Xingchen; Wang, Linlin; Liu, Xijun; Sun, Xindong; Yu, Jinming; Meng, Xue

    2017-03-01

    The pathogenesis and progression of lung cancer is a complicated process in which many genes take part. But molecular gene testing is typically only performed in advanced-stage non-squamous non-small-cell lung cancer (NSCLC). The value of tyrosine kinase inhibitors (TKI) administration is not widely recognized with respect to early-stage NSCLC. Here, we present a case of a man, heavy smoker who initially presented with stage IA lung adenocarcinoma (LADC). Three years after a lung lobectomy, he was diagnosed with advanced lung squamous cell carcinoma (SCC), according to laboratory, imaging, and pathological examinations. The case initially had an early-stage LADC with an L858R epidermal growth factor receptor (EGFR) mutation. A subsequent advanced SCC bearing EGFR L858R/T790M mutations occurred 3 years after surgery. The comprehensive therapy we utilized, including surgical resection for the early-stage lesion and GP chemotherapy and local radiotherapy as the first line therapy along with gefitinib maintenance treatment for the advanced metachronous second primary tumors (MST). The synthetical therapy, have resulted in our patient with remaining alive and progression free for 4.5 years. This case suggests that changes in molecular pathology should be monitored closely throughout cancer progression to guide personalized therapy and improve prognosis. We further review administration of TKI to early-stage NSCLC and to the metachronous second primary tumors (MST) in survivors.

  1. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis. Copyright © 2013 Wiley Periodicals, Inc.

  2. NSVS 7051868: A system in a key evolutionary stage. First multi-color photometric study

    NASA Astrophysics Data System (ADS)

    Barani, C.; Martignoni, M.; Acerbi, F.

    2017-01-01

    The first CCD photometric complete light curves of the eclipsing binary NSVS 7051868 were obtained during six nights in January 2016 in the B, V and Ic bands using the 0.25 m telescope of the Stazione Astronomica Betelgeuse in Magnago, Italy. These observations confirm the short period (P = 0.517 days) variation found by Shaw and collaborators in their online list (http://www.physast.uga.edu/ jss/nsvs/) of periodic variable stars found in the Northern Sky Variability Survey. The light curves were modelled using the Wilson-Devinney code and the elements obtained from this analysis are used to compute the physical parameters of the system in order to study its evolutionary status. A grid of solutions for several fixed values of mass ratio was calculated. A reasonable fit of the synthetic light curves of the data indicate that NSVS 7051868 is an A-subtype W Ursae Majoris contact binary system, with a low mass ratio of q = 0.22, a degree of contact factor f = 35.5% and inclination i = 85°. Our light curves shows a time of constant light in the secondary eclipse of approximately 0.1 in phase. The light curve solution reveals a component temperature difference of about 700 K. Both the value of the fill-out factor and the temperature difference suggests that NSVS 7051868 is a system in a key evolutionary stage of the Thermal Relaxation Oscillation theory. The distance to NSVS 7051868 was calculated as 180 pc from this analysis, taking into account interstellar extinction.

  3. THE SUPER LITHIUM-RICH RED GIANT RAPID ROTATOR G0928+73.2600: A CASE FOR PLANET ACCRETION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Joleen K.; Majewski, Steven R.; Rood, Robert T.

    2010-11-01

    We present the discovery of a super lithium-rich K giant star, G0928+73.2600. This red giant (T {sub eff} = 4885 K and log g = 2.65) is a fast rotator with a projected rotational velocity of 8.4 km s{sup -1} and an unusually high lithium abundance of A(Li) = 3.30 dex. Although the lack of a measured parallax precludes knowing the exact evolutionary phase, an isochrone-derived estimate of its luminosity places the star on the Hertzsprung-Russell diagram in a location that is not consistent with either the red bump on the first ascent of the red giant branch or withmore » the second ascent on the asymptotic giant branch, the two evolutionary stages where lithium-rich giant stars tend to cluster. Thus, even among the already unusual group of lithium-rich giant stars, G0928+73.2600 is peculiar. Using {sup 12}C/{sup 13}C as a tracer for mixing-more mixing leads to lower {sup 12}C/{sup 13}C-we find {sup 12}C/{sup 13}C = 28, which is near the expected value for standard first dredge-up mixing. We can therefore conclude that 'extra' deep mixing has not occurred. Regardless of the ambiguity of the evolutionary stage, the extremely large lithium abundance and the rotational velocity of this star are unusual, and we speculate that G0928+73.2600 has been enriched in both lithium and angular momentum from a sub-stellar companion.« less

  4. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    A. Hesp, Patrick

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, ‘tree islands' and ‘bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to ‘restore' some perceived loss of ecosystem or dune functioning.

  5. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, 'tree islands' and 'bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to 'restore' some perceived loss of ecosystem or dune functioning.

  6. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw

    PubMed Central

    Kuratani, Shigeru

    2005-01-01

    The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes. PMID:16313390

  7. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    PubMed

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  8. Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes.

    PubMed

    Cui, Rongfeng; Schumer, Molly; Kruesi, Karla; Walter, Ronald; Andolfatto, Peter; Rosenthal, Gil G

    2013-08-01

    Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges. Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high-confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a long-standing controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Genetic Mutations in Blood and Tissue Samples in Predicting Response to Treatment in Patients With Locally Advanced Rectal Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2017-09-08

    Mucinous Adenocarcinoma of the Rectum; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Rectum; Stage IIA Rectal Cancer; Stage IIB Rectal Cancer; Stage IIC Rectal Cancer; Stage IIIA Rectal Cancer; Stage IIIB Rectal Cancer; Stage IIIC Rectal Cancer

  10. Temsirolimus With or Without Megestrol Acetate and Tamoxifen Citrate in Treating Patients With Advanced, Persistent, or Recurrent Endometrial Cancer

    ClinicalTrials.gov

    2017-04-11

    Endometrial Carcinoma; Recurrent Uterine Corpus Carcinoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC1 Uterine Corpus Cancer; Stage IIIC2 Uterine Corpus Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer

  11. Chondromalacia patellae: fat-suppressed MR imaging.

    PubMed

    Rose, P M; Demlow, T A; Szumowski, J; Quinn, S F

    1994-11-01

    To evaluate the accuracy of fat-suppressed magnetic resonance (MR) imaging in diagnosing chondromalacia patellae. Seventy-one patients underwent fat-suppressed MR imaging and arthroscopy of the patellofemoral compartment. Findings were classified as early or advanced chondromalacia or as normal and were correlated with arthroscopic findings. Early and advanced stages of chondromalacia patellae were reliably detected, with positive predictive values of 85% and 92%, respectively. Specificity in early stages was 94% and in late stages was 98%. However, the overall accuracies did not differ substantially from those reported in studies that did not use fat-suppressed imaging. Axial, fat-suppressed MR imaging accurately depicts changes caused by chondromalacia patellae. Early stages can be seen as intrasubstance changes of increased signal intensity. Results of this study suggest a high degree of specificity in excluding both early and advanced changes.

  12. Evolutionary Systems Theory, Universities, and Endogenous Regional Economic Development

    ERIC Educational Resources Information Center

    Bowen, William M.

    2007-01-01

    Universities today are increasingly being viewed in terms of serving the purpose of economic development. This paper postulates that their chief purpose is to advance knowledge and that in doing so they effectuate regional economic growth and development through processes specified in the endogenous economic growth model. To achieve this purpose…

  13. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  14. Analysis of population structure and genetic history of cattle breeds based on high-density SNP data

    USDA-ARS?s Scientific Manuscript database

    Advances in single nucleotide polymorphism (SNP) genotyping microarrays have facilitated a new understanding of population structure and evolutionary history for several species. Most existing studies in livestock were based on low density SNP arrays. The first wave of low density SNP studies on cat...

  15. Evolution Kills: A Web Resource for Instructors of Evolutionary Biology

    ERIC Educational Resources Information Center

    Vondrasek, Joanna R.; Antonovics, Janis; Taylor, Douglas R.

    2004-01-01

    We have developed a laboratory course that demonstrates how evolution can be taught as a participatory, investigative science at the undergraduate college or advanced secondary high school level. The course emphasizes the applied importance of evolution to areas such as medicine and agriculture. Because many instructors face budgetary or other…

  16. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  17. Automation and robotics

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin

    1988-01-01

    The Autonomous Systems focus on the automation of control systems for the Space Station and mission operations. Telerobotics focuses on automation for in-space servicing, assembly, and repair. The Autonomous Systems and Telerobotics each have a planned sequence of integrated demonstrations showing the evolutionary advance of the state-of-the-art. Progress is briefly described for each area of concern.

  18. The EvoDevoCI: A Concept Inventory for Gauging Students' Understanding of Evolutionary Developmental Biology

    ERIC Educational Resources Information Center

    Perez, Kathryn E.; Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; French, Donald P.; Terry, Mark; Price, Rebecca M.

    2013-01-01

    The American Association for the Advancement of Science 2011 report "Vision and Change in Undergraduate Biology Education" encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary…

  19. The Three Domains of Conservation Genetics: Case Histories from Hawaiian Waters

    PubMed Central

    2016-01-01

    The scientific field of conservation biology is dominated by 3 specialties: phylogenetics, ecology, and evolution. Under this triad, phylogenetics is oriented towards the past history of biodiversity, conserving the divergent branches in the tree of life. The ecological component is rooted in the present, maintaining the contemporary life support systems for biodiversity. Evolutionary conservation (as defined here) is concerned with preserving the raw materials for generating future biodiversity. All 3 domains can be documented with genetic case histories in the waters of the Hawaiian Archipelago, an isolated chain of volcanic islands with 2 types of biodiversity: colonists, and new species that arose from colonists. This review demonstrates that 1) phylogenetic studies have identified previously unknown branches in the tree of life that are endemic to Hawaiian waters; 2) population genetic surveys define isolated marine ecosystems as management units, and 3) phylogeographic analyses illustrate the pathways of colonization that can enhance future biodiversity. Conventional molecular markers have advanced all 3 domains in conservation biology over the last 3 decades, and recent advances in genomics are especially valuable for understanding the foundations of future evolutionary diversity. PMID:27001936

  20. Intelligence and childlessness.

    PubMed

    Kanazawa, Satoshi

    2014-11-01

    Demographers debate why people have children in advanced industrial societies where children are net economic costs. From an evolutionary perspective, however, the important question is why some individuals choose not to have children. Recent theoretical developments in evolutionary psychology suggest that more intelligent individuals may be more likely to prefer to remain childless than less intelligent individuals. Analyses of the National Child Development Study show that more intelligent men and women express preference to remain childless early in their reproductive careers, but only more intelligent women (not more intelligent men) are more likely to remain childless by the end of their reproductive careers. Controlling for education and earnings does not at all attenuate the association between childhood general intelligence and lifetime childlessness among women. One-standard-deviation increase in childhood general intelligence (15 IQ points) decreases women's odds of parenthood by 21-25%. Because women have a greater impact on the average intelligence of future generations, the dysgenic fertility among women is predicted to lead to a decline in the average intelligence of the population in advanced industrial nations. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The biology of color.

    PubMed

    Cuthill, Innes C; Allen, William L; Arbuckle, Kevin; Caspers, Barbara; Chaplin, George; Hauber, Mark E; Hill, Geoffrey E; Jablonski, Nina G; Jiggins, Chris D; Kelber, Almut; Mappes, Johanna; Marshall, Justin; Merrill, Richard; Osorio, Daniel; Prum, Richard; Roberts, Nicholas W; Roulin, Alexandre; Rowland, Hannah M; Sherratt, Thomas N; Skelhorn, John; Speed, Michael P; Stevens, Martin; Stoddard, Mary Caswell; Stuart-Fox, Devi; Talas, Laszlo; Tibbetts, Elizabeth; Caro, Tim

    2017-08-04

    Coloration mediates the relationship between an organism and its environment in important ways, including social signaling, antipredator defenses, parasitic exploitation, thermoregulation, and protection from ultraviolet light, microbes, and abrasion. Methodological breakthroughs are accelerating knowledge of the processes underlying both the production of animal coloration and its perception, experiments are advancing understanding of mechanism and function, and measurements of color collected noninvasively and at a global scale are opening windows to evolutionary dynamics more generally. Here we provide a roadmap of these advances and identify hitherto unrecognized challenges for this multi- and interdisciplinary field. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Cannibalism and Infectious Disease: Friends or Foes?

    PubMed

    Van Allen, Benjamin G; Dillemuth, Forrest P; Flick, Andrew J; Faldyn, Matthew J; Clark, David R; Rudolf, Volker H W; Elderd, Bret D

    2017-09-01

    Cannibalism occurs in a majority of both carnivorous and noncarnivorous animal taxa from invertebrates to mammals. Similarly, infectious parasites are ubiquitous in nature. Thus, interactions between cannibalism and disease occur regularly. While some adaptive benefits of cannibalism are clear, the prevailing view is that the risk of parasite transmission due to cannibalism would increase disease spread and, thus, limit the evolutionary extent of cannibalism throughout the animal kingdom. In contrast, surprisingly little attention has been paid to the other half of the interaction between cannibalism and disease, that is, how cannibalism affects parasites. Here we examine the interaction between cannibalism and parasites and show how advances across independent lines of research suggest that cannibalism can also reduce the prevalence of parasites and, thus, infection risk for cannibals. Cannibalism does this by both directly killing parasites in infected victims and by reducing the number of susceptible hosts, often enhanced by the stage-structured nature of cannibalism and infection. While the well-established view that disease should limit cannibalism has held sway, we present theory and examples from a synthesis of the literature showing how cannibalism may also limit disease and highlight key areas where conceptual and empirical work is needed to resolve this debate.

  3. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed Central

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-01-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials. Images PMID:2740336

  4. Body wiping behaviors associated with cutaneous lipids in hylid tree frogs of Florida.

    PubMed

    Barbeau, Tamatha R; Lillywhite, Harvey B

    2005-06-01

    Body wiping behavior, integumentary secretions and rates of evaporative water loss (EWL) were examined in six species of Florida tree frogs (Anura: Hylidae). Additionally, morphology of the integument and dermal glands were compared among these and one other Florida tree frog (Hyla andersonii), an arid-adapted tree frog (Phyllomedusa hypochondrialis), and a highly aquatic frog (Rana utricularia). An extra-epidermal layer of lipid and mucus, presumably secreted from dermal granular glands, was detected on the skin of all Florida hylid frogs examined. Distinct body wiping behaviors were observed in the hylid frogs, but these were less complex than those described previously in phyllomedusine frogs, which occupy arid habitats, secrete lipids onto their skin, and are regarded as relatively 'waterproof'. Florida hylids occupy seasonally arid habitats and appear to have reduced rates of EWL. The suite of traits we observed in these frogs have been previously documented in a rhacophorid tree frog from seasonally arid regions of India and likely represent an evolutionary convergent response to periodic dehydration stress. The presence of lipids that are spread by simple wiping behaviors to form an extra-epidermal water barrier may represent an early stage of the more advanced adaptations described in more waterproof arboreal frogs.

  5. Palbociclib With Cisplatin or Carboplatin in Advanced Solid Tumors

    ClinicalTrials.gov

    2017-11-22

    Solid Neoplasm; Stage III Pancreatic Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IVA Pancreatic Cancer; Stage IVB Pancreatic Cancer; Sarcoma; Colorectal Cancer; Head and Neck Cancer; Cancer of Unknown Primary; Bladder Cancer; Ovarian Cancer

  6. Liquid biopsy: A potential and promising diagnostic tool for advanced stage non-small cell lung cancer patients.

    PubMed

    Doval, D C; Deshpande, R; Dhabhar, B; Babu, K G; Prabhash, K; Chopra, R; Sripada, P V; Deshmukh, C; Suryavanshi, M

    2017-12-01

    More than 50% of non-small cell lung cancer (NSCLC) cases harbor an actionable mutation, and molecular testing at different intervals can help in personalized and targeted treatment. Core tissue biopsy and needle biopsy done at the time of diagnosis/disease progression are interventional, time-consuming and can affect the patients adversely. Noninterventional biomarker testing by liquid biopsy promises to revolutionize advanced stage cancer screening. The present report was formulated based on an expert panel meeting of renowned oncologists who gave their opinions for minimally invasive liquid biopsy to detect targetable molecular biomarkers in advanced NSCLC cases. An exhaustive literature search was done to support their recommendations. Clinical utility of minimally invasive liquid biopsy, for detection of molecular biomarkers in advanced stage NSCLC patients, was broadly discussed by the key opinion leaders.

  7. Immunotherapy for cervical cancer: Can it do another lung cancer?

    PubMed

    Ramanathan, Priya; Dhandapani, Hemavathi; Jayakumar, Hascitha; Seetharaman, Abirami; Thangarajan, Rajkumar

    Cervical cancer, although preventable, is still the second most common cancer among women worldwide. In developing countries like India, where screening for cervical cancer is virtually absent, most women seek treatment only at advanced stages of the disease. Although standard treatment is curative in more than 90% of women during the early stages, for stage IIIb and above this rate drops to 50% or less. Hence, novel therapeutic adjuvants are required to improve survival at advanced stages. Lung cancer has shown the way forward with the use of Immunotherapeutic interventions as standard line of treatment in advanced stages. In this review, we provide an overview of mechanisms of immune evasion, strategies that can be employed to boost the immune system in order to improve the overall survival of the patients and summarize briefly the clinical trials that have been completed or that are underway to bring therapeutic vaccines for cervical cancer to the clinics. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. PI3Kbeta Inhibitor AZD8186 and Docetaxel in Treating Patients Advanced Solid Tumors With PTEN or PIK3CB Mutations That Are Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-16

    Advanced Malignant Solid Neoplasm; Anatomic Stage III Breast Cancer AJCC v8; Anatomic Stage IIIA Breast Cancer AJCC v8; Anatomic Stage IIIB Breast Cancer AJCC v8; Anatomic Stage IIIC Breast Cancer AJCC v8; Anatomic Stage IV Breast Cancer AJCC v8; Castration-Resistant Prostate Carcinoma; Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; Metastatic Malignant Solid Neoplasm; Metastatic Prostate Carcinoma; PIK3CB Gene Mutation; Progesterone Receptor Negative; Prognostic Stage III Breast Cancer AJCC v8; Prognostic Stage IIIA Breast Cancer AJCC v8; Prognostic Stage IIIB Breast Cancer AJCC v8; Prognostic Stage IIIC Breast Cancer AJCC v8; Prognostic Stage IV Breast Cancer AJCC v8; PTEN Gene Mutation; PTEN Loss; Stage III Prostate Cancer AJCC v8; Stage IIIA Prostate Cancer AJCC v8; Stage IIIB Prostate Cancer AJCC v8; Stage IIIC Prostate Cancer AJCC v8; Stage IV Prostate Cancer AJCC v8; Stage IVA Prostate Cancer AJCC v8; Stage IVB Prostate Cancer AJCC v8; Triple-Negative Breast Carcinoma; Unresectable Solid Neoplasm

  9. Temsirolimus and Bevacizumab in Treating Patients With Advanced Endometrial, Ovarian, Liver, Carcinoid, or Islet Cell Cancer

    ClinicalTrials.gov

    2017-07-10

    Adult Hepatocellular Carcinoma; Advanced Adult Hepatocellular Carcinoma; Endometrial Serous Adenocarcinoma; Localized Non-Resectable Adult Liver Carcinoma; Lung Carcinoid Tumor; Malignant Pancreatic Gastrinoma; Malignant Pancreatic Glucagonoma; Malignant Pancreatic Insulinoma; Malignant Pancreatic Somatostatinoma; Metastatic Digestive System Neuroendocrine Tumor G1; Ovarian Carcinosarcoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Surface Papillary Adenocarcinoma; Pancreatic Alpha Cell Adenoma; Pancreatic Beta Cell Adenoma; Pancreatic Delta Cell Adenoma; Pancreatic G-Cell Adenoma; Pancreatic Polypeptide Tumor; Recurrent Adult Liver Carcinoma; Recurrent Digestive System Neuroendocrine Tumor G1; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Pancreatic Neuroendocrine Carcinoma; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Regional Digestive System Neuroendocrine Tumor G1; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIA Uterine Corpus Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IIIC Uterine Corpus Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer; Uterine Carcinosarcoma

  10. Applying NGS Data to Find Evolutionary Network Biomarkers from the Early and Late Stages of Hepatocellular Carcinoma

    PubMed Central

    Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou

    2015-01-01

    Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411

  11. Evidence-based practice: management of glottic cancer.

    PubMed

    Hartl, Dana M

    2012-10-01

    The main issue in the management of glottic squamous cell carcinoma, as for all cancers, is adequate disease control while optimizing functional outcomes and minimizing morbidity. This is true for early-stage disease as for advanced tumors. This article evaluates the current evidence for the diagnostic and pretherapeutic workup for glottic squamous cell carcinoma and the evidence concerning different treatment options for glottic carcinoma, from early-stage to advanced-stage disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The effect of marital status on stage and survival of prostate cancer patients treated with radical prostatectomy: a population-based study.

    PubMed

    Abdollah, Firas; Sun, Maxine; Thuret, Rodolphe; Abdo, Al'a; Morgan, Monica; Jeldres, Claudio; Shariat, Shahrokh F; Perrotte, Paul; Montorsi, Francesco; Karakiewicz, Pierre I

    2011-08-01

    The detrimental effect of unmarried marital status on stage and survival has been confirmed in several malignancies. We set to test whether this applied to patients diagnosed with prostate cancer (PCa) treated with radical prostatectomy (RP). We identified 163,697 non-metastatic PCa patients treated with RP, within 17 Surveillance, Epidemiology, and End Results registries. Logistic regression analyses focused on the rate of locally advanced stage (pT3-4/pN1) at RP. Cox regression analyses tested the relationship between marital status and cancer-specific (CSM), as well as all-cause mortality (ACM). Respectively, 9.1 and 7.8% of individuals were separated/divorced/widowed (SDW) and never married. SDW men had more advanced stage at surgery (odds ratio: 1.1; p < 0.001), higher CSM and ACM (both hazard ratio [HR]: 1.3; p < 0.001) than married men. Similarly, never married marital status portended to a higher ACM rate (HR:1.2, p = 0.001). These findings were consistent when analyses were stratified according to organ confined vs. locally advanced stages. Being SDW significantly increased the risk of more advanced stage at RP. Following surgery, SDW men portended to a higher CSM and ACM rate than married men. Consequently, these individuals may benefit from a more focused health care throughout the natural history of their disease.

  13. Advanced Parkinson's or "complex phase" Parkinson's disease? Re-evaluation is needed.

    PubMed

    Titova, Nataliya; Martinez-Martin, Pablo; Katunina, Elena; Chaudhuri, K Ray

    2017-12-01

    Holistic management of Parkinson's disease, now recognised as a combined motor and nonmotor disorder, remains a key unmet need. Such management needs relatively accurate definition of the various stages of Parkinson's from early untreated to late palliative as each stage calls for personalised therapies. Management also needs to have a robust knowledge of the progression pattern and clinical heterogeneity of the presentation of Parkinson's which may manifest in a motor dominant or nonmotor dominant manner. The "advanced" stages of Parkinson's disease qualify for advanced treatments such as with continuous infusion or stereotactic surgery yet the concept of "advanced Parkinson's disease" (APD) remains controversial in spite of growing knowledge of the natural history of the motor syndrome of PD. Advanced PD is currently largely defined on the basis of consensus opinion and thus with several caveats. Nonmotor aspects of PD may also reflect advancing course of the disorder, so far not reflected in usual scale based assessments which are largely focussed on motor symptoms. In this paper, we discuss the problems with current definitions of "advanced" PD and also propose the term "complex phase" Parkinson's disease as an alternative which takes into account a multimodal symptoms and biomarker based approach in addition to patient preference.

  14. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.

    PubMed

    Liu, Yajuan J; Hodson, Matthew C; Hall, Benjamin D

    2006-09-29

    At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi) may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either once or multiple times during fungal evolution. All of these issues are capable of being resolved by a molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no fungal phylogeny based upon molecular characters has satisfied this criterion. Using the translated amino acid sequences of the RPB1 and RPB2 genes, we have inferred a fungal phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with significant statistical support, are: (1) Microsporidia are sister to kingdom Fungi and are not members of Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2) Chytridiomycota, the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage. (3) Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4) Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from Chytridiomycota. (5) Basidiomycota and Ascomycota are monophyletic sister groups. In general, this paper highlights the evolutionary position and significance of the lower fungi (Zygomycota and Chytridiomycota). Our results suggest that loss of the flagellum happened only once during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are nonflagellated. The phylogeny we infer from gene sequences is the first one that is congruent with the widely accepted morphology-based classification of Fungi. We find that, contrary to what has been published elsewhere, the four morphologically defined phyla (Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota) do not overlap with one another. Microsporidia are not included within kingdom Fungi; rather they are a sister-group to the Fungi. Our study demonstrates the applicability of protein sequences from large, slowly-evolving genes to the derivation of well-resolved and highly supported phylogenies across long evolutionary distances.

  15. Orbit transfer vehicle engine study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The orbit transfer vehicle (OTV) engine study provided parametric performance, engine programmatic, and cost data on the complete propulsive spectrum that is available for a variety of high energy, space maneuvering missions. Candidate OTV engines from the near term RL 10 (and its derivatives) to advanced high performance expander and staged combustion cycle engines were examined. The RL 10/RL 10 derivative performance, cost and schedule data were updated and provisions defined which would be necessary to accommodate extended low thrust operation. Parametric performance, weight, envelope, and cost data were generated for advanced expander and staged combustion OTV engine concepts. A prepoint design study was conducted to optimize thrust chamber geometry and cooling, engine cycle variations, and controls for an advanced expander engine. Operation at low thrust was defined for the advanced expander engine and the feasibility and design impact of kitting was investigated. An analysis of crew safety and mission reliability was conducted for both the staged combustion and advanced expander OTV engine candidates.

  16. Cisplatin and Flavopiridol in Treating Patients With Advanced Ovarian Epithelial Cancer or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-05-06

    Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer

  17. Sorafenib and Nivolumab as First-Line Therapy in Treating Participants With Unresectable, Locally Advanced or Metastatic Liver Cancer

    ClinicalTrials.gov

    2018-03-06

    Stage III Hepatocellular Carcinoma AJCC v8; Stage IIIA Hepatocellular Carcinoma AJCC v8; Stage IIIB Hepatocellular Carcinoma AJCC v7; Stage IIIC Hepatocellular Carcinoma AJCC v7; Stage IV Hepatocellular Carcinoma AJCC v8; Stage IVA Hepatocellular Carcinoma AJCC v8; Stage IVB Hepatocellular Carcinoma AJCC v8

  18. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  19. Vascular endothelial growth factor and nitric oxide synthase expression in human tooth germ development.

    PubMed

    Mastrangelo, F; Sberna, M T; Tettamanti, L; Cantatore, G; Tagliabue, A; Gherlone, E

    2016-01-01

    Vascular Endothelia Growth Factor (VEGF) and Nitric Oxide Synthase (NOS) expression, were evaluated in human tooth germs at two different stages of embryogenesis, to clarify the role of angiogenesis during tooth tissue differentiation and growth. Seventy-two third molar germ specimens were selected during oral surgery. Thirty-six were in the early stage and 36 in the later stage of tooth development. The samples were evaluated with Semi-quantitative Reverse Transcription-Polymerase chain Reaction analyses (RT-PcR), Western blot analysis (WB) and immunohistochemical analysis. Western blot and immunohistochemical analysis showed a VEGF and NOS 1-2-3 positive reaction in all samples analysed. VEGF high positive decrease reaction was observed in stellate reticulum cells, ameloblast and odontoblast clusters in early stage compared to later stage of tooth germ development. Comparable VEGF expression was observed in endothelial cells of early and advanced stage growth. NOS1 and NOS3 expressions showed a high increased value in stellate reticulum cells, and ameloblast and odontoblast clusters in advanced stage compared to early stage of development. The absence or only moderate positive reaction of NOS2 was detected in all the different tissues. Positive NOS2 expression showed in advanced stage of tissue development compared to early stage. The action of VEGF and NOS molecules are important mediators of angiogenesis during dental tissue development. VEGF high positive expression in stellate reticulum cells in the early stage of tooth development compared to the later stage and the other cell types, suggests a critical role of the stellate reticulum during dental embryo-morphogenesis.

  20. Evicting cuckoo nestlings from the nest: a new anti-parasitism behaviour

    PubMed Central

    Sato, Nozomu J.; Tokue, Kihoko; Noske, Richard A.; Mikami, Osamu K.; Ueda, Keisuke

    2010-01-01

    As avian brood parasitism usually reduces hosts' reproductive success, hosts often exhibit strong defence mechanisms. While such host defences at the egg stage (especially egg rejection) have been extensively studied, defence mechanisms at the nestling stage have been reported only recently. We found a previously unknown anti-parasitism behaviour in the large-billed Gerygone, which is a host species of the little bronze-cuckoo, a host-evicting brood parasite. The hosts forcibly pulled resisting nestlings out of their nests and dumped them. Although it has been suggested that defence mechanisms at the nestling stage may evolve when host defence at the egg stage is evaded by the parasite, the studied host seems to lack an anti-parasitism strategy at the egg stage. This suggests that the evolutionary pathway may be quite different from those of previously studied cuckoo–host systems. Future research on this unique system may give us new insights into the evolution of avian brood parasitism. PMID:19776068

Top