Science.gov

Sample records for advanced exploration systems

  1. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  2. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  3. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  4. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.

  5. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  6. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  7. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  8. Advanced Exploration Systems Water Architecture Study Interim Results

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  9. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  10. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe

  11. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  12. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  13. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  14. Advanced Exploration Systems (AES) Logistics Reduction and Repurposing Project: Advanced Clothing Ground Study Final Report

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini

    2013-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The goal of the Advanced Exploration Systems (AES) Logistics Reduction & Repurposing (LRR) project is to bring new ideas and technologies that will enable human presence in farther regions of space. The LRR project has five tasks: 1) Advanced Clothing System (ACS) to reduce clothing mass and volume, 2) Logistics to Living (L2L) to repurpose existing cargo, 3) Heat Melt Compactor (HMC) to reprocess materials in space, 4) Trash to Gas (TTG) to extract useful gases from trash, and 5) Systems Engineering and Integration (SE&I) to integrate these logistical components. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The ACS task is to find ways to further reduce this logistical burden while examining human response to different types of clothes. The ACS task has been broken into a series of studies on length of wear of various garments: 1) three small studies conducted through other NASA projects (MMSEV, DSH, HI-SEAS) focusing on length of wear of garments treated with an antimicrobial finish; 2) a ground study, which is the subject of this report, addressing both length of wear and subject perception of various types of garments worn during aerobic exercise; and 3) an ISS study replicating the ground study, and including every day clothing to collect information on perception in reduced gravity in which humans experience physiological changes. The goal of the ground study is first to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment, and second to learn why. Human factors considerations included in the study consist of the Institutional Review Board approval, test protocol and participants' training, and a web

  15. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  16. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Watson, David W.; Wingard, Charles D.; West, Phillip W.; Cmarik, Gregory E.; Miller, Lee A.

    2016-01-01

    Advanced Exploration Systems are integral to crewed missions beyond low earth orbit and beyond the moon. The long-term goal is to reach Mars and return to Earth, but current air revitalization systems are not capable of extended operation within the mass, power, and volume requirements of such a mission. Two primary points are the mechanical stability of sorbent pellets and recovery of sorbent productivity after moisture exposure in the event of a leak. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds.

  17. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  18. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  19. The Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Burlaga, L. F.; Cummings, A. C.; Feldman, W. C.; Frain, W. E.; Geiss, J.; Gloeckler, G.; Gold, R. E.; Hovestadt, D.; Krimigis, S. M.

    1989-01-01

    The Advanced Composition Explorer (ACE) was recently selected as one of two new Explorer-class missions to be developed for launch during the mid-1990's. ACE will observe particles of solar, interplanetary, interstellar, and galactic origins, spanning the energy range from that of the solar wind (approx. 1 keV/nucleon) to galactic cosmic ray energies (several hundred MeV/nucleon). Definitive studies will be made of the abundance of nearly all isotopes from H to Zn (1 less than or = Z less than or = 30), with exploratory isotope studies extending to Zr (Z = 40). To accomplish this, the ACE payload includes six high-resolution spectrometers, each designed to provide the optimum charge, mass, or charge-state resolution in its particular energy range, and each having a geometry factor optimized for the expected flux levels, so as to provide a collecting power a factor of 10 to 1000 times greater than previous or planned experiments. The payload also includes several instruments of standard design that will monitor solar wind and magnetic field conditions and energetic H, He, and electron fluxes. The scientific objectives, instrumentation, spacecraft, and mission approach that were defined for ACE during the Phase-A study period are summarized.

  20. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  1. Opening the Solar System: An Advanced Nuclear Spacecraft for Human Exploration

    NASA Technical Reports Server (NTRS)

    Werka, R. O.; Percy, T. K.

    2014-01-01

    Human exploration of the solar system is limited by our technology, not our imagination. We dream of a time when we can freely travel among the planets and truly become a spacefaring people. However, the current state of our technology limits our options for architecting missions to other planets. Instead of sailing the seas of space in the way that we cruise the seas of Earth, our limited propulsion technology requires us to depart Earth on a giant cluster of gas tanks and return in a lifeboat. This inefficient approach to exploration is evident in many of today's leading mission plans for human flights to Mars, asteroids, and other destinations. The cost and complexity of this approach to mission architecting makes it extremely difficult to realize our dreams of exploration beyond Low Earth Orbit (LEO). This does not need to be the case. Researchers at NASA's Marshall Space Flight Center (MSFC) have been investigating the feasibility of a new take on nuclear propulsion with the performance to enable a paradigm shift in human space exploration. During the fall of 2013, engineers at MSFC's Advanced Concepts Office developed a spacecraft concept (pictured below) around this new propulsion technology and redefined the human Mars mission to show its full potential. This spacecraft, which can be launched with a fleet of soon-to-be available SLS launch vehicles, is fueled primarily with hydrogen, and is fully reusable with no staging required. The reusable nature of this design enables a host of alternative mission architectures that more closely resemble an ocean voyage than our current piecemeal approach to exploration.

  2. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  3. MATISSE: Multi-purpose Advanced Tool for Instruments for the Solar System Exploration .

    NASA Astrophysics Data System (ADS)

    Zinzi, A.; Capria, M. T.; Antonelli, L. A.

    In planetary sciences, design, assemble and launch onboard instruments are only preliminary steps toward the final aim of converting data into scientific knowledge, as the real challenge is the data analysis and interpretation. Up to now data have been generally stored in "old style" archives, i.e. common ftp servers where the user can manually search for data browsing directories organized in a time order manner. However, as datasets to be stored and searched become particularly large, this latter task absorbs a great part of the time, subtracting time to the real scientific work. In order to reduce the time spent to search and analyze data MATISSE (Multi-purpose Advanced Tool for Instruments for the Solar System Exploration), a new set of software tools developed together with the scientific teams of the instruments involved, is under development at ASDC (ASI Science Data Center), whose experience in space missions data management is well known (e.g., \\citealt{verrecchia07,pittori09,giommi09,massaro11}) and its features and aims will be presented here.

  4. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    ERIC Educational Resources Information Center

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  5. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel--from systems biology to synthetic design.

    PubMed

    Xie, Shangxian; Syrenne, Ryan; Sun, Su; Yuan, Joshua S

    2014-06-01

    Efficient degradation and utilization of lignocellulosic biomass remains a challenge for sustainable and affordable biofuels. Various natural biomass utilization systems (NBUS) evolved the capacity to combat the recalcitrance of plant cell walls. The study of these NBUS could enable the development of efficient and cost-effective biocatalysts, microorganisms, and bioprocesses for biofuels and bioproducts. Here, we reviewed the recent research progresses for several NBUS, ranging from single cell microorganisms to consortiums such as cattle rumen and insect guts. These studies aided the discovery of biomass-degrading enzymes and the elucidation of the evolutionary and functional relevance in these systems. In particular, advances in the next generation 'omics' technologies offered new opportunities to explore NBUS in a high-throughput manner. Systems biology helped to facilitate the rapid biocatalyst discovery and detailed mechanism analysis, which could in turn guide the reverse design of engineered microorganisms and bioprocesses for cost-effective and efficient biomass conversion.

  6. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  7. NASA's Advanced Exploration Systems Mars Transit Habitat Refinement Point of Departure Design

    NASA Technical Reports Server (NTRS)

    Simon, Matthew; Latorella, Kara; Martin, John; Cerro, Jeff; Lepsch, Roger; Jefferies, Sharon; Goodliff, Kandyce; McCleskey, Carey; Smitherman, David; Stromgren, Chel

    2017-01-01

    This paper describes the recently developed point of departure design for a long duration, reusable Mars Transit Habitat, which was established during a 2016 NASA habitat design refinement activity supporting the definition of NASA's Evolvable Mars Campaign. As part of its development of sustainable human Mars mission concepts achievable in the 2030s, the Evolvable Mars Campaign has identified desired durations and mass/dimensional limits for long duration Mars habitat designs to enable the currently assumed solar electric and chemical transportation architectures. The Advanced Exploration Systems Mars Transit Habitat Refinement Activity brought together habitat subsystem design expertise from across NASA to develop an increased fidelity, consensus design for a transit habitat within these constraints. The resulting design and data (including a mass equipment list) contained in this paper are intended to help teams across the agency and potential commercial, academic, or international partners understand: 1) the current architecture/habitat guidelines and assumptions, 2) performance targets of such a habitat (particularly in mass, volume, and power), 3) the driving technology/capability developments and architectural solutions which are necessary for achieving these targets, and 4) mass reduction opportunities and research/design needs to inform the development of future research and proposals. Data presented includes: an overview of the habitat refinement activity including motivation and process when informative; full documentation of the baseline design guidelines and assumptions; detailed mass and volume breakdowns; a moderately detailed concept of operations; a preliminary interior layout design with rationale; a list of the required capabilities necessary to enable the desired mass; and identification of any worthwhile trades/analyses which could inform future habitat design efforts. As a whole, the data in the paper show that a transit habitat meeting the 43

  8. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems 2014-2015

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Coker, Robert; Huff, Timothy L.; Gatens, Robyn; Miller, Lee A.; Stanley, Christine

    2015-01-01

    A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. Mass reduction is particularly crucial for Mars surface landing and liftoff due to the challenges inherent in these operations for even much smaller payloads. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.

  9. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Coker, Robert; Howard, David; Peters, Warren; Watson, David; Cmarik, Gregory; Miller, Lee A.

    2016-01-01

    A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. Mass reduction is particularly crucial for Mars surface landing and liftoff due to the challenges inherent in these operations for even much smaller payloads. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.

  10. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Cmarik, Gregory E.; Knox, Jim

    2016-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for human space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and reuse of onboard atmosphere components is required. Current systems utilize space vacuum to fully regenerate adsorbent beds, but this is not sustainable thus necessitating a closed-loop system. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods for use in future systems.

  11. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  12. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  13. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  14. Advancement of a 30K W Solar Electric Propulsion System Capability for NASA Human and Robotic Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.

    2012-01-01

    Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA

  15. Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Bush, Richard

    2016-01-01

    Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.

  16. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  17. The NASA Solar System Exploration Virtual Institute: International Efforts in Advancing Lunar Science with Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Schmidt, Gregory

    The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been “institutes without walls,” fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes’ international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA’s strategic needs, providing community-based responses to NASA needs in partnership with NASA’s Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world.

  18. The NASA Solar System Exploration Virtual Institute: International Efforts in Advancing Lunar Science with Prospects for the Future

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.

    2014-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been "institutes without walls," fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes' international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA's strategic needs, providing community-based responses to NASA needs in partnership with NASA's Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world.

  19. Gas chromatography: Possible application of advanced instrumentation developed for solar system exploration to space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1985-01-01

    Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.

  20. Exploring Interactive and Dynamic Simulations Using a Computer Algebra System in an Advanced Placement Chemistry Course

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2014-01-01

    The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…

  1. Modeling Needs for Advancing Solar System Exploration: Magnetosphere-Ionosphere-Atmosphere-Surface-Interior Interactions

    NASA Astrophysics Data System (ADS)

    Daldorff, L. K. S.; Glocer, A.; Cohen, O.

    2017-02-01

    Models of planetary systems are key to understanding how these environments evolve and the implications for the origin and evolution of life. To do this, we need models that couple every aspect of the system from the Sun all the way to the interior.

  2. Past, Present and Future Advanced ECLS Systems for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Mitchell, Kenny

    2004-01-01

    This paper will review the historical record of NASA's regenerative life support systems flight hardware with emphasis on the complexity of spiral development of technology as related to the International Space Station program. A brief summary of what constitutes ECLSS designs for human habitation will be included and will provide illustrations of the complex system/system integration issues. The new technology areas which need to be addressed in our future Code T initiatives will be highlighted. The development status of the current regenerative ECLSS for Space Station will be provided for the Oxygen Generation System and the Water Recovery System. In addition, the NASA is planning to augment the existing ISS capability with a new technology development effort by Code U/Code T for CO2 reduction (Sabatier Reactor). This latest ISS spiral development activity will be highlighted in this paper.

  3. Advanced design for orbital debris removal in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.

  4. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  5. Integrating advanced mobility into lunar surface exploration

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Messerschmid, Ernst

    2012-06-01

    With growing knowledge of the lunar surface environment from recent robotic missions, further assessment of human lunar infrastructures and operational aspects for surface exploration become possible. This is of particular interest for the integration of advanced mobility assets, where path planning, balanced energy provision and consumption as well as communication coverage grow in importance with the excursion distance. The existing modeling and simulation tools for the lunar surface environment have therefore been revisited and extended to incorporate aspects of mobile exploration. An extended analysis of the lunar topographic models from past and ongoing lunar orbital missions has resulted in the creation of a tool to calculate and visualize slope angles in selected lunar regions. This allows for the identification of traversable terrain with respect to the mobile system capabilities. In a next step, it is combined with the analysis of the solar illumination conditions throughout this terrain to inform system energy budgets in terms of electrical power availability and thermal control requirements. The combination of the traversability analysis together with a time distributed energy budget assessment then allows for a path planning and optimization for long range lunar surface mobility assets, including manned excursions as well as un-crewed relocation activities. The above mentioned tools are used for a conceptual analysis of the international lunar reference architecture, developed in the frame of the International Architecture Working Group (IAWG) of the International Space Exploration Coordination Group (ISECG). Its systems capabilities are evaluated together with the planned surface exploration range and paths in order to analyze feasibility of the architecture and to identify potential areas of optimization with respect to time-based and location-based integration of activities.

  6. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  7. Optimization of the Carbon Dioxide Removal Assembly (CDRA-4EU) in Support of the International Space System and Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Stanley, Christine M.

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.

  8. Research and Technology Development to Advance Environmental Monitoring, Food Systems, and Habitat Design for Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.; Perchonek, M. H.; Ott, C. M.; Kaiser, M. K.

    2011-01-01

    Exploration missions will carry crews far beyond the relatively safe environs of cis-lunar space. Such trips will have little or no opportunity for resupply or rapid aborts and will be of a duration that far exceeds our experience to date. The challenges this imposes on the requirements of systems that monitor the life support and provide food and shelter for the crew are the focus of much research within the Human Research Program. Making all of these technologies robust and reliable enough for multi-year missions with little or no ability to run for home calls for a thorough understanding of the risks and impacts of failure. The way we currently monitor for microbial contamination of water, air, and surfaces, by sampling and growing cultures on nutrient media, must be reconsidered for exploration missions which have limited capacity for consumables. Likewise, the shelf life of food must be increased so that the nutrients required to keep the crewmembers healthy do not degrade over the life of the mission. Improved formulations, preservation, packaging, and storage technologies are all being investigated for ways slow this process or replace stowed food with key food items grown fresh in situ. Ensuring that the mass and volume of a spacecraft are used to maximum efficiency calls for infusing human factors into the design from its inception to increase efficiency, improve performance, and retain robustness toward operational realities. Integrating the human system with the spacecraft systems is the focus of many lines of investigation.

  9. Advanced Materials and Cell Components for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2009-01-01

    This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

  10. A Multi-Decadal Sample Return Campaign Will Advance Lunar and Solar System Science and Exploration by 2050

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Lawrence, S. J.

    2017-01-01

    There have been 11 missions to the Moon this century, 10 of which have been orbital, from 5 different space agencies. China became the third country to successfully soft-land on the Moon in 2013, and the second to successfully remotely operate a rover on the lunar surface. We now have significant global datasets that, coupled with the 1990s Clementine and Lunar Prospector missions, show that the sample collection is not representative of the lithologies present on the Moon. The M3 data from the Indian Chandrayaan-1 mission have identified lithologies that are not present/under-represented in the sample collection. LRO datasets show that volcanism could be as young as 100 Ma and that significant felsic complexes exist within the lunar crust. A multi-decadal sample return campaign is the next logical step in advancing our understanding of lunar origin and evolution and Solar System processes.

  11. The Advanced Jovian Asteroid Explorer (AJAX)

    NASA Astrophysics Data System (ADS)

    Murchie, S. L.; Adams, E. Y.; Mustard, J. F.; Rivkin, A.; Peplowski, P. N.

    2015-12-01

    The Advanced Jovian Asteroid eXplorer (AJAX) is the first mission to characterize the geology, morphology, geophysical properties, and chemistry of a Trojan asteroid. The Decadal Survey outlined a notional New Frontiers class Trojan asteroid rendezvous mission to conduct geological, elemental composition, mineralogical, and geophysical investigations. AJAX, our Discovery mission proposal, addresses the Decadal Survey science goals by using a focused payload and an innovative mission design. By responding to the most important questions about the Trojan asteroids, AJAX advances our understanding of all of the Solar System. Are these objects a remnant population of the local primordial material from which the outer planets and their satellites formed, or did they originate in the Kuiper Belt? Landed measurements of major and minor elements test hypotheses for the Trojan asteroid origin, revealing the outer Solar System dynamical history. How and when were prebiotic materials delivered to the terrestrial planets? AJAX's landed measurements include C and H concentrations, necessary to determine their inventories of volatiles and organic compounds, material delivered to the inner Solar System during the Late Heavy Bombardment. What chemical and geological processes shaped the small bodies that merged to form the planets in our Solar System? AJAX investigates the asteroid internal structure, geology, and regolith by using global high-resolution stereo and multispectral imaging, determining density and estimating interior porosity by measuring gravity, and measuring regolith mechanical properties by landing. AJAX's science phase starts with search for natural satellites and dust lifted by possible cometary activity and shape and pole position determination. AJAX descends to lower altitudes for global mapping, and conducts a low flyover for high-resolution surface characterization and measurement of hydrogen abundance. Finally, it deploys a small landed package, which

  12. UNAVCO Conference explores advances in volcanic geodesy

    NASA Astrophysics Data System (ADS)

    Stein, Seth; Hamburger, Michael; Meertens, Charles; Dixon, Timothy; Owen, Susan

    Volcanic eruptions are among Earth's most spectacular surface phenomena. However, attempts to understand their basic physics face the challenge that the key processes occur at great depth and are difficult to observe. Thus volcanologists have been interested for years in using ground deformation measurements to study active volcanoes and predict their behavior during extended volcanic crises, such as the dramatic six weeks in 1980 between the initial and major eruptions of Mt. Saint Helens.The advent of new technologies in recent years—in particular the Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (INSAR)—has shown potential for significant advances in volcano studies. Progress in this direction was explored at a conference organized by the University Navstar Consortium (UNAVCO) on September 15-17, 1999, with financial support from the National Science Foundation (NSF), NASA, and the U.S. Geological Survey (USGS). The meeting aimed to assess the status of various geodetic technologies and their potential to address crucial scientific and social needs in volcanic science and monitoring, as well as to develop recommendations on ways to spur further progress in these areas.

  13. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    SciTech Connect

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical

  14. Exploring Best Practices in Advance Care Planning

    DTIC Science & Technology

    2016-05-11

    Background: The factors that influence completion of advance care planning for elderly adults in the primary care setting are poorly understood...System factors such as expansion of technological and medical options added to lists of tasks primary care providers are expected to complete in ever...to low rates of completion. We hypothesized that prioritized utilization of motivational interviewing during a visit specified to address advance care planning will enhance completion rates of appropriate planning.

  15. Power systems for space exploration

    SciTech Connect

    Shipbaugh, C.; Solomon, K.A.

    1992-01-01

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  16. Power systems for space exploration

    NASA Astrophysics Data System (ADS)

    Shipbaugh, Calvin; Solomon, Kenneth A.

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  17. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  18. Morpheus: Advancing Technologies for Human Exploration

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael

    2012-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional

  19. Optimal exploration systems

    NASA Astrophysics Data System (ADS)

    Klesh, Andrew T.

    This dissertation studies optimal exploration, defined as the collection of information about given objects of interest by a mobile agent (the explorer) using imperfect sensors. The key aspects of exploration are kinematics (which determine how the explorer moves in response to steering commands), energetics (which determine how much energy is consumed by motion and maneuvers), informatics (which determine the rate at which information is collected) and estimation (which determines the states of the objects). These aspects are coupled by the steering decisions of the explorer. We seek to improve exploration by finding trade-offs amongst these couplings and the components of exploration: the Mission, the Path and the Agent. A comprehensive model of exploration is presented that, on one hand, accounts for these couplings and on the other hand is simple enough to allow analysis. This model is utilized to pose and solve several exploration problems where an objective function is to be minimized. Specific functions to be considered are the mission duration and the total energy. These exploration problems are formulated as optimal control problems and necessary conditions for optimality are obtained in the form of two-point boundary value problems. An analysis of these problems reveals characteristics of optimal exploration paths. Several regimes are identified for the optimal paths including the Watchtower, Solar and Drag regime, and several non-dimensional parameters are derived that determine the appropriate regime of travel. The so-called Power Ratio is shown to predict the qualitative features of the optimal paths, provide a metric to evaluate an aircrafts design and determine an aircrafts capability for flying perpetually. Optimal exploration system drivers are identified that provide perspective as to the importance of these various regimes of flight. A bank-to-turn solar-powered aircraft flying at constant altitude on Mars is used as a specific platform for

  20. Our Solar System 2050: Advancing the Science, Technology, and Societal Relevance of Planetary Exploration Through Public Participation

    NASA Astrophysics Data System (ADS)

    Kaminski, A. P.; Bowman, C. D.; Buquo, L. E.; Conrad, P. G.; Davis, R. M.; Domagal-Goldman, S.; Pirtle, Z. T.; Skytland, N. G.; Tahu, G. J.; Thaller, M. L.; Viotti, M. A.

    2017-02-01

    We show how citizen science, crowdsourcing, prize competitions, and other modalities can expand public participation and prove valuable for enhancing the science, technology, and societal relevance of planetary exploration over the next few decades.

  1. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  2. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  3. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  4. Advancing the application of systems thinking in health: exploring dual practice and its management in Kampala, Uganda

    PubMed Central

    2014-01-01

    Background Many full-time Ugandan government health providers take on additional jobs – a phenomenon called dual practice. We describe the complex patterns that characterize the evolution of dual practice in Uganda, and the local management practices that emerged in response, in five government facilities. An in-depth understanding of dual practice can contribute to policy discussions on improving public sector performance. Methods A multiple case study design with embedded units of analysis was supplemented by interviews with policy stakeholders and a review of historical and policy documents. Five facility case studies captured the perspective of doctors, nurses, and health managers through semi-structured in-depth interviews. A causal loop diagram illustrated interactions and feedback between old and new actors, as well as emerging roles and relationships. Results The causal loop diagram illustrated how feedback related to dual practice policy developed in Uganda. As opportunities for dual practice grew and the public health system declined over time, government providers increasingly coped through dual practice. Over time, government restrictions to dual practice triggered policy resistance and protest from government providers. Resulting feedback contributed to compromising the supply of government providers and, potentially, of service delivery outcomes. Informal government policies and restrictions replaced the formal restrictions identified in the early phases. In some instances, government health managers, particularly those in hospitals, developed their own practices to cope with dual practice and to maintain public sector performance. Management practices varied according to the health manager’s attitude towards dual practice and personal experience with dual practice. These practices were distinct in hospitals. Hospitals faced challenges managing internal dual practice opportunities, such as those created by externally-funded research projects based

  5. Exploration Medical System Demonstration

    NASA Technical Reports Server (NTRS)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  6. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  7. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  8. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  9. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  10. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  11. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  12. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  13. NASA's Solar System Exploration Program

    NASA Technical Reports Server (NTRS)

    Robinson, James

    2005-01-01

    A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary

  14. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  15. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  16. Exploration Medical System Technical Development

    NASA Technical Reports Server (NTRS)

    McGuire, K.; Middour, C.; Cerro, J.; Burba, T.; Hanson, A.; Reilly, J.; Mindock, J.

    2017-01-01

    The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.

  17. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  18. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  19. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  20. Advanced Health Management Algorithms for Crew Exploration Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Jones, Judit

    2005-01-01

    Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.

  1. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  2. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  3. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  4. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  5. Exploration Systems Town Hall Meeting

    NASA Video Gallery

    Doug Cooke, Associate Administrator for NASA's Exploration Systems Mission Directorate, discusses the future during a question and answer session with employees at NASA Headquarters on April 19, 2010.

  6. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  7. Advances in carbonate exploration and reservoir analysis

    USGS Publications Warehouse

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  8. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  9. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  10. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  11. Solar System Exploration with LUVOIR

    NASA Astrophysics Data System (ADS)

    Harris, Walter M.; Villanueva, Geronimo Luis; Schmidt, Britney E.

    2016-10-01

    The Large UV/Optical/IR (LUVOIR) Surveyor is one of four mission concepts under study as a next-generation space observatory in the post Webb Telescope era. LUVOIR is envisioned as a large, 10 m class, remotely serviceable observatory with a suite of advanced-technology instruments designed to leap beyond the current generation of space-based telescopes to explore fundamental astrophysical phenomena on all scales. A 24-member science and technology definition team (STDT) represents all sectors of the astronomy and technologist communities, and it is charged with identifying the observational challenges best addressed with LUVOIR and the instrumental innovations that are required to achieve them.This presentation describes the developing science case for LUVOIR as a Solar System observatory for the study of Sun-planet interactions, thick and sublimation based atmospheres, the small body populations in the inner and outer solar system, surface volatility, and planet/satellite surfaces. We will provide an overview of several key science and technical drivers for each scientific target and how they can be addressed with a LUVOIR facility. We also solicit community input to refine these individual programs and to identify additional areas of emphasis in the development of a final report to NASA.

  12. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr.; Grey, J.

    1974-01-01

    A sourcebook of information on the solar system and the technology used for its exploration is presented. An outline of the potential achievements of solar system exploration is given along with a course of action which maximizes the rewards to mankind.

  13. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  14. Planetary exploration sensor systems

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.

    1981-01-01

    Most of the instruments that have been used in planetary exploration have been either spectrometers or imaging devices. Instruments of these types are being developed for the Galileo and VOIR (Venus Orbiting Imaging Radar) missions. Galileo will take advantage of new CCD (charge-coupled device) technology, and VOIR will use techniques of synthetic aperture radar developed for Seasat. For determining the macrostructure of mineral resources, the best approach is believed to involve acoustic imaging, essentially a seismic data processing technique. Determinations of microstructure would require a light microscope and an electron microscope. For determining the nature and form of volatiles, a differential scanning calorimeter could be used. To determine the mineral composition, an electron beam microprobe with X-ray fluorescence and spectroscopy would be used.

  15. Data exploration systems for databases

    NASA Technical Reports Server (NTRS)

    Greene, Richard J.; Hield, Christopher

    1992-01-01

    Data exploration systems apply machine learning techniques, multivariate statistical methods, information theory, and database theory to databases to identify significant relationships among the data and summarize information. The result of applying data exploration systems should be a better understanding of the structure of the data and a perspective of the data enabling an analyst to form hypotheses for interpreting the data. This paper argues that data exploration systems need a minimum amount of domain knowledge to guide both the statistical strategy and the interpretation of the resulting patterns discovered by these systems.

  16. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm^-2) for shock generation.

  17. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm-2) for shock generation.

  18. Advanced Docking Berthing System Update

    NASA Technical Reports Server (NTRS)

    Lewis, James

    2006-01-01

    In FY05 the Exploration Systems Technology Maturation Program selected the JSC advanced mating systems development to continue as an in-house project. In FY06, as a result of ESAS Study (60 Day Study) the CEV Project (within the Constellation Program) has chosen to continue the project as a GFE Flight Hardware development effort. New requirement for CEV to travel and dock with the ISS in 2011/12 in support of retiring the Shuttle and reducing the gap of time where US does not have any US based crew launch capability. As before, long-duration compatible seal-on-seal technology (seal-on-seal to support androgynous interface) has been identified as a risk mitigation item.

  19. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  20. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  1. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  2. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  3. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  4. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    NASA Technical Reports Server (NTRS)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  5. Advanced and Intelligent Robotics for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Richter, L.

    Future unmanned (and later again, manned) missions to the Moon will require several critical technologies from the realm of space robotics, that is electromechanical systems with several degrees of freedom and a limited amount of on-board autonomy. Prime examples of relevance for lunar missions are roving vehicles, manipulator arms and sample acquisition systems. This paper gives an overview of applicable technologies and their readiness that have been studied for lunar landing mission opportunities during this decade. Rovers that have been suggested for Europe's Euromoon lander initiative of the late 1990's were tethered short-range vehicles of less than 5 kg mass for deployment of geochemical instruments and so-called `Regional Rovers' of masses between 10 and 30 kg that on lunar Mare-like terrain could cover several 100 m range during mission durations of 5 to 10 Earth days and which would not be able to survive the lunar night. If deployed at high latitude regions, the Regional Rovers were conceived to be able to spend short times (several h) in shaded areas for measurements there. Development of both the tethered and the regional class has been funded by ESA and is still on-going. A much larger rover of the 300-500 kg class modeled after the Russian-French IARES prototype was proposed for the European LEDA lander scenario and could offer superior range capability and nighttime survival if nuclear power or at least a nuclear heat source were used. The Japanese Selene-B mission is planning to deploy a surface rover of the regional rover class of several 10's of kg mass. Sampling devices for lunar landing missions, generally also part of robotics technologies, are gaining renewed interest, in the context of lunar sample return missions (e.g. SPA-SR) but also for possible missions to elucidate the nature of the anomalous hydrogen concentrations in permanently shaded craters in the polar regions into which short-lived landers could be deployed which are tasked to

  6. Atmospheric Constituent Explorer System (ACES)

    NASA Astrophysics Data System (ADS)

    Darrach, M. R.; Madzunkov, S.; Neidholdt, E.; Simcic, J.

    2016-10-01

    We report on the Atmospheric Constituent Explorer System (ACES), a mass spectrometer based instrument for atmospheric probe missions (e.g. Venus and ice giant) that can determine abundances and isotopic ratios of the noble-gases and trace species.

  7. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  8. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  9. Advanced Optical Fiber Communication Systems

    DTIC Science & Technology

    1992-08-01

    Optical Network with Physical Star Topology," Advanced Fiber Communications Technologies , Leonid G. Kazovsky... advances in the performance and capabilities of optical fiber communication systems. While some of these technologies are interrelated (for example...multi gigabit per second hybrid circuit/packet switched lightwave network ," Proc. SPIE Advanced Fiber Communications Technologies , Boston 󈨟, Sept.

  10. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  11. Small Explorer for Advanced Missions - cubesat for scientific mission

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Ivchenko, Nickolay

    2015-04-01

    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  12. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  13. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  14. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  15. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  16. Advanced quantum communication systems

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan Robert

    Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.

  17. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  18. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  19. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  20. Exploration of Advanced Probabilistic and Stochastic Design Methods

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    2003-01-01

    The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and

  1. Exploring a Century of Advancements in the Science of Learning

    ERIC Educational Resources Information Center

    Murphy, P. Karen; Knight, Stephanie L.

    2016-01-01

    The past century has yielded a plethora of advancements in the science of learning, from expansions in the theoretical frames that undergird education research to cultural and contextual considerations in educational practice. The overarching purpose of this chapter is to explore and document the growth and development of the science of learning…

  2. Advanced program weight control system

    NASA Technical Reports Server (NTRS)

    Derwa, G. T.

    1978-01-01

    The design and implementation of the Advanced Program Weight Control System (APWCS) are reported. The APWCS system allows the coordination of vehicle weight reduction programs well in advance so as to meet mandated requirements of fuel economy imposed by government and to achieve corporate targets of vehicle weights. The system is being used by multiple engineering offices to track weight reduction from inception to eventual production. The projected annualized savings due to the APWCS system is over $2.5 million.

  3. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  4. Exploration of the Solar System.

    ERIC Educational Resources Information Center

    Henderson, Arthur, Jr., Ed.; Grey, Jerry, Ed.

    This review is one of a series of assessments and reviews prepared in the public interest by the American Institute of Aeronautics and Astronautics (AIAA). The purpose of this review is to outline the potential achievements of solar system exploration and suggest a course of action which will maximize the rewards to mankind. A secondary purpose is…

  5. Advanced satellite communication system

    NASA Astrophysics Data System (ADS)

    Staples, Edward J.; Lie, Sen

    1992-05-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  6. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  7. Advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Disher, J. H.; Hethcoat, J. P.; Page, M. A.

    1981-01-01

    Projected growth in space transportation capabilities beyond the initial Space Shuttle is discussed in terms of earth-to-low-orbit launch vehicles as well as transportation beyond low orbit (orbit transfer vehicles). Growth versions of the Shuttle and heavy-lift derivatives of the Shuttle are shown conceptually. More advanced launch vehicle concepts are also shown, based on rocket propulsion or combinations of rocket and air-breathing propulsion. Orbit transfer vehicle concepts for personnel transport and for cargo transport are discussed, including chemical rocket as well as electric propulsion. Finally, target levels of capability and efficiencies for later time periods are discussed and compared with the prospective vehicle concepts mentioned earlier.

  8. A Vehicle for Science and Exploration: Bringing Offshore Industry Advances and Experience to the Oceanographic Community

    DTIC Science & Technology

    2007-01-01

    institutions, this vehicle system design represents a collaborative effort between the science community and a subsea industry technological leader to...develop an exploration vehicle employing the latest advances in subsea technology. II. SURVEY OF COMMERCIAL VEHICLES DEDICATED TO SCIENCE...Engineering work class system designed for subsea intervention and inspection duties. Since that time there has been a hiatus on the further

  9. Visually Exploring Worldwide Incidents Tracking System Data

    SciTech Connect

    Chhatwal, Shree D.; Rose, Stuart J.

    2008-01-27

    This paper presents refinements of an existing analytic tool, Juxter, which was developed for the visualization of multi-dimensional categorical data, and explores its application to support exploration and interaction with open source Worldwide Incidents Tracking System (WITS) data. The volume and complexity of data available on terrorism makes it hard to analyze. Information systems that can efficiently and effectively collect, access, analyze, and report terrorist incidents can help in further studies focused on preventing, detecting, and responding to terrorist attacks. Existing interfaces to the WITS data support advanced search capabilities, and geolocation but lack functionality for identifying patterns and trends. To better support efficient browsing we have refined Juxter’s existing capabilities for filtering, selecting, and sorting elements and categories within the visualization.

  10. Advanced Microdisplays for Portable Systems

    DTIC Science & Technology

    1999-08-01

    THROUGH SCIENCE mm WE DEFEND TECHNICAL REPORT NATICK/TR-99/037 AD ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS by Phillip Alvelda Michael...1996 - 19 October 1998 4. TITLE AND SUBTITLE ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS 6. AUTHOR(S) Phillip Alvelda , Michael Bolotski, Ramon...MIT’s Artificial Intelligence Laboratory which forms the basis for this proposal. Under DARPA funding, Mr. Alvelda and Mr. Knight developed the highest

  11. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  12. Overview: Exobiology in solar system exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Schwartz, Deborah E.

    1992-01-01

    In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.

  13. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  14. Advanced Teleprocessing Systems.

    DTIC Science & Technology

    1984-09-30

    it is assumed that the length of the start-up duration depends on the arrival proccess . Two types of systems are analyzed: 1) A system where the start...complexity of the models (see a detailed discussion of this issue in section 1.1) and the limitations of the available analysis tools have caused research- ers...the models where it is used. The limitation of queueing theory and of other analysis tools do not allow us to easily analyze a system where the events

  15. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  16. Advanced Operating System Technologies

    NASA Astrophysics Data System (ADS)

    Cittolin, Sergio; Riccardi, Fabio; Vascotto, Sandro

    In this paper we describe an R&D effort to define an OS architecture suitable for the requirements of the Data Acquisition and Control of an LHC experiment. Large distributed computing systems are foreseen to be the core part of the DAQ and Control system of the future LHC experiments. Neworks of thousands of processors, handling dataflows of several gigaBytes per second, with very strict timing constraints (microseconds), will become a common experience in the following years. Problems like distributyed scheduling, real-time communication protocols, failure-tolerance, distributed monitoring and debugging will have to be faced. A solid software infrastructure will be required to manage this very complicared environment, and at this moment neither CERN has the necessary expertise to build it, nor any similar commercial implementation exists. Fortunately these problems are not unique to the particle and high energy physics experiments, and the current research work in the distributed systems field, especially in the distributed operating systems area, is trying to address many of the above mentioned issues. The world that we are going to face in the next ten years will be quite different and surely much more interconnected than the one we see now. Very ambitious projects exist, planning to link towns, nations and the world in a single "Data Highway". Teleconferencing, Video on Demend, Distributed Multimedia Applications are just a few examples of the very demanding tasks to which the computer industry is committing itself. This projects are triggering a great research effort in the distributed, real-time micro-kernel based operating systems field and in the software enginering areas. The purpose of our group is to collect the outcame of these different research efforts, and to establish a working environment where the different ideas and techniques can be tested, evaluated and possibly extended, to address the requirements of a DAQ and Control System suitable for LHC

  17. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  18. Advanced Algal Systems Fact Sheet

    SciTech Connect

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  19. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  20. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  1. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  2. Power Systems Advanced Research

    SciTech Connect

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  3. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  4. Session: CSP Advanced Systems -- Advanced Overview (Presentation)

    SciTech Connect

    Mehos, M.

    2008-04-01

    The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

  5. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  6. Biospheres and solar system exploration

    NASA Technical Reports Server (NTRS)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  7. Exploring Enterprise, System of Systems, and System and Software Architectures

    DTIC Science & Technology

    2016-06-13

    2009 Carnegie Mellon University Exploring Enterprise, System of Systems, and System and Software Architectures Software Engineering Institute...TITLE AND SUBTITLE Exploring Enterprise, System of Systems, and System and Software Architectures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Carnegie Mellon University, Software Engineering Institute,Pittsburgh,PA,15213 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY

  8. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  9. Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  13. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  14. Exploring our outer solar system - The Giant Planet System Observers

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.

    As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive

  15. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  16. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  17. Measuring Advances in HVAC Distribution System Design

    SciTech Connect

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  18. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  19. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  20. The CAPA Integrative Online System for College Major Exploration

    ERIC Educational Resources Information Center

    Betz, Nancy E.; Borgen, Fred H.

    2010-01-01

    Career assessment has advanced on several fronts, enabling a CAPA integrative online system for exploring college majors with unprecedented precision and utility. The key inventories in the system are the CAPA Confidence Inventory (CCI), with its 6 general and 27 specific scales, and the CAPA Interest Inventory, with its 6 general and 35 specific…

  1. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  2. NASA's Advanced Solar Sail Propulsion System for Low-Cost Deep Space Exploration and Science Missions that Use High Performance Rollable Composite Booms

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.; Rose, Geoffrey K.; Younger, Casey J.; Dean, Gregory D.; Warren, Jerry E.; Stohlman, Olive R.; Wilkie, W. Keats

    2017-01-01

    Several low-cost solar sail technology demonstrator missions are under development in the United States. However, the mass saving derived benefits that composites can offer to such a mass critical spacecraft architecture have not been realized yet. This is due to the lack of suitable composite booms that can fit inside CubeSat platforms and ultimately be readily scalable to much larger sizes, where they can fully optimize their use. With this aim, a new effort focused at developing scalable rollable composite booms for solar sails and other deployable structures has begun. Seven meter booms used to deploy a 90 m2 class solar sail that can fit inside a 6U CubeSat have already been developed. The NASA road map to low-cost solar sail capability demonstration envisioned, consists of increasing the size of these composite booms to enable sailcrafts with a reflective area of up to 2000 m2 housed aboard small satellite platforms. This paper presents a solar sail system initially conceived to serve as a risk reduction alternative to Near Earth Asteroid (NEA) Scout's baseline design but that has recently been slightly redesigned and proposed for follow-on missions. The features of the booms and various deployment mechanisms for the booms and sail, as well as ground support equipment used during testing, are introduced. The results of structural analyses predict the performance of the system under microgravity conditions. Finally, the results of the functional and environmental testing campaign carried out are shown.

  3. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  4. Cross Cutting Structural Design for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.

    2007-01-01

    The challenge of our new National Space Policy and NASA's Vision for Space Exploration (VSE) is keyed to the development of more effective space access and transportation systems. Optimizing in-space systems through innovative cross cutting structural designs that reduce mass, combine functional requirements and improve performance can significantly advance spacecraft designs to meet the ever growing demands of our new National Space Policy. Dependence on limited structural designs is no longer an option. We must create robust materials, forms, function and evolvable systems. We must advance national policy objectives in the design, development, test and operation of multi-billion dollar new generation crew capsules by enabling them to evolve in meeting the requirements of long duration missions to the moon and mars. This paper discusses several current issues and major design drivers for consideration in structural design of advanced spacecraft systems. Approaches to addressing these multifunctional requirements is presented as well as a discussion on utilizing Functional Analysis System Technique (FAST) in developing cross cutting structural designs for future spacecraft. It will be shown how easy it is to deploy such techniques in any conceptual architecture definition or ongoing preliminary design. As experts in merging mission, safety and life support requirements of the frail human existence into robust vehicle and habitat design, we will conquer the final frontier, harness new resources and develop life giving technologies for mankind through more innovative designs. The rocket equation tells us that a reduction in mass optimizes our propulsive results. Primary and secondary structural elements provide for the containment of gases, fluids and solids; translate and sustain loads/impacts; conduct/radiate thermal energy; shield from the harmful effects of radiation; provide for grounding/bonding of electrical power systems; compartmentalize operational

  5. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  6. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  7. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and the power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  8. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect

    Sovie, R.J.; Bozek, J.M.

    1994-09-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  9. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  10. Advanced uncooled infrared system electronics

    NASA Astrophysics Data System (ADS)

    Neal, Henry W.

    1998-07-01

    Over the past two decades, Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems & Electronics Group, developed a robust family of products based on a low- cost, hybrid ferroelectric (FE) uncooled focal-plane array (FPA) aimed at meeting the needs for thermal imaging products across both military and commercial markets. Over the years, RSC supplied uncooled infrared (IR) sensors for applications such as in combat vehicles, man-portable weaponry, personnel helmets, and installation security. Also, various commercial IR systems for use in automobiles, boats, law enforcement, hand-held applications, building/site security, and fire fighting have been developed. These products resulted in a high degree of success where cooled IR platforms are too bulky and costly, and other uncooled implementations are less reliable or lack significant cost advantage. Proof of this great success is found in the large price reductions, the unprecedented monthly production rates, and the wide diversity of products and customers realized in recent years. The ever- changing needs of these existing and potential customers continue to fuel the advancement of both the primary technologies and the production capabilities of uncooled IR systems at RSC. This paper will describe a development project intended to further advance the system electronics capabilities of future uncooled IR products.

  11. Exploring the Inner Solar System

    NASA Video Gallery

    Chief Scientist of NASA's Goddard Space Flight Center, Dr. Jim Garvin, takes us on a journey of Earth, the moon, and our neighboring planets. Why does space matter? Why is exploring these destinati...

  12. Exploration Systems Development Division Quarterly

    NASA Video Gallery

    NASA is continuing to make great strides towards sending humans farther than we have ever gone before. Take a look at the work being done by teams all across the nation on NASA’s exploration prog...

  13. COMPASS Final Report: Advanced Lithium Ion Venus Explorer (ALIVE)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Paul, Michael

    2016-01-01

    The COncurrent Multi-disciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive(power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission. Historic Soviet Venus landers have only lasted on the order of 2 hours in the extreme Venus environment: temperatures of 460 C and pressures of 93 bar. Longer duration missions have been studied using plutonium powered systems to operate and cool landers for up to a year. However, the plutonium load is very large. This NIAC study sought to still provide power and cooling but without the plutonium.

  14. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  15. Recent Advances in Aptamers Targeting Immune System.

    PubMed

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  16. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  17. Advanced System for Process Engineering

    SciTech Connect

    Williams, K. E.; Saus, L. S.; Regenhardt, P. A.

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.

  18. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  19. Advanced Sensor Platform to Evaluate Manloads For Exploration Suit Architectures

    NASA Technical Reports Server (NTRS)

    McFarland, Shane; Pierce, Gregory

    2016-01-01

    Space suit manloads are defined as the outer bounds of force that the human occupant of a suit is able to exert onto the suit during motion. They are defined on a suit-component basis as a unit of maximum force that the suit component in question must withstand without failure. Existing legacy manloads requirements are specific to the suit architecture of the EMU and were developed in an iterative fashion; however, future exploration needs dictate a new suit architecture with bearings, load paths, and entry capability not previously used in any flight suit. No capability currently exists to easily evaluate manloads imparted by a suited occupant, which would be required to develop requirements for a flight-rated design. However, sensor technology has now progressed to the point where an easily-deployable, repeatable and flexible manloads measuring technique could be developed leveraging recent advances in sensor technology. INNOVATION: This development positively impacts schedule, cost and safety risk associated with new suit exploration architectures. For a final flight design, a comprehensive and accurate man loads requirements set must be communicated to the contractor; failing that, a suit design which does not meet necessary manloads limits is prone to failure during testing or worse, during an EVA, which could cause catastrophic failure of the pressure garment posing risk to the crew. This work facilitates a viable means of developing manloads requirements using a range of human sizes & strengths. OUTCOME / RESULTS: Performed sensor market research. Highlighted three viable options (primary, secondary, and flexible packaging option). Designed/fabricated custom bracket to evaluate primary option on a single suit axial. Manned suited manload testing completed and general approach verified.

  20. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  1. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  2. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  3. Space Launch System for Exploration and Science

    NASA Astrophysics Data System (ADS)

    Klaus, K.

    2013-12-01

    low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).

  4. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  5. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  6. The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration. The film describes the Lunar Orbiter's mission to photograph landing areas on the Moon. The Orbiter will be launched from Cape Kennedy using an Atlas Agena booster rocket. Once it is boosted in a trajectory toward the Moon, the Orbiter will deploy two-way earth communication antennas and solar panels for electricity. Attitude control jets will position the solar panels toward the sun and a tracker for a fix on its navigational star. The Orbiter will be put in an off-center orbit around the Moon where it will circle from four to six days. Scientists on Earth will study the effects of the Moon's gravitational field on the spacecraft, then the orbit will be lowered to 28 miles above the Moon's surface. Engineers will control the Orbiter manually or by computer to activate two camera lenses. The cameras will capture pictures of 12,000 square miles of lunar surface in 25 and 400 square mile increments. Pictures will be sent back to Earth using solar power to transmit electrical signals. The signals will be received by antennas at Goldstone, CA, and in Australia and Spain. Incoming photographic data will be electronically converted and processed to produce large-scale photographic images. The mission will be directed from the Space Flight Operations Facility in Pasadena, CA by NASA and Boeing engineers. After the photographic mission, the Orbiter will continue to circle the Moon providing information about micrometeoroids and radiation in the vicinity. [Entire movie available on DVD from CASI as Doc ID 20070031014. Contact help@sti.nasa.gov

  7. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  8. Galileo: Exploration of Jupiter's system

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Yeates, C. M.; Colin, L.; Fanale, F. P.; Frank, L.; Hunten, D. M.

    1985-01-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  9. Advanced technologies to support earth orbiting systems

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Johnston, Gordon I.

    1992-01-01

    Within NASA, the Office of Aeronautics and Space Technology (OAST) is conducting a major, ongoing engineering research and technology program directed toward the support of future programs, with a major focus on technology for future space science missions. OAST is conducting a substantial effort to identify the technologies required to support the evolution of Mission to Planet Earth. The effort consists of studies, workshops, and technology research programs to explore: (1) new concepts for multisatellite, earth-observing instrumentation and sensor sets; (2) information system advances for continuous and reliable processing of terabit per day data streams; and (3) infrastructure development, including spacecraft bus technology and operations for substantial performance, cost, and reliabiltiy gains. This paper discusses the technological needs of future earth science systems, reviews current and planned activities, and highlights significant achievements in the research and technology program.

  10. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  11. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  12. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  13. Planetary protection issues in advance of human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Davis, Wanda L.

    1989-01-01

    The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.

  14. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  15. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  16. SIM_EXPLORE: Software for Directed Exploration of Complex Systems

    NASA Technical Reports Server (NTRS)

    Burl, Michael; Wang, Esther; Enke, Brian; Merline, William J.

    2013-01-01

    Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest- fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called "directed exploration" has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials. SIM_EXPLORE is a new computer program that uses directed exploration to explore efficiently complex systems represented by numerical simulations. The software sequentially identifies and runs simulation trials that it believes will be most informative given the results of previous trials. The results of new trials are incorporated into the software's model of the system behavior. The updated model is then used to pick the next round of new trials. This process, implemented as a closed-loop system wrapped around existing simulation code, provides a means to improve the speed and efficiency with which a set of simulations can yield scientifically useful results. The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software

  17. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  18. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  19. Communication System Architecture for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  20. A Revolution in the Making: Advances in Materials That May Transform Future Exploration Infrastructures and Missions

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Dicus, Dennis L.; Shuart, Mark J.

    2001-01-01

    The NASA Strategic Plan identifies the long-term goal to provide safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable research, human exploration, and the commercial development of space; and to conduct human and robotic missions to planets and other bodies in our solar system. Numerous scientific and engineering breakthroughs will be required to develop the technology necessary to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. This paper discusses those materials best suited for aerospace vehicle structure and highlights the enormous potential of one revolutionary new material, carbon nanotubes.

  1. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to

  2. Indonesian petroleum systems and exploration efficiency

    SciTech Connect

    Howes, J.V.C.; Tisnawijaya, S. )

    1996-01-01

    The Republic of Indonesia has over 40 productive petroleum systems and more than 100 speculative petroleum systems. Since the first oil discoveries in the 1880's, cumulative discovered ultimately recoverable petroleum resources in Indonesia have reached 50 billion barrels of oil equivalent. There are eight principal producing areas and nearly 1,000 oil and gas fields. Most of these resources have been found in the last 50 years. Successful exploration continues; at least two discoveries per year are made which exceed 50 million barrels of oil equivalent reserves. Productive petroleum system source types are split almost equally between marine and deltaic-lacustrine facies. The majority of source rocks are Tertiary in age; Mesozoic source rocks are restricted to Eastern Indonesia. Discovery process analysis indicates generally high exploration efficiency in Indonesia. An upwardly convex discovery process curve typifies many systems, reflecting both exploration efficiency and maturity; this pattern is well displayed in areas such as Central Sumatra and Salawati. A much more random or straight line process curve, as seen in West Natuna, occurs where more complex petroleum systems have inhibited exploration efficiency. An inverted, or concave upward curve, seen in some Java petroleum systems, is probably economically driven, related to development of domestic Indonesian gas markets. Several curves, such as those for the North Sumatra:Bampo-Peutu and East Kalimantan:Tanjung systems are dominated by single fields. Different exploration phases can be recognized in many systems, each phase having its own specific exploration statistics.

  3. Indonesian petroleum systems and exploration efficiency

    SciTech Connect

    Howes, J.V.C.; Tisnawijaya, S.

    1996-12-31

    The Republic of Indonesia has over 40 productive petroleum systems and more than 100 speculative petroleum systems. Since the first oil discoveries in the 1880`s, cumulative discovered ultimately recoverable petroleum resources in Indonesia have reached 50 billion barrels of oil equivalent. There are eight principal producing areas and nearly 1,000 oil and gas fields. Most of these resources have been found in the last 50 years. Successful exploration continues; at least two discoveries per year are made which exceed 50 million barrels of oil equivalent reserves. Productive/petroleum system source types are split almost equally between marine and deltaic-lacustrine facies. The majority of source rocks are Tertiary in age; Mesozoic source rocks are restricted to Eastern Indonesia. Discovery process analysis indicates generally high exploration efficiency in Indonesia. An upwardly convex discovery process curve typifies many systems, reflecting both exploration efficiency and maturity; this pattern is well displayed in areas such as Central Sumatra and Salawati. A much more random or straight line process curve, as seen in West Natuna, occurs where more complex petroleum systems have inhibited exploration efficiency. An inverted, or concave upward curve, seen in some Java petroleum systems, is probably economically driven, related to development of domestic Indonesian gas markets. Several curves, such as those for the North Sumatra:Bampo-Peutu and East Kalimantan:Tanjung systems are dominated by single fields. Different exploration phases can be recognized in many systems, each phase having its own specific exploration statistics.

  4. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  5. Sampling the Solar System. A Critical Exploration Component for Future Planetary Discovery

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.

    2017-02-01

    Sample return is a critical component for understanding our solar system (and other solar systems), and advancing human exploration activities. Here I will examine potential pathways for evolving sample return technologies needed to carry out increasingly complex missions.

  6. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  7. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  8. Advanced Communication and Networking Technologies for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  9. Th Mt. Erebus Explorer Control System

    DTIC Science & Technology

    1993-06-01

    Erebus Project to explore an active vol- cano, Mount Erebus , Antarctica at year-end 1992. The summit of Mount Erebus at 3794m opens into a main...crater. A more detailed descriptions of the robot and its mission are available in "Exploring Mount Erebus by Walking Robot"[ 1]. 1. Erebus is... Mount Erebus by Walking Robot." Intelligent Autonomous Systems 93 (1993). [2] Franklin, Powel, Enamini-Naeini "Feedback Control of Dynamic Systems." Addison Wesley

  10. Atmosphere Explorer (AE) spacecraft system description

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The principal design and performance characteristics of the AE spacecraft system designed to support the Atmosphere Explorer C, D, and E missions are summarized. It has been prepared for the information of experimenters and other participants in the Atmosphere Explorer program as a general guide for design and operational planning. The description represents the spacecraft system as defined at the conclusion of the interface definition study.

  11. Terrestrial analogs for space exploration habitation systems

    NASA Technical Reports Server (NTRS)

    Campbell, Paul D.; Brown, Jeri W.

    1992-01-01

    The Space Exploration Initiative (SEI) can use early earth-based analogs to simulate many aspects of space flight missions and system operation. These analogs can thus provide information supporting future missions to the moon and to Mars. A study was performed to investigate the potential of terrestrial analogs in simulating human space exploration missions. The study resulted in preliminary requirements and concepts for analog habitation systems, and further study in this area is necessary for SEI terrestrial analog development.

  12. Bio-Inspired Engineering of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Thakoor, Sanita

    2003-01-01

    The multidisciplinary concept of "bioinspired engineering of exploration systems" (BEES) is described, which is a guiding principle of the continuing effort to develop biomorphic explorers as reported in a number of articles in the past issues of NASA Tech Briefs. The intent of BEES is to distill from the principles found in successful nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods but that are accomplished rather deftly in nature by biological organisms. The intent is not just to mimic operational mechanisms found in a specific biological organism but to imbibe the salient principles from a variety of diverse bio-organisms for the desired crucial function. Thereby, we can build explorer systems that have specific capabilities endowed beyond nature, as they will possess a combination of the best nature-tested mechanisms for that particular function. The approach consists of selecting a crucial function, for example, flight or some selected aspects of flight, and develop an explorer that combines the principles of those specific attributes as seen in diverse flying species into one artificial entity. This will allow going beyond biology and achieving unprecedented capability and adaptability needed in encountering and exploring what is as yet unknown. A classification of biomorphic flyers into two main classes of surface and aerial explorers is illustrated in the figure, with examples of a variety of biological organisms that provide the inspiration in each respective subclass. Such biomorphic explorers may possess varied mobility modes: surface-roving, burrowing, hopping, hovering, or flying, to accomplish surface, subsurface, and aerial exploration. Preprogrammed for a specific function, they could serve as one-way communicating beacons, spread over the exploration site, autonomously looking for/at the targets of interest. In a hierarchical organization, these biomorphic explorers would report to the next

  13. A perfect time to harness advanced molecular technologies to explore the fundamental biology of Toxocara species.

    PubMed

    Gasser, Robin B

    2013-04-15

    Toxocarosis is of major canine health and socioeconomic importance worldwide. Although many studies have given insights into toxocarosis, to date, there has been limited exploration of the molecular biology, biochemistry, genetics, epidemiology and ecology of Toxocara species as well as parasite-host interactions using '-omic' technologies. The present article gives a background on Toxocara species and toxocarosis, describes molecular tools for specific identification and genetic analysis, and provides a prospective view of the benefits that advanced molecular technologies will have towards better understanding the parasites and disease. Tackling key biological questions employing a 'systems biology' approach should lead to new and improved strategies for the treatment, diagnosis and control of toxocarosis.

  14. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  15. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  16. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  17. Advances in coiled-tubing operating systems

    SciTech Connect

    Sas-Jaworsky, A. II

    1997-06-01

    The expansion of coiled tubing (CT) applications into spooled flowlines, spooled completions, and CT drilling continues to grow at an accelerated rate. For many users within the oil and gas industry, the CT industry appears to be poised on the threshold of the next logical step in its evolution, the creation of a fully integrated operating system. However, for CT to evolve into such an operating system, the associated services must be robust and sufficiently reliable to support the needs of exploration, development drilling, completion, production management, and wellbore-retirement operations both technically and economically. The most critical hurdle to overcome in creating a CT-based operating system is a fundamental understanding of the operating scope and physical limitations of CT technology. The complete list of mechanisms required to advance CT into an operating system is large and complex. However, a few key issues (such as formal education, training, standardization, and increased levels of experience) can accelerate the transition. These factors are discussed.

  18. Advanced Manned Launch System (AMLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.; Potts, Jack; Brown, Jerry; Schell, Ken; Manley, Mary; Chen, Irving; Earhart, Richard; Urrutia, Chuck; Randolph, Ray; Morris, Jim

    1992-01-01

    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed.

  19. Advanced Placement and Rural Schools: Access, Success, and Exploring Alternatives

    ERIC Educational Resources Information Center

    Gagnon, Douglas J.; Mattingly, Marybeth J.

    2016-01-01

    Completing Advanced Placement (AP) coursework is an important part of the selective college admissions process, and access to AP coursework can be viewed as a measure of equal opportunity. Relatively little research has fully examined how access to AP coursework is mediated by school characteristics. Rural schools are at a particular disadvantage…

  20. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  1. The progress of exploring extra-solar planetary systems

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Juan; Zhao, Gang

    2005-09-01

    With the advance of the space exploring, the study of the extra-solar planetary systems becomes an interesting topic since such system may exist the life or even the modern civilization. In this paper we give a brief introduction on the discovery of extra-solar planetary systems, and discuss the feasibility of detection techniques and methods developed in recent years. In particular, we present detailed interpretations of the results by the radial velocity method. With the launch of some specific small satellites, we can predict the discovery of a large number of candidates of the extra-solar planetary systems. We can expect that the exploring of extra-solar planetary systems will have a prospective era in the near future.

  2. Human Exploration of the Solar System by 2100

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2017-01-01

    It has been suggested that the U.S., in concert with private entities and international partners, set itself on a course to accomplish human exploration of the solar system by the end of this century. This is a strikingly bold vision intended to revitalize the aspirations of HSF in service to the security, economic, and scientific interests of the nation. Solar system distance and time scales impose severe requirements on crewed space transportation systems, however, and fully realizing all objectives in support of this goal will require a multi-decade commitment employing radically advanced technologies - most prominently, space habitats capable of sustaining and protecting life in harsh radiation environments under zero gravity conditions and in-space propulsion technologies capable of rapid deep space transits with earth return, the subject of this paper. While near term mission destinations such as the moon and Mars can be accomplished with chemical propulsion and/or high power SEP, fundamental capability constraints render these traditional systems ineffective for solar system wide exploration. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, very long term HSF objectives for solar system wide exploration are examined in relation to the advanced propulsion technology solution landscape including foundational science, technical/engineering challenges, and developmental prospects.

  3. A perception system for a planetary explorer

    NASA Technical Reports Server (NTRS)

    Hebert, M.; Krotkov, E.; Kanade, T.

    1989-01-01

    To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.

  4. Exploring the promises of intersectionality for advancing women's health research

    PubMed Central

    2010-01-01

    Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning and significance of social

  5. Exploring the promises of intersectionality for advancing women's health research.

    PubMed

    Hankivsky, Olena; Reid, Colleen; Cormier, Renee; Varcoe, Colleen; Clark, Natalie; Benoit, Cecilia; Brotman, Shari

    2010-02-11

    Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning and significance of social

  6. Combustion and Reacting Systems for Exploration

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2004-01-01

    Contents include the foloving: 1. Spacecraft Fire Prevention, Detection, and Suppression. 2. Advanced Life Support. Air/water revitalization, waste management. 3. In Situ Resource Utilization (ISRU). Fuel/consumables from regolith/atmosphere. 4. Extra vehicular Activity. Air revitalization, power systems (MEMS scale combustors). 5. In-situ Fabrication and Repair.Of these we have the lead responsibility in Fire Safety.

  7. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  8. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  9. Advanced Information System Research Project.

    DTIC Science & Technology

    1980-06-01

    realistic near-term achievements. The research program objectives are to develop , manage , and coordinate activities relating to the following: o... development ; o Development and demonstration of tools, techniques, procedures, and advanced design concepts applicable to future management ... management is consolidated under the Division Property Book Officer. Property book accountability is maintained under the provisions of AR 735-35, and

  10. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  11. Advanced planning activity. [for interplanetary flight and space exploration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.

  12. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  13. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  14. Future Mercury Exploration: Unique Science Opportunities from Our Solar System's Innermost Planet

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.; McNutt, R. L.; Blewett, D. T.; Denevi, B. W.; Ernst, C. M.; Mazarico, E.; Jozwiak, L. M.

    2017-02-01

    Mercury is one of only five inner solar system terrestrial bodies, each of which is unique. What properties and processes made these bodies so diverse? Future planetary exploration must include Mercury to make advances on this fundamental question.

  15. Integrated Systems Health Management for Space Exploration

    NASA Technical Reports Server (NTRS)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  16. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  17. The Global Solar System Exploration Program

    NASA Astrophysics Data System (ADS)

    Donahue, Jim

    1992-08-01

    A Global Solar System Exploration Program is proposed which is based on recent post-Cold War models involving collective actions of nations to achieve international burden sharing. Each participating space agency would provide complementary missions and capabilities incorporating traditional models of space cooperation. A new international coordination agency is proposed to facilitate the unprecedented degree of international cooperation necessary for the global program.

  18. The Solar System: Recent Exploration Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The solar system has been visited by space probes, ranging from the Mariner Mercury-Venus mission exploring inward toward the sun, and continuing through the Voyager probes out into interstellar space and (on its way now) the New Horizons probe to Pluto and the Kuiper belt. This talk examines what we know of the planets of the solar system from probes, and talks about where we will go from here.

  19. Comprehensive mutational profiling in advanced systemic mastocytosis.

    PubMed

    Schwaab, Juliana; Schnittger, Susanne; Sotlar, Karl; Walz, Christoph; Fabarius, Alice; Pfirrmann, Markus; Kohlmann, Alexander; Grossmann, Vera; Meggendorfer, Manja; Horny, Hans-Peter; Valent, Peter; Jawhar, Mohamad; Teichmann, Martina; Metzgeroth, Georgia; Erben, Philipp; Ernst, Thomas; Hochhaus, Andreas; Haferlach, Torsten; Hofmann, Wolf-Karsten; Cross, Nicholas C P; Reiter, Andreas

    2013-10-03

    To explore mechanisms contributing to the clinical heterogeneity of systemic mastocytosis (SM) and to suboptimal responses to diverse therapies, we analyzed 39 KIT D816V mutated patients with indolent SM (n = 10), smoldering SM (n = 2), SM with associated clonal hematologic nonmast cell lineage disorder (SM-AHNMD, n = 5), and aggressive SM (n = 15) or mast cell leukemia (n = 7) with (n = 18) or without (n = 4) AHNMD for additional molecular aberrations. We applied next-generation sequencing to investigate ASXL1, CBL, IDH1/2, JAK2, KRAS, MLL-PTD, NPM1, NRAS, TP53, SRSF2, SF3B1, SETBP1, U2AF1 at mutational hotspot regions, and analyzed complete coding regions of EZH2, ETV6, RUNX1, and TET2. We identified additional molecular aberrations in 24/27 (89%) patients with advanced SM (SM-AHNMD, 5/5; aggressive SM/mast cell leukemia, 19/22) whereas only 3/12 (25%) indolent SM/smoldering SM patients carried one additional mutation each (U2AF1, SETBP1, CBL) (P < .001). Most frequently affected genes were TET2, SRSF2, ASXL1, CBL, and RUNX1. In advanced SM, 21/27 patients (78%) carried ≥3 mutations, and 11/27 patients (41%) exhibited ≥5 mutations. Overall survival was significantly shorter in patients with additional aberrations as compared to those with KIT D816V only (P = .019). We conclude that biology and prognosis in SM are related to the pattern of mutated genes that are acquired during disease evolution.

  20. Advanced space system for geostationary orbit surveillance

    NASA Astrophysics Data System (ADS)

    Klimenko, N. N.; Nazarov, A. E.

    2016-12-01

    The structure and orbital configuration of the advanced space system for geostationary orbit surveillance, as well as possible approaches to the development of the satellite bus and payload for the geostationary orbit surveillance, are considered.

  1. Micromachining technology for advanced weapon systems

    SciTech Connect

    Sniegowski, J.J.

    1996-12-31

    An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

  2. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2009-01-01

    NASA s Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids. The current paper will provide an update to a similar overview paper published at last year s International Conference on Environmental Systems (ICES).

  3. A System of Systems Approach for Martian Exploration

    NASA Astrophysics Data System (ADS)

    Semrud, E. B.; Evans, B. W.; Fredericks, B.; Wells, D.

    2012-06-01

    A system of systems is designed for characterization of the Martian atmosphere and exploration of lava tubes in preparation for human colonization. Multiple expendable deployable sensor packages ensure mission success with a high level of redundancy.

  4. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  5. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  6. Advanced, Energy Efficient Shelter Systems

    DTIC Science & Technology

    2012-03-02

    Development Analysis, M&S Thermal Barriers Large Shelter Efficiency System Integration Follow-On Demonstrations Lessons Learned from Initial...UNCLASSIFIED 13 Technology Development: Thermal Barriers Objective: Address the enduring challenge of developing a thermal insulation for shelter systems

  7. Multifunctional Nanotherapeutic System for Advanced Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    therapy for drug resistant prostate cancer cells. In addition the findings from this study can be extended to the combinatorial therapy involving...AD_________________ Award Number: W81XWH-11-1-0571 TITLE: “Multifunctional Nanotherapeutic System for Advanced Prostate Cancer ...29September2013 4. TITLE AND SUBTITLE Multifunctional Nanotherapeutic System for Advanced Prostate Cancer 5a. CONTRACT NUMBER W81XWH-11-1-0571 5b

  8. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  9. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  10. The Small Explorer power system electronics

    NASA Technical Reports Server (NTRS)

    Dakermanji, G.; Carlsson, U.; Temkin, D.; Culver, H.; Rodriguez, G. E.; Ahmad, A.

    1991-01-01

    The power system electronics for the NASA Goddard Space Flight Center Small Explorer Satellites are intended to satisfy various planned missions. The selected topology is a direct energy transfer (DET) system with the battery connected directly to the bus. The shunt control technique is a linear sequential full shunt which provides a simple solar array interface and can support both 3 axis stabilized and spinner satellites. In addition, it can meet stringent electromagnetic interference requirements which are expected on some Small Explorer Missions. The Power Systems Electronics (PSE) performs battery charge control using both temperature compensated charge/discharge ratio ampere hour integration and voltage-temperature control. The PSE includes all the circuits needed to perform telemetry and command functions using an optical MIL-STD-1773 interface.

  11. Advances in uncooled systems applications

    NASA Astrophysics Data System (ADS)

    Anderson, John S.; Bradley, Daryl; Chen, Chungte W.; Chin, Richard; Gonzalez, H.; Hegg, Ronald G.; Kostrzewa, K.; Le Pere, C.; Ton, S.; Kennedy, Adam; Murphy, Daniel F.; Ray, Michael; Wyles, Richard; Miller, James E.; Newsome, Gwendolyn W.

    2003-09-01

    The Low Cost Microsensors (LCMS) Program recently demonstrated state-of-the-art imagery in a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 x 480 format focal plane array (FPA) engine. The 640 x 480 sensor is applicable to long-range surveillance and targeting missions. The intent of this DUS&T effort was to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging. In addition, the Advanced Uncooled Thermal Imaging Sensors (AUTIS) Program extended this development to light-weight, compact unmanned aerial vehicle (UAV) applications.

  12. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  13. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2009-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of approximately six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  14. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  15. RASSOR - Regolith Advanced Surface Systems Operations Robot

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (<100 kg) robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  16. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  17. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  18. Advancing pharmacometrics and systems pharmacology.

    PubMed

    Waldman, S A; Terzic, A

    2012-11-01

    Pharmacometrics and systems pharmacology are emerging as principal quantitative sciences within drug development and experimental therapeutics. In recognition of the importance of pharmacometrics and systems pharmacology to the discipline of clinical pharmacology, the American Society for Clinical Pharmacology and Therapeutics (ASCPT), in collaboration with Nature Publishing Group and Clinical Pharmacology & Therapeutics, has established CPT: Pharmacometrics & Systems Pharmacology to inform the field and shape the discipline.

  19. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  20. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  1. Advanced Nuclear Power Concepts for Human Exploration Missions

    SciTech Connect

    Robert L. Cataldo; Lee S. Mason

    2000-06-04

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over {approx}2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters.

  2. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  3. Use of magnetic sails for advanced exploration missions

    NASA Technical Reports Server (NTRS)

    Andrews, Dana G.; Zubrin, Robert M.

    1990-01-01

    The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.

  4. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  5. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  6. Advanced Studies of Integrable Systems.

    DTIC Science & Technology

    1986-12-18

    Fluctuations in Magnetized Plasmas (Phys. Fluids 27, 1169-75 (1984)] (coauthored with S.N. Antani) The nonlinear interactions of whistler waves with density... Dynamica Problems in Soliton Systems, pp 12-22. ed. S. Takeno, Springer-Verlag, NY (1985)]. S 11. Forced Integrable Systems - An Overview, D. J. Kaup...Kaup, P.J. Hansen, S. Roy Choudhury and Gary E. Thomas (accepted for publication in Phys. Fluids ). A singular perturbation method is used to solve this

  7. Micro and Nano Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Manohara, Harish

    2007-01-01

    This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.

  8. An exploration of advanced X-divertor scenarios on ITER

    NASA Astrophysics Data System (ADS)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created

  9. Optics for future solar system exploration

    NASA Technical Reports Server (NTRS)

    Norris, D. D.; Vescelus, F. E.; Wellman, J. B.

    1980-01-01

    The optics technology necessary for future solar system exploration is discussed. To satisfy the various mission objectives, optical components need to be of low weight, provide adequate spatial resolution and mapping coverage, provide necessary spectral resolution, provide means to perform adaptable mapping spectrometry, operate under low light levels, provide color images of high fidelity and operate under high temperatures. Future near-infrared mapping spectrometers are examined, and the use of focal-plane detectors to improve their sensitivity is discussed.

  10. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, Erik; Hanson, Andrea; Shah, Ronak; Reed, Rebekah; Canga, Michael

    2016-01-01

    Interplanetary spaceflight, such as NASA's proposed three-year mission to Mars, provides unique and novel challenges when compared with human spaceflight to date. Extended distance and multi-year missions introduce new elements of operational complexity and additional risk. These elements include: inability to resupply medications and consumables, inability to evacuate injured or ill crew, uncharted psychosocial conditions, and communication delays that create a requirement for some level of autonomous medical capability. Because of these unique challenges, the approaches used in prior programs have limited application to a Mars mission. On a Mars mission, resource limitations will significantly constrain available medical capabilities, and require a paradigm shift in the approach to medical system design and risk mitigation for crew health. To respond to this need for a new paradigm, the Exploration Medical Capability (ExMC) Element is assessing each Mars mission phase-transit, surface stay, rendezvous, extravehicular activity, and return-to identify and prioritize medical needs for the journey beyond low Earth orbit (LEO). ExMC is addressing both planned medical operations, and unplanned contingency medical operations that meld clinical needs and research needs into a single system. This assessment is being used to derive a gap analysis and studies to support meaningful medical capabilities trades. These trades, in turn, allow the exploration medical system design to proceed from both a mission centric and ethics-based approach, and to manage the risks associated with the medical limitations inherent in an exploration class mission. This paper outlines the conceptual drivers used to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this paradigm. Keywords: (Max 6 keywords: exploration, medicine, spaceflight, Mars, research, NASA)

  11. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; Picetti, D. J.; Hassan, B.; Kniskern, M. W.

    2012-01-01

    NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch

  12. Advanced Sensor Systems for Biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  13. Advanced Optical Fiber Communications Systems

    DTIC Science & Technology

    1994-08-31

    oscillator saser 0 !4Iiga B f Figure 1-2. Block diagram of the homodyne AM-WIRNA link. 1.3.2 System EvaluationI Table 1-1 contains the definitions of the...1.6). However, as a result of the spectral broadening due to the phase noise, the selection of the IF bandwidth is critical to the system...node’s intermediate frequency (IF) using a portion of the transmitter light for the laser LO. The desired channel (in this case, node 1) is then selected

  14. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  15. Advanced Languages for Systems Software

    DTIC Science & Technology

    1994-01-01

    these are too numerous to list here. Edoardo Biagioni . Post-doctoral researcher. System networking and kernel design and imple- mentation. Kenneth Cline...John Backus, John H. Williams, and Edward L. Wimmers. The programming language FL. In Turner [131], pages 219-247. [12] Edoardo Biagioni , Nicholas

  16. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  17. Advanced thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Dorfman, M. R.; Reardon, J. D.

    1985-01-01

    Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

  18. Advanced sensor systems for biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  19. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  20. Simulation Based Acquisition for NASA's Office of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Hale, Joe

    2004-01-01

    In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OEx

  1. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  2. Coastal Modeling System Advanced Topics

    DTIC Science & Technology

    2012-06-18

    is the CMS? Integrated wave, current, and morphology change model in the Surface-water Modeling System (SMS). Why CMS? Operational at 10...Coupled with spectral wave model (CMS-Wave)  Wave-current interactions  Inline sediment transport and morphology change  Non-equilibrium...Easy to setup  Telescoping grid: Efficient and flexible  Solver options  Implicit: Tidal flow, long-term morphology change. ~10 min

  3. Exploration Medical System Demonstration (EMSD) Project

    NASA Technical Reports Server (NTRS)

    Chin, Duane

    2012-01-01

    The Exploration Medical System Demonstration (EMSD) is a project under the Exploration Medical Capability (ExMC) element managed by the Human Research Program (HRP). The vision for the EMSD is to utilize ISS as a test bed to show that several medical technologies needed for an exploration mission and medical informatics tools for managing evidence and decision making can be integrated into a single system and used by the on-orbit crew in an efficient and meaningful manner. Objectives: a) Reduce and even possibly eliminate the time required for on-orbit crew and ground personnel (which include Surgeon, Biomedical Engineer (BME) Flight Controller, and Medical Operations Data Specialist) to access and move medical data from one application to another. b) Demonstrate that the on-orbit crew has the ability to access medical data/information using an intuitive and crew-friendly software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management framework and architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities.

  4. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  5. Launchable and retrievable tetherbot exploration system

    NASA Astrophysics Data System (ADS)

    Younse, P.

    2008-04-01

    A launchable and retrievable tetherbot exploration system for low-gravity environments is proposed where a small, tethered robot is launched from a base lander or vehicle to a desired position up to 50 m away. When its exploration mission is complete, it hops vertically above the surface and is simultaneously reeled back in by the base vehicle while still above ground. Benefits include the ability to traverse long distances in short amounts of time and minimal energy expense independent of terrain roughness. This technique has the capability to reach locations too difficult, too dangerous, or unreachable by the base vehicle. Prototypes of a steerable six-legged hopping robot and electric reel were developed. A dynamic simulation demonstrated the capabilities of launching and tether retrieval.

  6. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  7. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  8. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

  9. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  10. Space exploration, Mars, and the nervous system.

    PubMed

    Kalb, Robert; Solomon, David

    2007-04-01

    When human beings venture back to the moon and then on to Mars in the coming decade or so, we will be riding on the accumulated data and experience from approximately 50 years of manned space exploration. Virtually every organ system functions differently in the absence of gravity, and some of these changes are maladaptive. From a biologic perspective, long duration spaceflight beyond low Earth orbit presents many unique challenges. Astronauts traveling to Mars will live in the absence of gravity for more than 1 year en route and will have to transition between weightlessness and planetary gravitational forces at the beginning, middle, and end of the mission. We discuss some of what is known about the effects of spaceflight on nervous system function, with emphasis on the neuromuscular and vestibular systems because success of a Mars mission will depend on their proper functioning.

  11. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  12. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  13. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  14. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  15. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Photographers and other onlookers watch as a Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff had been scheduled for Aug. 24, but was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  16. Participatory Systems Modeling to Explore Sustainable ...

    EPA Pesticide Factsheets

    Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. The US EPA is applying sustainability science to address these needs. Triple Value (3V) Scoping and Modeling projects bring a systems approach to understand complex environmental problems, incorporate local knowledge, and allow decision-makers to explore policy scenarios. This leads to better understanding of feedbacks and outcomes to both human and environmental systems. The Suffolk County, NY (eastern Long Island) 3V Case uses SES interconnections to explore possible policy options and scenarios for intervention to mitigate the effects of excess nitrogen (N) loading to ground, surface, and estuarine waters. Many of the environmental impacts of N pollution negatively affect social and economic well-being and productivity. Key are loss of enjoyment and recreational use of local beach environments and loss of income and revenues from tourism and local fisheries. Stakeholders generated this Problem Statement: Suffolk County is experiencing widespread degradation to groundwater and the coastal marine environment caused by excess nitrogen. How can local stakeholders and decision makers in Suffolk County arrest and reverse this degradation, restore conditions to support a healthy thriving ecos

  17. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  18. Alenia Spazio: Space Programs for Solar System Exploration .

    NASA Astrophysics Data System (ADS)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  19. A Water Recovery System Evolved for Exploration

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.

    2006-01-01

    A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.

  20. Imaging Spectroscopy Instrumentation for Earth Science and Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Green, Robert; Vane, Gregg

    2016-07-01

    Spectroscopy is a powerful analytical method based in physics that is used to investigate questions and test hypotheses across an extraordinary range of scientific disciplines as well as for quantitative applications. In the late 1970's the concept for an instrument that measured spectra for every point in an image was conceived and proposed using the most advanced infrared detector array available at the time. The Airborne Imaging Spectrometer as developed and first flew in 1982. New discoveries were made with the first flights of this instrument. Since that time increasingly advanced airborne and space imaging spectrometer have been developed and deployed. These instruments have been used for science and applications on Earth and for science and exploration throughout the solar system. This talk presents the advances in imaging spectrometer instrumentation and key discoveries of imaging spectrometers for Earth and elsewhere in our solar system. It also presents examples of new imaging spectrometer architectures enabled by new detectors and spectrometer design forms as well as some of the science and applications objectives that can be pursued ranging 50 micron spatial imaging for planetary surface rovers to spectroscopic instruments measuring exoplanet composition and structure.

  1. Regolith Advanced Surface Systems Operations Robot Excavator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  2. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  3. Exploring the Trans-Neptunian Solar System

    NASA Astrophysics Data System (ADS)

    1998-01-01

    A profound question for scientists, philosophers and, indeed, all humans concerns how the solar system originated and subsequently evolved. To understand the solar system's formation, it is necessary to document fully the chemical and physical makeup of its components today, particularly those parts thought to retain clues about primordial conditions and processes.] In the past decade, our knowledge of the outermost, or trans-neptunian, region of the solar system has been transformed as a result of Earth-based observations of the Pluto-Charon system, Voyager 2's encounter with Neptune and its satellite Triton, and recent discoveries of dozens of bodies near to or beyond the orbit of Neptune. As a class, these newly detected objects, along with Pluto, Charon, and Triton, occupy the inner region of a hitherto unexplored component of the solar system, the Kuiper Belt. The Kuiper Belt is believed to be a reservoir of primordial objects of the type that formed in the solar nebula and eventually accreted to form the major planets. The Kuiper Belt is also thought to be the source of short-period comets and a population of icy bodies, the Centaurs, with orbits among the giant planets. Additional components of the distant outer solar system, such as dust and the Oort comet cloud, as well as the planet Neptune itself, are not discussed in this report. Our increasing knowledge of the trans-neptunian solar system has been matched by a corresponding increase in our capabilities for remote and in situ observation of these distant regions. Over the next 10 to 15 years, a new generation of ground- and space-based instruments, including the Keck and Gemini telescopes and the Space Infrared Telescope Facility, will greatly expand our ability to search for and conduct physical and chemical studies on these distant bodies. Over the same time span, a new generation of lightweight spacecraft should become available and enable the first missions designed specifically to explore the icy

  4. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)

    DTIC Science & Technology

    1996-04-01

    for enhancing aircrew performance at high sustained +GZ accelerations. Finally, increasing attention has been paid over the last two decades to the...comprehensive published review of the design and performance of Advanced Oxygen Systems. It has been written principally by present and past members... performance required of Advanced Oxygen Systems and with the design and assessment of the first and later generations of these systems. The monograph

  5. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  6. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  7. Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  8. COMPUTATIONAL TOXICOLOGY ADVANCES: EMERGING CAPABILITIES FOR DATA EXPLORATION AND SAR MODEL DEVELOPMENT

    EPA Science Inventory

    Computational Toxicology Advances: Emerging capabilities for data exploration and SAR model development
    Ann M. Richard and ClarLynda R. Williams, National Health & Environmental Effects Research Laboratory, US EPA, Research Triangle Park, NC, USA; email: richard.ann@epa.gov

  9. Postural and Object-Oriented Experiences Advance Early Reaching, Object Exploration, and Means-End Behavior

    ERIC Educational Resources Information Center

    Lobo, Michele A.; Galloway, James C.

    2008-01-01

    The effects of 3 weeks of social (control), postural, or object-oriented experiences on 9- to 21-week-old infants' (N = 42) reaching, exploration, and means-end behaviors were assessed. Coders recorded object contacts, mouthing, fingering, attention, and affect from video. Postural and object-oriented experiences advanced reaching, haptic…

  10. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  11. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  12. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-12-31

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  13. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-01-01

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  14. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  15. Exploring the opioid system by gene knockout.

    PubMed

    Kieffer, Brigitte L; Gavériaux-Ruff, Claire

    2002-04-01

    The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.

  16. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  17. Advanced aerospace hydraulic systems and components

    NASA Astrophysics Data System (ADS)

    1991-07-01

    The present volume discusses the development of a viable hydraulic circuit breaker, the electromodulated control of supply pressure in hydraulic systems, the flight control actuation system for the B-2 advanced technology bomber, and the B747-400 upper rudder control system with triple tandem valve. Also discussed are a total-flexibility cartridge-valve porting via innovative sealing technology, the A320 pilots' autothrust survey, an all-digital electrohydrostatic servoactuator, and a concurrent design/analysis tool for aircraft hydraulic systems. (For individual items see A93-21841 to A93-21844)

  18. Advanced valve motor operator diagnostic system

    SciTech Connect

    Thibault, C.

    1989-01-01

    A brief summary of the current use of diagnostic applications to motor-operated valves (MOVs) to satisfy the requirements of IE Bulletin 85-03, IE 85-03 (Supplement 1), and preventive maintenance applications is presented in this paper. This paper explains a new system for diagnostics, signature analysis, and direct measurement of actual load on MOV in the closed direction. This advanced valve motor operator diagnostic system (AVMODS) system comprises two complementary segments: (1) valve motor operator diagnostic system (V-MODS) and (2) motor current signature analysis (MCSA). AVMODS technical considerations regarding V-MODS and MCSA are discussed.

  19. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  20. A Hierarchical Statistic Methodology for Advanced Memory System Evaluation

    SciTech Connect

    Sun, X.-J.; He, D.; Cameron, K.W.; Luo, Y.

    1999-04-12

    Advances in technology have resulted in a widening of the gap between computing speed and memory access time. Data access time has become increasingly important for computer system design. Various hierarchical memory architectures have been developed. The performance of these advanced memory systems, however, varies with applications and problem sizes. How to reach an optimal cost/performance design eludes researchers still. In this study, the authors introduce an evaluation methodology for advanced memory systems. This methodology is based on statistical factorial analysis and performance scalability analysis. It is two fold: it first determines the impact of memory systems and application programs toward overall performance; it also identifies the bottleneck in a memory hierarchy and provides cost/performance comparisons via scalability analysis. Different memory systems can be compared in terms of mean performance or scalability over a range of codes and problem sizes. Experimental testing has been performed extensively on the Department of Energy's Accelerated Strategic Computing Initiative (ASCI) machines and benchmarks available at the Los Alamos National Laboratory to validate this newly proposed methodology. Experimental and analytical results show this methodology is simple and effective. It is a practical tool for memory system evaluation and design. Its extension to general architectural evaluation and parallel computer systems are possible and should be further explored.

  1. Fuel Distribution Estimate via Spin Period to Precession Period Ratio for the Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    DeHart, Russell; Smith, Eric; Lakin, John

    2015-01-01

    The spin period to precession period ratio of a non-axisymmetric spin-stabilized spacecraft, the Advanced Composition Explorer (ACE), was used to estimate the remaining mass and distribution of fuel within its propulsion system. This analysis was undertaken once telemetry suggested that two of the four fuel tanks had no propellant remaining, contrary to pre-launch expectations of the propulsion system performance. Numerical integration of possible fuel distributions was used to calculate moments of inertia for the spinning spacecraft. A Fast Fourier Transform (FFT) of output from a dynamics simulation was employed to relate calculated moments of inertia to spin and precession periods. The resulting modeled ratios were compared to the actual spin period to precession period ratio derived from the effect of post-maneuver nutation angle on sun sensor measurements. A Monte Carlo search was performed to tune free parameters using the observed spin period to precession period ratio over the life of the mission. This novel analysis of spin and precession periods indicates that at the time of launch, propellant was distributed unevenly between the two pairs of fuel tanks, with one pair having approximately 20% more propellant than the other pair. Furthermore, it indicates the pair of the tanks with less fuel expelled all of its propellant by 2014 and that approximately 46 kg of propellant remains in the other two tanks, an amount that closely matches the operational fuel accounting estimate. Keywords: Fuel Distribution, Moments of Inertia, Precession, Spin, Nutation

  2. Logistics Modeling for Lunar Exploration Systems

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.

    2008-01-01

    The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.

  3. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  4. Advanced Technology System Scheduling Governance Model

    SciTech Connect

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  5. How the UK Can Lead the Terrestrial Translation of Biomedical Advances Arising from Lunar Exploration Activities

    NASA Astrophysics Data System (ADS)

    Green, David A.

    2010-12-01

    Terrestrial translation of biomedical advances is insufficient justification for lunar exploration. However, terrestrial translation should be viewed as a critical part of the cycle of mission planning, execution and review, both in terms of the progress of space exploration, but also of sustained life on Earth. Thus, both the mission and its potential to benefit mankind are increased by the adoption of human-based exploration of the lunar surface. Whilst European biomedical sciences have grown in stature, there remains a gap between space biomedical science and terrestrial medical application. As such, an opportunity for the UK to take a sustainable leadership role exists by utilising its biomedical science community, socialised health care system (National Health Service) and defined mechanisms to determine the clinical efficacy and cost-effectiveness upon health and wellbeing (i.e. National Institute Clinical Excellence), aiding the difficult process of health care rationing. By focusing upon exploitation of the more scientifically rewarding, potentially long-term and more terrestrially analogous challenge of lunar habitation, the UK would circumnavigate the current impediments to International Space Station utilisation. Early engagement in lunar exploration would promote the UK, and its adoption of a leadership role incorporating a considered approach to the development of space biomedicine with an eye to its terrestrial value. For instance, prolonged lunar habitation could provide an `ideal controlled environment' for investigation of medical interventions, in particular multiple interactions (e.g. between exercise and nutrition), a model of accelerated aging and a number of chronic pathologies, including those related to disuse. Lunar advances could provide a springboard for individualized medicine, insights into occupational and de-centralised medicine (e.g. telemedicine) and act as a stimulus for biomedical innovation and understanding. Leadership in

  6. Navy Enlisted Advancement Planning and the Advancement Interface System (ADIN)

    DTIC Science & Technology

    1987-02-01

    still using 11-month-old data, from October of the previous year. The use of old data resulted in avoidable errors, which were reflected in the...Vacancies are therefore 100 minus 90, or 10. Because there are no higher paygrades, the number of advancements required for E-9 equals the number of...vacancies. The number of personnel who have passed the test (15) exceeds the advancements required (10); so the number of advancements made equals the

  7. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  8. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  9. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, E.; Canga, M.

    2016-01-01

    Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.

  10. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  11. NEXRAD - An advanced Doppler weather radar system

    NASA Astrophysics Data System (ADS)

    Durham, A. F.

    The WSR-57 system, which was first placed into operation in 1957, forms the backbone of the current radar observation network of the National Weather Service. However, in connection with its age, it has become increasingly difficult and expensive to maintain this system. The present investigation is concerned with the replacement of the WSR-57 by a new system which incorporates important advances made in radar technology since the 1950s. The new system considered, called the Next Generation Weather Radar (NEXRAD) makes use of highly automated Doppler techniques to measure the radial velocity of air movement within the internal structure of a storm system. Attention is given to background regarding the NEXRAD system development, the four phases of the NEXRAD program, NEXRAD system capabilities, operational (display) products, and questions of siting.

  12. LTE-advanced MIMO uplink for mobile system

    NASA Astrophysics Data System (ADS)

    Alhasson, Bader; Li, Xin; Bloul, Albe M.; Matin, M.

    2010-08-01

    By increasing multimedia communications, mobile communications are expected to reliably support high data rate transmissions. To provide higher peak rate at a better system efficiency, which is necessary to support broadband data services over Wireless links, we need to employ long term evolution Advanced (LTE-A) Multiple-input multiple-output MIMO uplink. The outline of this paper is to investigate and discuss the Long Term Evolution (LTE) for broadband wireless technologies and to discuss its functionality. We explore how LTE uses the inter-technology mobility to support a variety of access technology. This paper investigates the channel capacity and bit error rate of MIMO-OFDM system. In addition, it introduces various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

  13. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  14. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  15. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  16. An atmospheric visual analysis and exploration system.

    PubMed

    Song, Yuyan; Ye, Jing; Svakhine, Nikolai; Lasher-Trapp, Sonia; Baldwin, Mike; Ebert, David S

    2006-01-01

    Meteorological research involves the analysis of multi-field, multi-scale, and multi-source data sets. In order to better understand these data sets, models and measurements at different resolutions must be analyzed. Unfortunately, traditional atmospheric visualization systems only provide tools to view a limited number of variables and small segments of the data. These tools are often restricted to two-dimensional contour or vector plots or three-dimensional isosurfaces. The meteorologist must mentally synthesize the data from multiple plots to glean the information needed to produce a coherent picture of the weather phenomenon of interest. In order to provide better tools to meteorologists and reduce system limitations, we have designed an integrated atmospheric visual analysis and exploration system for interactive analysis of weather data sets. Our system allows for the integrated visualization of 1D, 2D, and 3D atmospheric data sets in common meteorological grid structures and utilizes a variety of rendering techniques. These tools provide meteorologists with new abilities to analyze their data and answer questions on regions of interest, ranging from physics-based atmospheric rendering to illustrative rendering containing particles and glyphs. In this paper, we will discuss the use and performance of our visual analysis for two important meteorological applications. The first application is warm rain formation in small cumulus clouds. Here, our three-dimensional, interactive visualization of modeled drop trajectories within spatially correlated fields from a cloud simulation has provided researchers with new insight. Our second application is improving and validating severe storm models, specifically the Weather Research and Forecasting (WRF) model. This is done through correlative visualization of WRF model and experimental Doppler storm data.

  17. Health requirements for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1980-01-01

    Health requirements were developed as long range goals for future advanced coal extraction systems which would be introduced into the market in the year 2000. The goal of the requirements is that underground coal miners work in an environment that is as close as possible to the working conditions of the general population, that they do not exceed mortality and morbidity rates resulting from lung diseases that are comparable to those of the general population, and that their working conditions comply as closely as possible to those of other industries as specified by OSHA regulations. A brief technique for evaluating whether proposed advanced systems meet these safety requirements is presented, as well as a discussion of the costs of respiratory disability compensation.

  18. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  19. Advanced Data Structure and Geographic Information Systems

    NASA Technical Reports Server (NTRS)

    Peuquet, D. (Principal Investigator)

    1984-01-01

    The current state of the art in specified areas of Geographic Information Systems GIS technology is examined. Study of the question of very large, efficient, heterogeneous spatial databases is required in order to explore the potential application of remotely sensed data for studying the long term habitability of the Earth. Research includes a review of spatial data structures and storage, development of operations required by GIS, and preparation of a testbed system to compare Vaster data structure with NASA's Topological Raster Structure.

  20. NASDA's Advanced On-Line System (ADOLIS)

    NASA Technical Reports Server (NTRS)

    Yamamoto, Yoshikatsu; Hara, Hideo; Yamada, Shigeo; Hirata, Nobuyuki; Komatsu, Shigenori; Nishihata, Seiji; Oniyama, Akio

    1993-01-01

    Spacecraft operations including ground system operations are generally realized by various large or small scale group work which is done by operators, engineers, managers, users and so on, and their positions are geographically distributed in many cases. In face-to-face work environments, it is easy for them to understand each other. However, in distributed work environments which need communication media, if only using audio, they become estranged from each other and lose interest in and continuity of work. It is an obstacle to smooth operation of spacecraft. NASDA has developed an experimental model of a new real-time operation control system called 'ADOLIS' (ADvanced On-Line System) adopted to such a distributed environment using a multi-media system dealing with character, figure, image, handwriting, video and audio information which is accommodated to operation systems of a wide range including spacecraft and ground systems. This paper describes the results of the development of the experimental model.

  1. Advanced high-performance computer system architectures

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. I.

    2007-02-01

    Convergence of computer systems and communication technologies are moving to switched high-performance modular system architectures on the basis of high-speed switched interconnections. Multi-core processors become more perspective way to high-performance system, and traditional parallel bus system architectures (VME/VXI, cPCI/PXI) are moving to new higher speed serial switched interconnections. Fundamentals in system architecture development are compact modular component strategy, low-power processor, new serial high-speed interface chips on the board, and high-speed switched fabric for SAN architectures. Overview of advanced modular concepts and new international standards for development high-performance embedded and compact modular systems for real-time applications are described.

  2. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  3. Systems Engineering Building Advances Power Grid Research

    ScienceCinema

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2016-07-12

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  4. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2001-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2000-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in the quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  6. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  7. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    This viewgraph presentation reviews study into exploration of Titan. Including a possible Titan Rover that would use the advanced radioisotope power system (RPS). The goal of the study is to demonstrate a simple, credible and affordable rover mission concept for Titan in-situ exploration, enabled by an Advanced RPS. The presentation reviews the possible launch vehicle, and trajectory options; desired instrumentation that would be aboard the rover; and considerations for the design of the rover.

  8. NASA'S RPS Design Reference Mission Set for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  9. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  10. Whipple: Exploring the Solar System Beyond Neptune

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Whipple Science Team

    2010-10-01

    Whipple is a Discovery-class mission that will explore the outer Solar System by searching for the occultations of bright (R<14) stars by small bodies. Whipple will test current theoretical models of the origin of our Solar System by studying directly the populations of small objects that lie beyond the orbit of Neptune, including the Kuiper Belt and scattered disk, the region surrounding Sedna, and the Oort Cloud. Whipple will measure size distributions as a function of (three dimensional) position for these populations. These data will help elucidate the process of formation of macroscopic bodies in the primitive solar system, the history of giant planet migration, and the interactions of planet scattering with the local stellar environment that led to the population of the Oort Cloud, and possibly during the first few million years, of the Sedna region. Whipple will employ a photometer comprising a Schmidt-Cassegrain optical design with a 77 cm aperture, imaging onto a focal plane subtending 37 square degrees. The focal plane will comprise nine CMOS devices that can be read out at high cadence. The spacecraft will be launched into an Earth-leading solar orbit, and will be able to stare at fields distributed over a wide range of ecliptic latitudes and longitudes. Whipple will image star fields and produce high signal-to-noise photometric light curves for stars at a variety of cadences: 10,000 stars at 40 Hz, 20,000 stars at 20 Hz, or 40,000 stars at 10 Hz. These light curves will be examined on the spacecraft for possible events of interest, which will then be transmitted to ground for further analysis.

  11. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2011-01-01

    The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

  12. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  13. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  14. Space Station Power System Advanced Development

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Baraona, C. R.; Valgora, M. E.

    1985-01-01

    The objectives of the Space Station Advanced Development Program are related to the development of a set of design options and/or new capabilities to support Space Station development and operation, taking into account also a quantification of the performance and risk of key state-of-the-art technologies, and a reduction of the cost and schedule risk in Space Station development. Attention is given to the photovoltaic power system, a solar dynamic system, and aspects of power management and distribution. A major issue will be the selection of the power generation system. In view of the advantages of the solar dynamic system, it is attempted to resolve issues associated with this system.

  15. An advanced manned launch system concept

    NASA Astrophysics Data System (ADS)

    Stone, H. W.; Piland, W. M.

    1992-08-01

    A two-stage fully reusable rocked powered concept is defined and analyzed in detail for the Advanced Manned Launch System missions. The concept elements include a Mach 3 staging unmanned glideback booster and a 149-ft long winged orbiter with an external payload canister with a 15-ft diameter and 30-ft long payload bay. The booster and orbiter main propulsion system is a lightweight derivative of the current Space Shuttle Main Engine. The primary mission is the Space Station Freedom logistics mission, 40,000-lb payload with two crew members and eight passengers. The structural design and material selection, the thermal protection system, the integral cryogenic tanks and insulation, the propulsion system, and the modular payload canister system are described. The ground and flight operations approach analysis, the manufacturing and certification plan, and the technology development requirements are also discussed.

  16. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  17. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  18. Advanced Digital Avionics System for general aviation

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Hoh, R. H.; Teper, G. L.

    1977-01-01

    Objectives and functions of the Advanced Digital Avionics System (ADAS) for general aviation are outlined with particular reference to navigation, flight control, engine management, ATC surveillance, flight management, communications, and the pilot controls and displays. The resulting ADAS design comprises the selection of off-the-shelf avionics to be integrated with ADAS-unique elements including new pilot displays and controls along with a microcomputer control complex (MCC). Reasons for which the ADAS achieves increased avionics capability are mentioned, including overall system integration through the MCC and pilot orientation from navigation map display.

  19. Advanced Topics in Control Systems Theory

    NASA Astrophysics Data System (ADS)

    Lorsa, Antonio; Lamnabhi-Lagarrigue, Françoise; Panteley, Elena

    Advanced Topics in Control Systems Theory contains selected contributions written by lecturers at the third (annual) Formation d'Automatique de Paris (FAP) (Graduate Control School in Paris). Following on from the lecture notes from the second FAP (Volume 311 in the same series) it is addressed to graduate students and researchers in control theory with topics touching on a variety of areas of interest to the control community such as nonlinear optimal control, observer design, stability analysis and structural properties of linear systems.

  20. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  1. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  2. The Space Exploration Initiative: a challenge to advanced life support technologies: keynote presentation.

    PubMed

    Mendell, W W

    1991-10-01

    President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.

  3. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  4. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Rasky, Daniel J. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have led to the following approach. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are considered to be exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is defined after many trade-offs. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, SVM/[ESM + function (TRL)], with appropriate weighting and scaling. The total value is given by SVM. Cost is represented by higher ESM and lower TRL. The paper provides a detailed description and example application of a suggested System Value Metric and an overall ALS system metric.

  5. Advanced airborne ISR demonstration system (USA)

    NASA Astrophysics Data System (ADS)

    Henry, Daniel J.

    2005-05-01

    Recon/Optical, Inc. (ROI) is developing an advanced airborne Intelligence, Surveillance, and Reconnaissance (ISR) demonstration system based upon the proven ROI technology used in the SHAred Reconnaissance Pod (SHARP) for the U.S. Navy F/A-18. The demonstration system, which includes several state-of-the-art technology enhancements for next-generation ISR, is scheduled for flight testing in the summer of 2005. The demonstration system contains a variant of the SHARP medium altitude CA-270 camera, comprising an inertially stabilized Visible/NIR 5Kx5K imager and MWIR 2Kx2K imager to provide simultaneous high resolution/wide area coverage dual-band operation. The imager has been upgraded to incorporate a LN-100G GPS/INS within the sensor passive isolation loop to improve the accuracy of the NITF image metadata. The Image Processor is also based upon the SHARP configuration, but the demo system contains several enhancements including increased image processing horsepower, Ethernet-based Command & Control, next-generation JPEG2000 image compression, JPEG2000 Interactive Protocol (JPIP) network data server/client architecture, bi-directional RF datalink, advanced image dissemination/exploitation, and optical Fibrechannel I/O to the solid state recorder. This paper describes the ISR demonstration system and identifies the new network centric CONOPS made possible by the technology enhancements.

  6. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    In this report, the contents and major results of the national research program on advanced energy system and technologies (NEMO) are presented. The NEMO-program was one of the energy research programs of the Ministry of Trade and Industry during 1988-1992. Helsinki University of Technology had the responsibility of the overall coordination of the program. NEMO has been the largest resource allocation into advanced energy systems in Finland so far. The total budget was 70 million FIM. The focus of the program has been in solar energy, wind power, and energy storage. Hydrogen and fuel cells have been included in smaller amount. On all major fields of the NEMO-program, useful and high quality results have been obtained. Results of international significance include among others arctic wind energy, new approaches for the energy storage problem in solar energy applications, and the development of a completely new storage battery. International collaboration has been given high priority. The NEMO-program has also been active in informing the industries of the various business and utilization possibilities that advanced energy technologies offer. For example, major demonstration plants of each technology group have been realized. It is recommended that the further R and D should be still more focused on commercial applications. Through research efforts at universities, a good technology base should be maintained, whereas the industries should take a stronger position in commercializing new technology. Parallel to technology R and D, more public resources should be allocated for market introduction.

  7. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  8. Design of an advanced flight planning system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1985-01-01

    The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).

  9. Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

  10. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have reached a consensus. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is then set accordingly. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, [SVM + TRL]/ESM, with appropriate weighting and scaling. The total value is the sum of SVM and TRL. Cost is represented by ESM. The paper provides a detailed description and example application of the suggested System Value Metric.

  11. Advanced extravehicular activity systems requirements definition study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A study to define the requirements for advanced extravehicular activities (AEVA) was conducted. The purpose of the study was to develop an understanding of the EVA technology requirements and to map a pathway from existing or developing technologies to an AEVA system capable of supporting long-duration missions on the lunar surface. The parameters of an AEVA system which must sustain the crewmembers and permit productive work for long periods in the lunar environment were examined. A design reference mission (DRM) was formulated and used as a tool to develop and analyze the EVA systems technology aspects. Many operational and infrastructure design issues which have a significant influence on the EVA system are identified.

  12. Demonstration Advanced Avionics System (DAAS) function description

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  13. The Advanced Photon Source control system

    SciTech Connect

    Knott, M.J.; McDowell, W.P.; Lenkszus, F.R.; Kraimer, M.R.; Arnold, N.D.; Daly, R.T.; Gunderson, G.R.; Cha, Ben-Chin K.; Anderson, M.D.

    1991-01-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), is a 7-GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible and expandable control system. The control system must be capable of operating the APS storage ring alone, and in conjunction with its injector synchrotron for filling, as well as operating both storage ring and injection facilities as machines with separate missions. The control system design is based on the (now classic) precepts of high-performance workstations as operators consoles, distributed microprocessors to control equipment interfacing and preprocess data, and an interconnecting network. The current design includes about 45 distributed microprocessors and five console systems, which may consist of one or more workstations. 6 refs., 2 figs.

  14. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  15. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  16. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  17. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  18. Advanced Docking System With Magnetic Initial Capture

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang

    2004-01-01

    An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.

  19. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  20. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  1. ASPEN. Advanced System for Process Engineering

    SciTech Connect

    Bajura, R.A.

    1985-10-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.

  2. Advanced systems engineering and network planning support

    NASA Technical Reports Server (NTRS)

    Walters, David H.; Barrett, Larry K.; Boyd, Ronald; Bazaj, Suresh; Mitchell, Lionel; Brosi, Fred

    1990-01-01

    The objective of this task was to take a fresh look at the NASA Space Network Control (SNC) element for the Advanced Tracking and Data Relay Satellite System (ATDRSS) such that it can be made more efficient and responsive to the user by introducing new concepts and technologies appropriate for the 1997 timeframe. In particular, it was desired to investigate the technologies and concepts employed in similar systems that may be applicable to the SNC. The recommendations resulting from this study include resource partitioning, on-line access to subsets of the SN schedule, fluid scheduling, increased use of demand access on the MA service, automating Inter-System Control functions using monitor by exception, increase automation for distributed data management and distributed work management, viewing SN operational control in terms of the OSI Management framework, and the introduction of automated interface management.

  3. Advanced Light Source beam diagnostics systems

    SciTech Connect

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  4. Advanced extravehicular protective systems study, volume 1

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    An appraisal was made of advanced portable and emergency life support systems concepts for space station, space shuttle, lunar base, and Mars EVA missions. Specifications are given, and the methodology is described. Subsystem studies and systems integration efforts are summarized. Among the conclusions are the following: (1) For long duration missions, a configuration incorporating a regenerable CO2 control subsystem and a thermal control subsystem utilizing a minimum of expendables decreases the vehicle penalty of present configurations. (2) For shorter duration missions, a configuration incorporating an expendable water thermal control subsystem is the most competitive subsystem; regenerable CO2 control subsystems if properly developed are competitive with nonregenerable counterparts. (3) The CO2 reduction and oxygen reclamation withing the parent vehicle is only competitive when there are three or more parent vehicle resupply periods. (4) For long duration emergency systems of one hour or more, inherent redundancy within the primary configuration to provide emergency thermal control is the most competitive approach.

  5. An advanced maintenance free aircraft battery system

    SciTech Connect

    Beutler, J.; Green, J.; Kulin, T.

    1996-11-01

    This paper describes an advanced aircraft battery system designed to provide 20 years of maintenance free operation with the flexibility for use on all US Air Force aircraft. System, battery, and charger/analyzer requirements are identified. The final design approach and test results are also presented. There are two general approaches to reduce the maintenance cost of batteries. One approach is to develop a disposable battery system, such that after some time interval the battery is simply replaced. The other approach, the subject of this paper, is to develop a battery that does not require any scheduled maintenance for the design life of the aircraft. This approach is currently used in spacecraft applications where battery maintenance is not practical.

  6. An advanced domestic satellite communications system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.

  7. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  8. Advanced electronics for the CTF MEG system.

    PubMed

    McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A

    2004-11-30

    Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.

  9. The advanced magnetovision system for Smart application

    NASA Astrophysics Data System (ADS)

    Kaleta, Jerzy; Wiewiórski, Przemyslaw; Lewandowski, Daniel

    2010-04-01

    An original method, measurement devices and software tool for examination of magneto-mechanical phenomena in wide range of SMART applications is proposed. In many Hi-End market constructions it is necessary to carry out examinations of mechanical and magnetic properties simultaneously. Technological processes of fabrication of modern materials (for example cutting, premagnetisation and prestress) and advanced concept of using SMART structures involves the design of next generation system for optimization of electric and magnetic field distribution. The original fast and higher than million point static resolution scanner with mulitsensor probes has been constructed to measure full components of the magnetic field intensity vector H, and to visualize them into end user acceptable variant. The scanner has also the capability to acquire electric potentials on surface to work with magneto-piezo devices. Advanced electronic subsystems have been applied for processing of results in the Magscaner Vison System and the corresponding software - Maglab has been also evaluated. The Dipole Contour Method (DCM) is provided for modeling different states between magnetic and electric coupled materials and to visually explain the information of the experimental data. Dedicated software collaborating with industrial parametric systems CAD. Measurement technique consists of acquiring a cloud of points similarly as in tomography, 3D visualisation. The actually carried verification of abilities of 3D digitizer will enable inspection of SMART actuators with the cylindrical form, pellets with miniature sizes designed for oscillations dampers in various construction, for example in vehicle industry.

  10. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

  12. A personal exploration of the German hospice system.

    PubMed

    Farnon, C

    1996-01-01

    While on vacation in Germany, I explored the German hospice system and its differences from that in the United States. I conducted an informal survey asking 10 individuals who were not associated with hospice work, about end-of-life issues. Knowledge of the hospice movement and of advance directives was found to be quite low. Through contact with German hospice associations, I learned that the modern German hospice movement was inspired by the British example. After a difficult beginning, the German hospice system is growing steadily. Professional providers of end-of-life care are paid according to the traditional fee-for-service system. As suggested by the World Health Organization, pain management is provided according to the three-step analgesic ladder. Physician-assisted suicide is illegal as it is in the United States. A federal self-determination law has not yet been enacted. Overall, the German hospice system has many similarities and a few interesting dissimilarities with that in the United States.

  13. Advanced vehicle systems assessment. Volume 3: Systems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.

  14. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  15. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  16. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  17. Advanced turbine systems: Studies and conceptual design

    SciTech Connect

    van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

    1993-11-01

    The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

  18. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  19. Basics and advances in battery systems

    SciTech Connect

    Nelson, J.P.; Bolin, W.D.

    1995-03-01

    One of the most common components in both the utility and industrial/commercial power system is the station battery. In many cases, the original design is marginal or inadequate; the maintenance and testing is practically nonexistent; but the system is called upon during emergency conditions and is expected to perform flawlessly. This paper will begin with the basic battery theory starting with the electrochemical cell. A working knowledge of the battery cell is important to understand typical problems such as hydrogen production, sulfating, and battery charging. The paper will then lead into a discussion of some of the common batteries and battery chargers. While this paper will concentrate primarily on the lead acid type of battery, the theory can be utilized on other types such as the Nickel-Cadmium. A reference will be made to industry standards and codes which are used for the design, installation, and maintenance of battery systems. Along with these standards will be a discussion of the design considerations, maintenance and testing, and, finally, some advanced battery system topics such as individual battery cell voltage equalizers and battery pulsing units. The goal of this paper is to provide the reader with a basic working understanding of a battery system. Only with that knowledge can a person be expected to design and/or properly maintain a battery system which may be called upon during an emergency to minimize the effects of a normal power outage, to minimize personnel hazards and to reduce property damage.

  20. Advancements in low NOx tangential firing systems

    SciTech Connect

    Hein, R. von; Maney, C.; Borio, R.

    1996-12-31

    The most cost effective method of reducing nitrogen oxide emissions when burning fossil fuels, such as coal, is through in-furnace NOx reduction processes. ABB Combustion Engineering, Inc. (ABB CE), through its ABB Power Plant Laboratories has been involved in the development of such low NOx pulverized coal firing systems for many years. This development effort is most recently demonstrated through ABB CE`s involvement with the U.S. Department of Energy`s (DOE) {open_quotes}Engineering Development of Advanced Coal Fired Low-Emission Boiler Systems{close_quotes} (LEBS) project. The goal of the DOE LEBS project is to use {open_quotes}near term{close_quotes} technologies to produce a commercially viable, low emissions boiler. This paper addresses one of the key technologies within this project, the NOx control subsystem. The foundation for the work undertaken at ABB CE is the TFS 2000{trademark} firing system, which is currently offered on a commercial basis. This system encompasses sub-stoichiometric combustion in the main firing zone for reduced NOx formation. Potential enhancements to this firing system focus on optimizing the introduction of the air and fuel within the primary windbox to provide additional horizontal and vertical staging. As is the case with all in-furnace NOx control processes, it is necessary to operate the system in a manner which does not decrease NOx at the expense of reduced combustion efficiency.

  1. Advanced staged combustion system for power generation

    SciTech Connect

    Rehmat, A.; Goyal, A.

    1993-12-31

    To respond to the increasing market need for a new generation of plants with a substantial improvement in efficiency and a reduction in capital cost, the Institute of Gas Technology has developed an advanced staged, fluidized-bed combustion system concept. The staged fluidized-bed partial combustor produces the fuel gas at about 1500 F. The fuel gas, after particulate removal, is directed to a gas turbine followed by a steam cycle. Adequate sulfur capture and solids waste stabilization are attained by separating calcination, carbonization, and gasification/combustion steps in the staged fluidized beds. Intermediate gas cooling is avoided during the process to maximize the power production. The coal-to-electricity conversion efficiency of the system approaches 49 percent, which exceeds the efficiencies of the other emerging technologies.

  2. Advances in uncooled technology at BAE SYSTEMS

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Kohin, Margaret; Leary, Arthur R.; Blackwell, Richard J.; Rumbaugh, Roy N.

    2003-09-01

    BAE SYSTEMS has made tremendous progress in uncooled technology and systems in the last year. In this paper we present performance results and imagery from our latest 640x480 and 320x240 small pixel focal plane arrays. Both were produced using submicron lithography and have achieved our lowest NETDs to date. Testing of the 320x240 devices has shown TNETDs of 30mK at F/1. Video imagery from our 640 x 480 uncooled camera installed in a POINTER Unattended Aerial Vehicle is also shown. In addition, we introduce our newest commercial imaging camera core, the SCC500 and show its vastly improved characteristics. Lastly, plans for future advancements are outlined.

  3. Advanced recovery systems wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Geiger, R. H.; Wailes, W. K.

    1990-01-01

    Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test sections of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System. Two models were tested during this investigation. Both the primary test article, a 1/9 geometric scale model with wing area of 1200 square feet and secondary test article, a 1/36 geometric scale model with wing area of 300 square feet, had an aspect ratio of 3. The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

  4. Crew systems: integrating human and technical subsystems for the exploration of space.

    PubMed

    Connors, M M; Harrison, A A; Summit, J

    1994-07-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  5. Electric Propulsion Concepts Enabled by High Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Gilland, James; Fiehler, Douglas; Lyons, Valerie

    2005-01-01

    This paper describes the latest development in electric propulsion systems being planned for the new Space Exploration initiative. Missions to the Moon and Mars will require these new thrusters to deliver the large quantities of supplies that would be needed to support permanent bases on other worlds. The new thrusters are also being used for unmanned exploration missions that will go to the far reaches of the solar system. This paper is intended to give the reader some insight into several electric propulsion concepts their operating principles and capabilities, as well as an overview of some mission applications that would benefit from these propulsion systems, and their accompanying advanced power systems.

  6. Crew systems: integrating human and technical subsystems for the exploration of space

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  7. DESM: portal for microbial knowledge exploration systems

    PubMed Central

    Salhi, Adil; Essack, Magbubah; Radovanovic, Aleksandar; Marchand, Benoit; Bougouffa, Salim; Antunes, Andre; Simoes, Marta Filipa; Lafi, Feras F.; Motwalli, Olaa A.; Bokhari, Ameerah; Malas, Tariq; Amoudi, Soha Al; Othum, Ghofran; Allam, Intikhab; Mineta, Katsuhiko; Gao, Xin; Hoehndorf, Robert; C. Archer, John A.; Gojobori, Takashi; Bajic, Vladimir B.

    2016-01-01

    Microorganisms produce an enormous variety of chemical compounds. It is of general interest for microbiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microorganisms and their ability for bioproduction. To enable such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs contain information derived through text-mining of PubMed information and complemented by information data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPathways, BioGrid). All PubMed records were indexed using 4 538 278 concepts from 29 dictionaries, with 1 638 986 records utilized in KBs. Concepts used are normalized whenever possible. Most of the KBs focus on a particular type of microbial activity, such as production of biocatalysts or nutraceuticals. Others are focused on specific categories of microorganisms, e.g. streptomyces or cyanobacteria. KBs are all structured in a uniform manner and have a standardized user interface. Information exploration is enabled through various searches. Users can explore statistically most significant concepts or pairs of concepts, generate hypotheses, create interactive networks of associated concepts and export results. We believe DESM will be a useful complement to the existing resources to benefit microbiology and biotechnology research. PMID:26546514

  8. The Space Launch System: NASA's Exploration Rocket

    NASA Technical Reports Server (NTRS)

    Blackerby, Christopher; Cate, Hugh C., III

    2013-01-01

    Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.

  9. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  10. Final Report Advanced Quasioptical Launcher System

    SciTech Connect

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  11. Advanced data management system architectures testbed

    NASA Technical Reports Server (NTRS)

    Grant, Terry

    1990-01-01

    The objective of the Architecture and Tools Testbed is to provide a working, experimental focus to the evolving automation applications for the Space Station Freedom data management system. Emphasis is on defining and refining real-world applications including the following: the validation of user needs; understanding system requirements and capabilities; and extending capabilities. The approach is to provide an open, distributed system of high performance workstations representing both the standard data processors and networks and advanced RISC-based processors and multiprocessor systems. The system provides a base from which to develop and evaluate new performance and risk management concepts and for sharing the results. Participants are given a common view of requirements and capability via: remote login to the testbed; standard, natural user interfaces to simulations and emulations; special attention to user manuals for all software tools; and E-mail communication. The testbed elements which instantiate the approach are briefly described including the workstations, the software simulation and monitoring tools, and performance and fault tolerance experiments.

  12. An Advanced Buffet Load Alleviation System

    NASA Technical Reports Server (NTRS)

    Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.

    2001-01-01

    This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.

  13. Study on advanced information processing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Liu, Jyh-Charn

    1992-01-01

    Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.

  14. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  15. ANDES Measurements for Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Plompen, A. J. M.; Hambsch, F.-J.; Kopecky, S.; Nyman, M.; Rouki, C.; Salvador Castiñeira, P.; Schillebeeckx, P.; Belloni, F.; Berthoumieux, E.; Gunsing, F.; Lampoudis, C.; Calviani, M.; Guerrero, C.; Cano-Ott, D.; Gonzalez Romero, E.; Aïche, M.; Jurado, B.; Mathieu, L.; Derckx, X.; Farget, F.; Rodrigues Tajes, C.; Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Borcea, C.; Negret, A.; Colonna, N.; Goncalves, I.; Penttilä, H.; Rinta-Antila, S.; Kolhinen, V. S.; Jokinen, A.

    2014-05-01

    A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23Na, Mo, Zr, and 238U, neutron capture cross sections of 238U, 241Am, neutron induced fission cross sections of 240Pu, 242Pu, 241Am, 243Am and 245Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am, Cm and Cf. Finally, four isotopes are studied which are important to improve predictions for delayed neutron precursors and decay heat by total absorption gamma-ray spectrometry (88Br, 94Rb, 95Rb, 137I). The measurements which are performed at state-of-the-art European facilities have the ambition to achieve the lowest possible uncertainty, and to come as close as is reasonably achievable to the target uncertainties established by sensitivity studies. An overview is presented of the activities and achievements, leaving detailed expositions to the various parties contributing to the conference.

  16. MatrixExplorer: a dual-representation system to explore social networks.

    PubMed

    Henry, Nathalie; Fekete, Jean-Daniel

    2006-01-01

    MatrixExplorer is a network visualization system that uses two representations: node-link diagrams and matrices. Its design comes from a list of requirements formalized after several interviews and a participatory design session conducted with social science researchers. Although matrices are commonly used in social networks analysis, very few systems support the matrix-based representations to visualize and analyze networks. MatrixExplorer provides several novel features to support the exploration of social networks with a matrix-based representation, in addition to the standard interactive filtering and clustering functions. It provides tools to reorder (layout) matrices, to annotate and compare findings across different layouts and find consensus among several clusterings. MatrixExplorer also supports Node-link diagram views which are familiar to most users and remain a convenient way to publish or communicate exploration results. Matrix and node-link representations are kept synchronized at all stages of the exploration process.

  17. Optimization of System Maturity and Equivalent System Mass for Exploration Systems Development Planning

    NASA Technical Reports Server (NTRS)

    Magnaye, Romulo; Tan, Weiping; Ramirez-Marquez, Jose; Sauser, Bruce

    2010-01-01

    The Exploration Systems Mission Directorate of the National Aeronautics and Space Administration (NASA) is currently pursuing the development of the next generation of human spacecraft and exploration systems throughout the Constellation Program. This includes, among others, habitation technologies for supporting lunar and Mars exploration. The key to these systems is the Exploration Life Support (ELS) system that composes several technology development projects related to atmosphere revitalization, water recovery, waste management and habitation. The proper functioning of these technologies is meant to produce sufficient and balanced resources of water, air, and food to maintain a safe and comfortable environment for long-term human habitation and exploration of space.

  18. Exploring the Third World: Two Interdisciplinary Units for Advanced Placement English.

    ERIC Educational Resources Information Center

    Traubitz, Nancy; Pfetsch, Cheryl

    Developed to enhance students' cultural awareness of Africa and the Far East, this guide contains both interdisciplinary and specific content curriculum materials for two course units in Advanced Placement English. These units were designed to (1) communicate the countries' rudimentary geography and history; (2) introduce the value systems,…

  19. On the Path to 2X Learning: Exploring the Possibilities of Advanced Speech Recognition.

    ERIC Educational Resources Information Center

    LaRocca, Stephen A.; Morgan, John J.; Bellinger, Sherri M.

    1999-01-01

    Proposes that automatic speech recognition (ASR) can effectively increase students' learning twofold over conventional self-study materials. Past and current efforts at the U.S. Military Academy are described that are aimed at integrating advanced ASR into courseware-authoring systems. (Author/VWL)

  20. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  1. Organization of Artificial Superlattices Utilizing Nanosheets as a Building Block and Exploration of Their Advanced Functions

    NASA Astrophysics Data System (ADS)

    Ma, Renzhi; Sasaki, Takayoshi

    2015-07-01

    This review covers some of the latest developments in the organization of artificial superlattice assemblies utilizing colloidal oxide or hydroxide nanosheets bearing a negative or positive charge, respectively. Various solution-based procedures, e.g., flocculation, electrostatic sequential adsorption, and Langmuir-Blodgett deposition, have been introduced for the self-assembly of 2D nanosheets. Superlattice composites or films integrated with different nanosheets may yield concerted or synergistic modulation, e.g., soft coupling or new electronic states at interfaces. This behavior offers an unprecedented opportunity for the exploration of high-performance devices, as well as advanced or novel functions that cannot be achieved with a single-component material.

  2. Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life

    PubMed Central

    Bunge, John; Gilbert, Jack A.; Moore, Jason H.

    2012-01-01

    This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

  3. APL workers install CRIS on the Advanced Composition Explorer (ACE) in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers from the Johns Hopkins University's Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin and evolution of solar phenomenon, the formation of the solar corona, solar flares and the acceleration of the solar wind. ACE was developed for NASA by the APL. The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8 rocket from Space Launch Complex 17, Pad A.

  4. Mission operations systems for planetary exploration

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.; Wolff, Donna M.

    1988-01-01

    The purpose of the paper is twofold: (1) to present an overview of the processes comprising planetary mission operations as conducted at the Jet Propulsion Laboratory, and (2) to present a project-specific and historical context within which this evolving process functions. In order to accomplish these objectives, the generic uplink and downlink functions are described along with their specialization to current flight projects. Also, new multimission capabilities are outlined, including prototyping of advanced-capability software for subsequent incorporation into more automated future operations. Finally, a specific historical ground is provided by listing some major operations software plus a genealogy of planetary missions beginning with Mariner 2 in 1962.

  5. Advanced kick detection systems improve HPHT operations

    SciTech Connect

    Harris, T.W.R.; Hendriks, P.; Surewaard, J.H.G.

    1995-09-01

    Many high-pressure, high-temperature (HPHT) wells are often characterized by the small margins that can exist between pore pressure and formation strength. Therefore, it is not surprising that kicks are far more likely to occur in HPHT wells and that a greater risk of internal blowout exists. The development and application of advanced kick detection systems for HPHT wells can help manage risks and improve drilling efficiency. Such systems enable earlier well shut-in, minimizing both the influx volume and the subsequent well bore pressures. This in turn lowers the risk, time and cost required for well control operations. Carefully considered application of these systems can also justify favorable economic benefits by optimization of the HPHT preliminary casing design. Minimizing kick volume can be important for the critical HPHT hole sections, where a reduced operating margin between pore pressure and fracture gradient exists, defining small design kick tolerance limits to permit safe drilling ahead to reach specified objectives. Kick detection for HPHT wells equivalent to less than 5 bbl of gas influx are often necessary to adequately minimize the risk of internal blowout and obtain the same levels of safety which are applied to conventional wells. This paper reviews these systems for both on-shore and off-shore operations.

  6. Advanced Extravehicular Protective System (AEPS) study

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Webbon, B. W.; Copeland, R. J.

    1972-01-01

    A summary is presented of Advanced Extravehicular Protective Systems (AEPS) for the future missions beyond Skylab in earth orbit, on the lunar surface, and on the Martian surface. The study concentrated on the origination of regenerable life support concepts for use in portable extravehicular protective systems, and included evaluation and comparison with expendable systems, and selection of life support subsystems. The study was conducted in two phases. In the first phase, subsystem concepts for performing life support functions in AEPS which are regenerable or partially regenerable were originated, and in addition, expendable subsystems were considered. Parametric data for each subsystem concept were evolved including subsystem weight and volume, power requirement, thermal control requirement; base regeneration equipment weight and volume, requirement. The second phase involved an evaluation of the impact of safety considerations involving redundant and/or backup systems on the selection of the regenerable life support subsystems. In addition, the impact of the space shuttle program on regenerable life support subsystem development was investigated.

  7. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  8. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  9. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Advanced Energy Industries at the ESIF to test its advanced photovoltaic inverter technology with the ESIF's power hardware-in-the-loop system and megawatt-scale grid simulators.

  10. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading. No new memberships, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, nine subcontractor reports were received (5 final reports and 4 semi-annual reports). The report technology distribution is as follows: 3--aero-heat transfer, 2--combustion and 4--materials. AGTSR continues to project that it will under spend DOE obligated funds by approximately $329K.

  12. Advanced adhesion and friction measurement system

    NASA Astrophysics Data System (ADS)

    Li, Meng; Huang, Wei; Wang, Xiaolei

    2017-03-01

    An advanced micro-force tester for investigating the micromechanical behavior of various patterned surfaces in dry and wet conditions is presented in this paper. The parallel slice-beam configuration of the tester not only eliminates the large load-dependent slope and tangential displacement at the free end that is found in a single beam system, but also performs a trans-scale deflection with high sensitivity and linearity for force sensing. Meanwhile, the simple structure is characterized by low cost, high efficiency, and ease of fabrication. An integrated nano- and micro-stage comprise the mobile table to produce a large stroke with high resolution, which is specifically required in wet adhesion testing because of the formation of a long liquid bridge. Preliminary experiments of adhesion and friction conducted using PDMS pillars with a plano-convex lens validated the feasibility of this setup.

  13. Human Outer Solar System Exploration via Q-Thruster Technology

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  14. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  15. Advanced data acquisition system for SEVAN

    NASA Astrophysics Data System (ADS)

    Chilingaryan, Suren; Chilingarian, Ashot; Danielyan, Varuzhan; Eppler, Wolfgang

    2009-02-01

    Huge magnetic clouds of plasma emitted by the Sun dominate intense geomagnetic storm occurrences and simultaneously they are correlated with variations of spectra of particles and nuclei in the interplanetary space, ranging from subtermal solar wind ions till GeV energy galactic cosmic rays. For a reliable and fast forecast of Space Weather world-wide networks of particle detectors are operated at different latitudes, longitudes, and altitudes. Based on a new type of hybrid particle detector developed in the context of the International Heliophysical Year (IHY 2007) at Aragats Space Environmental Center (ASEC) we start to prepare hardware and software for the first sites of Space Environmental Viewing and Analysis Network (SEVAN). In the paper the architecture of the newly developed data acquisition system for SEVAN is presented. We plan to run the SEVAN network under one-and-the-same data acquisition system, enabling fast integration of data for on-line analysis of Solar Flare Events. An Advanced Data Acquisition System (ADAS) is designed as a distributed network of uniform components connected by Web Services. Its main component is Unified Readout and Control Server (URCS) which controls the underlying electronics by means of detector specific drivers and makes a preliminary analysis of the on-line data. The lower level components of URCS are implemented in C and a fast binary representation is used for the data exchange with electronics. However, after preprocessing, the data are converted to a self-describing hybrid XML/Binary format. To achieve better reliability all URCS are running on embedded computers without disk and fans to avoid the limited lifetime of moving mechanical parts. The data storage is carried out by means of high performance servers working in parallel to provide data security. These servers are periodically inquiring the data from all URCS and storing it in a MySQL database. The implementation of the control interface is based on high level

  16. Covering the Bases: Exploring Alternative Systems

    ERIC Educational Resources Information Center

    Kurz, Terri L.; Garcia, Jorge

    2015-01-01

    Since the 1950s, the understanding of how the base 10 system works has been encouraged through alternative base systems (Price 1995; Woodward 2004). If high school students are given opportunities to learn other base systems and analyze what they denote, we believe that they will better understand the structure of base 10 and its operations…

  17. Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    ONeill, P. M.

    2007-01-01

    Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.

  18. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  19. Alisse : Advanced life support system evaluator

    NASA Astrophysics Data System (ADS)

    Brunet, Jean; Gerbi, Olivier; André, Philippe; Davin, Elisabeth; Avezuela Rodriguez, Raul; Carbonero, Fernando; Soumalainen, Emilia; Lasseur, Christophe

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require such an amount of life support consumables (e.g. food, water and oxygen) that direct supply or re-supply from Earth is not an option anymore. Regenerative Life Support Systems are therefore necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. The architecture of an Environmental Controlled Life Support System widely depends on the mission scenario. Even for a given mission scenario, different architectures could be envisaged which need to be evaluated and compared with appropriate tools. As these evaluation and comparison, based on the single criterion of Equivalent System Mass, was not considered com-prehensive enough, ESA is developing a multi-criteria evaluation tool: ALISSE (Advanced Life Support System Evaluator). The main objective of ALISSE, and of the work presented here, is the definition and implemen-tation of a metrics system, addressing the complexity of any ECLSS along its Life Cycle phases. A multi-dimensional and multi-criteria (i.e. mass, energy, efficiency, risk to human, reliability, crew time, sustainability, life cycle cost) approach is proposed through the development of a computing support platform. Each criterion being interrelated with the others, a model based system approach is used. ALISSE is expected to provide significant inputs to the ESA Concurrent Design Facility and, as a consequence, to be a highly valuable tool for decision process linked to any manned space mission. Full contact detail for the contact author : Jean Brunet Sherpa Engineering General Manager Phone : 0033(0)608097480 j.brunet@sherpa-eng.com

  20. Polarimetric Exploration of Solar System Small Bodies: Search for Habitability

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. These goals can be realized with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. Although polarization, in general, is elliptical by nature, special cases such as linear and circular polarimetric signatures provide insight into the various types of scattering media and are valuable tools to be developed. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. The search for habitability can benefit from spectrophotopolarimetry. While linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality) or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. All known life forms on earth are chiral and pre-dominantly left-handed. However, many of these applications suffer from lack of detailed observations, instrumentation, dedicated missions and numerical/retrieval methods. I will present a review of the field, with advances made in instrumentation, measurements and applications to prospective missions.

  1. A New Direction for NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Daou, D.; Schmidt, G.; Pendleton, Y.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the new nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  2. Systemic Therapies for Advanced Pancreatic Neuroendocrine Tumors

    PubMed Central

    Raj, Nitya; Reidy-Lagunes, Diane

    2016-01-01

    SYNOPSIS Pancreatic neuroendocrine tumors are a rare tumor type, and comprise 1-2% of all pancreatic neoplasms. When nonfunctional (i.e. nonhormone secreting), these tumors generally cause few symptoms and often go unnoticed for several years; for this reason, they are rarely localized at presentation, and are typically diagnosed in the presence of metastatic disease, most commonly to the liver. Although pancreatic neuroendocrine tumors can be less aggressive than other tumor types, the management poses a significant challenge because of the heterogeneous clinical presentations and varying degrees of aggressiveness. The therapy of pancreatic neuroendocrine tumors includes a multimodality approach and can often include surgery, liver-directed therapies (i.e. embolization), as well as targeted and cytotoxic systemic treatments. A variety of systemic therapies have been developed for the management of pancreatic neuroendocrine tumors. These therapies include somatostatin analogs (octreotide or lanreotide), a select group of cytotoxic chemotherapy agents (alkylating, fluorouracil and platinum drugs), as well as targeted or biologic agents (everolimus and sunitinib). This chapter will review the available systemic therapy options for advanced pancreatic neuroendocrine tumors. PMID:26614372

  3. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  4. Payload deployment systems and advanced manipulators

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results of discussions on future development of avionics to support payload deployment systems and advanced manipulators are discussed. The discussions summarized here were held during the Space Transportation Avionics Technology Symposium in Williamsburg, Virginia on November 7 to 9, 1989. Symposium participants agreed that this subpanel would have benefitted from more participation by users. It was suggested that inputs from Shuttle payload users should be incorporated, either by direct discussions with users or by incorporating comments from users as kept by Payload Accommodations. The Jet Propulsion Laboratory (JPL), Goddard, and Langley, as builders of payloads, and the Space Station Utilization Office could also provide useful inputs. Other potential users for future systems should also be identified as early as possible to determine what they anticipate their needs to be. Symposium participants also recognized that payload deployment is normally not a safety critical area, and as such, is vulnerable to budget cuts that defer costs from development to operations. This does give opportunities for upgrades of operational systems, but these must be very cost effective to compete with vehicle requirements that enhance safety or increase lifetime.

  5. Advanced Stirling conversion systems for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.

    1987-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar Distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. The National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) is conducting free-piston Stirling activities which are directed toward a dynamic power source for space applications. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear. Generic free-piston technology is currently being developed by LeRC for DOE/ORNL for use with a residential heat pump under an Interagency Agreement. Since 1983, the SP-100 Program (DOD/NASA/DOE) is developing dynamic power sources for space. Although both applications (heat pump and space power) appear to be quite different, their requirements complement each other. A cooperative Interagency Agreement (IAA) was signed in 1985 with NASA Lewis to provide technical management for an Advanced Stirling Conversion System (ASCS) for SNLA. Conceptual design(s) using a free-piston Stirling (FPSE), and a heat pipe will be discussed. The ASCS will be designed using technology which can reasonably be expected to be available in the 1980's.

  6. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  7. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  8. Recent Advancements in Full Tensor Gravity Gradiometry for Resource Exploration: A Case study from West Africa - Birmian Greenstone Belt

    NASA Astrophysics Data System (ADS)

    Brewster, J.; Mataragio, J.

    2014-12-01

    Over the years significant progress has been made in understanding the regional geologic models of the Greenstone Belts associated with gold mineralization in the fields of exploration geochemistry, geophysics and data integration. Improved knowledge of the geological models together with advancements in exploration techniques have resulted in the discovery of many near surface, and relatively large gold mines around the world such as the Abitibi, Isua, Barberton, Lake Victoria, Sadiola, and Yatela. However, the search for new deposits becomes more difficult due to the fact that most easily detectable, near surface deposits have been discovered. Many of the remaining deposits tend to be remotely located and deep underground. Effective exploration for new economically viable deposits requires approaches that integrate multiple techniques capable of resolving smaller, deeper and remotely located resources. Gravity surveys have been widely used to map and define geometry and structure of greenstones belts at a regional scale. Structure and hydrothermally altered zones can be mapped, either directly by gravity in weathered environments or inferred in terrains where geological units of different density are offset and/or altered Gravity gradiometry is increasingly becoming a standard method of commercial minerals exploration. Gradiometry presents a significant increase in spatial resolution when compared to previous airborne gravity methods. Airborne full tensor gravity gradiometry surveys have been flown in the past for prospect-level gold exploration in Quebec, Nunavut, Nevada, Brazil, Mali, Zambia and New Zealand and Nevada. The application of airborne gravity gradiometry for prospect-level gold exploration over greenstone belts is discussed in this paper. The high resolution system capability to detect small, high frequency targets is the key for successful results. In addition, this paper presents and discusses data enhancement and 3D inversion results. It is

  9. Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John

    2004-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.

  10. New Thematic Solar System Exploration Products for Scientists and Educators

    NASA Technical Reports Server (NTRS)

    Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn

    2004-01-01

    The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.

  11. NASA's Advanced Life Support Systems Human-Rated Test Facility.

    PubMed

    Henninger, D L; Tri, T O; Packham, N J

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  12. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  13. Human System Drivers for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Steinberg, Susan; Charles, John B.

    2010-01-01

    Evaluation of DRM4 in terms of the human system includes the ability to meet NASA standards, the inclusion of the human system in the design trade space, preparation for future missions and consideration of a robotic precursor mission. Ensuring both the safety and the performance capability of the human system depends upon satisfying NASA Space Flight Human System Standards.1 These standards in turn drive the development of program-specific requirements for Near-earth Object (NEO) missions. In evaluating DRM4 in terms of these human system standards, the currently existing risk models, technologies and biological countermeasures were used. A summary of this evaluation is provided below in a structure that supports a mission architecture planning activities. 1. Unacceptable Level of Risk The duration of the DRM4 mission leads to an unacceptable level of risk for two aspects of human system health: A. The permissible exposure limit for space flight radiation exposure (a human system standard) would be exceeded by DRM4. B. The risk of visual alterations and abnormally high intracranial pressure would be too high. 1

  14. Advanced space transportation systems, BARGOUZIN booster

    NASA Astrophysics Data System (ADS)

    Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, André; Couteau, Jean-Noël

    2008-07-01

    In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

  15. Advanced Earth Observation System Instrumentation Study (AEOSIS)

    NASA Technical Reports Server (NTRS)

    Var, R. E.

    1976-01-01

    The feasibility, practicality, and cost are investigated for establishing a national system or grid of artificial landmarks suitable for automated (near real time) recognition in the multispectral scanner imagery data from an earth observation satellite (EOS). The intended use of such landmarks, for orbit determination and improved mapping accuracy is reviewed. The desirability of using xenon searchlight landmarks for this purpose is explored theoretically and by means of experimental results obtained with LANDSAT 1 and LANDSAT 2. These results are used, in conjunction with the demonstrated efficiency of an automated detection scheme, to determine the size and cost of a xenon searchlight that would be suitable for an EOS Searchlight Landmark Station (SLS), and to facilitate the development of a conceptual design for an automated and environmentally protected EOS SLS.

  16. Advanced information processing system: Input/output system services

    NASA Technical Reports Server (NTRS)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  17. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  18. Hollow fiber membrane systems for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1976-01-01

    The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.

  19. Solar System Exploration -- What Comes Next?

    NASA Video Gallery

    Do you think we already know everything about our solar system? Think again. We've barely scratched the surface of what there is to learn. Join NASA as it sends missions to the far ends of the sola...

  20. Telecommunications systems evolution for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  1. Electrical system options for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.; Cull, Ronald C.

    1991-01-01

    The need for a space power utility concept is discussed and the impact of this concept on the engineering of space power systems is examined. Experiences gained from Space Station Freedom and SEI systems studies are used to discuss the factors that may affect the choice of frequency standards on which to build such a space power utility. Emphasis is given to electrical power control, conditioning, and distribution subsystems.

  2. Advances in Systems Biology, Advances in Experimental Medicine and Biology Volume 547

    SciTech Connect

    Opresko, Lee; Gephart, Julie M.; Mann, Michaela B.

    2002-12-02

    This is the inaugural year for a new series of symposia on systems biology. Particular focus will be on identifying current breakthrough technologies and their application to important model systems. By integrating computational sciences, high-throughput technologies and quantitative biology, we hope to facilitate advancements in this important new area of research.In this first year we are focusing on the four different research areas contained within the new U.S. Department of Energy (DOE) Genomes to Life program. This program is the successor to the Human Genome Project and exceeds it in scope and ambition. Its goal is to understand the basis of life and ?to venture beyond characterizing such individual life components as genes and other DNA sequences toward a more comprehensive, integrated view of biology at a whole-systems level.? These goals will be met by1. identifying the protein machines that carry out critical life functions2. characterizing the gene regulatory networks that control these machines3. exploring the functional repertoire of complex microbial communities in their natural environments to provide a foundation for understanding and using their remarkably diverse capabilities to address DOE missions4. developing the computational capabilities to integrate and understand these data and begin to model complex biological systems.

  3. Introducing NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners

  4. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    factors for SCR systems and aid in the development of urea control strategy for maximum NOx reduction with minimum NH3 slip. A durable co-fueling system was successfully built and tested, with the help of service station nozzle and dispenser manufacturers, for simultaneous delivery of diesel fuel and aqueous urea to the vehicle. The business case for an aqueous urea infrastructure in the US for light-duty vehicles was explored.

  5. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  6. Tool for Sizing Analysis of the Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  7. The advanced flame quality indicator system

    SciTech Connect

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A.

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  8. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  9. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  10. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  11. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    1997-01-01

    This summary of international nonfuel mineral exploration activities for 1996 uses available data from literature, industry, and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on minerals industry direction are drawn from these data.

  12. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  13. Analysis of advanced optical glass and systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Feng, Chen

    1991-01-01

    Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.

  14. Exploration Medical Capability System Engineering Introduction and Vision

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Reilly, J.

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.

  15. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  16. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  17. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2001-01-01

    Part of an annual review of mines and mineral resources in the U.S. An overview of nonfuel-mineral exploration in 2000 is presented. Principal exploration target was gold exploration in Latin America, Australia, and the U.S. There was a decrease of 18 percent in the exploration budget for gold as compared with the budget for 1999. Statistical information on nonfuel-mineral exploration worldwide is presented, analyzed, and interpreted.

  18. Exploring student response systems in nursing education.

    PubMed

    Zurmehly, Joyce; Leadingham, Camille

    2008-01-01

    Using software products in the classroom can be an effective component in an overall technology integration plan. Choosing the right software for the subject area and classroom, however, can be a formidable task if undertaken without preplanning. In this article, we describe the developing process experienced professionally and personally with the student response system. The Internet and other new digital technologies have changed the way we respond to information. These changes are making an impact on students' learning styles and preferences. How to address this issue might be found in an endeavor that places the student at the center of the learning process and facilitates a more active experience: the interactive student response system. Imagine classrooms where teachers electronically introduce assignments using receivers and students beam information from pocket-sized remote controls. Imagine students working on group projects exchanging information without pen or paper.

  19. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  20. NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Schmidt, G.; Daou, D.; Pendleton, Y.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science andexploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  1. Advanced Systems for Monitoring Underwater Sounds

    NASA Technical Reports Server (NTRS)

    Lane, Michael; Van Meter, Steven; Gilmore, Richard Grant; Sommer, Keith

    2007-01-01

    The term "Passive Acoustic Monitoring System" (PAMS) describes a developmental sensing-and-data-acquisition system for recording underwater sounds. The sounds (more precisely, digitized and preprocessed versions from acoustic transducers) are subsequently analyzed by a combination of data processing and interpretation to identify and/or, in some cases, to locate the sources of those sounds. PAMS was originally designed to locate the sources such as fish of species that one knows or seeks to identify. The PAMS unit could also be used to locate other sources, for example, marine life, human divers, and/or vessels. The underlying principles of passive acoustic sensing and analyzing acoustic-signal data in conjunction with temperature and salinity data are not new and not unique to PAMS. Part of the uniqueness of the PAMS design is that it is the first deep-sea instrumentation design to provide a capability for studying soniferous marine animals (especially fish) over the wide depth range described below. The uniqueness of PAMS also lies partly in a synergistic combination of advanced sensing, packaging, and data-processing design features with features adapted from proven marine instrumentation systems. This combination affords a versatility that enables adaptation to a variety of undersea missions using a variety of sensors. The interpretation of acoustic data can include visual inspection of power-spectrum plots for identification of spectral signatures of known biological species or artificial sources. Alternatively or in addition, data analysis could include determination of relative times of arrival of signals at different acoustic sensors arrayed at known locations. From these times of arrival, locations of acoustic sources (and errors in those locations) can be estimated. Estimates of relative locations of sources and sensors can be refined through analysis of the attenuation of sound in the intervening water in combination with water-temperature and salinity

  2. The Solar System in the Age of Space Exploration

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2011-06-01

    We are celebrating the 50th anniversary of the launch of Sputnik, which began the space age. Though the manned exploration of the solar system has been limited to the Moon, in NASA's Apollo Program that ended over 35 years ago, robotic exploration of the solar system continues to be very successful. This paper explores the latest space mission and other observations of each planet and of each type of solar-system object, including dwarf planets, asteroids, and comets, as well as the sun.

  3. NASA Crew Exploration Vehicle, Thermal Protection System, Lessons Learned

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Reuther, James

    2008-01-01

    -Destructive Evaluation (NDE), and in integration of and manufacturing heat shield as a system. The capabilities of the two heat shield systems including failure modes via testing and analysis, once established, can serve the Probe Community and future mission designers to inner and outer planetary exploration very well. For example, missions to Venus, Mars and Titan can use either one of the system by selecting the mission design parameters that utilizes the full characteristics of these system to make use of system efficiency that will result in reduced heat shield mass, system robustness that will enhance mission success and cost. We plan to present significant progresses of the past three years and highlight the significant contributions CEV TPS ADP Project has made to advance the state of the art in Thermal Protection System technology that has and will continue to benefit future entry probe missions.

  4. GLODAPv2 data exploration and extraction system

    NASA Astrophysics Data System (ADS)

    Krassovski, Misha; Kozyr, Alex; Boden, Thomas

    2016-04-01

    The Global Ocean Data Analysis Project (GLODAP) is a cooperative effort of investigators funded for ocean synthesis and modeling projects by the U.S. National Oceanic and Atmospheric Administration (NOAA), Department of Energy (DOE), and National Science Foundation (NSF). Cruises conducted as part of the WOCE, JGOFS, and NOAA Ocean-Atmosphere Carbon Exchange Study (OACES) over the decade of the 1990s generated oceanographic data of unparalleled quality and quantity. GLODAPv2 is a uniformly calibrated open-ocean data product containing inorganic carbon and carbon-relevant variables. This new product includes data from approximately one million individual seawater samples collected from over 700 cruises during the period 1972-2013. Extensive quality control and subsequent calibration were carried out for salinity, oxygen, nutrient, carbon dioxide, total alkalinity, pH, and chlorofluorocarbon data. The Carbon Dioxide Information and Analysis Center (CDIAC), serving as the primary DOE disseminator for climate data and information, developed database and web accessible systems that permit users worldwide to query and retrieve data from the GLODAPv2 collection. This presentation will showcase this new system, discuss technologies used to build the GLODAPv2 resource, and describe integration with a metadata search engine provided by CDIAC as well.

  5. Exoproteomics: exploring the world around biological systems.

    PubMed

    Armengaud, Jean; Christie-Oleza, Joseph A; Clair, Gérémy; Malard, Véronique; Duport, Catherine

    2012-10-01

    The term 'exoproteome' describes the protein content that can be found in the extracellular proximity of a given biological system. These proteins arise from cellular secretion, other protein export mechanisms or cell lysis, but only the most stable proteins in this environment will remain in abundance. It has been shown that these proteins reflect the physiological state of the cells in a given condition and are indicators of how living systems interact with their environments. High-throughput proteomic approaches based on a shotgun strategy, and high-resolution mass spectrometers, have modified the authors' view of exoproteomes. In the present review, the authors describe how these new approaches should be exploited to obtain the maximum useful information from a sample, whatever its origin. The methodologies used for studying secretion from model cell lines derived from eukaryotic, multicellular organisms, virulence determinants of pathogens and environmental bacteria and their relationships with their habitats are illustrated with several examples. The implication of such data, in terms of proteogenomics and the discovery of novel protein functions, is discussed.

  6. Advances in Global Flood Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Thielen-del Pozo, J.; Pappenberger, F.; Burek, P.; Alfieri, L.; Kreminski, B.; Muraro, D.

    2012-12-01

    -meteorological processes are not fully captured and calibration is necessary. Critical thresholds are computed from long-term simulations where the coupled HTESSEL/LISFLOOD model is driven with ERA-Interim data for a period of 21 years.From the longterm runs return periods are estimated against which each flood forecasts are compared. Results are displayed as maps and time series on a web-interface providing global overviews as well as local quantitative information. Major floods such as the ones in South East Asia in September-October 2010 in Thailand, Cambodia and Vietnam were well captured by the system: for the lower Mekong River, probabilistic forecasts from the global simulations on the 18th September 2011 showed a probability higher than 40% of exceeding the high alert level from 2nd-4th October, hence 14 days in advance. Collaborations exist between the EU and Brazil to further the system for Brazilian rivers. Next steps include further research and development, rigorous testing and adaptations. calibration of the system with available data, and work on selected case studies for quantitative improvements.

  7. Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014

    NASA Technical Reports Server (NTRS)

    Coker, R.; Knox, J.; Gomez, C.

    2015-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  8. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    SciTech Connect

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  9. Participatory Exploration: The Role of the User Contribution System

    NASA Technical Reports Server (NTRS)

    Skytland, Nicholas G.

    2009-01-01

    This viewgraph presentation explores how NASA can apply the global shift in demographics, the popularity of collaborative technology and the desire for participation to the future of space exploration. Included in this is a review of the evolution of work, the engagement gap, user contribution systems and a case study concerning the "digital astronaut".

  10. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  11. Advanced Subcritical Assistance Radioisotope Thermoelectric Generator: An Imperative Solution for the Future of NASA Exploration

    NASA Astrophysics Data System (ADS)

    Arias, F. J.

    A new generation of radioisotope thermoelectrical generator is proposed for very long space exploration missions. The Advanced Subcritical Assistance Radioisotope Thermoelectric Generator (ASA-RTG) amplify the power from natural decay of pu-238 by a small subcritical multiplication produced from the small neutron background generated from (α, n) reactions between the α particles from Pu-238 and beryllium, lithium or other low-Z isotope, extracting the maximum advantage and performance from the precious α disintegration, and then of the very scarce pu-238. The process is self controlled by the natural decay of Pu-238 with the progressive reduction of the power output (RTG) and additionally and simultaneously compensate by the natural decay of a neutronic poisson which increase simultaneously the subcritical multiplication resulting in a contrary effect, i.e., causing an increase in the power. ASA-RTG is not in conflict with previous RTG, and could fit within the type of Radioisotope Thermoelectric Generator developed for NASA space missions as the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and the Advanced Stirling Radioisotope Generator (ASRG).

  12. Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2011-01-01

    A comprehensive exploration of the turbofan engine design space for an advanced technology single-aisle transport (737/A320 class aircraft) was conducted previously by the authors and is documented in a prior report. Through the course of that study and in a subsequent evaluation of the approach and results, a number of enhancements to the engine design ground rules and assumptions were identified. A follow-on effort was initiated to investigate the impacts of these changes on the original study results. The fundamental conclusions of the prior study were found to still be valid with the revised engine designs. The most significant impact of the design changes was a reduction in the aircraft weight and block fuel penalties incurred with low fan pressure ratio, ultra-high bypass ratio designs. This enables lower noise levels to be pursued (through lower fan pressure ratio) with minor negative impacts on aircraft weight and fuel efficiency. Regardless of the engine design selected, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  13. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  14. Advances in Vertical Cable Seismic (VCS) for Seafloor Massive Sulfide exploration

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Tara, K.; Lee, S.; Saito, S.

    2015-12-01

    In 2014, the Japanese government started the Cross-ministerial Strategic Innovation Promotion Program (SIP), which includes 'Next-generation Ocean Resource Exploration Techniques' as an area of interest. J-MARES aims to establish "Multi-stage and integrated approach for SMSs exploration" using effectual geophysical exploration method and tools. JGI proposed the Vertical Cable Seismic (VCS) technique which is a reflection seismic method that uses hydrophone arrays vertically moored from the seafloor. It is useful to delineate detailed structures in a spatially-limited efficiently. We have developed autonomous VCS systems and carried out several VCS surveys in actual hydrothermal area in Okinawa Trough. These results successfully delineated sub-seabed structures that suggest the existence of buried SMS deposits. Based on the successful results of these surveys, we are continuing to polish up the VCS system with data processing methods. To obtain more detailed structure, we have manufactured four new-type of VCS with 16 hydrophones. Then we carry out the VCS survey using deep-tow high frequency source. The key points are (1) a high-frequency source close to the target, (2)efficiency of the surveys and (3)wide-angle reflections to detect of bottom interface of sulfide ore body. The most crucial technical issue is the positioning the deep-tow source. As for the data processing, we have applied Prestack Depth Migration to obtain the subsurface structure but the velocity cannot be estimated adequately. We adopt CSP-EOM processing to VCS data. It is based on scattering phenomena which is useful for the scattering dominant area such as SMS area. This method gives us the velocity estimation of the SMS. We consider VCS has high-potential for SMS exploration. The system will continue to be improved as part of the SIP project, along with other geophysical exploration techniques such as EM, magnetic and gravity.

  15. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  16. Power System for Venus Surface Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Mellott, Kenneth

    2002-01-01

    A radioisotope power and cooling system is designed to provide electrical power for a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep electronic components at a temperature below ambient. The fundamental cooling parameters are the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density (90 bar CO2) atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus, with a small contribution of heat generation from electronics and sensors. Both thermoelectric (RTG) and dynamic power conversion systems were analyzed, based on use of a standard isotope (General-purpose heat source, or GPHS) brick. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500-watt power class, laboratory-tested Stirling engines. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg

  17. Tradespace Exploration of Distributed Propulsors for Advanced On-Demand Mobility Concepts

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Moore, Mark D.; Turnbull, Andrew R.

    2014-01-01

    Combustion-based sources of shaft power tend to significantly penalize distributed propulsion concepts, but electric motors represent an opportunity to advance the use of integrated distributed propulsion on an aircraft. This enables use of propellers in nontraditional, non-thrust-centric applications, including wing lift augmentation, through propeller slipstream acceleration from distributed leading edge propellers, as well as wingtip cruise propulsors. Developing propellers for these applications challenges long-held constraints within propeller design, such as the notion of optimizing for maximum propulsive efficiency, or the use of constant-speed propellers for high-performance aircraft. This paper explores the design space of fixed-pitch propellers for use as (1) lift augmentation when distributed about a wing's leading edge, and (2) as fixed-pitch cruise propellers with significant thrust at reduced tip speeds for takeoff. A methodology is developed for evaluating the high-level trades for these types of propellers and is applied to the exploration of a NASA Distributed Electric Propulsion concept. The results show that the leading edge propellers have very high solidity and pitch well outside of the empirical database, and that the cruise propellers can be operated over a wide RPM range to ensure that thrust can still be produced at takeoff without the need for a pitch change mechanism. To minimize noise exposure to observers on the ground, both the leading edge and cruise propellers are designed for low tip-speed operation during takeoff, climb, and approach.

  18. Progress in Materials and Component Development for Advanced Lithium-ion Cells for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha, M.; Reid, Concha M.

    2011-01-01

    Vehicles and stand-alone power systems that enable the next generation of human missions to the Moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the- art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance the power systems for the Altair Lunar Lander, Extravehicular Activities spacesuit, and rovers and portable utility pallets for Lunar Surface Systems. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This report on interim progress of the development efforts will elaborate on the challenges of the development activities, proposed strategies to overcome technical issues, and present performance of materials and cell components.

  19. Ares V: Application to Solar System Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Reh, Kim; Spilker, Tom; Elliott, John; Balint, Tibor; Donahue, Ben; McCormick, Dave; Smith, David B.; Tandon, Sunil; Woodcock, Gordon

    2008-01-01

    The following sections describe Ares V performance and its payoff to a wide array of potential solar system exploration missions. Application to potential Astrophysics missions is addressed in Reference 3.

  20. Scanning Laser Radar Development for Solar System Exploration Applications

    NASA Technical Reports Server (NTRS)

    Tratt, D.; Menzies, R.; Bartman, R.; Hemmati, H.

    2000-01-01

    The Jet Propulsion Laboratory (JPL) has recently established an accelerated development initiative to enable high-resolution active optical ranging and terrain mapping capabilities for a series of upcoming Solar System exploration missions.