Science.gov

Sample records for advanced fighter aircraft

  1. Maneuvering technology for advanced fighter aircraft

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, Scott H.; Byers, Richard H.

    1992-01-01

    The need for increased maneuverability has its genesis from the first aerial combat engagement when two adversaries entangled themselves in a deadly aerial dance trying to gain the advantage over the other. It has only been in the past two decades that technologies have been investigated to increase aircraft control at maneuver attitudes that are typically dominated by highly separated flows. These separated flow regions are aggravated by advanced fighter aircraft shapes required to defeat an electronic enemy. This paper discusses passive and active devices that can be used to enhance the maneuverability of advanced fighter aircraft through vortex flow control, boundary layer control, and innovative flow manipulation.

  2. Some fighter aircraft trends

    NASA Technical Reports Server (NTRS)

    Spearman, L.

    1985-01-01

    Some basic trends in fighters are traced from the post World II era. Beginning with the first operational jet fighter, the P-80, the characteristics of subsequent fighter aircraft are examined for performance, mission capability, effectiveness, and cost. Characteristics presented include: power loading, wing loading, maximum speed, rate of climb, turn rate, weight and weight distribution, cost and cost distribution. The characteristics of some USSR aircraft are included for comparison. The trends indicate some of the rationale for certain fighter designs and some likely characteristics to be sought in future fighter aircraft designs.

  3. The impact of technology on fighter aircraft requirements

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.

    1985-01-01

    Technology integration studies were made to examine the impact of emerging technologies on fighter aircraft. The technologies examined included advances in aerodynamics, controls, structures, propulsion, and systems and were those which appeared capable of being ready for application by the turn of the century. A primary impetus behind large increases in figher capability will be the rapid increase in fighter engine thrust-to-weight ratio. High thrust-weight engines, integrated with other advanced and emerging technologies, can result in small extremely maneuverable fighter aircraft that have thrust-weight ratios of 1.4+ and weight one-half as much as today's fighters. Future fighter aircraft requirements are likely to include a turn capability in excess of 7g's throughout much of the maneuver envelope, post-stall maneuverability, STOVL or VTOL, and a single engine for low cost.

  4. Lift Enhancing Surfaces on Several Advanced V/STOL Fighter/Attack Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Smith, Stephen C.

    1981-01-01

    An analysis of the relative influences of for-ward lift-enhancing surfaces on the overall lift and drag characteristics of three wind-tunnel models representative of V/STOL fighter/attack aircraft is presented. Two of the models are canard-wing configurations and one has a wing leading-edge extension (LEX) as the forward lifting surface. Data are taken from wind-tunnel tests of each model covering Mach numbers from 0.4 to 1.4. Overall lift and drag characteristics of these models and the generally favorable interactions of the forward surfaces with the wings are highlighted. Results indicate surface that larger LFX's and canards generally give greater lift and drag improvements than ones that are smaller relative to the wings.

  5. Lift-enhancing surfaces on several advanced V/STOL fighter/attack aircraft concepts

    NASA Technical Reports Server (NTRS)

    Durston, D. A.; Smith, S. C.

    1981-01-01

    An analysis of the relative influences of forward lift-enhancing surfaces on the overall lift and drag characteristics of three wind-tunnel models representative of V/STOL fighter/attack aircraft is presented. Two of the models are canard-wing configurations and one has a wing leading-edge extension (LEX) as the forward lifting surface. Data are taken from wind-tunnel tests of each model covering Mach numbers from 0.4 to 1.4. Overall lift and drag characteristics of these models and the generally favorable interactions of the forward surfaces with the wings are highlighted. Results indicate that larger LEX's and canards generally give greater lift and drag improvements than ones that are smaller relative to the wings.

  6. Ejection safety for advanced fighter helmets

    NASA Astrophysics Data System (ADS)

    Wiley, Larry L.; Brown, Randall W.; MacMillan, Robert T.

    1995-05-01

    The old saying, `Safety is paramount.' was never more true than it is in the area of ejection safety for high-speed fighter aircraft. The fighter aircraft of today has been designed to endure tremendous structural loading during dogfight or evasive maneuvers. It can fly faster, turn quicker, stay in the air longer (with in-flight refuel) and carry more bombs than its predecessor. Because of human physiological limits, the human has become the weak link in today's fighter aircraft. The fighter pilot must endure and function with peak performance in conditions that are much worse than anything the majority of us will ever encounter. When these conditions reach a point that human endurance is exceeded, devices such as anti-g suits and positive pressure breathing apparatus help the fighter pilot squeeze out that extra percentage of strength necessary to outperform the opponent. As fighter aircraft become more sophisticated, helmet trackers, helmet displays and noise cancellation devices are being added to the helmet. Yet the fighter pilot's helmet must remain lightweight and be aesthetically appealing, while still offering ballistic protection. It must function with existing life support equipment such as the Combined Advanced Technology Enhanced Design g-Ensemble (COMBAT-EDGE). It must not impede the pilot's ability to perform any action necessary to accomplish the planned mission. The helmet must protect the pilot during the harsh environment of ejection. When the pilot's only resort is to pull the handle and initiate the ejection sequence, the helmet becomes his salvation or instant death. This paper discusses the safety concerns relative to the catapult phase of ejecting from a high-speed fighter while wearing an advanced fighter helmet.

  7. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sachin; Mohite, P. M.

    2015-01-01

    The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC) skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI) in unidirectional fibrous laminates using Genetic-Algorithms (GA) under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT). The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  8. Redesigning of a Canard Control Surface of an Advanced Fighter Aircraft: Effect on Buckling and Aerodynamic Behavior

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sachin; Mohite, P. M.

    2015-01-01

    A redesign of canard control-surface of an advanced all-metallic fighter aircraft was carried out by using carbon fibre composite (CFC) for ribs and panels. In this study ply-orientations of CFC structure are optimized using a Genetic-Algorithm (GA) with an objective function to have minimum failure index (FI) according to Tsai-Wu failure criterion. The redesigned CFC structure was sufficiently strong to withstand aerodynamic loads from stress and deflection points of view. Now, in the present work CFC canard structure has been studied for its buckling strength in comparison to existing metallic design. In this study, the existing metallic design was found to be weak in buckling. Upon a detailed investigation, it was revealed that there are reported failures in the vicinity of zones where initial buckling modes are excited as predicted by the finite element based buckling analysis. In view of buckling failures, the redesigned CFC structure is sufficiently reinforced with stringers at specific locations. After providing reinforcements against buckling, the twist and the camber variations of the airfoil are checked and compared with existing structure data. Finally, the modal analysis has been carried out to compare the variation in excitation frequency due to material change. The CFC structure thus redesigned is safe from buckling and aerodynamic aspects as well.

  9. Thrust Vectoring for Advanced Fighter Aircraft - High Angle of Attack Intake Investigations -

    DTIC Science & Technology

    2001-06-01

    radius Tt total temperature Numerical flow calculations ( CFD ) were to be performed to WAT normalized engine mass flow support the analysis of the... CFD ) investigations will be but could also result in damages of the engine and/or aircraft detailed. Results and comparisons between flows at small...dominated measured, by the shielding of the fuselage and the canard. 4.4 Data analysis During all the testing the intake lip position has been held fixed at

  10. Light weight escape capsule for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Robert, James A.

    1988-01-01

    Emergency crew escape capabilities have been less than adequate for fighter aircraft since before WW II. From the over-the-side bailout of those days through the current ejection seat with a rocket catapult, escaping from a disabled aircraft has been risky at best. Current efforts are underway toward developing a high-tech, smart ejection seat that will give fighter pilots more room to live in the sky, but an escape capsule is needed to meet current and future fighter envelopes. Escape capsules have a bad reputation due to past examples of high weight, poor performance and great complexity. However, the advantages available demand that a capsule be developed. This capsule concept will minimize the inherent disavantages and incorporate the benefits while integrating all aspects of crew station design. The resulting design is appropriate for a crew station of the year 2010 and includes improved combat acceleration protection, chemical or biological combat capability, improved aircraft to escape system interaction, and the highest level of escape performance achievable. The capsule is compact, which can allow a reduced aircraft size and weighs only 1200 lb. The escape system weight penalty is only 120 lb higher than that for the next ejection seat and the capsule has a corresponding increase in performance.

  11. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft is steered to it's hangar at NASA Dryden Flight Research Center, Edwards, California, following arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a

  12. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel wait to attach a hoist to the X-36 Tailless Fighter Agility Research Aircraft, which arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high

  13. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft in it's hangar at NASA Dryden Flight Research Center, Edwards, California, following its arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  14. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel remove protective covers from the newly arrived NASA/McDonnell Douglas Corporation X-36 Tailless Fighter Agility Research Aircraft. It arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1

  15. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The tailless X-36 technology demonstrator research aircraft cruises over the California desert at low altitude during a 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine

  16. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The X-36 technology demonstrator shows off its distinctive shape as the remotely piloted aircraft flies a research mission over the Southern California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams

  17. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  18. Swarms of UAVs and fighter aircraft

    SciTech Connect

    Trahan, M.W.; Wagner, J.S.; Stantz, K.M.; Gray, P.C.; Robinett, R.

    1998-11-01

    This paper describes a method of modeling swarms of UAVs and/or fighter aircraft using particle simulation concepts. Recent investigations into the use of genetic algorithms to design neural networks for the control of autonomous vehicles (i.e., robots) led to the examination of methods of simulating large collections of robots. This paper describes the successful implementation of a model of swarm dynamics using particle simulation concepts. Several examples of the complex behaviors achieved in a target/interceptor scenario are presented.

  19. An investigation of fighter aircraft agility

    NASA Technical Reports Server (NTRS)

    Valasek, John; Downing, David R.

    1993-01-01

    This report attempts to unify in a single document the results of a series of studies on fighter aircraft agility funded by the NASA Ames Research Center, Dryden Flight Research Facility and conducted at the University of Kansas Flight Research Laboratory during the period January 1989 through December 1993. New metrics proposed by pilots and the research community to assess fighter aircraft agility are collected and analyzed. The report develops a framework for understanding the context into which the various proposed fighter agility metrics fit in terms of application and testing. Since new metrics continue to be proposed, this report does not claim to contain every proposed fighter agility metric. Flight test procedures, test constraints, and related criteria are developed. Instrumentation required to quantify agility via flight test is considered, as is the sensitivity of the candidate metrics to deviations from nominal pilot command inputs, which is studied in detail. Instead of supplying specific, detailed conclusions about the relevance or utility of one candidate metric versus another, the authors have attempted to provide sufficient data and analyses for readers to formulate their own conclusions. Readers are therefore ultimately responsible for judging exactly which metrics are 'best' for their particular needs. Additionally, it is not the intent of the authors to suggest combat tactics or other actual operational uses of the results and data in this report. This has been left up to the user community. Twenty of the candidate agility metrics were selected for evaluation with high fidelity, nonlinear, non real-time flight simulation computer programs of the F-5A Freedom Fighter, F-16A Fighting Falcon, F-18A Hornet, and X-29A. The information and data presented on the 20 candidate metrics which were evaluated will assist interested readers in conducting their own extensive investigations. The report provides a definition and analysis of each metric; details

  20. Computer sizing of fighter aircraft

    NASA Technical Reports Server (NTRS)

    Coen, P. G.; Foss, W. E., Jr.

    1985-01-01

    The computer sizing technique has been applied to a number of military mission profiles. Performance data can be determined for all segments of the selected profile, which typically include takeoff, climb, cruise, loiter, reserve and landing segments. Options are available for detailed calculation of combat performance and energy-maneuverability characteristics. Configuration changes, such as external fuel tank drop and weapon expenditure, can be included in the mission. In the sizing mode, aircraft gross weight, wing loading, and thrust-to-weight ratio are varied automatically to determine which combinations meet the design mission radius. The resulting performance data can be used to create a thumbprint plot. This plot is useful in determining the configuration size that best satisfies the mission and performance requirements. The sizing mode can also be used to perform parametric studies such as sensitivity of gross weight to alternate design conditions.

  1. Computer sizing of fighter aircraft

    NASA Technical Reports Server (NTRS)

    Coen, P. G.; Foss, W. E., Jr.

    1986-01-01

    The computer sizing technique has been applied to a number of military mission profiles. Performance data can be determined for all segments of the selected profile, which typically include takeoff, climb, cruise, loiter, reserve and landing segments. Options are available for detailed calculation of combat performance and energy-maneuverability characteristics. Configuration changes, such as external fuel tank drop and weapon expenditure, can be included in the mission. In the sizing mode, aircraft gross weight, wing loading, and thrust-to-weight ratio are varied automatically to determine which combinations meet the design mission radius. The resulting performance data can be used to create a thumbprint plot. This plot is useful in determining the configuration size that best satisfies the mission and performance requirements. The sizing mode can also be used to perform parametric studies such as sensitivity of gross weight to alternate design conditions.

  2. Transonics and fighter aircraft: Challenges and opportunities for CFD

    NASA Technical Reports Server (NTRS)

    Miranda, Luis R.

    1989-01-01

    The application of computational fluid dynamics (CFD) to fighter aircraft design and development is discussed. Methodology requirements for the aerodynamic design of fighter aircraft are briefly reviewed. The state-of-the-art of computational methods for transonic flows in the light of these requirements is assessed and the techniques found most adequate for the subject application are identified. Highlights from some proof-of-feasibility Euler and Navier-Stokes computations about a complete fighter aircraft configuration are presented. Finally, critical issues and opportunities for design application of CFD are discussed.

  3. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  4. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  5. X-31 Enhanced Fighter Maneuverability Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The X-31 Enhanced Fighter Maneuverability aircraft in flight over California's Mojave desert during a 1992 test flight. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat

  6. F-35 Joint Strike Fighter Aircraft (F-35)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-198 F-35 Joint Strike Fighter Aircraft (F-35) As of FY 2017 President’s Budget Defense...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY

  7. Study of aerodynamic technology for VSTOL fighter attack aircraft

    NASA Technical Reports Server (NTRS)

    Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.

    1978-01-01

    Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.

  8. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. More taxi and radio frequency tests were slated before it's first flight would be made. This took place on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems

  9. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X

  10. Forward Arming and Refueling Points for Fighter Aircraft: Power Projection in an Antiaccess Environment

    DTIC Science & Technology

    2014-10-01

    Antiaccess Environment Lt Col Robert D. Davis, USAF The United States depends upon effective power projection to advance its national interests abroad. A...TITLE AND SUBTITLE Forward Arming and Refueling Points for Fighter Aircraft: Power Projection in an Antiaccess Environment 5a. CONTRACT NUMBER 5b...A2/AD environ - ment. Currently, this affordable, feasible concept can be executed on a small scale, but the Air Force should develop it into an

  11. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  12. Results of recent NASA studies on automatic spin prevention for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Nguyen, L. T.

    1976-01-01

    A broad based research program was developed to eliminate or minimize inadvertent spins for advanced military aircraft. Recent piloted simulator studies and airplane flight tests have demonstrated that the automatic control systems in use on current fighters can be tailored to provide a high degree of spin resistance for some configurations without restrictions to maneuverability. Such systems result in greatly increased tactical effectiveness, safety, and pilot confidence.

  13. Aerodynamic control of fighter aircraft by manipulation of forebody vortices

    NASA Technical Reports Server (NTRS)

    Malcolm, Gerald N.; Ng, T. Terry

    1991-01-01

    Methods of enhancing aircraft controllability and maneuverability at high angles of attack by manipulating the forebody vortices are discussed. Pneumatic control methods including jet blowing, slot blowing, and suction, and mechanical control methods using forebody and nose tip strakes are reviewed. The potential of various control devices in controlling the forebody flow, and thus, providing controlled yawing moments at high angles of attack are illustrated using wind tunnel results from a generic fighter and water tunnel results from an F/A-18.

  14. A programmable voice processor for fighter aircraft applications

    NASA Astrophysics Data System (ADS)

    Hofstetter, E. M.; Singer, E.; Tierney, J.

    1983-08-01

    A flexible, high-speed digital voice processor has been designed for use in conjunction with the JTIDS communication terminal to be installed for testing on board F-15 fighter aircraft and in Army JTIDS installations. The processor, known as the Advanced Linear Predictive Microprocessor (ALPCM), has an architecture which is similar to that of its predecessor but contains significant improvements in speed, memory, and software development aids. The design includes an arithmetic section (four AMD 2901C bit-slice RALUs and an AMD 29517 16x16 multiplier), a doubly pipelined control path, and an I/O section based on a finite state machine implementation. Microcode development is enhanced by the presence of an interactive debugging system consisting of a plug-in monitor board controlled from a host computer. The ALPCM is capable of implementing conventional 2400-bps LPC vocoders in real time and is sufficiently powerful to accommodate more sophisticated, computationally intensive algorithms should the extra performance they provide be required in the severe F-15 operational environment.

  15. Euler Technology Assessment for Preliminary Aircraft Design-Unstructured/Structured Grid NASTD Application for Aerodynamic Analysis of an Advanced Fighter/Tailless Configuration

    NASA Technical Reports Server (NTRS)

    Michal, Todd R.

    1998-01-01

    This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.

  16. Tactical Applications Of The Helmet Display In Fighter Aircraft.

    NASA Astrophysics Data System (ADS)

    Barnes, William J.

    1989-09-01

    This unclassified presentation discusses in detail the tactical applications of current technology helmet mounted display (HMD) systems in fighter aircraft such as the F-15 and F-16. Emphasis will be on potential uses of the system from an operator's viewpoint, with discussions involving the types of information desired by the pilot, basic human factors requirements, and the interfaces of an HMD into other on-board systems. The uses of a stroke symbology system are exclusively discussed because it is sensor-independent and has potential applications in most tactical aircraft. This paper is divided into three major operational sections: air-to-air, air-to-ground, and defense suppression. Each operational area is briefly outlined, and a generic profile of current capabilities is developed. The increased capabilities provided by an HMD system are discussed, as well as the requirements for an optimum system that interfaces with a digital intra/inter-flight data link and an on-board digital threat warning system. Based upon the criteria developed in the operational discussions, this paper lists a compendium of basic requirements for designers of operational HMD systems and outlines the merits and liabilities of each requirement.

  17. Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.

  18. Fighter Aircraft: Better Cost Estimates Needed for Extending the Service Life of Selected F-16s and F/A-18s

    DTIC Science & Technology

    2012-11-01

    United States Government Accountability Office Highlights of GAO-13-51, a report to congressional committees November 2012 FIGHTER AIRCRAFT ...reproduce this material separately. Page 1 GAO-13-51 Fighter Aircraft United States Government Accountability Office Washington, DC 20548 November...Tactical Air and Land Forces Committee on Armed Services House of Representatives Fighter aircraft are important to achieving and maintaining air

  19. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  20. Top-mounted inlet system feasibility for transonic-supersonic fighter aircraft. [V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Williams, T. L.; Hunt, B. L.; Smeltzer, D. B.; Nelms, W. P.

    1981-01-01

    The more salient findings are presented of recent top inlet performance evaluations aimed at assessing the feasibility of top-mounted inlet systems for transonic-supersonic fighter aircraft applications. Top inlet flow field and engine-inlet performance test data show the influence of key aircraft configuration variables-inlet longitudinal position, wing leading-edge extension planform area, canopy-dorsal integration, and variable incidence canards-on top inlet performance over the Mach range of 0.6 to 2.0. Top inlet performance data are compared with those or more conventional inlet/airframe integrations in an effort to assess the viability of top-mounted inlet systems relative to conventional inlet installations.

  1. Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry

    1990-01-01

    The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.

  2. Control-system techniques for improved departure/spin resistance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.

    1980-01-01

    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.

  3. Application of Piloted Simulation to High-Angle-of-Attack Flight-Dynamics Research for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.

    2005-01-01

    This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.

  4. Wing planform effects at supersonic speeds for an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    Four advanced fighter configurations, which differed in wing planform and airfoil shape, were investigated in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Supersonic data were obtained on the four uncambered wings, which were each attached to a single fighter fuselage. The fuselage geometry varied in cross-sectional shape and had two side-mounted, flow-through, half-axisymmetric inlets. Twin vertical tails were attached to the fuselage. The four planforms tested were a 65 deg delta wing, a combination of a 20 deg trapezoidal wing and a 45 deg horizontal tail, a 70 deg/30 deg cranked wing, and a 70 deg/66 deg crank wing, where the angle values refer to the leading-edge sweep angle of the lifting-surface planform. Planform effects on a single fuselage representative of an advanced fighter aircraft were studied. Results show that the highly swept cranked wings exceeded the aerodynamic performance levels, at low lift coefficients, of the 65 deg delta wing and the 20 deg trapezoidal wing at trimmed and untrimmed conditions.

  5. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  6. Grid generation on and about a cranked-wing fighter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Pitts, Joan I.; Eriksson, Lars-Erik; Wiese, Michael R.

    1988-01-01

    Experiences at the NASA Langley Research Center generating grids about a cranked wing fighter aircraft configuration is described. A single block planar grid about the fuselage and canard used with a finite difference Navier-Stokes solver is also described. A dual block nonplanar grid about the complete configuration and used with a finite volume Euler solver is presented. The very important aspect of computing the aircraft surface grid, starting with a standardized model description, is also presented.

  7. Study of aerodynamic technology for VSTOL fighter/attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.

    1978-01-01

    An assessment was made of the aerodynamic uncertainties associated with the design of a cold-deck-environment Navy VSTOL fighter/attack aircraft utilizing jet-diffuser ejectors for vertical lift and vectored-engine-over-wing blowing for supercirculation benefits. The critical aerodynamic uncertainties were determined as those associated with the constraints which size the aircraft to a specified set of requirements. A wind tunnel model and test programs are recommended for resolving these uncertainties.

  8. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Mark, L.

    1982-01-01

    Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.

  9. Marine TACAIR Challenge 2020: Team the Joint Strike Fighter with the Next Unmanned Aircraft System

    DTIC Science & Technology

    2010-05-05

    shipping-in terms of raw numbers, tonnage capacity and network- based command and control ability.12 This deficit will hamper TACAIR presence. The...over- reliance upon canier- based air support that would grow increasingly ineffective as theN avy faced shortfalls of both fighters and aircraft cm1...spectrum, internet protocol (IP), and associated bandwidth serve as lifeblood for network-centric American forces, yet this invisible arena proves

  10. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  11. Three-dimensional elliptic grid generation about fighter aircraft for zonal finite-difference computations

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic grid-generation method for finite-difference computations about complex aerodynamic configurations is developed. A zonal approach is used, which involves first making a coarse global grid filling the entire physical domain and then subdividing regions of that grid to make the individual zone grids. The details of the grid-generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  12. Reconfigurable flight control for high angle of attack fighter aircraft, with wind tunnel study

    NASA Astrophysics Data System (ADS)

    Siddiqui, Bilal Ahmed

    In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology combining experimental and numerical aerodynamic prediction was proposed and implemented. For this a wind-tunnel study of a similar configuration was carried out to study the aerodynamics at low speeds and high angle of attack. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage.

  13. F-16 Through-Canopy Crew Egress From Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A proposed method for pilots to eject from aircraft, in which the canopy fractures from an embedded explosive cord and then opens in a French-door pattern. Takes approximately half the time as current methods.

  14. Special Course on Fundamentals of Fighter Aircraft Design

    DTIC Science & Technology

    1987-10-01

    and does not fire on any opponent. In the acenarlo of chaotic combat, the speed advantage yields more firing opportunities. In head -on engagements...ipeed can also have a detrimental effect. Figure 44 illustrates this point. Two head on intercept situations are shown here; one is equal speeds fov...opposing aircraft (upj-er left) the other is with blue at a higher speed than red. In both cases the aircraft continue their head -on attack until

  15. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  16. A Review of Fighter Aircraft Capability for Smart Bombs.

    DTIC Science & Technology

    1995-09-01

    bombs ( Esker , 1994). A total of 168 F/A-18C/D aircraft were produced (Lambert, 1994:586). A total of 72 F/A-18E/F aircraft will be produced, with...1,000 lb. class JDAM, JSOW, and WCMD fit at all the F/A-18 air-to-ground weapon stations ( Esker , 1994). Electrical and Logical Interface. The F/A-18 has...wiring and power support in accordance with MIL-STD-704, MIL-STD-1553, and MIL-STD-1760 at each weapon station ( Esker , 1994). The F/A-18 weapon

  17. Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Schiff, L. B.

    1985-01-01

    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.

  18. Pilot Human Factors in Stall/Spin Accidents of Supersonic Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Enevoldson, E. K.; Nguyen, L. T.

    1983-01-01

    A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencing pilot's behavior in stall/spin situations include (1) channelization of sensory inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability.

  19. Pilot human factors in stall/spin accidents of supersonic fighter aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Enevoldson, E. K.; Nguyen, L. T.

    1983-01-01

    A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include: (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencin pilot's behavior in stall/spin situations include: (1) channelization of sensor inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability.

  20. Wing Rock Prediction Method for a High Performance Fighter Aircraft

    DTIC Science & Technology

    1992-05-01

    are statically stable at lower angles-of-attack. Therefore, it is possible to study basic stable motions of these aircraft without an added stabilizing ... control system. Third, extensive and well validated F-15 and F-4 aerodynamic databases were available. Finally, as part of the AFIT/TPS joint program

  1. Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.

    1984-01-01

    The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2.

  2. F-35 Joint Strike Fighter Aircraft (F-35)

    DTIC Science & Technology

    2013-12-01

    Authority/Budget Activity BY - Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department...BlocK 3F Fleet Release ~)II USNIOC • Completed IOT &E .,. Full Rate Production Decision .,. DAB Milestone c ~· F-35 Engine See Note...F-35 Aircraft Milestones SAR Baseline Dev Est Current APB Development Objective/Threshold Current Estimate Concept Demonstration Contract Award

  3. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  4. External store effects on the stability of fighter and interceptor airplanes. [application to military aircraft mission requirements

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Sawyer, W. C.

    1974-01-01

    Some criteria for external carriage of missiles for fighter aircraft intended for aerial combat missions and for fighter-interceptor missions are considered. The mission requirements discussed include the short-range fighter-interceptor, the short-range interceptor, the medium-range interceptor, and the long-range interceptor. Missiles types considered to be compatible with the various point mission designs include the short-range missile, the medium-range missile, and the long-range missile. From the study, it appears that point mission design aircraft can be arranged in such a way that the required external-store arrangement will not impair the stability of the aircraft. An extensive reference list of NASA external store research is included.

  5. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  6. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  7. A review of several propulsion integration features applicable to supersonic-cruise fighter aircraft

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.

    1976-01-01

    A brief review has been made of the propulsion integration features which may impact the design of a supersonic cruise fighter type aircraft. The data used for this study were obtained from several investigations conducted in the Langley 16-foot transonic and 4 by 4 foot supersonic pressure wind tunnels. Results of this study show: (1) that for conventional nozzle installations, contradictory design guidelines exist between subsonic and supersonic flight condition, (2) that substantial drag penalties can be incurred by use of dry power nozzles during supersonic cruise; and (3) that a new and unique concept, the nonaxisymmetric nozzle, offers the potential for solving many of the current propulsion installation problems.

  8. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Horizontal attitude concept

    NASA Technical Reports Server (NTRS)

    Brown, S. H.

    1978-01-01

    A horizontal attitude VSTOL (HAVSTOL) supersonic fighter attack aircraft powered by RALS turbofan propulsion system is analyzed. Reaction control for subaerodynamic flight is obtained in pitch and yaw from the RALS and roll from wingtip jets powered by bleed air from the RALS duct. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel program is shown to resolve some of the uncertainties. Aerodynamic data developed are static characteristics about all axes, control effectiveness, drag, propulsion induced effects and reaction control characteristics.

  9. Advanced ATC: An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Williams, David H.; Howell, William E.; Spitzer, Cary R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. Efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency are discussed. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  10. FLIR/IRST of the European fighter aircraft

    NASA Astrophysics Data System (ADS)

    Scheuer, Manfred

    2002-07-01

    In a four national program European military aircraft companies are developing and producing the Eurofighter (Typhoon). An essential part of the weapon system is its infrared detection system. It consists of equipment, which includes FLIR and IR search and track capabilities (IRST), together in a compact housing. There are various possibilities for air-to-air and air-to-ground operations. The FLIR/IRST, in conjunction with a sensor data fusion process, considerably enhances the combat effectiveness of the Eurofighter. One imaging mode of the FLIR/IRST is optimised for landing approach and for visual navigation. The IR video image can be displayed on a head up display, on a multifunction head down display or on a helmet-mounted display. These modes support the pilot during ground taxiing, take off, flying, air-to-ground engagement, low level operation and landing approach. In the multiple target-tracking (MTT) mode targets within a large field of regard will automatically be extracted from the background and simultaneously be tracked. A further mode provides tracking of a single target at a high update rate. Additionally, there is a mode in which the sensor line of sight is steered by an external control, e.g. helmet pointing angles, with the purpose to gain lock to a target. The basic technical concept of the FLIR/IRST, an overview of the functionality and first test results will be presented.

  11. Digital adaptive model following flight control. [using fighter aircraft mathematical model-following algorithm

    NASA Technical Reports Server (NTRS)

    Alag, G. S.; Kaufman, H.

    1974-01-01

    Simple mechanical linkages are often unable to cope with the many control problems associated with high performance aircraft maneuvering over a wide flight envelope. One procedure for retaining uniform handling qualities over such an envelope is to implement a digital adaptive controller. Towards such an implementation an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized equations of motion for a typical fighter aircraft. The system is composed of an online weighted least squares identifier, a Kalman state filter, and a single stage real model following control law. The corresponding control gains are readily adjustable in accordance with parameter changes to ensure asymptotic stability if the conditions for perfect model following are satisfied and stability in the sense of boundedness otherwise.

  12. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  13. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  14. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  15. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  16. Design of a fifth generation air superiority fighter

    NASA Astrophysics Data System (ADS)

    Atique, Md. Saifuddin Ahmed; Barman, Shuvrodeb; Nafi, Asif Shahriar; Bellah, Masum; Salam, Md. Abdus

    2016-07-01

    Air Superiority Fighter is considered to be an effective dogfighter which is stealthy & highly maneuverable to surprise enemy along with improve survivability against the missile fire. This new generation fighter aircraft requires fantastic aerodynamics design, low wing loading (W/S), high thrust to weight ratio (T/W) with super cruise ability. Conceptual design is the first step to design an aircraft. In this paper conceptual design of an Air Superiority Fighter Aircraft is proposed to carry 1 crew member (pilot) that can fly at maximum Mach No of 2.3 covering a range of 1500 km with maximum ceiling of 61,000 ft. Payload capacity of this proposed aircraft is 6000 lb that covers two advanced missiles & one advanced gun. The Air Superiority Fighter Aircraft was designed to undertake all the following missions like: combat air petrol, air to air combat, maritime attack, close air support, suppression, destruction of enemy air defense and reconnaissance.

  17. MIMO Sliding Mode Control for a Tailless Fighter Aircraft, An Alternative to Reconfigurable Architectures

    NASA Technical Reports Server (NTRS)

    Wells, S. R.; Hess, R. A.

    2002-01-01

    A frequency-domain procedure for the design of sliding mode controllers for multi-input, multi-output (MIMO) systems is presented. The methodology accommodates the effects of parasitic dynamics such as those introduced by unmodeled actuators through the introduction of multiple asymptotic observers and model reference hedging. The design procedure includes a frequency domain approach to specify the sliding manifold, the observer eigenvalues, and the hedge model. The procedure is applied to the development of a flight control system for a linear model of the Innovative Control Effector (ICE) fighter aircraft. The stability and performance robustness of the resulting design is demonstrated through the introduction of significant degradation in the control effector actuators and variation in vehicle dynamics.

  18. Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.

    1978-01-01

    A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.

  19. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  20. Optimal combat maneuvers of a next-generation jet fighter aircraft

    NASA Astrophysics Data System (ADS)

    Dabney, James Bruster

    This thesis deals with the optimization of four classes of combat maneuvers for a next-generation jet fighter aircraft: climb maneuvers, fly-to-point maneuvers, pop-up attack maneuvers, and dive recovery maneuvers. For the first three classes of maneuvers, the optimization criterion is the minimization of the flight time, resulting in a Mayer-Bolza problem of optimal control; for the fourth class, the optimization criterion is the minimization of the maximum altitude loss during dive recovery, resulting in a Chebyshev problem of optimal control. Each class of problems is solved using the sequential gradient-restoration algorithm for optimal control. Among the four classes of combat maneuvers studied, only dive recovery benefits from the ability of a next-generation fighter aircraft to maneuver at extremely high angles of attack. For the other three classes, relatively low angles of attack are required. The optimal climb trajectories are characterized by three distinct segments: a central segment often flown with a load factor of nearly 1 and two terminal segments (dive or zoom) to and from the central segment. The central and final segments are nearly independent of the initial conditions, instead being dominated by the final conditions. The optimal fly-to-point trajectories consist of three segments: turning, characterized by relatively high load factor; level acceleration at maximum thrust; and finally, resumption of steady-state cruising. The effects of the heading change magnitude and the load factor limit are discussed. The optimal pop-up trajectories consist of three segments flown at maximum power: pitch-up, zoom, and pitch-down. The effects of using the afterburner, heading change magnitude, and dive angle magnitude are discussed. The optimal dive recovery trajectories consist of one to three segments, depending on initial speed and flight path angle. All the optimal trajectories conclude with a pitch-up at the maximum available load factor. For very low

  1. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  2. Icing Frequencies Experienced During Climb and Descent by Fighter-Interceptor Aircraft

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.

    1958-01-01

    Data and analyses are presented on the relative frequencies of occurrence and severity of icing cloud layers encountered by jet aircraft in the climb and descent phases of flights to high altitudes. Fighter-interceptor aircraft operated by the Air Defense Command (USAF) at bases in the Duluth and Seattle areas collected the data with icing meters installed for a l-year period. The project was part of an extensive program conducted by the NACA to collect Icing cloud data for evaluating the icing problem relevant to routine operations. The average frequency of occurrence of icing was found to be about 5 percent of the number of climbs and descents during 1 year of operations The icing encounters were predominantly in the low and middle cloud layers, decreasing above 15,000 feet to practically none above 25,000 feet. The greatest thickness of ice that would accumulate on any aircraft component (as indicated by the accretion on a small object) was measured with the icing meters. The ice thicknesses on a small sensing probe averaged less than 1/32 inch and did not exceed 1/2 inch. Such accumulations are relatively small when compared with those that can form during horizontal flight in icing clouds. The light accretions resulted from relatively steep angles of flight through generally thin cloud layers. Because of the limited statistical reliability of the results, an analysis was made using previous statistics on icing clouds below an altitude of 20,000 feet to determine the general icing severity probabilities. The calculations were made using adiabatic lifting as a basis to establish the liquid-water content. Probabilities of over-all ice accretions on a small object as a function of airspeed and rate of climb were computed from the derived water contents. These results were then combined with the probability of occurrence of icing in order to give the icing severity that can be expected for routine aircraft operations.

  3. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  4. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  5. Advanced supersonic cruise aircraft technology

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Driver, C.

    1977-01-01

    A multidiscipline approach is taken to the application of the latest technology to supersonic cruise aircraft concept definition, and current problem areas are identified. Particular attention is given to the performance of the AST-100 advanced supersonic cruise vehicle with emphasis on aerodynamic characteristics, noise and chemical emission, and mission analysis. A recently developed aircraft sizing and performance computer program was used to determine allowable wing loading and takeoff gross weight sensitivity to structural weight reduction.

  6. Effect of Canard Oscillations on the Vortical Flowfield of a X-31A-Like Fighter Aircraft Model

    DTIC Science & Technology

    1992-03-01

    In the United States, the Grumman X-29 aircraft and the Navy’s X-31A research demonstrator aircraft use control- canards. A lifting-canard...Sudace Dimensions Wing Canad Vedical S Fl 226.3 23.6 37.6 AR 2.3 3.13 1.23 A ’ LE 56.6/45 45 so % VC1 5.5 5.0 5.0 Mass - Th Empty Wt 10.901 ago** Id t4,6o...enhanced fighter maneuverability research program was the first of its kind undertaken to characterize the flowfield around a static-canard configured

  7. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    NASA Technical Reports Server (NTRS)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  8. Active Vortical Flow Control for Alleviation of Twin-Tail Buffet of Generic Fighter Aircraft

    NASA Astrophysics Data System (ADS)

    Sheta, E. F.; Harrand, V. J.; Huttsell, L. J.

    2001-08-01

    A multidisciplinary computational investigation has been conducted to examine the feasibility of controlling the buffet problem using different active flow control methods. Tangential central blowing (TCB), tangential vortex blowing (TVB), and tangential spanwise blowing (TSB) methods were used to inject high-momentum fluid into the vortical flow of generic fighter aircraft flying at 30° angle of attack. The effect of blowing strength on the buffet responses is also investigated. The injection is aimed to strengthen the wing vortices and to delay the onset of breakdown in order to alleviate the twin-tail buffet. The results indicated that blowing directly into the core of the leading-edge vortices has more potential in controlling the buffet responses and in the reformation of unburst vortices with larger length. The TVB method produced the most favorable results with a reduction of about 43% in the buffet excitation parameter and a reduction of about 40% in the amplitude of bending deflection. This multidisciplinary investigation is conducted using the multidisciplinary computing environment (MDICE).

  9. Top-mounted inlet performance for a V/STOL fighter/attack aircraft configuration

    NASA Technical Reports Server (NTRS)

    Smeltzer, Donald B.

    1987-01-01

    Inlet flow-field and compressor-face performance data were obtained for a 0.095-scale model of vertical/short take-off landing (V/STOL) fighter/attack aircraft configuration with twin top-mounted inlets. Tests were conducted at Mach numbers from 0.6 to 2.0 and angles of attack and sideslip up to 27 deg. and 12 deg., respectively. Reynolds number was held constant at 9.8 x 10 to the 6th power per meter. The effects of inlet location, wing leading-edge extension (LEX) planform area, canopy-dorsal integration, variable incidence canards, and wing leading- and trailing-edge flap deflections were determined. The results show that at Mach numbers up to 0.9, distortion is relatively low (20% or less) at all angles of attack and sideslip. However, at Mach numbers of 1.2 and above, operation may be restricted because of either high distortion or low pressure recovery (80% or less), or both. These difficulties may be overcome with alterations to the LEX/canopy/body juncture.

  10. Hardware-in-the-loop environment facility to address pilot-vehicle-interface issues of a fighter aircraft

    NASA Astrophysics Data System (ADS)

    Pandurangareddy, Meenige

    2002-07-01

    The evolution of Pilot-Vehicle-Interface (PVI) of a fighter aircraft is a complex task. The PVI design involves both static and dynamic issues. Static issues involve the study of reach of controls and switches, ejection path clearance, readability of indicators and display symbols, etc. Dynamic issues involve the study of the effect of aircraft motion on display symbols, pilot emergency handling, situation awareness, weapon aiming, etc. This paper describes a method of addressing the above issues by building a facility with cockpit, which is ergonomically similar to the fighter cockpit. The cockpit is also fitted with actual displays, controls and switches. The cockpit is interfaced with various simulation models of aircraft and outside-window-image generators. The architecture of the facility is designed to represent the latencies of the aircraft and facilitates replacement of simulation models with actual units. A parameter injection facility could be used to induce faults in a comprehensive manner. Pilots could use the facility right from familiarising themselves with procedures to start the engine, take-off, navigate, aim the weapons, handling of emergencies and landing. This approach is being followed and further being enhanced on Cockpit-Environment-Facility (CEF) at Aeronautical Development Agency (ADA), Bangalore, India.

  11. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  12. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  13. Pitch Rate Versus G Command as the Longitudinal Flight Control System Design Strategy for a Statistically Unstable Fighter Type Aircraft with Two Control Surfaces.

    DTIC Science & Technology

    2014-09-26

    AD-A158 883 PITCH RATE VERSUS G COMAND AS THE LONGITUDINAL FLIGHT i/1 CONTROL SYSTEM DES (U) AIR FORCE ACADEMY CO T P WEBB I 02 JUL 85 USRFR-TN-85-8...COMMAND AS THE 1< LONGITUDINAL FLIGHT CONTROL SYSTEM DESIGN 0 STRATEGY FOR A STATICALLY UNSTABLE FIGHTER TYPE AIRCRAFT WITH TWO CONTROL SURFACES...COMMAND AS THE LONGITUDINAL FLIGHT CONTROL SYSTEM DESIGN STRATEGY FOR A STATICALLY UNSTABLE FIGHTER TYPE AIRCRAFT WITH TO CONTROL SURFACES Thomas P

  14. Research on Visual Display Integration for Advanced Fighter Aircraft.

    DTIC Science & Technology

    1978-11-01

    516, St. Louis, Missouri 63166 ( /~ j -__— ’ II. CONTROLLING OFFICE NAME ANO ADDRESS ~1L ~~~POR T DATEAerospace Medical Researcb Laboratory f Al 078A...MONITORING AGENCY NAME & ADDRESS(It dSli.r~ , t ftoui ConfroIUng OWc.) ~S. SECURITY CLASS. (of hI. ‘.po AFPRO , McDonnell Douglas Corporation P. 0. Box...release; distribution unlimited 17. OIST A ISUT ION STATEMENT (of lb. abatract snt.r.d in Stock 20. II ditt.,.nt from R.po, t ) • ~~~ IS. SUPPLEMENTARY

  15. Fast half-loop maneuvers for a high alpha fighter aircraft using a singular perturbation feedback control law

    NASA Technical Reports Server (NTRS)

    Garrett, Frederick E., Jr.; Stalford, Harold L.

    1989-01-01

    Singular perturbation analysis is used to derive an outer layer feedback control law for a high alpha fighter aircraft to perform the half-loop maneuver. Pitch rate and angle of attack are treated as fast variables in the derivation. Bang-bang controls are derived to transfer the aircraft state from trim to the outer layer and from the outer layer to specified final half-loop values. The pitch rate is treated as a varibale faster than the angle of attack in the transfer of the state to and from the outer layer. A simulation of the derived control law is conducted at Mach 0.6 and 15,000 feet altitude. The half-loop was performed in 13.12 seconds. It is compared with a NASA pilot simulated half-loop maneuver which took 22.42 seconds for the same initial conditions.

  16. Design of a Low Cost Short Takeoff-vertical Landing Export Fighter/attack Aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, Anne; Bodeker, Dan, III; Miu, Steve; Petro, Laura; Senf, Cary Taylor; Woeltjen, Donald

    1990-01-01

    The design of a supersonic short takeoff and vertical landing (STOVL) aircraft is presented that is suitable for export. An advanced four poster, low bypass turbofan engine is to be used for propulsion. Preliminary aerodynamic analysis is presented covering a determination of CD versus CL, CD versus Mach number, as well as best cruise Mach number and altitude. Component locations are presented and center of gravity determined. Cost minimization is achieved through the use of developed subsystems and standard fabrication techniques using nonexotic materials. Conclusions regarding the viability of the STOVL design are presented.

  17. AFTI/SITAN (Advanced Fighter Technology Integration/Sandia Inertial Terrain-Aided Navigation) final report

    SciTech Connect

    Fellerhoff, J.R.

    1988-11-01

    Sandia Inertial Terrain-Aided Navigation (SITAN) provides continuous position fixes to an inertial navigation system (INS) by real-time comparison of radar altimeter ground clearance measurements with stored digital terrain elevation data (DTED). This is accomplished by using an extended Kalman filter algorithm to estimate the errors in the reference trajectory provided by an INS. In this report, Sandia National Laboratories documents the results of a reimbursable effort funded by the Air Force Wright Aeronautical Laboratories (AFWAL) Avionics Laboratory to flight test SITAN as implemented onboard the Advanced Fighter Technology Integration (AFTI)F-16. 5 refs., 101 figs., 1 tab.

  18. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  19. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  20. Inlet and airframe compatibility for a V/STOL fighter/attack aircraft with top-mounted inlets

    NASA Technical Reports Server (NTRS)

    Durston, D. A.; Smeltzer, D. B.

    1982-01-01

    Aerodynamic force and inlet-pressure data were obtained for 9.5% force and pressure models of a V/STOL fighter/attack aircraft configuration with top-mounted twin inlets. Data are presented from wind tunnel tests conducted at Mach numbers of 0.6, 0.9, and 1.2 at angles of attack up to 27-deg and angles of sideslip up to 12-deg. Trimmed aerodynamic characteristics and inlet performance were compared for three different leading-edge extension (LEX) configurations. The effects of wing leading- and trailing-edge flaps on the inlet were also determined. Maneuver performance was calculated from combined force and inlet-pressure data. The largest of the three LEX sizes tested gave the best airplane maneuver performance. Wing flap deflections improved inlet recovery at all Mach numbers.

  1. Inlet and airframe compatibility for a V/STOL fighter/attack aircraft with top-mounted inlets

    NASA Technical Reports Server (NTRS)

    Durston, D. A.; Smeltzer, D. B.

    1982-01-01

    Aerodynamic force and inlet pressure data are obtained for 9.5% force and pressure models of a V/STOL fighter/attack aircraft configuration with top mounted twin inlets. Data are presented from tests conducted in the Ames Unitary Wind Tunnels at Mach numbers of 0.6, 0.9, and 1.2 at angles of attack up to 27 deg. and angles of sideslip up to 12 deg. Trimmed aerodynamic characteristics and inlet performance are compared for three different leading edge extension (LEX) configurations. The effects of wing leading and trailing-edge flaps on the inlet are also determined. Maneuver perfromance is calculated form combined force and inlet pressure data. The largest of the three LEX sizes tested gives the best airplane maneuver performance. Wing flap deflections improved inlet recovery at all Mach numbers.

  2. US Arms Transfer Policy for Latin America: Lifting the Ban on Fighter Aircraft

    DTIC Science & Technology

    1999-01-01

    not the only con tender for their upcom ing purchase of per haps as many as 60 fighters.41 During the 1998 Ferie In ter na cional del Aire y del Espa ...Source: Adam Isaac son and Jay Ol son,Just the Facts: A Civili an’s Guide to U.S. De fense and Se cu rity As sis tance to Latin Amer ica and the Car ib

  3. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.

    PubMed

    West, John B

    2013-07-01

    Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.

  4. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  5. Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.; Powers, S. A.; Roush, R. T.

    1982-01-01

    A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.

  6. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  7. A computer technique for detailed analysis of mission radius and maneuverability characteristics of fighter aircraft

    NASA Technical Reports Server (NTRS)

    Foss, W. E., Jr.

    1981-01-01

    A computer technique to determine the mission radius and maneuverability characteristics of combat aircraft was developed. The technique was used to determine critical operational requirements and the areas in which research programs would be expected to yield the most beneficial results. In turn, the results of research efforts were evaluated in terms of aircraft performance on selected mission segments and for complete mission profiles. Extensive use of the technique in evaluation studies indicates that the calculated performance is essentially the same as that obtained by the proprietary programs in use throughout the aircraft industry.

  8. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  9. The evaluation of several agility metrics for fighter aircraft using optimal trajectory analysis

    NASA Technical Reports Server (NTRS)

    Ryan, George W., III; Downing, David R.

    1993-01-01

    Several functional agility metrics, including the combat cycle time metric, dynamic speed turn plots, and relative energy state metric, are used to compare turning performance for generic F-18, X-29, and X-31-type aircraft models. These three-degree-of-freedom models have characteristics similar to the real aircraft. The performance comparisons are made using data from optimal test trajectories to reduce sensitivities to different pilot input techniques and to reduce the effects of control system limiters. The turn performance for all three aircraft is calculated for simulated minimum time 180 deg heading captures from simulation data. Comparisons of the three aircraft give more insight into turn performance than would be available from traditional measures of performance. Using the optimal test technique yields significant performance improvements as measured by the metrics. These performance improvements were found without significant increases in turn radius.

  10. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  11. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  12. Expanding a flutter envelope using data from accelerating flight: Application to the F-16 fighter aircraft

    NASA Astrophysics Data System (ADS)

    Harris, Charles A.

    Due to the destructive nature of flutter, flutter testing is a mandatory requirement for certification of both civilian and military aircraft. However, along with the complexity of newer aircraft, the time and cost associated with flutter testing has increased dramatically. Considering that many of the test techniques and analysis methods used to perform flutter testing date back to the 1950s and 1960's it may be time to take a fresh look at how flutter testing can best be accomplished. This thesis revisits flutter testing techniques and proposes an alternative to traditional flutter testing. The alternative uses flight test data from an aircraft that is performing an acceleration to clear the flutter envelope of the aircraft. Four academic issues arise from this new test approach. (1) Are frequencies and dampings affected by the acceleration of the aircraft? (2) Can parameter identification algorithms extract frequency and damping values from the time varying data? (3) Can the vibration response at airspeeds (or Mach numbers) beyond which the aircraft has accelerated be anticipated? (4) What formal criteria can be used to determine when the aircraft needs to end the acceleration and terminate the test point? The academic contribution of this thesis is to address these issues. It is shown that although the frequencies and damping values do change the change is so small that it is irrelevant. It is also shown that by taking small windows of data, within which the change in parameters is small, it is possible to accurately identify parameters from the time varying data. Finally it is shown that at least in principal parameters can be predicted using data from sub-critical airspeeds, and that testing can be discontinued before an unstable flight condition is reached.

  13. Augmentation of Fighter-Aircraft Performance by Spanwise Blowing over the Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 to 60 deg, and yaw-angle sweeps from -8 to 36 deg at fixed angles of attack 0, 10, 20, 25, 30, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  14. Augmentation of fighter-aircraft performance by spanwise blowing over the wing leading edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter-airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 deg to 60 deg, and yaw-angle sweeps from -8 deg to 36 deg at fixed angles of attack 0 deg, 10 deg, 20 deg, 25 deg, 30 deg, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  15. The X-31 aircraft: Advances in aircraft agility and performance

    NASA Astrophysics Data System (ADS)

    Alcorn, C. W.; Croom, M. A.; Francis, M. S.; Ross, H.

    1996-08-01

    The X-31 enhanced fighter maneuverability (EFM) demonstrator has pioneered agile flight in the post-stall flight regime and explored integrated multi-axis thrust vectoring across a broad flight envelope. Its maneuvering achievements include sustained flight up to 70 degrees angle of attack, velocity vector rolls in deep post-stall conditions, and post-stall turns from high entry to exit speeds with ultra low turning/transitional conditions. The concept of post-stall maneuverability was extensively studied in simulations preceding initiation of the X-31 program. These simulations provided a baseline for tactical utility demonstrations and vehicle design requirements. Post-stall maneuverability was not achieved without encountering and mitigating the effects of highly unsteady, asymmetric, vortex-dominated flow-fields associated with post-stall flight. Anomalies in vehicle response to control inputs were observed at high angles of attack, as were differences between simulator and actual flight parameters due to a misrepresentation of the effects of these complex flowfields. Some preliminary force and moment data for the X-31 configuration during dynamic maneuvers are provided to highlight the complex nature of the flowfield. The X-31 aircraft's enabling capabilities, including multi-axis thrust vectoring and integrated flight/propulsion control also provided performance enhancements across the entire flight envelope. In what were known as ‘quasi-tailless’ experiments, conventional aerodynamic control surfaces were used to reduce or eliminate the stabilizing influence of the vertical stabilizer, while the vehicle's multi-axis thrust vectoring capability was used for restabilization. Properly exploited, these technologies can lead to the reduction or elimination of traditional aerodynamic control surfaces, which provides profound improvements in vehicle range, weight, payload, and low observability. This review focuses on some of the principal aerodynamic issues

  16. The Next Lightweight Fighter: Not Your Grandfather’s Combat Aircraft

    DTIC Science & Technology

    2013-08-01

    under di- rection, users drastically increased in number. The Longbow  Apache   (AH-64E), originally built to designate targets for other aircraft using...the Longbow radar, became the airborne forward air controller of  choice for Army aviation brigades. The Apache /Warhawk combination offered unmatched...characteristics. In the words of a flight-test engineer, the aircraft “flies like a drunken pig ” when heavily loaded; therefore, naval air training and

  17. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Concepts for possible future airplanes are studied that include all-wing distributed-load airplanes, multi-body airplanes, a long-range laminar flow control airplane, a nuclear powered airplane designed for towing conventionally powered airplanes during long range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short range feeder airplanes. Results indicate that each of these concepts has the potential for important performance and economic advantages, provided certain suggested research tasks are successfully accomplished. Indicated research areas include all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  18. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Several concepts for possible future airplanes, including all-wing distributed-load airplanes, multibody airplanes, a long-range laminar flow control airplane, a nuclear-powered airplane designed for towing conventionally powered airplanes during long-range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short-range feeder airplanes are described. Performance and economic advantages of each concept are indicated. Further research is recommended in the following areas: all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  19. Fighter Aircraft OBIGGS (On-Board Inert Gas Generator System) Study. Volume 2

    DTIC Science & Technology

    1987-06-01

    Hot-Side and Cold-Side Fluid Characteristics 45 3.2.1.6.2.3 Characteristics 45 3.2.1.6.3 Water Extractor 46 3.2.1.6.4 Air Filter 46 3.2.1.6.5 Pressure...volume requirements. The OBIGGS shall also have the capability to: o Prevent contaminants (including water and particulate debris larger than 0.6 micron...Maintain the fuel tank ullage oxygen concentration below the 9% oxygen limit for JP-4, JP-5, JP-8, and Jet A aviation fuels, assuming that the aircraft

  20. Night vision imaging systems design, integration, and verification in military fighter aircraft

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Cantiello, Maurizio; Toscano, Mario; Fiorini, Pietro; Jia, Huamin; Zammit-Mangion, David

    2012-04-01

    This paper describes the developmental and testing activities conducted by the Italian Air Force Official Test Centre (RSV) in collaboration with Alenia Aerospace, Litton Precision Products and Cranfiled University, in order to confer the Night Vision Imaging Systems (NVIS) capability to the Italian TORNADO IDS (Interdiction and Strike) and ECR (Electronic Combat and Reconnaissance) aircraft. The activities consisted of various Design, Development, Test and Evaluation (DDT&E) activities, including Night Vision Goggles (NVG) integration, cockpit instruments and external lighting modifications, as well as various ground test sessions and a total of eighteen flight test sorties. RSV and Litton Precision Products were responsible of coordinating and conducting the installation activities of the internal and external lights. Particularly, an iterative process was established, allowing an in-site rapid correction of the major deficiencies encountered during the ground and flight test sessions. Both single-ship (day/night) and formation (night) flights were performed, shared between the Test Crews involved in the activities, allowing for a redundant examination of the various test items by all participants. An innovative test matrix was developed and implemented by RSV for assessing the operational suitability and effectiveness of the various modifications implemented. Also important was definition of test criteria for Pilot and Weapon Systems Officer (WSO) workload assessment during the accomplishment of various operational tasks during NVG missions. Furthermore, the specific technical and operational elements required for evaluating the modified helmets were identified, allowing an exhaustive comparative evaluation of the two proposed solutions (i.e., HGU-55P and HGU-55G modified helmets). The results of the activities were very satisfactory. The initial compatibility problems encountered were progressively mitigated by incorporating modifications both in the front and

  1. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  2. An advanced maintenance free aircraft battery system

    SciTech Connect

    Beutler, J.; Green, J.; Kulin, T.

    1996-11-01

    This paper describes an advanced aircraft battery system designed to provide 20 years of maintenance free operation with the flexibility for use on all US Air Force aircraft. System, battery, and charger/analyzer requirements are identified. The final design approach and test results are also presented. There are two general approaches to reduce the maintenance cost of batteries. One approach is to develop a disposable battery system, such that after some time interval the battery is simply replaced. The other approach, the subject of this paper, is to develop a battery that does not require any scheduled maintenance for the design life of the aircraft. This approach is currently used in spacecraft applications where battery maintenance is not practical.

  3. Advanced Terrain Displays for Transport Category Aircraft.

    DTIC Science & Technology

    1992-02-01

    Map Displays, Terrain Displays, DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH Pilo t Performance, THE NATIONAL TECHNICAL INFORMATION SERVICE , Cockp •t...DOT/FAA/RD-9214 Advanced Terran Wigays DOT-VNTSC-FAA-92-4 frTaaotCta Research and Development Servic fo rasor atgr Washington, DC 20591 Aircraft...U.S. Department of Transportation Final Report Federal Aviation Administration January 1991-Sept. 1991 Research and Development Service Washington, DC

  4. Decoupler pylon - A simple, effective wing/store flutter suppressor. [in fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Reed, W. H.; Foughner, J. T., Jr.; Runyan, H. L., Jr.

    1979-01-01

    As an alternative to alleviating wing/store flutter by conventional passive methods or by more advanced active control methods, a quasi-passive concept, referred to as the decoupler pylon, is investigated which combines desirable features of both methods. Passive soft-spring/damper elements are used to decouple wing modes from store pitch modes, and a low-power control system maintains store alignment under changing mean loads. It is shown by analysis and wind tunnel tests that the decoupler pylon provides substantial increase in flutter speed and makes flutter virtually insensitive to inertia and center-of-gravity location of the store.

  5. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  6. A comparison of theoretical and experimental pressure distributions for two advanced fighter wings

    NASA Technical Reports Server (NTRS)

    Haney, H. P.; Hicks, R. M.

    1981-01-01

    A comparison was made between experimental pressure distributions measured during testing of the Vought A-7 fighter and the theoretical predictions of four transonic potential flow codes. Isolated wind and three wing-body codes were used for comparison. All comparisons are for transonic Mach numbers and include both attached and separate flows. In general, the wing-body codes gave better agreement with the experiment than did the isolated wing code but, because of the greater complexity of the geometry, were found to be considerably more expensive and less reliable.

  7. Advanced aircraft ignition CRADA final report

    SciTech Connect

    Early, J.W.

    1997-03-01

    Conventional commercial and military turbo-jet aircraft engines use capacitive discharge ignition systems to initiate fuel combustion. The fuel-rich conditions required to ensure engine re-ignition during flight yield less than optimal engine performance, which in turn reduces fuel economy and generates considerable pollution in the exhaust. Los Alamos investigated two approaches to advanced ignition: laser based and microwave based. The laser based approach is fuel ignition via laser-spark breakdown and via photo-dissociation of fuel hydrocarbons and oxygen. The microwave approach involves modeling, and if necessary redesigning, a combustor shape to form a low-Q microwave cavity, which will ensure microwave breakdown of the air/fuel mixture just ahead of the nozzle with or without a catalyst coating. This approach will also conduct radio-frequency (RF) heating of ceramic elements that have large loss tangents. Replacing conventional systems with either of these two new systems should yield combustion in leaner jet fuel/air mixtures. As a result, the aircraft would operate with (1) considerable less exhaust pollution, (2) lower engine maintenance, and (3) significantly higher fuel economy.

  8. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  9. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  10. Development and analysis of a STOL supersonic cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.

    1984-01-01

    The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.

  11. A review of thrust-vectoring schemes for fighter applications

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Re, R. J.

    1978-01-01

    This paper presents a review of thrust vectoring schemes for advanced fighter applications. Results are presented from wind tunnel and system integration studies on thrust vectoring nozzle concepts. Vectoring data are presented from wind tunnel tests of axisymmetric C-D (convergent-divergent) and nonaxisymmetric wedge, C-D, single ramp and USB (upper-surface blowing) nozzle concepts. Results from recent airframe/nozzle integration studies on the impact of thrust vectoring on weight, cooling and performance characteristics are discussed. This review indicates that the aircraft designer has, at his disposal, a wide range of thrust vectoring schemes which offer potential for added or improved aircraft capability.

  12. Energy-modelled climb and climb-dash - The Kaiser technique. [reviewed for Me 262 jet fighter aircraft trajectories

    NASA Technical Reports Server (NTRS)

    Merritt, S. R.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    F. Kaiser's germinal 1944 report on his 'resultant-height' concept, now known as energy modelling, is reviewed. The data base for the Me. 262 jet fighter is recreated via spline-lattice representation of specific excess power. Minimum-time and 'distance'-climb trajectories are generated in an attempt to check Kaiser's results. Agreement is good for the minimum-time calculations but only qualitative agreement is obtained for the mysterious 'distance climbs' whose documentation is fragmentary. The character of optimal climb-dash trajectories in energy approximation is examined and illustrated.

  13. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    An assessment is presented of three separate programs that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of a span-loaded cargo aircraft with the payload distributed along the wing. The second technology is the application of laminar flow control to the aircraft to reduce the aerodynamic drag. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel.

  14. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Kish, Jules G.

    1993-01-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  15. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Astrophysics Data System (ADS)

    Kish, Jules G.

    1993-03-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  16. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  17. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    The objective of this paper is to provide an overview assessment of three separate programs at Langley Research Center that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of an span-loaded cargo aircraft with the payload distributed along the wing. This concept has the potential for reduced structural weights. The second technology is the application of laminar flow control (LFC) to the aircraft to reduce the aerodynamic drag. The use of LFC can reduce the fuel requirements during long-range cruise. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel. Coal-derived hydrogen as an aircraft fuel offers both the prospect for reduced dependence on petroleum fuels and improved performance for long-range aircraft.

  18. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  19. Thoracolumbar pain among fighter pilots.

    PubMed

    Hämäläinen, O

    1999-08-01

    High +Gz forces place high stress on the spinal column, and fighter pilots flying high-performance fighter aircraft frequently] report work-related thoracic and lumbar spine pain. The aim of this study was to determine whether +Gz exposure causes work-related thoracolumbar spine pain among fighter pilots. A questionnaire was used to establish the occurrence of thoracic and lumbar spine pain during the preceding 12 months and during duties over the whole working career among 320 fighter pilots and 283 nonflying controls matched for age and sex. Thirty-two percent of the pilots and 19% of the controls had experienced pain in the thoracic spine during the preceding 12 months (odds ratio [OR] = 2.3; 95% confidence interval [CI] = 1.5-3.5; p = 0.002 for the pilots). Among the pilots, the OR increased up to 6.1 (95% CI = 1.6-23.1; p = 0.0007) with the number of +Gz flight hours. There was no difference between the groups with regard to lumbar pain during the preceding 12 months, but over their whole working careers fighter pilots (58%) had experienced lumbar pain during their duties more often than controls (48%) (OR = 1.8; 95% CI = 1.3-2.6; p = 0.002). The greater the number of +Gz flight hours, the greater the occurrence of lumbar spine pain when on duty (OR = 26.9; 95% CI = 6.2-116; p = 0.0001 for the most experienced fighter pilots). The same was not true with regard to the number of +Gz flight hours and lumbar pain during the preceding 12 months. Age had no effect on pain in the thoracic or lumbar spine. Fighter pilots flying high-performance aircraft have more work-related thoracic and lumbar spine pain than controls of the same age and sex. The difference is explained by the pilots' exposure to +Gz forces.

  20. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  1. The Joint Strike Fighter (JSF) PHM and the Autonomic Logistic Concept: Potential Impact on Aging Aircraft Problems

    DTIC Science & Technology

    2003-02-01

    maintenance practices, lead to preventable incidents in which people are injured or killed . This situation also ensures additional and very high...Logistics, all component parts will be tracked by serial number across all aircraft tail numbers. This will assist in catching potential fleet-wide...Additionally, with the lead time notice to order more parts, ideally there would be no more cannibalization of aircraft. Many squadrons have what is known as a

  2. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  3. Large-Scale V/STOL Experimental Investigations of an Ejector-Lift Fighter and a Twin Tilt-Nacelle Transport

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    2016-01-01

    In the 1980s NASA Aeronautics was actively involved in full-scale wind tunnel testing of promising VSTOL aircraft concepts. This presentation looks at two, a multi-role fighter and a subsonic tactical transport. Their strengths and weaknesses are discussed with some of the rationale that ultimately led to the selection of competing concepts for production, namely the V-22 Osprey and the F-35 Lightning. The E7-A STOVL multi-role fighter was the product of an aircraft development program in the late 1980s by NASA, the Defense Advanced Research Projects Agency (DARPA), the Canadian Department of Industry Science and Technology (DIST), and industry partners General Dynamics and Boeing Dehavilland. The program was conducted an in response to increasing US-UK interest in supersonic STOVL fighters. The objective was to design an aircraft that could replace most existing close air support-air combat fighters with a single aircraft that had some of the qualities of an air superiority fighter and the deployment flexibility of a VSTOL aircraft. The resulting E7-A concept was a delta-wing supersonic fighter that used a fuselage-mounted thrust augmenting ejector and a ventral deflecting jet nozzle for vertical lift. The Grumman Aircraft Company, the Navy, and NASA developed the Design-698 (D-698) subsonic tactical transport in response to the Navy's Type A VSTOL utility aircraft requirement. The objective was to develop a subsonic utility transport with the operational flexibility of a helicopter, but with greater speed and range. The D-698 employs two high-bypass turbofan engines mounted on a dumbbell that rotates through ninety degrees for vertical takeoff and cruise flight. Movable vanes positioned in the exhaust flow provide control in hover with the need for reaction control jets. The presentations concluding comments suggest that technology advances in the last thirty-years may justify the value of revisiting some of these concepts.

  4. Effect of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft model at supersonic speeds. [in the langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1980-01-01

    The effects of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft configuration at Mach numbers of 1.6, 1.8, and 2.0 was investigated. Five conventional store configurations and six arrangements of a square store configuration were studied. All configurations of the stores produced small, positive increments in the pitching moment throughout the angle-of-attack range, but the configuration with area ruled wing tanks also had a slight decrease on stability at the higher angles of attack. There were some small changes in lift coefficient because of the addition of the stores, causing the drag increment to vary with the lift coefficient. As a result, there were corresponding changes in the increments of the maximum lift drag ratios. The store drag coefficient based on the cross sectional area of the stores ranged from a maximum of 1.1 for the configuration with three Maverick missiles to a minimum of about .040 for the two MK-84 bombs and the arrangements with four square stores touching or two square stores in tandem. Square stores located side by side yielded about 0.50 in the aft position compared to 0.74 in the forward position.

  5. Experimental aerodynamic characteristics of two V/STOL fighter/attack aircraft configurations at Mach numbers from 0.4 to 1.4

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.; Durston, D. A.; Lummus, J. R.

    1980-01-01

    A wind tunnel test was conducted to measure the aerodynamic characteristics of two horizontal attitude takeoff and landing V/STOL fighter/attack aircraft concepts. In one concept, a jet diffuser ejector was used for the vertical lift system; the other used a remote augmentation lift system (RALS). Wind tunnel tests to investigate the aerodynamic uncertainties and to establish a data base for these types of concepts were conducted over a Mach number range from 0.2 to 2.0. The present report covers tests, conducted in the 11 foot transonic wind tunnel, for Mach numbers from 0.4 to 1.4. Detailed effects of varying the angle of attack (up to 27 deg), angle of sideslip (-4 deg to +8 deg), Mach number, Reynolds number, and configuration buildup were investigated. In addition, the effects of wing trailing edge flap deflections, canard incidence, and vertical tail deflections were explored. Variable canard longitudinal location and different shapes of the inboard nacelle body strakes were also investigated.

  6. Comparison of wind tunnel and flight test afterbody and nozzle pressures for a twin-jet fighter aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Nugent, Jack; Pendergraft, Odis C., Jr.

    1987-01-01

    Afterbody and nozzle pressures measured on a 1/12-scale model and in flight on a twin-jet fighter aircraft were compared as Mach number varied from 0.6 to 1.2, Reynolds number from 17.5 million to 302.5 million, and angle of attack from 1 to 7 deg. At Mach 0.6 and 0.8, nozzle pressure coefficient distributions and nozzle axial force coefficients agreed and showed good recompression. At Mach 0.9 and 1.2, flow complexity caused a loss in recompression for both flight and wind tunnel nozzle data. The flight data exhibited less negative values of pressure coefficient and lower axial force coefficients than did the wind tunnel data. Reynolds number effects were noted only at these Mach numbers. Jet temperature and mass flux ratio did not affect the comparisons of nozzle axial flow coefficient. At subsonic speeds, the levels of pressure coefficient distributions on the upper fuselage and lower nacelle surfaces for flight were less negative than those for the model. The model boundary layer thickness at the aft rake station exceeded that for the forward rake station and increased with increasing angle of attack. The flight boundary layer thickness at the aft rake station was less than that for the forward rake station and decreased with increasing angle of attack.

  7. Control of the forebody vortex orientation by asymmetric air injection. Part A: Application to enhance departure/spin recovery of fighter aircraft and Part B: Details of the flow structure

    NASA Technical Reports Server (NTRS)

    Skow, A. M.; Peake, D. J.

    1983-01-01

    A concept developed to provide powerful directional control effectiveness for a fighter aircraft at high angles of attack is described. The concept utilizes the energy concentrated in the strong forebody vortices (which form on slender bodies of high relative incidence) by controlling the lateral orientation of the vortices with respect to the body. The objective was to utilize the side force associated with asymmetric vortices, in a controlled manner, to enhance the ability of the fighter to recover from a departure from controlled flight. The results from water tunnel and wind tunnel experiments show that a small amount of tangential blowing along the forebody near the apex can effectively alter the forebody vortex system and generate large restoring yawing moments. Six degree of freedom digital simulation results show that this concept can substantially enhance recovery characteristics of fighter aircraft with long, slender forebodies. Also, the results of experiments which were conducted on a cone model are discussed where the principal test objective was to develop an understanding of the fluid mechanics involved in the process of vortex control. Knowledge gained in these more generic tests should allow the concept to be applied to a wider range of configurations.

  8. Candidate control design metrics for an agile fighter

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Bailey, Melvin L.; Ostroff, Aaron J.

    1991-01-01

    Success in the fighter combat environment of the future will certainly demand increasing capability from aircraft technology. These advanced capabilities in the form of superagility and supermaneuverability will require special design techniques which translate advanced air combat maneuvering requirements into design criteria. Control design metrics can provide some of these techniques for the control designer. Thus study presents an overview of control design metrics and investigates metrics for advanced fighter agility. The objectives of various metric users, such as airframe designers and pilots, are differentiated from the objectives of the control designer. Using an advanced fighter model, metric values are documented over a portion of the flight envelope through piloted simulation. These metric values provide a baseline against which future control system improvements can be compared and against which a control design methodology can be developed. Agility is measured for axial, pitch, and roll axes. Axial metrics highlight acceleration and deceleration capabilities under different flight loads and include specific excess power measurements to characterize energy meneuverability. Pitch metrics cover both body-axis and wind-axis pitch rates and accelerations. Included in pitch metrics are nose pointing metrics which highlight displacement capability between the nose and the velocity vector. Roll metrics (or torsion metrics) focus on rotational capability about the wind axis.

  9. Low-speed longitudinal aerodynamic characteristics of a flat-plate planform model of an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat

    1994-01-01

    A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.

  10. The Best Investment for the Air Superiority Fighter of the Year 2000: The Aircraft, Its Weapon System or Its Armament?

    DTIC Science & Technology

    1986-05-01

    Tactical Aircraft Division, 21 and 22 April 1986. 5. Study made in 1985 for a seminar of the Air War College by Colonel Bodie Bodenheim , USAF, and the...Magazine, January 1986, pp. 38-45. Ulsamer, Edgar , *Hard Calls on Tactical Technology.- Air Force Magazine, April 1986, pp. 58-64. A 0 _4 4.I _woo= ,DŔ

  11. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  12. Applications of advanced electric/electronic technology to conventional aircraft

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.

    1980-01-01

    The desirability of seven advanced technologies as applied to three commercial aircraft of 1985 to 1995 was investigated. Digital fly by wire, multiplexing, ring laser gyro, integrated avionics, all electric airplane, electric load management, and fiber optics were considered for 500 passenger, 50 passenger, and 30 passenger aircraft. The major figure of merit used was Net Value of Technology based on procurement and operating cost over the life of the aircraft. An existing computer program, ASSET, was used to resize the aircraft and evalute fuel usage and maintenance costs for each candidate configuration. Conclusions were that, for the 500 passenger aircraft, all candidates had a worthwhile payoff with the all electric airplane having a large payoff.

  13. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  14. Indigenous Advanced Fighter Aircraft in Israel: Considerations for Decision-Making.

    DTIC Science & Technology

    1981-12-01

    for the IAF and flying clubs [1061. Looking ahead to step four, the Israeli’s signed an agree- ment with the French Potez to manufacture the Fuga ...investments and capital expenditures 77n DINYn7 śPP0.7 civilian cansumpticn 177f n~,r ,i7i 127 7I’M rN ,y- 1974 - 1981 D’M 1"𔃿n V Government Expenditures as...and credit subsidizing Mai"n a75vtransf er payments n12n 7015vn ----------- investments and capital expenditurei "n MR.7,17 n7 n..... civilian

  15. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Preliminary design studies are presented for an advanced general aviation aircraft. Advanced guidance and display concepts, laminar flow, smart structures, fuselage and wing structural design and manufacturing, and preliminary configuration design are discussed. This project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in Aeronautics. The results obtained during the fall semester of 1990 (Phase 1) and the spring semester of 1991 (Phase 2) are presented.

  16. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts were evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy materials are now under development.

  17. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts have been evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy material is now under development.

  18. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  19. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  20. A study of prediction methods for the high angle-of-attack aerodynamics of straight wings and fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.; Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    Work is described dealing with two areas which are dominated by the nonlinear effects of vortex flows. The first area concerns the stall/spin characteristics of a general aviation wing with a modified leading edge. The second area concerns the high-angle-of-attack characteristics of high performance military aircraft. For each area, the governing phenomena are described as identified with the aid of existing experimental data. Existing analytical methods are reviewed, and the most promising method for each area used to perform some preliminary calculations. Based on these results, the strengths and weaknesses of the methods are defined, and research programs recommended to improve the methods as a result of better understanding of the flow mechanisms involved.

  1. Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  2. Pilot vehicle interface on the advanced fighter technology integration F-16

    NASA Technical Reports Server (NTRS)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  3. Advanced short haul aircraft for high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1977-01-01

    The short haul (less than 500 miles) passenger enplanements represent about 50% of the total domestic enplanements. These can be distinguished by the annual passenger flow for a given city pair and classified into low, medium and high densiy markets. NASA studies have investigated various advanced short haul aircraft concepts that have potential application in these three market areas. Although advanced operational techniques impact all market densities, advanced vehicle design concepts such as RTOL, STOL and VTOL have the largest impact in the high density markets. This paper summarizes the results of NASA sponsored high density short haul air transportation systems studies and briefly reviews NASA sponsored advanced VTOL conceptual aircraft design studies. Trends in vehicle characteristics and operational requirements will be indicated in addition to economic suitability and impact on the community.

  4. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  5. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  6. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  7. Terminal area considerations for an advanced CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.

    1975-01-01

    Projected future conditions at large urban airports were used to identify design objectives for a long-haul, advanced transport airplane introduced for operation in the mid-1980s. Operating constraints associated with airport congestion and aircraft noise and emissions were of central interest. In addition, some of the interaction of these constraints with aircraft fuel usage were identified. The study allowed for advanced aircraft design features consistent with the future operating period. A baseline 200 passenger airplane design was modified to comply with design requirements imposed by terminal area constraints. Specific design changes included: (1) modification of engine arrangement; wing planform; (2) drag and spoiler surfaces; (3) secondary power systems; (4) brake and landing gear characteristics; and (5) the aircraft avionics. These changes, based on exploratory design estimates and allowing for technology advance, were judged to enable the airplane to: reduce wake turbulence; handle steeper descent paths with fewer limitation due to engine characteristics; reduce runway occupancy times; improve community noise contours; and reduce the total engine emittants deposited in the terminal area. The penalties to airplane performance and operating cost associated with improving the terminal area characteristics of the airplane were assessed. Finally, key research problems requiring solution in order to validate the assumed advanced airplane technology were identified.

  8. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  9. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  10. Maximum principle solutions for time-optimal half-loop maneuvers of a high alpha fighter aircraft

    NASA Technical Reports Server (NTRS)

    Stalford, Harold; Hoffman, Eric

    1989-01-01

    An investigation was conducted of maximum principle solutions for an initial 0.6 Mach number and 15,000-ft altitude. The authors generate these solutions for a family of prescribed final times tf, starting with tf = 0.5 s. Using a nonlinear wind-tunnel model they construct maximum principle solutions. Above tf = 1.2 s some small nonlinear variations in the aerodynamic pitching moment coefficient presented difficulty with respect to numerical convergence. This was circumvented by fitting analytical models to the aerodynamic coefficients of the wind-tunnel model at Mach 0.4. Maximum principle solutions of the analytical model are shown to compare well with those obtained for tf of less than 1.2 s. Using the analytical model the authors extended the prescribed final time to a value of 13.65 s at which time the aircraft completes the half-loop maneuver. This is 0.53 s longer than that obtained using the singular perturbation feedback control law.

  11. Assessment of proposed fighter agility metrics

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.; Downing, David R.

    1990-01-01

    This paper presents the results of an analysis of proposed metrics to assess fighter aircraft agility. A novel framework for classifying these metrics is developed and applied. A set of transient metrics intended to quantify the axial and pitch agility of fighter aircraft is evaluated with a high fidelity, nonlinear F-18 simulation. Test techniques and data reduction method are proposed, and sensitivities to pilot introduced errors during flight testing is investigated. Results indicate that the power onset and power loss parameters are promising candidates for quantifying axial agility, while maximum pitch up and pitch down rates are for quantifying pitch agility.

  12. Advanced emergency openings for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1985-01-01

    Explosively actuated openings in composite panels are proposed to enhance passenger survivability within commercial aircraft by providing improvements in emergency openings, fuselage venting, and fuel dump. The concept is to embed a tiny, highly stable explosive cord in the periphery of a load-carrying composite panel; on initiation of the cord, the panel is fractured to create a well-defined opening. The panel would be installed in the sides of the fuselage for passenger egress, in the top of the fuselage for smoke venting, and in the bottoms of the fuel cells for fuel dump. Described are the concerns with the use of explosive systems, safety improvements, advantages, experimental results, and recommended approach to gain acceptance and develop this concept.

  13. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, Ron; Demoss, Shane; Dirkzwager, AB; Evans, Darryl; Gomer, Charles; Keiter, Jerry; Knipp, Darren; Seier, Glen; Smith, Steve; Wenninger, ED

    1991-01-01

    The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance.

  14. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  15. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  16. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  17. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  18. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  19. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.

  20. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  1. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  2. Advances in experimental mechanics for advanced aircraft structures

    NASA Astrophysics Data System (ADS)

    O'Brien, Eddie W.

    1997-03-01

    The industrial requirement for higher efficiency, lean performance, airframe structures to form the basis of more cost effective Commercial Aircraft has encouraged developments in all aspects of aeronautical design and manufacture. Until recently the main emphasis has been in the area of computer and numerical analysis, however new developments in experimental mechanics are emerging as very powerful tools for use in the validation of numerical analyses and for primary stress analysis data. The developments described have been forced by economic drivers that address more efficient analysis techniques with respect to cost, specific weight and expended time for analysis.

  3. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  4. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  5. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  6. Overview of liquid lubricants for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1982-01-01

    An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.

  7. Liquid lubricants for advanced aircraft engines

    SciTech Connect

    Loomis, W.R.; Fusaro, R.L.

    1992-08-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  8. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  9. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  10. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  11. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  12. Status of Advanced Stitched Unitized Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  13. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  14. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  15. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliot, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    The need for regional aircraft stems from the problem of hub airport congestion. Regional travel will allow a passenger to commute from one spoke city to another spoke city without entering the congested hub airport. In addition, those people traveling longer routes may begin the flight at home instead of traveling to the hub airport. At this time, there is no American aerospace company that produces a regional transport for under 100 passengers. The intention of the Developmental Advanced Regional Transport (DART-75) is to fill this void with a modern, efficient regional aircraft. This design achieves the efficiency through a number of advanced features including three lifting surfaces, partial composite construction, and an advanced engine design. Efficiency is not the only consideration. Structural integrity, fatigue life, ease of maintenance, passenger comfort and convenience, and environmental aspects must all be considered. These factors force the design team to face many tradeoffs that are studied to find the best solution. The final consideration that cannot be overlooked is that of cost. The DART-75 is a 75-passenger medium-range regional transport intended for spoke-to-spoke, spoke-to-hub, and some hub-to-hub operations. Included are the general descriptions of the structures, weight and balance, stability and control, performance, and engine design.

  16. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  17. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  18. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  19. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  20. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  1. ADWICE - Advanced Diagnosis and Warning system for aircraft ICing Environments

    NASA Astrophysics Data System (ADS)

    Leifeld, C.; Hauf, T.; Tafferner, A.; Leykauf, H.

    2003-04-01

    Inflight icing is a serious hazard, as attested by recent crashes of aircraft. The number of world-wide known accidents and serious incidents in which icing played a major role exceeds 800. Obviously current protection systems and icing forecasting, the latter relying mostly on reported icing by pilots and the evaluation of radiosonde ascents, are inadequate to control the threat. Aircraft inflight icing occurs when areas of supercooled liquid cloud droplets or precipitation are traversed. Ice accumulation on aerodynamic surfaces causes modification of the aerodynamics of the aircraft up to the point of uncontrolled flight. The safest way and the recommended practise would be to avoid the icing conditions. This however requires the forecast of supercooled liquid water (SLWC) in clouds and complete ice microphysics model scheme. Since the forecast quality of SLWC still is insufficient to completely rely on that quality for forecasting aircraft icing, other methods are under development. They rely on algorithms which deduce the potential icing threat from measured (mainly radiosonde ascents) or forecast (numerical models) distributions of temperature and humidity. ADWICE, the Advanced Diagnosis and Warning System for aircraft ICing Environments, has been developed since 1998 in a joint cooperation between the Institut für Physik der Atmosphäre at DLR, the Deutscher Wetterdienst (DWD) and the Institut für Meteorologie und Klimatologie (IMUK) at the University of Hannover. To identify icing environments, ADWICE merges forecast model data of the Local Model of the DWD with SYNOP and radar data. Using a slightly modified version of the NCAR/RAP algorithm, which is based on temperature and humidity fields, a first guess icing volume is calculated. Under certain conditions radar and SYNOP data allow corrections of the icing volume. Other data e.g. from satellites may be used in future, too. Since January 2001 ADWICE is running in a testing phase at the DWD. Using PIREPs

  2. Status of noise technology for advanced supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gutierrez, O. A.

    1980-01-01

    Developments in acoustic technology applicable to advanced supersonic cruise aircraft, particularly those which relate to jet noise and its suppression are reviewed. The noise reducing potential of high radius ratio, inverted velocity profile coannular jets is demonstrated by model scale results from a wide range of nozzle geometries, including some simulated flight cases. These results were verified statistically at large scale on a variable cycle engine (VCE) testbed. A preliminary assessment of potential VCE noise sources such as fan and core noise is made, based on the testbed data. Recent advances in the understanding of flight effects are reviewed. The status of component noise prediction methods is assessed on the basis of recent test data, and the remaining problem areas are outlined.

  3. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  4. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  5. Applications of advanced V/STOL aircraft concepts to civil utility missions. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The linear performance definition curves for the lift fan aircraft, tilt rotor aircraft, and advanced helicopter are given. The computer program written to perform the mission analysis for this study is also documented, and examples of its use are shown. Methods used to derive the performance coefficients for use in the mission analysis of the lift fan aircraft are described.

  6. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  7. Design study of test models of maneuvering aircraft configurations for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Griffin, S. A.; Madsen, A. P.; Mcclain, A. A.

    1984-01-01

    The feasibility of designing advanced technology, highly maneuverable, fighter aircraft models to achieve full scale Reynolds number in the National Transonic Facility (NTF) is examined. Each of the selected configurations are tested for aeroelastic effects through the use of force and pressure data. A review of materials and material processes is also included.

  8. Fighter Pilot Ejection Study as an Educational Tool

    ERIC Educational Resources Information Center

    Robinson, Garry; Jovanoski, Zlatko

    2010-01-01

    In this article, we apply the well-known equations of projectile motion to the case of a fighter pilot ejecting from an aircraft, the aim being to establish under what conditions there is danger of impact with the rear vertical stabilizer. The drag force on the pilot after ejection is assumed to vary as the velocity squared and the aircraft motion…

  9. UCAV - The Next Generation Air-Superiority Fighter?

    DTIC Science & Technology

    2002-06-01

    number. 1. REPORT DATE 00 JUN 2002 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE UCAV - The Next Generation Air-Superiority...next- generation air-superiority fighter is entering development. Unmanned aircraft must be considered as an alternative to manned aircraft for this

  10. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  11. Advances in aircraft design: Multiobjective optimization and a markup language

    NASA Astrophysics Data System (ADS)

    Deshpande, Shubhangi

    Today's modern aerospace systems exhibit strong interdisciplinary coupling and require a multidisciplinary, collaborative approach. Analysis methods that were once considered feasible only for advanced and detailed design are now available and even practical at the conceptual design stage. This changing philosophy for conducting conceptual design poses additional challenges beyond those encountered in a low fidelity design of aircraft. This thesis takes some steps towards bridging the gaps in existing technologies and advancing the state-of-the-art in aircraft design. The first part of the thesis proposes a new Pareto front approximation method for multiobjective optimization problems. The method employs a hybrid optimization approach using two derivative free direct search techniques, and is intended for solving blackbox simulation based multiobjective optimization problems with possibly nonsmooth functions where the analytical formof the objectives is not known and/or the evaluation of the objective function(s) is very expensive (very common in multidisciplinary design optimization). A new adaptive weighting scheme is proposed to convert a multiobjective optimization problem to a single objective optimization problem. Results show that the method achieves an arbitrarily close approximation to the Pareto front with a good collection of well-distributed nondominated points. The second part deals with the interdisciplinary data communication issues involved in a collaborative mutidisciplinary aircraft design environment. Efficient transfer, sharing, and manipulation of design and analysis data in a collaborative environment demands a formal structured representation of data. XML, a W3C recommendation, is one such standard concomitant with a number of powerful capabilities that alleviate interoperability issues. A compact, generic, and comprehensive XML schema for an aircraft design markup language (ADML) is proposed here to provide a common language for data

  12. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  13. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  14. Program Fighter: An Evaluation.

    ERIC Educational Resources Information Center

    Hull, David G.; Fowler, Wallace T.

    A computer program for the sizing of subsonic and supersonic fighter planes was adapted for use in an aerospace engineering course at the University of Texas at Austin. FIGHTER uses classroom notation and separate subroutines for different disciplines to implement the conceptual design process. Input consists of a set of design variables and a set…

  15. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  16. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  17. Advanced cockpit technology for future civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  18. Computerized structural mechanics for 1990's: Advanced aircraft needs

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Backman, B. F.

    1989-01-01

    The needs for computerized structural mechanics (CSM) as seen from the standpoint of the aircraft industry are discussed. These needs are projected into the 1990's with special focus on the new advanced materials. Preliminary design/analysis, research, and detail design/analysis are identified as major areas. The role of local/global analyses in these different areas is discussed. The lessons learned in the past are used as a basis for the design of a CSM framework that could modify and consolidate existing technology and include future developments in a rational and useful way. A philosophy is stated, and a set of analyses needs driven by the emerging advanced composites is enumerated. The roles of NASA, the universities, and the industry are identified. Finally, a set of rational research targets is recommended based on both the new types of computers and the increased complexity the industry faces. Computerized structural mechanics should be more than new methods in structural mechanics and numerical analyses. It should be a set of engineering applications software products that combines innovations in structural mechanics, numerical analysis, data processing, search and display features, and recent hardware advances and is organized in a framework that directly supports the design process.

  19. Application of high-alpha control system concepts to a variable-sweep fighter airplane

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Gera, J.; Iliff, K. W.; Enevoldson, E. K.

    1980-01-01

    The use of control system design to enhance high-angle-of-attack flying qualities and departure/spin resistance has become an accepted and widely used approach for modern fighter aircraft. NASA and the Navy are currently conducting a joint research program to investigate the application of this technology to the F-14. The paper discusses the results of this program within the context of its contributions to advancing high-alpha control system technology. General topics covered include (1) analysis and design tools, (2) control system design approach, and (3) flight test approach and results.

  20. Reduction of structural loads using maneuver load control on the Advanced Fighter Technology Integration (AFTI)/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Thornton, Stephen V.

    1993-01-01

    A transonic fighter-bomber aircraft, having a swept supercritical wing with smooth variable-camber flaps was fitted with a maneuver load control (MLC) system that implements a technique to reduce the inboard bending moments in the wing by shifting the spanwise load distribution inboard as load factor increases. The technique modifies the spanwise camber distribution by automatically commanding flap position as a function of flap position, true airspeed, Mach number, dynamic pressure, normal acceleration, and wing sweep position. Flight test structural loads data were obtained for loads in both the wing box and the wing root. Data from uniformly deflected flaps were compared with data from flaps in the MLC configuration where the outboard segment of three flap segments was deflected downward less than the two inboard segments. The changes in the shear loads in the forward wing spar and at the roots of the stabilators also are presented. The camber control system automatically reconfigures the flaps through varied flight conditions. Configurations having both moderate and full trailing-edge flap deflection were tested. Flight test data were collected at Mach numbers of 0.6, 0.7, 0.8, and 0.9 and dynamic pressures of 300, 450, 600, and 800 lb/sq ft. The Reynolds numbers for these flight conditions ranged from 26 x 10(exp 6) to 54 x 10(exp 6) at the mean aerodynamic chord. Load factor increases of up to 1.0 g achieved with no increase in wing root bending moment with the MLC flap configuration.

  1. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  2. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  3. Air Superiority Fighter Characteristics.

    DTIC Science & Technology

    1998-06-05

    many a dispute could have been deflated into a single paragraph if the disputants had just dared to define their terms.7 Aristotle ...meaningful. This section will expand on some key ideology concepts. The phrase "air superiority fighter" may bring to mind visions of fighter... biographies are useful in garnering airpower advocate theories as well as identifying key characteristics. Air campaign results, starting with World

  4. Advanced turboprop aircraft flyover noise annoyance - Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1989-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and jet aircraft flyover noise. It was found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved prediction ability.

  5. Interference effects of thrust reversing on horizontal tail effectiveness of twin-engine fighter aircraft at Mach numbers from 0.15 to 0.90

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Mason, M. L.

    1984-01-01

    An investigation was conducted in the Langley 16 foot Transonic Tunnel to determine the interference effects of thrust reversing on horizontal tail effectiveness of a twin engine, general research fighter model at approach and in-flight speeds. Twin vertical tails at three longitudinal locations were tested at a cant angle of 0 deg. One configuration was also tested at a cant angle of 20 deg. Two nonaxisymmetric nozzle reverser concepts were studied. Test data were obtained at Mach numbers of 0.15, 0.60, and 0.90 and at angles of attack from -3 to 9 deg. Nozzle pressure ratios varied from jet off to 7.0, depending upon Mach number. At landing approach speed (Mach number 0.15), thrust reverser operation usually resulted in large variations (up to 70% increase) in horizontal tail effectiveness as nozzle pressure ratio was varied at zero angle of attack or as angle of attack was varied at constant nozzle pressure ratio. There was always a decrease in effectiveness at Mach numbers of 0.60 and 0.90 as a result of reverser operation.

  6. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  7. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  8. Advanced Propulsion Systems Study for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Mount, R.

    2003-01-01

    This study defines a family of advanced technology Stratified Charge Rotary Engines (SCRE) appropriate for the enablement of the development of a new generation of general aviation aircraft. High commonality, affordability, and environmental compatibility are considerations influencing the family composition and ratings. The SCRE family is comprised of three engines in the 70 Series (40 cu in. displacement per rotor), i.e. one, two, and four rotor and two engines in the 170 Series (105 cu in. displacement per rotor), i.e., two and four rotor. The two rotor engines are considered the primary engines in each series. A wide power range is considered covering 125 to 2500 HP through growth and compounding/dual pac considerations. Mission requirements, TBO, FAA Certification, engine development cycles, and costs are examined. Comparisons to current and projected reciprocating and turbine engine configurations in the 125 to 1000 HP class are provided. Market impact, estimated sales, and U.S. job creation (R&D, manufacturing and infractures) are examined.

  9. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Elliott, Kathryn A.; Huebner, Steven R.

    2003-01-01

    In this study, new technology engines were defined in two power classes: a 200 hp class, for a light, 4-place personal aircraft, and a 1500 pound thrust class for a twin-engined, 6 place business jet type aircraft. The engines were evaluated for retrofitting suitable current production aircraft for comparison to the existing engines. The engines were evaluated for performance using a typical mission for each aircraft, as well as a variant mission to further appraise performance.Issues of cost, safety, maintenance, and reliability were also addressed. Manufacturing plans were then constructed.

  10. Unmanned Aircraft Systems at NASA Dryden

    NASA Video Gallery

    NASA Dryden has a heritage of developmental and operational experience with unmanned aircraft systems. Work on Boeing's sub-scale X-36 Tailless Fighter Agility Research Aircraft, X-48 Blended Wing ...

  11. Design, cost, and advanced technology applications for a military trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Harper, M.

    1975-01-01

    The potential impact is examined of advanced aerodynamic and propulsive technologies in terms of operating and acquisition costs on conceptual mission and performance requirements for a future undergraduate jet pilot trainer aircraft.

  12. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  13. Resin transfer molding for advanced composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  14. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  15. Modified Dynamic Inversion to Control Large Flexible Aircraft: What's Going On?

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1999-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper explores dynamic inversion application to an advanced highly flexible aircraft. An initial application has been made to a large flexible supersonic aircraft. In the course of controller design for this advanced vehicle, modifications were made to the standard dynamic inversion methodology. The results of this application were deemed rather promising. An analytical study has been undertaken to better understand the nature of the made modifications and to determine its general applicability. This paper presents the results of this initial analytical look at the modifications to dynamic inversion to control large flexible aircraft.

  16. Final Environmental Assessment for Temporary Aircraft Relocation to Maxwell Air Force Base 187th Fighter Wing Montgomery Regional Airport Montgomery, Alabama

    DTIC Science & Technology

    2012-06-01

    Maxwell AFB, 187 FW Final – June 2012 8-1 CHAPTER 8 LIST OF PREPARERS Robert Dogan, REM Project Manager National Guard Bureau/A7AM Years of...and draft FONSI 2. Distribution li st Sincere ly ~/()/ ROBERT L. DOGAN, GS-13, REM Plans and Requi rements Branch Environmental Assessment for...ROBERT L. DOGAN, GS-13, REM Plans and Requirements Branch Environmental Assessment for Temporary Aircraft Relocation to Maxwell AFB, 187 FW Final

  17. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  18. Ground Environment Characterization of STOVL Fighter Propulsion Systems

    DTIC Science & Technology

    1990-08-01

    WR DC-TR-90-2058 AD- A225 372 GROUND ENVIRONMENT CHARACTERIZATION OF STOVL FIGHTER PROPULSION SYSTEMS Randolph W. Spratt Universal Technology...Investigation of the Interaction of Lift Jets and a Ground Plane. (NASA- CR -152343, NTIS N81- 23026) St. Louis, MO: McDonnell Aircraft Co., Apr. 1980. 22

  19. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2013-12-01

    difficult to calculate mathematically the precise confidence levels associated with life - cycle cost estimates prepared for Major Defense Acquisition...Contractor Location South Oyster Bay Road 600 Grumman Road West Bethpage, NY 11714-3582 Contract Number, Type N00019-12-C-0063/5, FFP Award Date...and Evaluation Squadron One (VX-1)* - 2 aircraft at Naval Strike Air Warfare Center (NSAWC)* Aircraft Flight Hours Life Limit: 9,600 Pipeline

  20. Advances in Protective Coatings and Their Application to Ageing Aircraft

    DTIC Science & Technology

    2000-04-01

    Materials for the Structure f Aging Aircraft [les Nouveaux Materiaux metalliques pour les structures des aeronefs d’ancienne generation] To order the...corrosion through design, the selection of military and civil aircraft during the last thirty years. Research materials that are resistant to corrosion and...fluid resistance and greater flexibility. New methods of paint stripping and novel processes for the 2.1 Design repair of pre-treatments and metal

  1. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    NASA Technical Reports Server (NTRS)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  2. Program Fighter - An Evaluation.

    ERIC Educational Resources Information Center

    Hull, David G.; Fowler, Wallace T.

    Described is a computer program for the sizing of subsonic and supersonic fighters which has been adapted for use in an aerospace engineering design course. Following a description of the program, an evaluation of its use in the university is presented. It is concluded that computer programs for the conceptual design of aerospace vehicles can play…

  3. Application of advanced technologies to small, short-haul transport aircraft (STAT)

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

    1982-01-01

    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

  4. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  5. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1991-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  6. Potential applications of advanced aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    An investigation sponsored by NASA indicates that air transportation can play an important role in the economic progress of developing countries. By the turn of the century, the rapid economic growth now occurring in many developing countries should result in a major redistribution of the world's income. Some countries now classified as 'developing' will become 'developed' and are likely to become far more important to the world's civil aviation industry. Developing countries will be increasingly important buyers of conventional subsonic long-haul jet passenger aircraft but not to the point of significant influence on the design or technological content of future aircraft of this type. However, the technological content of more specialized aircraft may be influenced by developing country requirements and reflected in designs which fill a need concerning specialized missions, related to short-haul, low-density, rough runways, and natural resource development.

  7. Fighter agility metrics. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.

    1990-01-01

    Fighter flying qualities and combat capabilities are currently measured and compared in terms relating to vehicle energy, angular rates and sustained acceleration. Criteria based on these measurable quantities have evolved over the past several decades and are routinely used to design aircraft structures, aerodynamics, propulsion and control systems. While these criteria, or metrics, have the advantage of being well understood, easily verified and repeatable during test, they tend to measure the steady state capability of the aircraft and not its ability to transition quickly from one state to another. Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A complete set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available.

  8. Some inadequacies of the current human factors certification process of advanced aircraft technologies

    NASA Technical Reports Server (NTRS)

    Paries, Jean

    1994-01-01

    Automation related accidents or serious incidents are not limited to advanced technology aircraft. There is a full history of such accidents with conventional technology aircraft. However, this type of occurrence is far from sparing the newest 'glass cockpit' generation, and it even seems to be a growing contributor to its accident rate. Nevertheless, all these aircraft have been properly certificated according to the relevant airworthiness regulations. Therefore, there is a growing concern that with the technological advancement of air transport aircraft cockpits, the current airworthiness regulations addressing cockpit design and human factors may have reached some level of inadequacy. This paper reviews some aspects of the current airworthiness regulations and certification process related to human factors of cockpit design and focuses on questioning their ability to guarantee the intended safety objectives.

  9. Advanced Nanostructured Hybrid Coatings for the Protection of Aircraft

    DTIC Science & Technology

    2005-10-01

    barrier function (Figure 2B). The SEM cross-section is clearly reminiscent of the structure of the seashells (Figure 2C). The strength and other...tough as nacre (lining material of the seashells ). This will ensure their durability on the aircrafts. 11 4. A new type of microscopy, i.e. confocal

  10. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  11. Handling Quality Requirements for Advanced Aircraft Design: Longitudinal Mode

    DTIC Science & Technology

    1979-08-01

    regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission...analog hardware specifications and seleccion on the DFCS performance. * Consideration of the potential degradation of DFCS performance and handling...systems research or even for the engineering design of an aircraft or FCS, matters of style and personal taste can dictate how one chooses to

  12. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  13. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  14. The fighter pilot's egg

    NASA Astrophysics Data System (ADS)

    Fry, Dale W.

    1990-03-01

    Of common interest to fighter pilots is what maneuver should be flown to accomplish a 360° heading change in the least time. Among the infinite possibilities, analytic expressions for a very commonly used maneuver, a roughly circular planar turn that accomplishes the required heading change, are derived and examined under four realistic assumptions. Contrary to common belief, the time to complete the stated heading change turns out to be independent of the inclination of the plane of the turn.

  15. Advanced turboprop aircraft noise annoyance - A review of recent NASA research

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Leatherwood, J. D.; Shepherd, K. P.

    1986-01-01

    Passenger and community response to advanced turboprop aircraft noise are studied. Four experiments were conducted utilizing an aircraft noise synthesis system, an exterior effects room, an anechoic listening room, and a Space Station/aircraft acoustic apparatus; the experimental conditions and procedures for the psychoacoustic studies are described. The community noise studies involved evaluating the effects of various tonal characteristics on annoyance. It was observed that the frequency envelope shape did not effect annoyance; however, the interaction of the fundamental frequency with tone-to-broadband noise ratio did have a large effect on annoyance. The effects of low frequency tones, turbulent boundary layer noise, and tonal beats on passenger annoyance are investigated. The data reveal that passenger annoyance is greater for a given level of boundary layer noise when tones are at levels sufficient to increase the overall sound pressure level within the cabin. The annoyance response of an advanced turboprop and a conventional aircraft are compared. It is determined that the flyover noise level for the turboprop aircraft is not more annoying than that of a conventional aircraft.

  16. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  17. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  18. Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    2000-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  19. The Need for a Permanent Gun System On the F-35 Joint Strike Fighter

    DTIC Science & Technology

    2007-04-01

    5. 9. Emmanuel Gustin and Anthony G Williams, Flying Guns: The Development of Aircraft Guns, Ammunition and Installations 1933-1945 (Airlife...Checking Six Not Enough, 23. 33. Ibid., 24. 34. Ibid., 24. 35. Todd E. Denning, A Case for the Joint Strike Fighter Gun (Army General Command and...Washington DC, 20 October 2006. 38. Ibid 39. Todd E. Denning, A Case Joint Strike Fighter, 56. 40. David R. Mets, Checking Six Not Enough, 41

  20. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  1. V-22 Osprey Joint Services Advanced Vertical Lift Aircraft (V-22)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-212 V-22 Osprey Joint Services Advanced Vertical Lift Aircraft (V-22) As of FY 2017...POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To

  2. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  3. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system is used to generate 18 realistic, time varying simulations of propeller aircraft takeoff noise in which the harmonic content is systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs are presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  4. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance - Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system was used to generate 18 realistic, time varyring simulations of propeller aircraft takeoff noise in which the harmonic content was systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  5. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  6. NASA's advanced control law program for the F-8 digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1977-01-01

    This paper briefly describes the NASA F-8 Digital Fly-By-Wire (DFBW) and Langley Research Center's role in investigating and promoting advanced control laws for possible flight experimentation and also provides a brief description of the Phase II DFBW F-8 aircraft and its control system. Some of the advanced control law study objectives and guidelines are discussed, and some mathematical models which are useful in the control analysis problem are provided.

  7. Aircraft developments that hold promise for increased compatability with an advanced ATC system

    NASA Technical Reports Server (NTRS)

    Hodge, K. E.

    1978-01-01

    In terms of an advanced air traffic control environment, consideration is given to a wake vortex advisory system and V/STOL aircraft. The terminal configured vehicle program is described. Procedures for all-weather operations are reviewed and the search and rescue satellite system is described. Predictions are made concerning an advanced national aviation system, digital communications, integrated control technology, and cockpit avionics. Human factors in both general and civil aviation are discussed.

  8. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)

    DTIC Science & Technology

    1996-04-01

    for enhancing aircrew performance at high sustained +GZ accelerations. Finally, increasing attention has been paid over the last two decades to the...comprehensive published review of the design and performance of Advanced Oxygen Systems. It has been written principally by present and past members... performance required of Advanced Oxygen Systems and with the design and assessment of the first and later generations of these systems. The monograph

  9. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  10. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  11. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.

  12. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  13. Evaluation of Aircraft Ejection Seat Safety When Using Advanced Helmet Sensors

    DTIC Science & Technology

    2015-03-09

    Defense F r a u d , W a s t e & A b u s e DODIG-2015-090 ( Project No. D2014-DT0TAD-0002.000) │ i Results in Brief Evaluation of Aircraft Ejection Seat ...Aircraft Ejection Seat Safety When Using Advanced Helmet Sensors Management Comments and Our Response The Deputy Assistant Secretary of the Navy, Air...the following page. DODIG-2015-090 ( Project No. D2014-DT0TAD-0002.000) │ iii Recommendations Table Management Recommendations Requiring Comment No

  14. Design developments for advanced general aviation aircraft. [using Fly By Light Control

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Gomer, Charles

    1991-01-01

    Design study results are presented for two advanced general-aviation aircraft incorporating fly-by-light/fly-by-wire controls and digital avionics and cockpit displays. The design exercise proceeded from a database of information derived from a market survey for the 4-10 passenger aircraft range. Pusher and tractor propeller configurations were treated, and attention was given to the maximization of passenger comfort. 'Outside-in' tooling methods were assumed for the primary structures of both configurations, in order to achieve surface tolerances which maximize the rearward extent of laminar flow.

  15. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  16. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  17. A study on the utilization of advanced composites in commercial aircraft wing structure

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  18. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  19. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  20. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  1. Robust Nonlinear Control of Tailless Fighter Aircraft

    DTIC Science & Technology

    1999-02-01

    adaptive backstepping and nonlinear PI control , it is not very straightforward to establish this uniform asymptotic stability (in a set of error coordinates...tracking error coordinates for mechanical systems and ships controlled via adaptive back- stepping and nonlinear PI control algorithms. These results were

  2. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  3. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  4. Annoyance caused by advanced turboprop aircraft flyover noise: Counter-rotating-propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1990-01-01

    Two experiments were conducted to quantify the annoyance of people to flyover noise of advanced turboprop aircraft with counter rotating propellers. The first experiment examined configurations having an equal number of blades on each rotor and the second experiment examined configurations having an unequal number of blades on each rotor. The objectives were to determine the effects on annoyance of various tonal characteristics, and to compare annoyance to advanced turboprops with annoyance to conventional turboprops and turbofans. A computer was used to synthesize realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. The simulations represented different combinations fundamental frequency and tone-to-broadband noise ratio. Also included in each experiment were recordings of 10 conventional turboprop and turbofan takeoffs. Each noise was presented at three sound pressure levels in an anechoic chamber. In each experiment, 64 subjects judged the annoyance of each noise stimulus. Analyses indicated that annoyance was significantly affected by the interaction of fundamental frequency with tone-to-broadband noise ratio. No significant differences in annoyance between the advanced turboprop aircraft and the conventional turbofans were found. The use of a duration correction and a modified tone correction improved the annoyance prediction for the stimuli.

  5. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  6. Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Hendricks, Eric S.; Tong, Michael T.; Haller, William J.; Thurman, Douglas R.

    2011-01-01

    Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities.

  7. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  8. Workshop on Design Loads for Advanced Fighters: Meeting of the Structures and Materials Panel of AGARD (64th) Held in Madrid (Spain) on 27 April-1 May 1987.

    DTIC Science & Technology

    1988-02-01

    to aerospace for the following purposes: - Recommending effective ways for the member nations to use their research and development capabilities for... effects , box I is also given atthe start In average form. Box 3 is frozen relatively early by definition of the aircraft configuration and so is the...spoilers, the pilot now is rarely aware of the effect his commands have on the aircraft control surfaces. The only real limitation of unsymmetrical

  9. 75 FR 22439 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...EPA is issuing this Advance Notice of Proposed Rulemaking (ANPR) to describe information currently available and information being collected that will be used by the Administrator to issue a subsequent proposal regarding whether, in the Administrator's judgment, aircraft lead emissions from aircraft using leaded aviation gasoline (avgas) cause or contribute to air pollution which may......

  10. Advanced combustion techniques for controlling NO/x/ emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments have been and continue to be sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere. Of particular concern are the oxides of nitrogen (NO/x/) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NO/x/ emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  11. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  12. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  13. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  14. Applications of advanced aerodynamic technology to light aircraft.

    NASA Technical Reports Server (NTRS)

    Crane, H. L.; Mcghee, R. J.; Kohlman, D. L.

    1973-01-01

    This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers. Preliminary data on the characteristics of the new airfoil are discussed. The configuration of an experimental wing for a Piper Seneca PA-34 and estimated airplane performance with this wing are discussed.

  15. Advanced composite aileron for L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design and evaluation of alternate concepts for the major subcomponents of the advanced composite aileron (ACA) was completed. From this array of subcomponents, aileron assemblies were formulated and evaluated. Based on these analyses a multirib assembly with graphite tape/syntactic core covers, a graphite tape front spar, and a graphite fabric rib was selected for development. A weight savings of 29.1 percent (40.8 pounds per aileron) is predicted. Engineering cost analyses indicate that the production cost of the ACA will be 7.3 percent less than the current aluminum aileron. Fabrication, machining, and testing of the material evaluation specimens for the resin screening program was completed. The test results lead to the selection of Narmco 5208 resin for the ACA. Other activities completed include: the detailed design of the ACA, construction of a three dimensional finite element model for structural analysis, and formulation of detail plans for material verification and process development.

  16. Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    Two experiments were conducted to quantify the annoyance of people to advanced turboprop (propfan) aircraft flyover noise. The objectives were to: (1) determine the effects on annoyance of various tonal characteristics; and (2) compare annoyance to advanced turboprops with annoyance to conventional turboprops and jets. A computer was used to produce realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. In the first experiment, subjects judged the annoyance of 45 advanced turboprop noises in which the tonal content was systematically varied to represent the factorial combinations of five fundamental frequencies, three frequency envelope shapes, and three tone-to-broadband noise ratios. Each noise was presented at three sound levels. In the second experiment, 18 advanced turboprop takeoffs, 5 conventional turboprop takeoffs, and 5 conventional jet takeoffs were presented at three sound pressure levels to subjects. Analysis indicated that frequency envelope shape did not significantly affect annoyance. The interaction of fundamental frequency with tone-to-broadband noise ratio did have a large and complex effect on annoyance. The advanced turboprop stimuli were slightly less annoying than the conventional stimuli.

  17. Advanced composite elevator for Boeing 727 aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Chovil, D. V.; Harvey, S. T.; Mccarty, J. E.; Desper, O. E.; Jamison, E. S.; Syder, H.

    1981-01-01

    The design, development, analysis, and testing activities and results that were required to produce five and one-half shipsets of advanced composite elevators for Boeing 727 aircraft are summarized. During the preliminary design period, alternative concepts were developed. After selection of the best design, detail design and basic configuration improvements were evaluated. Five and one-half shipsets were manufactured. All program goals (except competitive cost demonstration) were accomplished when our design met or exceeded all requirements, criteria, and objectives.

  18. Demonstration Advanced Avionics System (DAAS) functional description. [Cessna 402B aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive set of general aviation avionics were defined for integration into an advanced hardware mechanization for demonstration in a Cessna 402B aircraft. Block diagrams are shown and system and computer architecture as well as significant hardware elements are described. The multifunction integrated data control center and electronic horizontal situation indicator are discussed. The functions that the DAAS will perform are examined. This function definition is the basis for the DAAS hardware and software design.

  19. An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.

    1986-01-01

    Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.

  20. Advances on Propulsion Technology for High-Speed Aircraft. Volume 2

    DTIC Science & Technology

    2007-03-01

    ADVANCES ON PROPULSION TECHNOLOGY FOR HIGH-SPEED AIRCRAFT March 12-15, 2007 SCRAMJETS M. Smart The University of Queensland , Australia Scramjets...Michael Smart Centre for Hypersonics, The University of Queensland , Brisbane, Australia. 4072 Nomenclature A area (in2) T temperature (K) Cf skin friction...programmes will be reviewed here; (1) ajoint CIAM/NASA flight test conducted in 1998, (2) the HyShot 2 flight conducted by The University of Queensland

  1. The next generation in aircraft protection against advanced MANPADS

    NASA Astrophysics Data System (ADS)

    Chapman, Stuart

    2014-10-01

    This paper discusses the advanced and novel technologies and underlying systems capabilities that Selex ES has applied during the development, test and evaluation of the twin head Miysis DIRCM System in order to ensure that it provides the requisite levels of protection against the latest, sophisticated all-aspect IR MANPADS. The importance of key performance parameters, including the fundamental need for "spherical" coverage, rapid time to energy-on-target, laser tracking performance and radiant intensity on seeker dome is covered. It also addresses the approach necessary to ensure that the equipment is suited to all air platforms from the smallest helicopters to large transports, while also ensuring that it achieves an inherent high reliability and an ease of manufacture and repair such that a step change in through-life cost in comparison to previous generation systems can be achieved. The benefits and issues associated with open architecture design are also considered. Finally, the need for extensive test and evaluation at every stage, including simulation, laboratory testing, platform and target dynamic testing in a System Integration Laboratory (SIL), flight trial, missile live-fire, environmental testing and reliability testing is also described.

  2. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  3. Cost benefit study of advanced materials technology for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Johnston, R. P.

    1977-01-01

    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  4. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  5. Fighter agility metrics, research, and test

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.

    1990-01-01

    Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A completed set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation provided by the NASA Dryden Flight Research Center. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available. Simulation documentation and user instructions are provided in an appendix.

  6. Aircraft Airframe Cost Estimating Relationships. Study Approach and Conclusions

    DTIC Science & Technology

    1987-12-01

    e.g., tighter, bomber/transport, and attack aircraft) is examined. Addi- tionally, for the fighter subsample, the possible benefit of incorporating an...technology index itself, another benefit of the technology study to this analysis was the identification of several individual explanatory variables which...aircraft type benefit the current program? (e.g., Does recent experience with attack aircraft help fighter development? Does recent experience with

  7. Aircraft configuration optimization including optimized flight profiles

    NASA Technical Reports Server (NTRS)

    Mccullers, L. A.

    1984-01-01

    The Flight Optimization System (FLOPS) is an aircraft configuration optimization program developed for use in conceptual design of new aircraft and in the assessment of the impact of advanced technology. The modular makeup of the program is illustrated. It contains modules for preliminary weights estimation, preliminary aerodynamics, detailed mission performance, takeoff and landing, and execution control. An optimization module is used to drive the overall design and in defining optimized profiles in the mission performance. Propulsion data, usually received from engine manufacturers, are used in both the mission performance and the takeoff and landing analyses. Although executed as a single in-core program, the modules are stored separately so that the user may select the appropriate modules (e.g., fighter weights versus transport weights) or leave out modules that are not needed.

  8. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  9. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  10. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  11. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  12. Potential reduction of en route noise from an advanced turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1990-01-01

    When the en route noise of a representative aircraft powered by an eight-blade SR-7 propeller was previously calculated, the noise level was cited as a possible concern associated with the acceptance of advanced turboprop aircraft. Some potential methods for reducing the en route noise were then investigated and are reported. Source noise reductions from increasing the blade number and from operating at higher rotative speed to reach a local minimum noise point were investigated. Greater atmospheric attenuations for higher blade passing frequencies were also indicated. Potential en route noise reductions from these methods were calculated as 9.5 dB (6.5 dB(A)) for a 10-blade redesigned propeller and 15.5 dB (11 dB(A)) for a 12-blade redesigned propeller.

  13. Not a Pound for Air-To-Ground: A Historiographical Analysis on the Genesis of the Multi-Role Fighter

    DTIC Science & Technology

    2015-04-01

    dogfight, and the severe fighter-bomber losses to SAMs and anti-aircraft artillery ( AAA ), led the USAF to rethink its fighter acquisition programs in...Weapons (AW), AAA , or SAMs) (Ibid., 73). 121 Anderegg, Sierra Hotel, 149. 19 long-range missiles, an internal gun, cockpit switches that were...in the war, Vipers destroyed SAM sites and AAA gun emplacements.144 They also destroyed Iraqi supply and transportation lines during armed

  14. Aircraft geometry verification with enhanced computer-generated displays

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1982-01-01

    A method for visual verification of aerodynamic geometries using computer-generated, color-shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer-aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color-shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color-shaded display is presented. The results include examples of color-shaded displays, which are contrasted with wire-frame-type displays. The examples also show the use of mapped surface pressures in terms of color-shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.

  15. Aircraft geometry verification with enhanced computer generated displays

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1982-01-01

    A method for visual verification of aerodynamic geometries using computer generated, color shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color shaded display is presented. The results include examples of color shaded displays, which are contrasted with wire frame type displays. The examples also show the use of mapped surface pressures in terms of color shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.

  16. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    The Fluid Mechanics and Acoustics Laboratory (FM&AL) was established At Hampton University in June of 1996. In addition, the FM&AL jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a 2.5 year Civilian Research and Development Foundation (CRDF). The goals of the FM&AL programs are two fold: 1) to improve the working efficiency of the FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. This project already benefits NASA and HU because: First, the innovation, testing, and further development of new techniques for advanced propulsion systems are necessary for the successful attainment of the NASA Long Term Goals in Aeronautics and Space Transportation Technology (ASTT) including Global Civil Aviation, Revolutionary Technology Leaps, Access to Space, R&D Services, and the economic competitiveness of the US Aircraft Industry in the 2 1 st century. Secondly, the joint

  17. Development of an agility assessment module for preliminary fighter design

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Bauer, Brent; Biezad, Daniel; Hahn, Andrew

    1996-01-01

    A FORTRAN computer program is presented to perform agility analysis on fighter aircraft configurations. This code is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. FORTRAN programs were developed for two specific metrics, CCT (Combat Cycle Time) and PM (Pointing Margin), as part of the agility module. The validity of the code was evaluated by comparing with existing flight test data. Example trade studies using the agility module along with ACSYNT were conducted using Northrop F-20 Tigershark and McDonnell Douglas F/A-18 Hornet aircraft models. The sensitivity of thrust loading and wing loading on agility criteria were investigated. The module can compare the agility potential between different configurations and has the capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements.

  18. Lessons learned from pilot errors using automated systems in advanced technology aircraft

    SciTech Connect

    Nelson, W.R.; Byers, J.C.; Haney, L.N.; Ostrom, L.T.; Reece, W.J.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) sponsored a project at the Idaho National Engineering Laboratory (INEL) to investigate pilot errors that occur during interaction with automated systems in advanced technology ( glass cockpit'') aircraft. In particular, we investigated the causes and potential corrective measures for pilot errors that resulted in altitude deviation incidents (i.e. failure to capture or maintain the altitude assigned by air traffic control). To do this, we analyzed altitude deviation events that have been reported in the Aviation Safety Reporting System (ASRS), NASA's data base of incidents self-reported by pilots and air traffic controllers. We developed models of the pilot tasks that are performed to capture and maintain altitude. Two types of models were developed to provide complementary perspectives of these tasks: sequential models and functional models. Both types of models show the errors that occur in actual altitude deviation events in advanced technology aircraft. Then, errors from the ASRS data base were categorized according to the models, to help understand the potential causes of the different error types. This paper summarizes the methodology used to analyze pilot errors, the lessons learned from the study of altitude deviation errors, and the application of these results for the introduction of advanced technology in nuclear power plants.

  19. Lessons learned from pilot errors using automated systems in advanced technology aircraft

    SciTech Connect

    Nelson, W.R.; Byers, J.C.; Haney, L.N.; Ostrom, L.T.; Reece, W.J.

    1993-04-01

    The National Aeronautics and Space Administration (NASA) sponsored a project at the Idaho National Engineering Laboratory (INEL) to investigate pilot errors that occur during interaction with automated systems in advanced technology (``glass cockpit``) aircraft. In particular, we investigated the causes and potential corrective measures for pilot errors that resulted in altitude deviation incidents (i.e. failure to capture or maintain the altitude assigned by air traffic control). To do this, we analyzed altitude deviation events that have been reported in the Aviation Safety Reporting System (ASRS), NASA`s data base of incidents self-reported by pilots and air traffic controllers. We developed models of the pilot tasks that are performed to capture and maintain altitude. Two types of models were developed to provide complementary perspectives of these tasks: sequential models and functional models. Both types of models show the errors that occur in actual altitude deviation events in advanced technology aircraft. Then, errors from the ASRS data base were categorized according to the models, to help understand the potential causes of the different error types. This paper summarizes the methodology used to analyze pilot errors, the lessons learned from the study of altitude deviation errors, and the application of these results for the introduction of advanced technology in nuclear power plants.

  20. The Next Great Engine War: Analysis and Recommendations for Managing the Joint Strike Fighter Engine Competition

    DTIC Science & Technology

    2005-12-01

    methodology to guide the research . 37 III. RESEARCH METHODOLGY A. INTRODUCTION The research consisted of personal interviews conducted in person...III. RESEARCH METHODOLGY ....................................................................... 37 A. INTRODUCTION... research evaluates the Joint Strike Fighter (JSF) Program acquisition of Pratt & Whitney (P&W) F135 and the General Electric Aircraft Engines/Rolls

  1. CFD validation experiments at McDonnell Aircraft Company

    NASA Technical Reports Server (NTRS)

    Verhoff, August

    1987-01-01

    Information is given in viewgraph form on computational fluid dynamics (CFD) validation experiments at McDonnell Aircraft Company. Topics covered include a high speed research model, a supersonic persistence fighter model, a generic fighter wing model, surface grids, force and moment predictions, surface pressure predictions, forebody models with 65 degree clipped delta wings, and the low aspect ratio wing/body experiment.

  2. Development of longitudinal handling qualities criteria for large advanced supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sudderth, R. W.; Mcneill, W. E.

    1976-01-01

    A piloted simulation study was conducted with the aim of advancing the development of longitudinal handling qualities criteria for large supersonic cruise aircraft. The areas of study investigated included high-speed cruise maneuvering, and stall-recovery control power. Comparisons were made with existing criteria and, for the cruise condition, a time response criterion was developed which correlated well with pilot ratings and comments. For low-speed stall recovery a new criterion was developed in terms of nose-down angular acceleration capability.

  3. The new low nitrogen steel LNS -- A material for advanced aircraft engine and aerospace bearing applications

    SciTech Connect

    Berns, H.; Ebert, F.J.

    1998-12-31

    Development tendencies for future aircraft jet engines require new design concepts for rolling element bearings because of an overall increase of loads, temperatures, rotational speeds and the use of new high temperature lubricants. This paper reviews some of the key parameters which in the past led to the development and application of the known aircraft bearing steels such as M50, M50 NiL and recently Cronidur 30{reg_sign} (AMS 5898). The performance limits of the currently used aerospace bearing steels and the increasing demands on bearing performance for future aerospace applications gave the impact to the design of a new corrosion resistant steel grade of the nitrogen alloyed type, which is suitable for case hardening by nitrogen--the so called Low nitrogen steel (LNS). The development of the alloy (US pat. 5,503,797), the attainable properties and the corresponding heat treatment process are presented. Achievable hardness, case depth, residual stress pattern and corrosion resistance prove the new LNS to be a promising candidate for the next generation of aircraft engine bearings and for advanced, integrated bearing-gear-shaft design concepts.

  4. Eunuchs as better fighters?

    NASA Astrophysics Data System (ADS)

    Kralj-Fišer, Simona; Kuntner, Matjaž

    2012-02-01

    Male-male competition for females can significantly affect a male's reproductive success and hence his fitness. Game theory predicts that an individual should avoid fighting when its future reproductive potential is high, but should fight forcefully when its future reproductive potential is insignificant. When mates are scarce, extreme competition and fatal fighting is expected. We recently showed that Nephilengys malabarensis eunuchs, i.e. sterile spider males that lost their genitals during copulation, become more aggressive during male-male contests. Here, we add crucial comparative data by exploring eunuch fighting behaviour in Nephilengys livida from Madagascar, specifically by testing the `better fighter hypotheses' in a laboratory setting. Similar to N. malabarensis, N. livida copulations resulted in total male castration with the severed palp plugging the female genitals in 70.83% cases, which mostly (63.63%) prevented subsequent copulations. Unexpectedly, however, N. livida eunuchs exhibited lower aggressiveness than virgin males. We interpret these results in the light of different mating biology between the so far studied species known for the eunuch phenomenon, which might reflect differing plug effectiveness due to variation in genital anatomy in N. livida, N. malabarensis and Herennia multipuncta. However, detected differences in aggressive behaviour of N. livida versus N. malabarensis eunuchs might also be explained by the species' ecology, with lower population densities resulting in a relaxed male-male competition making excessive aggression and mate guarding redundant. This study thus questions the generality of overt aggressiveness in mated males with no reproductive value, and highlights the importance of understanding the natural history of species in the question.

  5. The Department of Defense Should Avoid a Joint Acquisition Approach to the Sixth-Generation Fighter

    DTIC Science & Technology

    2014-01-01

    outcomes. • The JSF is exhibiting trends similar to prior joint aircraft programs. • Historical analysis suggests that joint aircraft programs have...per- mission to move into the engineering and manufacturing development phase. 4 PAF analysis shows that the average joint acquisition cost-growth...cycle cost below that of two single-service programs.6 PAF analysis of historical O&S cost data from existing fighter programs suggests that an ideal

  6. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estellés, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Rosenberg, P.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Woolley, A.

    2015-01-01

    The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under

  7. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be

  8. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  9. Lessons learned from the introduction of cockpit automation in advanced technology aircraft

    SciTech Connect

    Nelson, W.R.; Byers, J.C.; Haney, L.N.; Ostrom, L.T.; Reece, W.J.

    1995-10-01

    The commercial aviation industry has many years of experience in the application of computer based human support systems, for example the flight management systems installed in today`s advanced technology (``glass cockpit``) aircraft. This experience can be very helpful in the design and implementation of similar systems for nuclear power plants. The National Aeronautics and Space Administration (NASA) sponsored a study at the Idaho National Engineering Laboratory (INEL) to investigate pilot errors that occur during interaction with automated systems in advanced technology aircraft. In particular, we investigated the causes and potential corrective measures for pilot errors that resulted in altitude deviation incidents (i.e. failure to capture or maintain the altitude assigned by air traffic control). To do this, we analyzed altitude deviation events that have been reported in the Aviation Safety Reporting System (ASRS), NASA`s data base of incidents self-reported by pilots and air traffic controllers. We developed models of the pilot tasks that are performed to capture and maintain altitude. Incidents from the ASRS data base were mapped onto the models, to highlight and categorize the potential causes of the errors. This paper reviews some of the problems that have resulted from the introduction of glass cockpit aircraft, the methodology used to analyze pilot errors, the lessons learned from the study of altitude deviation events, and the application of the results to the introduction of computer-based human support systems in nuclear power plants. In addition, a framework for using reliability engineering tools to incorporate lessons learned from operational experience into the design, construction, and operation of complex systems is briefly described.

  10. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  11. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  12. Loftin Collection - Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Either a F2B-1 or F3B-1, both aircraft were built by Boeing and both were powered by Pratt and Whitney Wasp engines. These fighters were intended for Navy shipboard use. Boeing F3B-1: While most Boeing F3B-1s served the U. S. Navy aircraft carriers the Lexington and the Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was the next to last F3B-1 build in November 1928.

  13. Downsizing Future USAF Fighter Forces. Living Within the Constraints of History

    DTIC Science & Technology

    1995-01-01

    Downsizing future USAF fighter forces : ibliving within the constraints of history /IcKevin N. Lewis. 260: Santa Monica, CA : ibRAND, 1c1995. 300: xxviii...play a continuing vital role in future American defense planning. That role may, in fact, grow in importance as U.S. defense downsizing continues, as...reason. 506: 1 UNCLASSIFIED S95: 1 Air Force. 695: 1 Air Force planning. 695: 2 Fighter aircraft. 787: Supersedes RAND/DRR-474-AF 982: 3 Downsizing

  14. Do Joint Fighter Programs Save Money? Technical Appendixes on Methodology

    DTIC Science & Technology

    2013-01-01

    quality and objectivity. C O R P O R A T I O N Do Joint Fighter Programs Save Money? Technical Appendixes on Methodology Mark A. Lorell, Michael...programs.3 Define CC( n ) as the cumulative cost of producing n units of the aircraft. Then, an 87 percent cost-quantity improvement curve is represented...by the equation4 CC n ( ) = A n ( )! . Here, A is the cost of the first unit, and β is a coefficient defined by ! = ln "( ) ln 2

  15. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  16. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  17. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for

  18. Atlas occipitalization in a supersonic fighter pilot involved in a midair collision: a case report.

    PubMed

    Gips, Hadas; Hiss, Jehuda; Davidson, Benjamin

    2010-11-01

    We report a case of a midair collision between two F16 fighter aircraft, in which one pilot survived and the other was ejected upon impact and his remains recovered from sea. In autopsy, no patholgy was detected, other than the expected evidence of mechanical trauma. No defects in the aircraft or faults in the parachute or ejection mechanism were found. Reconstruction of the shattered skull base and the cervical vertebrae revealed fusion of the atlanto-occipital joint (occipitalization) and a left paracondylar process. The effective diameter of the spinal canal was decreased by the abnormal articulation. Such malformations can cause a wide range of neurologic deficits. Considering the skill and alertness needed to operate a supersonic fighter aircraft, with the pressure applied by the heavy protective head gear and various G forces endured by the spinal column during flight, we postulate that the collision was related to the pilot's sudden incapacitation.

  19. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  20. Stealth Aircraft Technology. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning design, manufacture, and history of aircraft incorporating stealth technology. Citations focus on construction materials, testing, aircraft performance, and technology assessment. Fighter aircraft, bombers, missiles, and helicopters represent coverage. (Contains 50-250 citations and includes a subject term index and title list.)

  1. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology

    NASA Astrophysics Data System (ADS)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  2. Cost/benefit analysis of advanced material technologies for small aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Comey, D. H.

    1977-01-01

    Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.

  3. Cruise noise of an advanced single-rotation propeller measured from an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Ranaudo, Richard J.

    1989-01-01

    Results are reported from flight measurements of the noise from a full-scale SR-7L advanced single-rotation turbofan model mounted on the wing of the NASA Lewis Propfan Test Assessment (PTA) aircraft (a modified Gulfstream II). Data obtained on the PTA with an outboard microphone boom and by the NASA Lewis acoustically instrumented Learjet flying along several sidelines relative to the PTA are presented in tables and graphs and briefly discussed. It is found that the PTA-boom and Learjet sound levels are in good agreement at Mach 0.69 and altitude 20,000 ft, but the Learjet values are significantly lower than the boom levels at Mach 0.79 and altitude 36,000 ft.

  4. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  5. Effect of Advanced Location Methods on Search and Rescue Duration for General Aviation Aircraft Accidents in the Contiguous United States

    ERIC Educational Resources Information Center

    Wallace, Ryan J.

    2013-01-01

    The purpose of this study was to determine the impact of advanced search and rescue devices and techniques on search duration for general aviation aircraft crashes. The study assessed three categories of emergency locator transmitters, including 121.5 MHz, 406 MHz, and GPS-Assisted 406 MHz devices. The impact of the COSPAS-SARSAT organization…

  6. Predicting Tail Buffet Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.

    2006-01-01

    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  7. Investigation into the impact of agility on conceptual fighter design

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.

    1995-01-01

    The Agility Design Study was performed by the Boeing Defense and Space Group for the NASA Langley Research Center. The objective of the study was to assess the impact of agility requirements on new fighter configurations. Global trade issues investigated were the level of agility, the mission role of the aircraft (air-to-ground, multi-role, or air-to-air), and whether the customer is Air force, Navy, or joint service. Mission profiles and design objectives were supplied by NASA. An extensive technology assessment was conducted to establish the available technologies to industry for the aircraft. Conceptual level methodology is presented to assess the five NASA-supplied agility metrics. Twelve configurations were developed to address the global trade issues. Three-view drawings, inboard profiles, and performance estimates were made and are included in the report. A critical assessment and lessons learned from the study are also presented.

  8. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  9. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  10. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  11. Towards Simulating Non-Axisymmetric Influences on Aircraft Plumes for Signature Prediction

    NASA Technical Reports Server (NTRS)

    Kenzakowski, D. C.; Shipman, J. D.; Dash, S. M.

    2000-01-01

    A methodology for efficiently including three-dimensional effects on aircraft plume signature is presented. First, exploratory work on the use of passive mixing enhancement devices, namely chevrons and tabs, in IR signature reduction for external turbofan plumes is demonstrated numerically and experimentally. Such small attachments, when properly designed, cause an otherwise axisymmetric plume to have significant 3D structures, affecting signature prediction. Second, an approach for including non-axisymmetric and installation effects in plume signature prediction is discussed using unstructured methodology. Unstructured flow solvers, using advanced turbulence modeling and plume thermochemistry, facilitate the modeling of aircraft effects on plume structure that previously have been neglected due to gridding complexities. The capabilities of the CRUNCH unstructured Navier-Stokes solver for plume modeling is demonstrated for a passively mixed turbofan nozzle, a generic fighter nozzle, and a complete aircraft.

  12. 75 FR 78229 - Record of Decision for the U.S. Marine Corps East Coast Basing of the F-35B Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... operate 11 operational F-35B Joint Strike Fighter (JSF) squadrons (up to 16 aircraft per squadron, for a total of 176 aircraft) and one Pilot Training Center (PTC) (composed of two Fleet Replacement...

  13. Learning amongst Norwegian Fire-Fighters

    ERIC Educational Resources Information Center

    Sommer, Morten; Nja, Ove

    2011-01-01

    Purpose: The purpose of this study is to reveal and analyse dominant learning processes in emergency response work from the fire-fighters' point of view, and how fire-fighters develop their competence. Design/methodology/approach: This study adopted an explorative approach using participant observation. The objective of this open-minded approach…

  14. Supersonic cruise aircraft research: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.

    1980-01-01

    This bibliography, with abstracts, consists of 69 publications arranged in chronological order. The material may be useful to those interested in supersonic cruise fighter/penetrator/interceptor airplanes. Two pertinent conferences on military supercruise aircraft are considered as single items; one contains 37 papers and the other 29 papers. In addition, several related bibliographies are included which cover supersonic civil aircraft and military aircraft studies at the Langley Research Center. There is also an author index.

  15. Life prediction of aging aircraft wiring systems

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1995-01-01

    The program goal is to develop a computerized life prediction model capable of identifying present aging progress and predicting end of life for aircraft wiring. A summary is given in viewgraph format of progress made on phase 1 objectives, which were to identify critical aircraft wiring problems; relate most common failures identified to the wire mechanism causing the failure; assess wiring requirments, materials, and stress environment for fighter aircraft; and demonstrate the feasibility of a time-temperature-environment model.

  16. Fire Fighter Trainer Environmental Considerations. Phase II. Appendixes.

    DTIC Science & Technology

    1981-07-31

    background ana is an expert in traceI I I BAH PERSONNEL LOCATIONS DURING TESTS LDQ I Scenario M. Halpern Control room G. McLennan Mobile to exterior of...stack-roof level Case Tech II Outside - LDQ I UDQ II M. Halpern Control room G. McLennan Mobile to exterior of facility where needed S. Armentrout Control...Generation of Aerosols, 1980. 1 79. Work Breakdown Structure for Advanced Fire Fighter Trainer, Work Order AT-784, Advanced TechnologyI Systems

  17. A NASA study of the impact of technology on future multimission aircraft

    NASA Technical Reports Server (NTRS)

    Samuels, Jeffrey J.

    1992-01-01

    A conceptual aircraft design study was recently completed which compared three supersonic multimission tactical aircraft. The aircraft were evaluated in two technology timeframes and were sized with consistent methods and technology assumptions so that the aircraft could be compared in operational utility or cost analysis trends. The three aircraft are a carrier-based Fighter/Attack aircraft, a land-based Multirole Fighter, and a Short Takeoff/Vertical Landing (STOVL) aircraft. This paper describes the design study ground rules used and the aircraft designed. The aircraft descriptions include weights, dimensions and layout, design mission and maneuver performance, and fallout mission performance. The effect of changing technology and mission requirements on the STOVL aircraft and the impact of aircraft navalization are discussed. Also discussed are the effects on the STOVL aircraft of both Thrust/Weight required in hover and design mission radius.

  18. Conceptual Structures in Fighter Pilots.

    DTIC Science & Technology

    1983-07-01

    AA1985CONCEPTUAL STRU CTURES IN FIGHTER PLOTS(U) NEW MEXICO iI 7 AD-A29 885UNIV ALBUQUERQUE DEPT 0F PSYCHOLOGYR WSCHVANEVELD ET AL JUL 83 AFHRL-P-83...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK Department of Psychology AREA & WORK UNIT NUMBERS New Mexico State University 61102F...Las Cruces, New Mexico 88003 2313T313 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE HQ Air Force Human Resources Laboratory (AFSC) July 1983

  19. Environmental Assessment for Conversion of the 926th Fighter Group at Naval Air Station New Orleans, Louisiana

    DTIC Science & Technology

    1992-07-01

    Characteristics of Aircraft Involved Manufactured by the General Dynamics Corporation , the F-16 is a compact, multirole, fighter aircraft designed... Corporation B.S., 1979, Civil Engineering, University of California, Davis Years of Experience: 12 Derence Fivehouse, Major, Staff Judge Advocate, U.S. Air...Technology Corporation B.A., 1988, Environmental Studies, California State University, San Bernardino Years of Experience: 4 Danita Hardy, Environmental

  20. Low-speed wind-tunnel test of a STOL supersonic-cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Riley, Donald R.

    1988-01-01

    A wind-tunnel investigation was conducted to examine the low-speed static stability and control characteristics of a 0.10 scale model of a STOL supersonic cruise fighter concept. The concept, referred to as a twin boom fighter, was designed as a STOL aircraft capable of efficient long range supersonic cruise. The configuration name is derived from the long twin booms extending aft of the engine to the twin vertical tails which support a high center horizontal tail. The propulsion system features a two dimensional thrust vectoring exhaust nozzle which is located so that the nozzle hinge line is near the aircraft center of gravity. This arrangement is intended to allow large thrust vector angles to be used to obtain significant values of powered lift, while minimizing pitching moment trim changes. Low speed stability and control information was obtained over an angle of attack range including the stall. A study of jet induced power effects was included.

  1. Annoyance response to simulated advanced turboprop aircraft interior noise containing tonal beats

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.

    1987-01-01

    A study is done to investigate the effects on subjective annoyance of simulated advanced turboprop (ATP) interior noise environments containing tonal beats. The simulated environments consisted of low-frequency tones superimposed on a turbulent-boundary-layer noise spectrum. The variables used in the study included propeller tone frequency (100 to 250 Hz), propeller tone levels (84 to 105 dB), and tonal beat frequency (0 to 1.0 Hz). Results indicated that propeller tones within the simulated ATP environment resulted in increased annoyance response that was fully predictable in terms of the increase in overall sound pressure level due to the tones. Implications for ATP aircraft include the following: (1) the interior noise environment with propeller tones is more annoying than an environment without tones if the tone is present at a level sufficient to increase the overall sound pressure level; (2) the increased annoyance due to the fundamental propeller tone frequency without harmonics is predictable from the overall sound pressure level; and (3) no additional noise penalty due to the perception of single discrete-frequency tones and/or beats was observed.

  2. Ballistic impact study of some advanced aircraft materials at sub-ordnance velocities

    SciTech Connect

    Finnegan, S.A.; Covino, J.; Robbs, R.L.

    1995-12-31

    This paper describes the results of ballistic impact tests on two advanced titanium-based aircraft materials to determine damage threshold levels for low-velocity (15-160 m/s) impacts of the kind experienced during take-off and landing operations. The two materials investigated included a super alpha-2 titanium aluminide alloy and a fiber-reinforced beta titanium alloy (i.e., metal-matrix composite). The first was tested in the form of curved truss-core panels and the second in the form of flat sheets. Two different panel configurations and two different fiber layups were examined. Projectiles consisted of aluminum spheres. Impacts were at normal incidence and in the velocity regime below the minimum for perforation (i.e., ballistic limit velocity). Materials were assessed in terms of threshold velocities for permanent deformation and fracture and also in terms of impact dynamics (e.g., projectile rebound velocities and projectile/target contact times). Target damage (e.g., fracture morphology) was also assessed using optical and scanning electron microscopy and ultrasound.

  3. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  4. Advanced low NO/x/ combustors for supersonic high-altitude aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Shekleton, J. R.; White, D. J.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO(x), of two advanced aircraft combustor concepts at a simulated, high-altitude cruise condition. The two combustor designs, both members of the lean-reaction, pre-mixed family, are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.127-m size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO(x) level of 1.1 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa, 833 K inlet pressure and temperature, respectively and 1778 K outlet temperature on Jet-A1 fuel. In addition, emissions data were obtained at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.

  5. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.

    2003-01-01

    The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.

  6. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1976-01-01

    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.

  7. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  8. F-35 Lightning II Joint Strike Fighter "JSF" Program: Background, Status, and Issues

    DTIC Science & Technology

    2007-10-25

    procurement year for the United States). 44 Quadrennial Defense Review Cuts Procurement in FY1999, 2000, Aerospace Daily, May 20, 1997, p. 280. 45 Vago ...Backgrounder, October 3, 1996, pp. 4-5. 64 Vago Muradian and John Robinson, “Public Confidence at Odds with Private Concerns about Tacair,” Defense Daily...by Christopher Bolkcom. 85 Vago Muradian, “Coffman: JSF Critical to Preserving U.S. Leadership in World Fighter (continued...) manned combat aircraft

  9. How Past Loss of Control Accidents May Inform Safety Cases for Advanced Control Systems on Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, C. W.

    2008-01-01

    This paper describes five loss of control accidents involving commercial aircraft, and derives from those accidents three principles to consider when developing a potential safety case for an advanced flight control system for commercial aircraft. One, among the foundational evidence needed to support a safety case is the availability to the control system of accurate and timely information about the status and health of relevant systems and components. Two, an essential argument to be sustained in the safety case is that pilots are provided with adequate information about the control system to enable them to understand the capabilities that it provides. Three, another essential argument is that the advanced control system will not perform less safely than a good pilot.

  10. Impact of Fuselage Cross Section on the Stability of a Generic Fighter

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.

    1998-01-01

    Many traditional data bases, which involved smooth-sided forebodies, are no longer relevant for designing advanced aircraft. The current work provides data on the impact of chined-shaped fuselage cross section on the stability of a generic fighter configuration. Two different chined-shaped fuselages were tested upright and inverted. It was found that a fuselage with a 30" included chine angle resulted in significantly higher values of fuselage with a 100" included chine angle. This difference was attributed to the more beneficial vortical interaction between the stronger forebody vortices coming off of the sharper chine edges and the wing vortices. The longitudinal stability of the configuration with the sharper chine angle was also better because, based on pressures and flow visualization, the vortex burst over the wing was delayed until significantly higher values of a. Unstable rolling moment derivatives were also delayed to higher values of a for the sharper chine angle cross section. Furthermore, it was found that directional stability of both of the upright configurations, which had larger lofts in cross section above the chine lines than below the chine lines. was better than for the inverted configurations.

  11. Combat Loads on Modern Fighters

    DTIC Science & Technology

    1986-02-01

    Stability Augmentation System (CSAS) are shown. This aircraft has variable sweep as shown in Fig. 8. Fig. 9 shows the flight envelope for this variable wing...this aircraft, MIL-A-008861 A has been applied. First of all, the influence of the actuator and of the Control and Stability Augmentation System are...NOISE FIG. 11 CONTROL AND STABILITY AUGMENTATION SYSTEM OF SUPERSONIC AIRCRAFT 2-6 FIG. TAILPUNE ANGLE INPUT SIGNAL z [deg] 5

  12. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The task of modern aircraft design has always been complicated due to the number of intertwined technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly increasing by the development of such technologies as aeroelasticity tailored materials and structures, active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful designs that achieve maximum advantage from these new technologies require a thorough understanding of the physical phenomena and the interactions among these phenomena. A study commissioned by the Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to identify technology integration as a new discipline from which many future aeronautical advancements will arise. Regardless of whether one considers integration as a new discipline or not, it is clear to all engineers involved in aircraft design and analysis that better methods are required. In the past, designers conducted parametric studies in which a relatively small number of principal characteristics were varied to determine the effect on design requirements which were themselves often diverse and contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose principal task was to make the chosen design workable. Working in a limited design space, the discipline expert sometimes improved the concept, but more often than not, the result was in the form of a penalty to make the original concept workable. If an insurmountable problem was encountered, the process began over. Most design systems that attempt to account for disciplinary interactions have large empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of new technologies. Further compounding the difficulty of design is that as the aeronautical sciences have matured, the discipline specialist's area of research has generally

  13. Flight-test results using nonlinear control with the F-8C digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.; Smith, R. E.; Krambeer, K. D.

    1983-01-01

    The design and operation of the cooperative advanced digital research experiment (CADRE) to develop nonlinear pitch flight control algorithms is described, and the results of an in-flight evaluation using the F-8C digital fly-by-wire (DFBW) research aircraft are presented. The CADRE controller is described, including the initial filter, linear command prefilter, nonlinear command prefilter, and gain scheduling. The variable-integral control-to-optimize response of the controller is considered, and CADRE parameter combinations are addressed. The remotely-augmented-vehicle interface used in the DFBW aircraft experiment is discussed. The distanct-tracking and close-formation tracking evaluation tasks for the aircraft are described along with evaluation configurations, and the test results are presented and discussed. The latter indicate that a nonlinear adaptive controller is a feasible control system technique for the fighter tracking task.

  14. Application of a helicopter mathematical model to the Langley differential maneuvering simulator for use in a helicopter/fighter evasive maneuver study

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Ashworth, B. R.; Baker, D. R.

    1976-01-01

    A real time simulation study was conducted using a differential maneuvering simulator to determine and evaluate helicopter evasive maneuvers when attacked by fighter aircraft. A general helicopter mathematical model was modified to represent an H-53 helicopter. The helicopter model was compared to H-53 flight test data to determine any differences between the simulated and actual vehicles. The simulated helicopter was also subjectively validated by participating pilots. Two fighter mathematical models validated in previous studies were utilized for the attacking aircraft. The results of this simulation study have been verified in a flight test program conducted by the U. S. Air Force and were found to closely match the flight results.

  15. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA

  16. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  17. Compilation of Energy Efficient Concepts in Advanced Aircraft Design and Operations. Volume 2. Abstract Data Base

    DTIC Science & Technology

    1980-11-05

    B81iq NADC-79123 9-60 Af B-1 FUELS TECHNOLOGYI B.1.3 OTHER AVIATION FUELS U1.1.3.1 NAVY FUNDED ut- R ~Bl-82 J NADC-79239-6U B...determine aerodynamic performance. (Report) NM B.2.1.2.87 73A16634 Oct 1972 US Army, Air Mobility Research and Development Laboratory, Fort Eustis, VA...multi-role aircraft. (Article in Aircraft Engineering Vol. I B.2.1.2.138 R-A750356 Jul 74 AVSCOM Air Mobility R and D Lab Unknoun TitIL: Aircraft

  18. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  19. DEVELOPMENT OF CRITERIA AND METHODS FOR EVALUATING TRAINER AIRCRAFT EFFECTIVENESS.

    ERIC Educational Resources Information Center

    KUSEWITT, J.B.

    THE PURPOSE OF THIS STUDY WAS TO DEVELOP A METHOD FOR DETERMINING OBJECTIVE MEASURES OF TRAINER AIRCRAFT EFFECTIVENESS TO EVALUATE PROGRAM ALTERNATIVES FOR TRAINING PILOTS FOR FLEET FIGHTER AND ATTACK-TYPE AIRCRAFT. THE TRAINING SYLLABUS WAS BASED ON AVERAGE STUDENT ABILITY. THE BASIC PROBLEM WAS TO ESTABLISH QUANTITATIVE TIME-DIFFICULTY…

  20. Development of fiber optic sensors for advanced aircraft testing and control

    NASA Astrophysics Data System (ADS)

    Meller, Scott A.; Jones, Mark E.; Wavering, Thomas A.; Kozikowski, Carrie L.; Murphy, Kent A.

    1999-02-01

    Optical fiber sensors, because of the small size, low weight, extremely high information carrying capability, immunity to electromagnetic interference, and large operational temperature range, provide numerous advantages over conventional electrically based sensors. This paper presents preliminary results from optical fiber sensor design for monitoring acceleration on aircraft. Flight testing of the final accelerometer design will be conducted on the F-18 Systems Research Aircraft at NASA Dryden Flight Research Center in Edwards, CA.

  1. The development of advanced automatic flare and decrab for powered lift short haul aircraft using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gevaert, G.; Feinreich, B.

    1977-01-01

    Advanced automatic flare and decrab control laws were developed for future powered lift STOL aircraft using the NASA-C-8A augmentor wing vehicle as the aircraft model. The longitudinal control laws utilize the throttle for flight path control and use the direct lift augmentor flap chokes for flight path augmentation. The elevator is used to control airspeed during the approach phase and to enhance path control during the flare. The forward slip maneuver was selected over the flat decrab technique for runway alignment because it can effectively handle the large crab angles obtained at STOL approach speeds. Performance evaluation of selected system configurations were obtained over the total landing environment. Limitations were defined and critical failure modes assessed. Pilot display concepts are discussed.

  2. Development of Longitudinal Equivalent System Models for Selected U.S. Navy Tactical Aircraft

    DTIC Science & Technology

    1981-08-01

    revaraa side II nacaaaary and Identlly by block number) Aircraft Longitudinal Flying Qualities Equivalent Systems Frequency Response Matching...is a twin turbofan powered, land and carrier based, subsonic, anti- submarine warfare aircraft . Longitudinal control is accomplished via a...based, supersonic fighter aircraft . Longitudinal control is accomplished via an irreversible mechanical flight control system which transmits

  3. +Gz-induced loss of consciousness and aircraft recovery.

    PubMed

    Whinnery, J E; Glaister, D H; Burton, R R

    1987-06-01

    Aircrew incapacitation resulting from very high onset sustained +Gz stress has resulted in significant losses of aircraft and aircrew. Enhanced protection and training toward prevention of +Gz-induced loss of consciousness (G-LOC) will continue to be vital. Techniques for reduction of the time of incapacitation, should G-LOC occur, must also be explored and developed. Current capability of aircraft autorecovery as demonstrated by the Advanced Fighter Technology Integration F-16 (AFTI/F-16) promises to enhance safety from the acute incapacitation resulting from G-LOC (and spatial disorientation). Physiologic monitoring for determining G-LOC has certain advantages especially in the aerial combat arena. The optimum physiologic monitoring technique would be direct determination of failure of brain cell function at the cellular or subcellular level. Complete investigation of G-LOC is necessary to understand the phenomenon and to develop methods for enhancing recognition and recovery. This paper discusses aircraft autorecovery technology and potential methods for physiologic monitoring of G-LOC. Integration of physiologic monitoring techniques into aircraft autorecovery systems requires a broad approach for optimal development.

  4. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail M.

    2001-01-01

    Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity

  5. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  6. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  7. Distributed radar sensors for aircraft detection

    NASA Astrophysics Data System (ADS)

    Canavan, G. H.

    1991-04-01

    Radars suitable for aircraft detection could be deployed on singlet space-based interceptor (SBI) platforms. They could operate at short ranges and still achieve useful search rates. Powers are modest and insensitive to frequency; the dominant costs are the pulsers and phased-array elements. A fundamental simplification results from mounting the radar on the life jacket rather than the SBI. Many satellites could be processed to derive aircraft trajectories sufficiently accurate for the commitment of fighters or defensive missiles.

  8. Survey - Applications of structural optimization methods to fixed wing aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Neill, Douglas J.

    1992-01-01

    Results of a technical survey of the practical applications of structural optimization methods in the U.S. aerospace industry through 1980s are summarized. One of the most important developments in the 80s is the more widespread acceptance of structural optimization as one of the design tools that support practical structural design. Another significant advance is the development of large software tools for production applications. Attention is also given to the tailoring of the computerized design process to the specific environment of each company. The two most important aspects of this tailoring are seamless and easy-to-use incorporation of structural optimization in the overall aerospace design/production process and multidisciplinary integration aimed at ultimate performance optimization of the final product. Some specific applications discussed include the X-29 forward swept wing demonstrator aircraft, composite wing and vertical tail program, fighter wing redesign evaluations, high speed aircraft design, and space structures.

  9. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  10. Flight service evaluation of advanced composite ailerons on the L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1984-01-01

    A flight service evaluation of composite inboard ailerons on the L-1011 is discussed. This is the second annual report of the maintenance evaluation program, and covers the period from July 1983 when the first yearly inspections were completed, through July 1984. Four shipsets of graphite/epoxy composite ailerons were installed on L-1011 aircraft for this maintenance evaluation program. These include two Delta aircraft and two TWA aircraft. A fifth shipset of composite ailerons were installed in 1980 on Lockheed's flight test L-1011. A visual inspection was also conducted on these components. No visible damage was observed on any of the composite ailerons, and no maintenance action has occurred on any of the composite parts except for repainting of areas with paint loss. Flight hours on the airline components at the time of inspection ranged from 6318 to 6989 hours, after approximately 2 years of service.

  11. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  12. Virtual environment debriefing room for naval fighter pilots: phase I

    NASA Astrophysics Data System (ADS)

    Long, Mark; Alexander, Joanna R.; Downes-Martin, Stephen; Morrison, John; Katz, Warren; Short, Elisabeth

    1992-06-01

    Current methods for debriefing Navy Fighter Pilots after real and simulated missions are insufficient for handling the speed and complexity of modern air combat. The state of the art in tactical air combat debriefing is essentially a two-dimensional plus time view of a problem whose dimensionality consists of three spatial dimensions plus time plus other non-spatial parameters. The David Sarnoff Research Center (Sarnoff) is developing an advanced debriefing system for Navy fighter jet training, combat development, and research. Called CyberView, the system consists of an advanced interactive data visualization system displaying multi-dimensional abstract and concrete combat data in three-dimensions plus time, an interactive data analysis system for rapid data manipulation and studies, and a faster than real-tie predictive simulation based on the branch wargaming paradigm of military planning for 'what if?' analysis. In our research and development of CyberView, we are attempting to give pilots and battle planners greater awareness of the complex situations which occur during air operations, and the ability to look into the future at the effects of decisions on battle outcomes. Our envisioned system when complete will be capable of intuitively displaying combat errors to pilots, permitting the pilots to re-fight the same battles with better awareness of their situation, giving battle planners the ability to perform tradeoff studies on tactical decisions in order to optimize battle outcomes, and providing an analytical testbed for automated forces paradigms, algorithms, and effectiveness.

  13. Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

    1976-01-01

    A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

  14. A NASA study of the impact of technology on future carrier based tactical aircraft - Overview

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III

    1992-01-01

    This paper examines the impact of technology on future carrier based tactical aircraft. The results were used in the Center for Naval Analysis Future Carrier Study. The NASA Team designed three classes of aircraft ('Fighter', 'Attack', and 'Multimission') with two different technology levels. The Multimission aircraft were further analyzed by examining the penalty on the aircraft for both catapult launch/arrested landing recovery (Cat/trap) and short take-off/vertical landing (STOVL). The study showed the so-called STOVL penalty was reduced by engine technology and the next generation Strike Fighter will pay more penalty for Cat/trap than for STOVL capability.

  15. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  16. Utilization of an agility assessment module in analysis and optimization of preliminary fighter configuration

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Biezad, Daniel

    1996-01-01

    A study has been conducted to develop and to analyze a FORTRAN computer code for performing agility analysis on fighter aircraft configurations. This program is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. The validity of the existing code was evaluated by comparing with existing flight test data. A FORTRAN program was developed for a specific metric, PM (Pointing Margin), as part of the agility module. Example trade studies using the agility module along with ACSYNT were conducted using a McDonnell Douglas F/A-18 Hornet aircraft model. Tile sensitivity of thrust loading, wing loading, and thrust vectoring on agility criteria were investigated. The module can compare the agility potential between different configurations and has capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements in the preliminary design.

  17. Firefighting and Emergency Response Study of Advanced Composites Aircraft. Objective 3: Penetrating and Overhauling Wreckage

    DTIC Science & Technology

    2011-10-01

    testing, AFRL identified a United States source for the diamond hole saw blade, Broco Cutting and Welding Products, that sold a similar blade for...capability to penetrate and cut through a variety of materials including carbon bismaleimide (BMI) composite, aircraft canopies , metal containers, armored

  18. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  19. Optics in aircraft engines

    NASA Astrophysics Data System (ADS)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  20. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  1. Effect of advanced location methods on search and rescue duration for general aviation aircraft accidents in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wallace, Ryan J.

    The purpose of this study was to determine the impact of advanced search and rescue devices and techniques on search duration for general aviation aircraft crashes. The study assessed three categories of emergency locator transmitters, including 121.5 MHz, 406 MHz, and GPS-Assisted 406 MHz devices. The impact of the COSPAS-SARSAT organization ceasing satellite monitoring for 121.5 MHz ELTs in 2009 was factored into the study. Additionally, the effect of using radar forensic analysis and cellular phone forensic search methods were also assessed. The study's data was derived from an Air Force Rescue Coordination Center database and included 365 historical general aviation search and rescue missions conducted between 2006 and 2011. Highly skewed data was transformed to meet normality requirements for parametric testing. The significance of each ELT model was assessed using a combination of Brown-Forsythe Means Testing or Orthogonal Contrast Testing. ANOVA and Brown-Forsythe Means testing was used to evaluate cellular phone and radar forensic search methods. A Spearman's Rho test was used to determine if the use of multiple search methods produced an additive effect in search efficiency. Aircraft which utilized an Emergency Locator Transmitter resulted in a shorter search duration than those which did not use such devices. Aircraft utilizing GPS-Aided 406 MHz ELTs appeared to require less time to locate than if equipped with other ELT models, however, this assessment requires further study due to limited data. Aircraft equipped with 406 MHz ELTs required slightly less time to locate than aircraft equipped with older 121.5 MHz ELTs. The study found no substantial difference in the search durations for 121.5 MHz ELTs monitored by COSPAS-SARSAT verses those which were not. Significance testing revealed that the use of cellular phone forensic data and radar forensic data both resulted in substantially higher mission search durations. Some possible explanations for this

  2. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  3. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  4. Comparative analysis and exprimental results of advanced control strategies for vibration suppression in aircraft wings

    NASA Astrophysics Data System (ADS)

    Birs, Isabela R.; Folea, Silviu; Copot, Dana; Prodan, Ovidiu; Muresan, Cristina-I.

    2017-01-01

    The smart beam is widely used as a means of studying the dynamics and active vibration suppression possibilities in aircraft wings. The advantages obtained through this approach are numerous, among them being aircraft stability and manoeuvrability, turbulence immunity, passenger safety and reduced fatigue damage. The paper presents the tuning of two controllers: Linear Quadratic Regulator and Fractional Order Proportional Derivative controller. The active vibration control methods were tested on a smart beam, vibrations being mitigated through piezoelectric patches. The obtained experimental results are compared in terms of settling time and control effort, experimentally proving that both types of controllers can be successfully used to reduce oscillations. The analysis in this paper provides for a necessary premise regarding the tuning of a fractional order enhanced Linear Quadratic Regulator, by combining the advantages of both control strategies.

  5. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  6. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  7. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  8. Douglas Aircraft Company Advanced Concept Ejection Seat (ACES II). Revision C

    DTIC Science & Technology

    1983-01-01

    single place aircraft, ) OGM "PLOYS "A 01, 0t7 0.7 the inertia reel may be initiated by the seat-mounted initiator. Q SoAAc ,INTs o., o., 0, ole Pressure...the switch is selected to -46-DEC PITCH. I160-DEC ROLLI 250 G00 467 "automatic," transmission will commence following seat-man ’FOR THIS CASE, IMPACT

  9. Sensitivity analysis and multidisciplinary optimization for aircraft design - Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  10. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  11. Corrosion Protection of Al Alloys for Aircraft by Coatings With Advanced Properties and Enhanced Performance

    DTIC Science & Technology

    2007-12-20

    Sim6es, D. E. Tallman, G. P. Bierwagen, "Electrochemical Behaviour of a Mg-Rich Primer in the Protection of Al Alloys ," Corrosion Science 48 (2006...December 20, 200 Final Report July 1, 2004-June 30, 2007 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Corrosion Protection of Al Alloys for Aircraft by...Prof. Dennis E. Tallman: A) New Scanning Probe Studies of Novel Cr-free Active Coatings B) Examination of the Influence of Surface Preparation of Al

  12. Potential applications of advanced aircraft in developing countries. [Brazil and Indonesia

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1979-01-01

    Air transportation concepts for movement of cargo in developing countries are reviewed using aicraft which may appear in the future. For certain industrial applications, including mining and forestry, the relative costs of doing the job using different types of aircraft are compared with surface transportation systems. Two developing countries, Brazil and Indonesia, were taken as examples to determine what impact they might have on the aircraft markets of the future. Economic and demographic data on developing countries in general, and Brazil and Indonesia in particular, are reviewed. The concept of an industrial city in a remote area developed around an airport is discussed. It is noted that developing areas generally lack extensive surface transportation systems and that an air transportation system can be implemented in a relatively short time. A developing nation interested in rapid expansion may thus find the role of air cargo far more important than has been true in developed nations. Technological developments which may dramatically increase the performance of agricultural aircraft are also reviewed.

  13. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  14. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  15. F-35 Joint Strike Fighter: Continued Oversight Needed as Program Plans to Begin Development of New Capabilities

    DTIC Science & Technology

    2016-04-01

    F-35 JOINT STRIKE FIGHTER Continued Oversight Needed as Program Plans to Begin Development of New Capabilities...Needed as Program Plans to Begin Development of New Capabilities Why GAO Did This Study With estimated acquisition costs of nearly $400 billion, the F...future aircraft. Both courses of action have oversight implications. DOD has begun planning and funding significant new development work to add to the F

  16. Engine selection for transport and combat aircraft

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    The procedures that are used to select engines for transport and combat aircraft are discussed. In general, the problem is to select the engine parameters including engine size in such a way that all constraints are satisfied and airplane performance is maximized. This is done for four different classes of aircraft: (1) a long haul conventional takeoff and landing (CTOL) transport, (2) a short haul vertical takeoff and landing (VTOL) transport, (3) a long range supersonic transport (SST), and (4) a fighter aircraft. For the commercial airplanes the critical constraints have to do with noise while for the fighter, maneuverability requirements define the engine. Generally, the resultant airplane performance (range or payload) is far less than that achievable without these constraints and would suffer more if nonoptimum engines were selected.

  17. Excellence in Tactical Fighter Squadrons

    DTIC Science & Technology

    1985-06-01

    The excellent squadron commanders take advantage of places where people find it easier to talk on an informal basis, about things that are important to...High Performing Systems , Leadership Behavior, Organization Effectiveness. 20. ABSTRACT (Continue on reverse aide If necesaary and Identify by block...newer high technology single seat aircraft have an edge over his counterpart commanding a unit flying an older weapon system , on a less glamorous

  18. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with a different number of blades on each rotor: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having a different number of blades on each rotor (nxm, e.g., 10 x 8, 12 x 11). The objectives were: (1) compare annoyance to nxm CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft; (2) determine the effects of tonal content on annoyance; and (3) determine the ability of aircraft noise measurement procedures and corrections to predict annoyance for this new class of aircraft. A computer synthesis system was used to generate 35 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent combinations of 15 fundamental frequency (blade passage frequency) combinations and three tone-to-broadband noise ratios. The fundamental frequencies, which represented blade number combinations from 6 x 5 to 13 x 12 and 7 x 5 to 13 x 11, ranged from 112.5 to 292.5 Hz. The three tone-to-broadband noise ratios were 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  19. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with an equal number of blades on each rotor, preliminary results

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.

    1988-05-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having an equal number of blades on each rotor. The objectives were: to determine the effects of total content on annoyance; and compare annoyance to n x n CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft. A computer synthesis system was used to generate 27 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent the factorial combinations of nine fundamental frequencies and three tone-to-broadband noise ratios. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at three D-weighted sound pressure levels to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three aircraft types and examined the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise metrics is also examined.

  20. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with an equal number of blades on each rotor, preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having an equal number of blades on each rotor. The objectives were: to determine the effects of total content on annoyance; and compare annoyance to n x n CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft. A computer synthesis system was used to generate 27 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent the factorial combinations of nine fundamental frequencies and three tone-to-broadband noise ratios. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at three D-weighted sound pressure levels to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three aircraft types and examined the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise metrics is also examined.

  1. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  2. Artificial intelligence (AI) based tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The knowledge-based systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real time in the Langley Differential Maneuvering Simulator, are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs.

  3. NATO Armaments Cooperation: The Case of the European Fighter Aircraft

    DTIC Science & Technology

    1990-12-01

    of keeping an acquisition program within cost and schedule may become harder .n a multinational environment, it appears that the burden of politica ...34 Participacion Industrial en el EFA," Revista de Aeronautica y Astronautica, 5: 498-500 (May 1987). 38. "Germany said likely to withdraw from

  4. Asphaltic Concrete Performance Under Heavy Fighter Aircraft Loading

    DTIC Science & Technology

    1993-02-01

    compacted to determine the effects of overfilling and underfilling the voids in the aggregate. Density and voids filled with binder are two of the...concrete were also taken at different pass levels to determine the change in air voids with traffic. Damage parameters were defined to provide a...149 I 89 Voids Total Mix Data and Interpolated Values Versus Station .............................................. 150 90 Voids Filled

  5. Computer Program for Vibration Prediction of Fighter Aircraft Equipments

    DTIC Science & Technology

    1977-11-01

    scribing a useful variety of flight vibration phases . Notice that identical variations can be reflected into the high frequency rolloff curve (equation 13...flight attitudes ranging from straight and level states to a variety of significant flight maneuvers and phases . Pro- gram outputs, digital and...R (f) adjusted value of R(f) due to c (g 2/Hz) SBT (f) special function for the buffet turn flight phase PBT (f) pressure spectral density speqtrum

  6. Computer Generated Pictorial Stores Management Displays for Fighter Aircraft.

    DTIC Science & Technology

    1983-05-01

    Dynamics Laboratory 6i )ria L. Calhoan -mimett L. Herron The Bunker Ramo Corporation Electronic Systems Division Westlake Viliage, California lay 1983 Fi’a...Herron of the Bunker Ramo Corporation provided pilot inputs to the work efforts, and Ms. Gloria Calhoun of the same company provided statistical and...experimental design support. Software support was provided by Mr. Tim Berry and Mrs. Debra Park of the Bunker Ramo Corporation; hardware support was

  7. Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.

  8. Acquired nasal deformities in fighter pilots.

    PubMed

    Schreinemakers, Joyce R C; van Amerongen, Pieter; Kon, Moshe

    2010-07-01

    Fighter pilots may develop slowly progressive deformities of their noses during their flying careers. The spectrum of deformities that may be acquired ranges from soft tissue to osseous changes. The main cause is the varying pressure exerted by the oxygen mask on the skin and bony pyramid of the nose during flying.

  9. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.

    1976-01-01

    The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

  10. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Hardin, Jay C.; Mosiane, Lotlamoreng; Kaushal, Patel; Blankson, Isaiah M.

    2000-01-01

    In this project, we continue to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). The FM&AL was established at Hampton University in June of 1996 and has conducted research under two NASA grants: NAG-1-1835 (1996-99), and NAG-1-1936 (1997-00). In addition, the FM&AL has jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a Civilian Research and Development Foundation (CRDF) grant #RE2-136 (1996-99). The goals of the FM&AL programs are twofold: (1) to improve the working efficiency of the FM&AUs team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and (2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. The main achievements for the reporting period in the development of concepts for noise reduction and improvement in efficiency for jet exhaust nozzles and inlets for aircraft engines

  11. Cervical and lumbar pain and radiological degeneration among fighter pilots: a systematic review and meta-analysis.

    PubMed

    Shiri, Rahman; Frilander, Heikki; Sainio, Markku; Karvala, Kirsi; Sovelius, Roope; Vehmas, Tapio; Viikari-Juntura, Eira

    2015-02-01

    To assess the associations of acceleration force indicators (aircraft type and flight hours) with cervical and lumbar pain and radiological degeneration among fighter pilots. The PubMed, Embase, Scopus and Web of Science databases were searched until October 2013. Twenty-seven studies were included in the review and 20 in the meta-analysis. There were no differences in the prevalence of neck pain (pooled OR=1.07, 95% CI 0.87 to 1.33), cervical disc degeneration (OR=1.26, CI 0.81 to 1.96), low back pain (OR=0.80, CI 0.47 to 1.38) or lumbar disc degeneration (OR=0.87, CI 0.67 to 1.13) between fighter pilots and helicopter or transport/cargo pilots. Moreover, the prevalence of cervical (OR=1.14, CI 0.61 to 2.16) or lumbar (OR=1.05, CI 0.49 to 2.26) disc degeneration did not differ between fighter pilots and non-flying personnel. Most studies did not control their estimates for age and other potential confounders. Among high-performance aircraft pilots, exposure to the highest G-forces was associated with a higher prevalence of neck pain compared with exposure to lower G-forces (pooled OR=3.12, CI 2.08 to 4.67). The studies on the association between flight hours and neck pain reported inconsistent findings. Moreover, looking back over the shoulder (check six) was the most common posture associated with neck pain. Fighter pilots exposed to high G-forces may be at a greater risk for neck pain than those exposed to low G-forces. This finding should be confirmed with better control for confounding. Awkward neck posture may be an important factor in neck pain among fighter pilots.

  12. Advanced control for airbreathing engines, volume 1: Pratt and Whitney

    NASA Technical Reports Server (NTRS)

    Ralph, J. A.

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.

  13. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  14. Advanced cargo aircraft may offer a potential renaissance in freight transportation

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J.; Sawyer, Wallace C.

    1993-01-01

    The increasing demand for air freight transportation has prompted studies of large, aerodynamically efficient cargo-optimized aircraft capable of carrying intermodal containers, which are typically 8 x 8 x 20 ft. Studies have accordingly been conducted within NASA to ascertain the specifications and projected operating costs of such a vehicle, as well as to identify critical, development-pacing technologies. Attention is here given not only to the rather conventional, 10-turbofan engined configuration thus arrived at, but numerous innovative configurations featuring such concepts as spanloading, removable cargo pods, and ground effect.

  15. Development of high-lift wing modifications for an advanced capability EA-6B aircraft

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.

    1990-01-01

    NASA-Langley has been in a development program aimed at improvements of the EA-6B electronic countermeasures aircraft's maneuvering capabilities; one objective of this effort is the investigation of relatively simple wing design modifications which could yield improved low speed high lift performance with minimum degradation of higher-speed performance. Various two- and three-dimensional low speed and transonic CFD techniques have accordingly been used during the design effort, which involved leading-edge slat and trailing-edge flap contour evaluations by both computation and wind tunnel experiment. Significant low-speed maximum-lift enhancements were obtained without cruise-speed deterioration.

  16. Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R. (Editor)

    1997-01-01

    This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers.

  17. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  18. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  19. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  20. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  1. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  2. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  3. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Windhorst, Robert; Phillips, James

    1998-01-01

    This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.

  4. The implementation of STOVL task-tailored control modes in a fighter cockpit

    NASA Technical Reports Server (NTRS)

    Whatley, David W.; Virnig, John C.; Bodden, David S.

    1990-01-01

    The implementation of Short Takeoff/Vertical Landing (STOVL) specific task tailored control modes in a supersonic fighter/attack aircraft cockpit is investigated. A detailed linear model exhibiting STOVL Level 1 handling qualities is implemented in a real time engineering workstation environment with an F-16 cockpit mock-up. Conventional F-16 control inceptors are utilized to achieve effective STOVL operation and reduced pilot workload throughout the transition to hover flight region. Favorable pilot comments indicate the existing F-16 cockpit configuration with a force sidestick is adaptable to STOVL operation.

  5. F-35 Joint Strike Fighter (JSF) Program: Background, Status, and Issues

    DTIC Science & Technology

    2007-11-02

    foreign participation, and raise the aircraft’s unit price . 24 Muradian, Vago . QDR Tac Air Cuts Will Save $30 Billion, Ralston Says . Defense Daily, May 20...Squeo . "Pentagon Might Slash Its Plans to Buy Fighter Jets By About 30% ." Wall Street Journal. March 22, 2002 . 26 Vago Muradian . "DoD Assesses...Preparing for the Wrong Future? by Steven Kosiak, CSBA Backgrounder, October 3, 1996 : 4-5 . 4s Muradian, Vago and John Robinson. "Public Confidence at

  6. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  7. Effects of stores on longitudinal aerodynamic characteristics of a fighter at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Sangiorgio, G.; Monta, W. J.

    1978-01-01

    Experimental investigations of single and twin stores representative of advanced, elliptical cross section missile concepts were made at Mach numbers from 1.60 to 2.16 to substantiate theoretically predicted results. The stores were mounted on the fuselage of a model representing a fighter configuration. Store base closure effects in the carriage condition were also obtained through tests with and without base closure fairings.

  8. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  9. Wide range operation of advanced low NOx aircraft gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  10. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    The V/STOL Aircraft Propulsive Effects (VAPE) computerized prediction method is evaluated. The program analyzes viscous effects, various jet, inlet, and Short TakeOff and Landing (STOL) models, and examines the aerodynamic configurations of V/STOL aircraft.

  11. A Method to Analyze Tail Buffet Loads of Aircraft

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Moses, Robert W.

    2005-01-01

    Aircraft designers commit significant resources to the design of aircraft in meeting performance goals. Despite fulfilling traditional design requirements, many fighter aircraft have encountered buffet loads when demonstrating their high angle-of-attack maneuver capabilities. As a result, during test or initial production phases of fighter development programs, many new designs are impacted, usually in a detrimental way, by resulting in reassessing designs or limiting full mission capability. These troublesome experiences usually stem from overlooking or completely ignoring the effects of buffet during the design phase of aircraft. Perhaps additional requirements are necessary that addresses effects of buffet in achieving best aircraft performance in fulfilling mission goals. This paper describes a reliable, fairly simple, but quite general buffet loads analysis method to use in the initial design phases of fighter-aircraft development. The method is very similar to the random gust load analysis that is now commonly available in a commercial code, which this analysis capability is based, with some key modifications. The paper describes the theory and the implementation of the methodology. The method is demonstrated on a JSF prototype example problem. The demonstration also serves as a validation of the method, since, in the paper, the analysis is shown to nearly match the flight data. In addition, the paper demonstrates how the analysis method can be used to assess candidate design concepts in determining a satisfactory final aircraft configuration.

  12. [Heart morphologic state in retired fighter pilots].

    PubMed

    Yang, X E; Chen, Z G; Long, L; Zhai, D S; Zhao, X J; Fang, R Y

    2000-12-01

    Objective. To study the heart morphology in the retired fighter pilots, and to provide clinical evidence for protection combined G-loads (+ Gz), heat, noise, hypoxic and vibration stress induced cardiac structural damage. Method. Parameters of heart morphology were studied using Doppler echocardiography in 40 retired fighter pilots with 40 veteran cadres as control. Result. LVDd, LVDs, LADs, LVEDV, LVPWs and LVM in pilot group were somewhat higher than those in control group (NS); while IVSs and LVMI in pilot group were slightly lower than those in control group (NS); LVESV, aortic valve area, internal diameter of the ring and sinus in pilot group were significantly higher than those in control group (P < 0.05). Conclusion. Analysis of the results revealed no pathomorphologic damage of the heart. It suggest that all the variations can be regarded as adaptive changes due to the effects of the combined environmental factors experienced in long time flying.

  13. Do Joint Fighter Programs Save Money?

    DTIC Science & Technology

    2013-01-01

    genesis of the Joint Strike Fighter (JSF) program. William Suit, Headquarters AFMC History Office, searched through vast amounts of primary source...appreciated. We also owe a special debt of gratitude to our project monitor, Dr.  Ross Jackson, Deputy Division Chief, Studies and Analyses Division... William Lucyshyn, and Michael Arendt, Competition in Defense Acquisitions, College Park, Md.: University of Maryland Center for Public Policy and

  14. Test Pilots with P-47 Thunderbolt Fighter

    NASA Technical Reports Server (NTRS)

    1945-01-01

    Langley test pilots (from left) Mel Gough, Herb Hoover, Jack Reeder, Steve Cavallo and Bill Gray stand in front of a P-47 Thunderbolt Fighter in this 1945 photo. Photograph published in Winds of Change, 75th Anniversary NASA publication, by James Schultz (page 44). Also published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen (page 498).

  15. Space Fundamentals for the War Fighter

    DTIC Science & Technology

    1994-02-08

    Army Operations. FM 100-18. Fort Leavenworth, Kansas: Combined Arms Command, 4 Jun 93. The ARRL Handbook for Radio Amateurs. Newington, CT: The...NOTES 1. U.S. Army, Sace Reference Text. (Fort Leavenworth, Kansas: U.S. Army Space Institute, July 93). p. 5-2. 2. The ARRL Handbook for Radio Amateurs... Handbook . A War Fighter’s Guide to Space. Montgomery, Alabama: Air University Press, Dec 93. Space Directory. 1992-93. Surrey, UK: Jane’s Information

  16. A study of rapid engine response systems for an advanced high subsonic, long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Barber, J. H.; Bennett, G. W.; Derosier, T. A.

    1973-01-01

    A dynamic model representing the characteristics of an advanced technology study engine (1985 certification time period) was constructed and programmed on an analogue/digital computer. This model was then exercised to study and evaluate a large number of techniques, singly and in combination, to improve engine response. Several effective methods to reduce engine accelerating time are identified.

  17. Analysis and Modeling of Information Handling Tasks in Supervisory Control of Advanced Aircraft.

    DTIC Science & Technology

    1982-05-01

    Information Management Multi-task Supervision Decision Making Information Seeking Supervisory Control Human-Computer Interactior Information Value...Specific objectives of the three-year program included the following: (1) Formulate a working taxonomy of supervisory control func- tions in advanced...for field application of the information evaluation and management programs in operational airborne systems. The initial year’s work established

  18. An in-flight investigation of pilot-induced oscillation suppression filters during the fighter approach and landing task

    NASA Technical Reports Server (NTRS)

    Bailey, R. E.; Smith, R. E.; Shafer, M. F.

    1982-01-01

    An investigation of pilot-induced oscillation suppression (PIOS) filters was performed using the USAF/Flight Dynamics Laboratory variable stability NT-33 aircraft, modified and operated by Calspan. This program examined the effects of PIOS filtering on the longitudinal flying qualities of fighter aircraft during the visual approach and landing task. Forty evaluations were flown to test the effects of different PIOS filters. Although detailed analyses were not undertaken, the results indicate that PIOS filtering can improve the flying qualities of an otherwise unacceptable aircraft configuration (Level 3 flying qualities). However, the ability of the filters to suppress pilot-induced oscillations appears to be dependent upon the aircraft configuration characteristics. Further, the data show that the filters can adversely affect landing flying qualities if improperly designed. The data provide an excellent foundation from which detail analyses can be performed.

  19. Fatigue Fighters in Sjogren's Syndrome

    MedlinePlus

    ... to help you with tasks. Ask friends and family members to be prepared to do one or two chores for you on your fatigue days. Give them specific instructions in advance and be reasonable with your expectations. Get at least eight hours of sleep every ...

  20. Simulation Modeling of Advanced Pilot Training: The Effects of a New Aircraft Family of Systems

    DTIC Science & Technology

    2014-03-01

    Vendor 4 Figure 2. Advanced Pilot Training The shaded portion of Figure 2 depicts T-38s utilized by the Air Education and Training Command...requirements and resource availability on student throughput. The model runs each scenario fifty times to generate the appropriate data in analysis...parameters in this study can be determined with 10 or 20 replications, however MTBM requires fifty replications to gain accuracy within ±.1 maintenance

  1. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  2. The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Maraz, M. R.; Hiley, P. E.

    1981-01-01

    A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.

  3. Aerodynamic characteristics of supersonic fighter airplane configurations based on Soviet design concepts

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Fournier, R. H.; Lamb, M.

    1977-01-01

    The aerodynamic, stability, and control characteristics of several supersonic fighter airplane concepts are examined. The configurations, which are based on Soviet design concepts, include fixed-wing aircraft having delta wings, swept wings, and trapezoidal wings, and a variable wing-sweep aircraft. Each concept employs aft tail controls. The concepts vary from lightweight, single-engine, air superiority, point interceptor, or ground attack types to larger twin-engine interceptor and reconnaissance designs. Analytical and experimental results indicate that careful application of the transonic or supersonic area rule can provide nearly optimum shaping for minimum drag for a specified Mach number requirement. In addition, through the proper location of components and the exploitation of interference flow fields, the concepts provide linear pitching moment characteristics, high control effectiveness, and reasonably small variations in aerodynamic center location with a resulting high potential for maneuvering capability.

  4. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  5. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  6. Blended Buffet-Load-Alleviation System for Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2005-01-01

    The capability of modern fighter airplanes to sustain flight at high angles of attack and/or moderate angles of sideslip often results in immersion of part of such an airplane in unsteady, separated, vortical flow emanating from its forebody or wings. The flows from these surfaces become turbulent and separated during flight under these conditions. These flows contain significant levels of energy over a frequency band coincident with that of low-order structural vibration modes of wings, fins, and control surfaces. The unsteady pressures applied to these lifting surfaces as a result of the turbulent flows are commonly denoted buffet loads, and the resulting vibrations of the affected structures are known as buffeting. Prolonged exposure to buffet loads has resulted in fatigue of structures on several airplanes. Damage to airplanes caused by buffeting has led to redesigns of airplane structures and increased support costs for the United States Air Force and Navy as well as the armed forces of other countries. Time spent inspecting, repairing, and replacing structures adversely affects availability of aircraft for missions. A blend of rudder-control and piezoelectric- actuator engineering concepts was selected as a basis for the design of a vertical-tail buffet-load-alleviation system for the F/A-18 airplane. In this system, the rudder actuator is used to control the response of the first tail vibrational mode (bending at a frequency near 15 Hz), while directional patch piezoelectric actuators are used to control the second tail vibrational mode (tip torsion at a frequency near 45 Hz). This blend of two types of actuator utilizes the most effective features of each. An analytical model of the aeroservoelastic behavior of the airplane equipped with this system was validated by good agreement with measured results from a full-scale ground test, flight-test measurement of buffet response, and an in-flight commanded rudder frequency sweep. The overall performance of the

  7. A review of technologies applicable to low-speed flight of high-performance aircraft investigated in the Langley 14- x 22-foot subsonic tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Quinto, P. Frank; Banks, Daniel W.; Kemmerly, Guy T.; Gatlin, Gregory M.

    1988-01-01

    An extensive research program has been underway at the NASA Langley Research Center to define and develop the technologies required for low-speed flight of high-performance aircraft. This 10-year program has placed emphasis on both short takeoff and landing (STOL) and short takeoff and vertical landing (STOVL) operations rather than on regular up and away flight. A series of NASA in-house as well as joint projects have studied various technologies including high lift, vectored thrust, thrust-induced lift, reversed thrust, an alternate method of providing trim and control, and ground effects. These technologies have been investigated on a number of configurations ranging from industry designs for advanced fighter aircraft to generic wing-canard research models. Test conditions have ranged from hover (or static) through transition to wing-borne flight at angles of attack from -5 to 40 deg at representative thrust coefficients.

  8. Development of an advanced pitch active control system and a reduced area horizontal tail for a wide-body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.

    1984-01-01

    The development of an advanced pitch active control system (PACS) and a reduced area horizontal tail for a wide-body jet transport (L-1011) with a flying horizontal stabilizer is discussed. The advanced PACS control law design objectives were to provide satisfactory handling qualities for aft c.g. flight conditions to negative static stability margins of 10 percent and to provide good maneuver control column force gradients for nonlinear stability flight conditions. Validity of the control laws were demonstrated by piloted flight simulation tests on the NASA Langley Visual Motion Simulator. Satisfactory handling qualities were actually demonstrated to a negative 20 percent static stability margin. The PACS control laws were mechanized to provide the system architecture that would be suitable for an L-1011 flight test program to a negative stability margin of 3 percent which represents the aft c.g. limits of the aircraft. Reduced area horizontal tail designs of 30 and 38 percent with respect to the L-1011 standard tail were designed, fabricated and wind tunnel tested. Drag reductions and weight savings of the 30 percent smaller tail would provide an L/D benefit of about 2% and the 38% small tail L/D benefit would be about 3 percent. However, forward c.g. limitations would have to be imposed on the aircraft because the maximum horizontal tail lift goal was not achieved and sufficient aircraft nose-up control authority was not available. This limitation would not be required for a properly designed new aircraft.

  9. Mathematical Programming Model for Fighter Training Squadron Pilot Scheduling

    DTIC Science & Technology

    2007-03-01

    of Defense, or the United States Government. AFIT/GOR/ENS/07-17 MATHEMATICAL PROGAMMING MODEL FOR...March 2007 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GOR/ENS/07-17 MATHEMATICAL PROGAMMING MODEL FOR FIGHTER...80 x MATHEMATICAL PROGAMMING MODEL FOR FIGHTER TRAINING SQUADRON PILOT

  10. A joint numerical and experimental study of the jet of an aircraft engine installation with advanced techniques

    NASA Astrophysics Data System (ADS)

    Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.

    2012-01-01

    This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.

  11. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  12. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  13. Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Gingrich, P. B.; Child, R. D.; Panageas, G. N.

    1977-01-01

    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data.

  14. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  15. A study of engine variable geometry systems for an advanced high subsonic long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Compagnon, M. A.

    1973-01-01

    Several variable geometry high Mach inlet concepts, aimed at meeting a system noise objective of 15 EPNdB below FAR part 36, for a long range, Mach 0.9 advanced commercial transport are assessed and compared to a fixed geometry inlet with multiple splitters. The effects of a variable exhaust nozzle (mixed exhaust engine) on noise, inlet geometry requirements, and economics are also presented. The best variable geometry inlet configuration identified is a variable cowl design which relies on a high throat Mach number for additional inlet noise suppression only at takeoff, and depends entirely on inlet wall treatment for noise suppression at approach power. Relative economic penalties as a function of noise level are also presented.

  16. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  17. Measuring wildland fire fighter performance with wearable technology.

    PubMed

    Parker, Richard; Vitalis, Antonios; Walker, Robyn; Riley, David; Pearce, H Grant

    2017-03-01

    Wildland (rural) fire fighting is a physically demanding and hazardous occupation. An observational study was conducted to explore the use of new technologies for the field study of fire fighters at wildfires and to understand the work pressures of wildland fire fighting. The research was carried out with two fire fighters at real fires wearing microphones, miniature video cameras, heart rate monitors and GPS units to record their actions and location at wildfire events. The fire fighters were exposed to high physiological workloads (heart rates of up to 180 beats per minute) and walked considerable distances at the fires. Results from this study have been used in presentations to fire fighters and non-operational fire personnel to understand the pressures fire fighters are under and how others complete the fire fighting tasks.

  18. Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce

    1990-01-01

    An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.

  19. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  20. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  1. Advanced Low-Emissions Catalytic-Combustor Program, phase 1. [aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.

    1981-01-01

    Six catalytic combustor concepts were defined, analyzed, and evaluated. Major design considerations included low emissions, performance, safety, durability, installations, operations and development. On the basis of these considerations the two most promising concepts were selected. Refined analysis and preliminary design work was conducted on these two concepts. The selected concepts were required to fit within the combustor chamber dimensions of the reference engine. This is achieved by using a dump diffuser discharging into a plenum chamber between the compressor discharge and the turbine inlet, with the combustors overlaying the prediffuser and the rear of the compressor. To enhance maintainability, the outer combustor case for each concept is designed to translate forward for accessibility to the catalytic reactor, liners and high pressure turbine area. The catalytic reactor is self-contained with air-cooled canning on a resilient mounting. Both selected concepts employed integrated engine-starting approaches to raise the catalytic reactor up to operating conditions. Advanced liner schemes are used to minimize required cooling air. The two selected concepts respectively employ fuel-rich initial thermal reaction followed by rapid quench and subsequent fuel-lean catalytic reaction of carbon monoxide, and, fuel-lean thermal reaction of some fuel in a continuously operating pilot combustor with fuel-lean catalytic reaction of remaining fuel in a radially-staged main combustor.

  2. Development of Pneumatic Channel Wing Powered-Lift Advanced Super-STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Campbell, Bryan A.

    2002-01-01

    The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing configuration intended to have Super-STOL or VSTOL capability while eliminating many of the operational problem areas of the original Channel Wing vehicle. A preliminary design study of this pneumatic vehicle based on previous wind-tunnel and flight-test data for the two technologies integrated into a simple Pneumatic Channel Wing (PCW) configuration showed very strong Super-STOL potential. Wind-tunnel development and evaluations of a PCW powered model conducted at Georgia Tech Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration (C(sub L) values of 8.5 to 9.0). Variation in blowing of the channel was shown to be more efficient than variation in propeller thrust. Also revealed was the ability to operate unstalled at very high angles of attack of 40 deg-45 deg, or to achieve very high lift at much lower angle of attack to increase visibility and controllability. In order to provide greater flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to interchange thrust and drag by varying blowing without any moving parts. This paper presents these experimental results, discusses variations in the configuration geometry under development, and extends this integrated technology to advanced design studies of PCW-type vehicles.

  3. Proposed Rule and Related Materials for Proposed Finding That Greenhouse Gas Emissions From Aircraft Cause or Contribute to Air Pollution That May Reasonably Be Anticipated To Endanger Public Health and Welfare and Advance Notice of Proposed Rulemaking

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Proposed Finding That Greenhouse Gas Emissions From Aircraft Cause or Contribute to Air Pollution That May Reasonably Be Anticipated To Endanger Public Health and Welfare and Advance Notice of Proposed Rulemaking

  4. [Sphygmographic parameters in fighter and transport pilots].

    PubMed

    Gai, Y; Tian, G; Yu, Y; Zhao, Y; Liang, B

    1997-10-01

    To evaluate and discover hidden cardiovascular trouble in pilots, the cardiovascular function of 129 active male pilots was examined with a new sphygmographic method. 13 pilots (10.3%) were found to have abnormal cardiovascular function. The average arterial blood pressure and medium artery modulus of the fighter pilots aged from 30 to 34 years are inferior to those aged from 25 to 29 obviously, however, that is not the case in transport pilots. This indicates that frequent examination of cardiovascular function with convenient special method is necessary for the improvement of the quality of medical monitor on pilots.

  5. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Jahnke, Craig C.

    1990-01-01

    A continuation method has been used to determine the steady states of three nonlinear aircraft models: a general aviation aircraft with a canard configuration, a generic jet fighter, and the F-14. The continuation method calculated the steady states of the aircraft as functions of the control surface deflections. Bifurcations of these steady states were determined and shown to cause instabilities which resulted in qualitative changes in the state of the aircraft. A longitudinal instability which resulted in a deep stall was determined for the general aviation aircraft. Roll-coupling and high angle of attack instabilities were determined for the generic jet fighter, and wing rock, directional divergence and high angle of attack instabilities were determined for the F-14.Knowledge of the control surface deflections at which bifurcations occurred was used to either put limits on the control surface deflections or to program the control surface deflections such that a combination of control surface deflections at which bifurcations occur could not be attained. Simple control systems were included in the aircraft models to determine the effects of control systems on the instabilities of each aircraft. Steady spin modes were determined for each aircraft. A successful recovery technique was determined for the general aviation aircraft, but no successful recovery technique could be found for the F-14.

  6. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  7. Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.

    1992-01-01

    As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.

  8. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.

  9. Effect of advanced aircraft noise reduction technology on the 1990 projected noise environment around Patrick Henry Airport. [development of noise exposure forecast contours for projected traffic volume and aircraft types

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Brown, C. G.

    1974-01-01

    A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.

  10. Excellence in the Korean Air Force Fighter Squadrons: View of the Fighter Pilots.

    DTIC Science & Technology

    1985-12-01

    MAINTAINING GOOD OLD WAYS...........25 1. Squadron Meditation Time .......... 26 2. Takwondo Exercise..............27 IV. STRONG COHESIVENESS................28...the age-old Squadron Standard Operation Procedure(SOP), and squadron meditation time and energy conservation activities might be considered as tangible...1. Squadro Meditation Time In the late 70’s, all the fighter squadrons were’ ordered to provide for a meditation time every morning. Meditation

  11. Lateral stability and control derivatives of a jet fighter airplane extracted from flight test data by utilizing maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Steinmetz, G. G.

    1972-01-01

    A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data.

  12. +GZ-induced neck injuries in Royal Australian Air Force fighter pilots.

    PubMed

    Newman, D G

    1997-06-01

    +GZ-induced neck injuries are a relatively common occurrence in pilots of high performance fighter aircraft. We surveyed 52 fighter pilots from the Royal Australian Air Force Base at Williamtown via an anonymous questionnaire in order to determine the prevalence and operational significance of these injuries. The pilots flew either the F/A-18 Hornet or the MB326H Macchi. Of the respondents, 44 reported having had a neck injury under +GZ. A higher rate was reported in pilots of the F/A-18. Most of these injuries were simple muscle sprains. There were 20 pilots who reported their neck injury as having interfered with mission completion. Only 12 pilots reported doing any regular neck strengthening exercises, while 33 pilots reported doing preflight neck stretches immediately prior to high +GZ exposure. There were 14 pilots who sought medical attention for their injury, with 9 being taken off flight status for an average of 2 weeks. Air combat maneuvering sorties and the "check six" head position were identified as causal factors by most pilots. This study demonstrates the operational significance of these injuries, and highlights the need for more research into this important aerospace medicine issue.

  13. Parallel Nonlinear Aeroelastic Computation for Fighter Wings in the Transonic Region

    NASA Astrophysics Data System (ADS)

    Larsen, Bradley Robert

    In this dissertation, a parallel three-dimensional aeroelastic simulation is applied to current and next generation fighter aircraft wings. The computational model is a nonlinear fluid and structural mesh coupled using the Direct Eulerian-Langrangian method. This method attaches unique local coordinates to each node and connects the fluid mesh to the structure in such a way that a transformation preserved to the global coordinates. This allows the fluid and structure to be updated in the same time step and maintains spatial accuracy at their interface. The structural mesh is modeled using modified nonlinear von Karman finite elements and is discretized using the Galerkin finite element method. The fluid mesh also used the Galerkin finite element method to discretize the unsteady Euler equations. Computational results over a large range of Mach numbers and densities are presented for two candidate fighter wing models for transonic wing tunnel testing. The FX-35 is a trapezoidal wing based on the F-35A, and the F-Wing is a truncated delta wing similar to the F-16. Both wings exhibit a variety of flutter behaviors including strong bending-torsion flutter, limit-cycle oscillations, and essentially single degree-of-freedom responses.

  14. Advanced Design Composite Aircraft

    DTIC Science & Technology

    1976-02-01

    tensile properties. The cost increase is minimal. The alloy 7471.-T76 has been selected to replace 7075, since it has higher toughness and virtually the...i. / fy/’AtJ’Jk fyfJPt’Mi RAY PPff LOHOtKON WfJEK LOHuneOAJ Wf-Ti AL AL/ \\ \\ I I ENälNl COMPT AULA sopezPLAinc yexwD JET FLAP hwP

  15. Research and Engineering Information Available to the War Fighter

    DTIC Science & Technology

    2006-04-03

    Presentation on Research and Engineering Information Available to the War Fighter. Topics include: Intellectual capital balance-Globalization of science and technology; A quick look at disruptive technologies; How DTIC can help.

  16. Former WWII Fighter Pilot Finds New Home Near Family

    MedlinePlus

    ... Feature: Senior Living Former WWII Fighter Pilot Finds New Home Near Family Past Issues / Summer 2009 Table ... on. Bill Mufich, with daughter Molly, at his new home. Photo courtesy of Kathleen Cravedi Personal Transitions ...

  17. Nondimensional forms for singular perturbation analyses of aircraft energy climbs

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Markopoulos, N.; Corban, J. E.

    1991-01-01

    This paper proposes a systematic approach for identifying the perturbation parameter in singular perturbation analysis of aircraft optimal guidance, and in particular considers a family of problems related to aircraft energy climbs. The approach, which is based on a nondimensionalization of the equations of motion, is used to evaluatae the appropriateness of forced singular perturbation formulations used in the past for transport and fighter aircraft, and to assess the applicability of energy state approximations and singular perturbation analysis for airbreathing transatmospheric vehicles with hypersonic cruise and orbital capabilities.

  18. Cohort mortality study of Seattle fire fighters: 1945-1983

    SciTech Connect

    Heyer, N.; Weiss, N.S.; Demers, P.; Rosenstock, L. )

    1990-01-01

    Fire fighters are known to be occupationally exposed to many toxic substances. However, the limited number of previous studies has not demonstrated any consistent excess mortality from diseases of a priori concern, such as lung cancer, non-malignant respiratory disease, and cardiovascular disease. We studied 2,289 Seattle fire fighters from 1945 through 1983, and observed 383 deaths. Excess mortality from leukemia (SMR = 503, n = 3) and multiple myeloma (SMR = 989, n = 2) was observed among fire fighters with 30 years or more fire combat duty. Lung cancer mortality was elevated (SMR = 177, n = 18) among fire fighters 65 years old or older. We also analyzed the data by considering fire fighters at risk only after 30 years from first exposure. In this analysis, a trend of increasing risk with increasing exposure was observed for diseases of the circulatory system. For this cause of death, fire fighters with 30 years or more fire combat duty had a relative risk of 1.84 compared to those with less than 15 years of fire combat duty.

  19. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  20. Investigation of Current and Proposed Aircraft Departure Susceptibility Criteria with Application to Future Fighter Aircraft

    DTIC Science & Technology

    1990-05-31

    close-in-combat (CIC) environment. The CIC environment today, and in the near future, is projected to be characterized by: (1) short duration...Such hysteresis is characterized by a double-valued behavior of the steady-state aerodynamic response to variations in one of the motion variables such...Configuratons (Reference (26)). 56 NADC-90048-60 .1 . 14 / 3 cHIM I (1/rind) .4 _____ 0 1 15 2 5 0 3 .g-de 4." CofiuA tio 44 Figre21(Cnclde) omarionofth