Science.gov

Sample records for advanced flash memories

  1. TID and SEE Response of an Advanced Samsung 4G NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Friendlich, M.; Howard, J. W.; Berg, M. D.; Kim, H. S.; Irwin, T. L.; LaBel, K. A.

    2007-01-01

    Initial total ionizing dose (TID) and single event heavy ion test results are presented for an unhardened commercial flash memory, fabricated with 63 nm technology. Results are that the parts survive to a TID of nearly 200 krad (SiO2), with a tractable soft error rate of about 10(exp -l2) errors/bit-day, for the Adams Ten Percent Worst Case Environment.

  2. Non Volatile Flash Memory Radiation Tests

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.; Allen, Greg

    2012-01-01

    Commercial flash memory industry has experienced a fast growth in the recent years, because of their wide spread usage in cell phones, mp3 players and digital cameras. On the other hand, there has been increased interest in the use of high density commercial nonvolatile flash memories in space because of ever increasing data requirements and strict power requirements. Because of flash memories complex structure; they cannot be treated as just simple memories in regards to testing and analysis. It becomes quite challenging to determine how they will respond in radiation environments.

  3. Method for programming a flash memory

    DOEpatents

    Brosky, Alexander R.; Locke, William N.; Maher, Conrado M.

    2016-08-23

    A method of programming a flash memory is described. The method includes partitioning a flash memory into a first group having a first level of write-protection, a second group having a second level of write-protection, and a third group having a third level of write-protection. The write-protection of the second and third groups is disabled using an installation adapter. The third group is programmed using a Software Installation Device.

  4. Space and terrestrial radiation effects in flash memories

    NASA Astrophysics Data System (ADS)

    Bagatin, Marta; Gerardin, Simone; Paccagnella, Alessandro

    2017-03-01

    We present a comprehensive review of the effects of ionizing radiation on advanced flash memories. The effects of ionizing radiation as well as the mechanisms underlying the observed phenomena are thoroughly discussed on both floating gate cells and the complex control circuitry. The covered effects are relevant for all floating-gate based flash memories that require very high levels of reliability, from critical applications at the terrestrial level to radiation-harsh environments, such as space, nuclear power plants, and high-energy physics experiments.

  5. FPGA Flash Memory High Speed Data Acquisition

    NASA Technical Reports Server (NTRS)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  6. A hybrid ferroelectric-flash memory cells

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki

    2014-09-01

    A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.

  7. Accelerating litho technology development for advanced design node flash memory FEOL by next-generation wafer inspection and SEM review platforms

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Ho; Ahn, Jeongho; Ihm, Dongchul; Chin, Soobok; Lee, Dong-Ryul; Choi, Seongchae; Lee, Junbum; Kang, Ho-Kyu; Sivaraman, Gangadharan; Yamamoto, Tetsuya; Lakhawat, Rahul; Sanapala, Ravikumar; Lee, Chang Ho; Lobo, Arun

    2012-03-01

    Development of an advanced design node for NAND flash memory devices in semiconductor manufacturing requires accelerated identification and characterization of yield-limiting defect types at critical front-end of line (FEOL) process steps. This enables a shorter development cycle time and a faster production ramp to meet market demand. This paper presents a methodology for detecting defects that have a substantial yield impact on a FEOL after-develop inspection (ADI) layer using an advanced broadband optical wafer defect inspector and a scanning electron microscope (SEM) review tool. In addition, this paper presents experimental data that demonstrates defect migration from an ADI layer to an after-clean inspection (ACI) layer, and provides clear differentiation between yield-impacting critical defects and noncritical defects on the layers. The goal of these studies is to determine the feasibility of implementing an inspection point at ADI. The advantage of capturing yield-limiting defects on an ADI layer is that wafers can be reworked when an excursion occurs, an option that is not always possible for ACI layers. Our investigation is divided into two parts: (1) Inspection of an ADI layer with high sensitivity to find an accurate representation of the defect population and to gain understanding on the propagation of defects from the ADI layer to the ACI layer; and, (2) Inspection of an ACI layer to develop an understanding of unique defects generated by the ACI process step. Overall, this paper discusses the advantages of baselining defectivity at ADI process levels for accelerated development of advanced design node memory devices.

  8. Hold-up power supply for flash memory

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A hold-up power supply for flash memory systems is provided. The hold-up power supply provides the flash memory with the power needed to temporarily operate when a power loss exists. This allows the flash memory system to complete any erasures and writes, and thus allows it to shut down gracefully. The hold-up power supply detects when a power loss on a power supply bus is occurring and supplies the power needed for the flash memory system to temporally operate. The hold-up power supply stores power in at least one capacitor. During normal operation, power from a high voltage supply bus is used to charge the storage capacitors. When a power supply loss is detected, the power supply bus is disconnected from the flash memory system. A hold-up controller controls the power flow from the storage capacitors to the flash memory system. The hold-up controller uses feedback to assure that the proper voltage is provided from the storage capacitors to the flash memory system. This power supplied by the storage capacitors allows the flash memory system to complete any erasures and writes, and thus allows the flash memory system to shut down gracefully.

  9. Exploring Shared Memory Protocols in FLASH

    SciTech Connect

    Horowitz, Mark; Kunz, Robert; Hall, Mary; Lucas, Robert; Chame, Jacqueline

    2007-04-01

    ABSTRACT The goal of this project was to improve the performance of large scientific and engineering applications through collaborative hardware and software mechanisms to manage the memory hierarchy of non-uniform memory access time (NUMA) shared-memory machines, as well as their component individual processors. In spite of the programming advantages of shared-memory platforms, obtaining good performance for large scientific and engineering applications on such machines can be challenging. Because communication between processors is managed implicitly by the hardware, rather than expressed by the programmer, application performance may suffer from unintended communication – communication that the programmer did not consider when developing his/her application. In this project, we developed and evaluated a collection of hardware, compiler, languages and performance monitoring tools to obtain high performance on scientific and engineering applications on NUMA platforms by managing communication through alternative coherence mechanisms. Alternative coherence mechanisms have often been discussed as a means for reducing unintended communication, although architecture implementations of such mechanisms are quite rare. This report describes an actual implementation of a set of coherence protocols that support coherent, non-coherent and write-update accesses for a CC-NUMA shared-memory architecture, the Stanford FLASH machine. Such an approach has the advantages of using alternative coherence only where it is beneficial, and also provides an evolutionary migration path for improving application performance. We present data on two computations, RandomAccess from the HPC Challenge benchmarks and a forward solver derived from LS-DYNA, showing the performance advantages of the alternative coherence mechanisms. For RandomAccess, the non-coherent and write-update versions can outperform the coherent version by factors of 5 and 2.5, respectively. In LS-DYNA, we obtain

  10. Advanced mask technique to improve bit line CD uniformity of 90 nm node flash memory in low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-doo; Choi, Jae-young; Kim, Jea-hee; Han, Jae-won

    2008-10-01

    As devices size move toward 90nm technology node or below, defining uniform bit line CD of flash devices is one of the most challenging features to print in KrF lithography. There are two principal difficulties in defining bit line on wafer. One is insufficient process margin besides poor resolution compared with ArF lithography. The other is that asymmetric bit line should be made for OPC(Optical Proximity Correction) modeling. Therefore advanced ArF lithography scanner should be used for define bit line with RETs (Resolution Enhancement Techniques) such as immersion lithography, OPC, PSM(Phase Shift Mask), high NA(Numerical Aperture), OAI(Off-Axis Illumination), SRAF(Sub-resolution Assistant Feature), and mask biasing.. Like this, ArF lithography propose the method of enhancing resolution, however, we must spend an enormous amount of CoC(cost of ownership) to utilize ArF photolithography process than KrF. In this paper, we suggest method to improve of bit line CD uniformity, patterned by KrF lithographic process in 90nm sFlash(stand alone Flash) devices. We applied new scheme of mask manufacturing, which is able to realize 2 different types of mask, binary and phase-shift, into one plate. Finally, we could get the more uniform bit lines and we expect to get more stable properties then before applying this technique.

  11. Some Improvements in Utilization of Flash Memory Devices

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    Two developments improve the utilization of flash memory devices in the face of the following limitations: (1) a flash write element (page) differs in size from a flash erase element (block), (2) a block must be erased before its is rewritten, (3) lifetime of a flash memory is typically limited to about 1,000,000 erases, (4) as many as 2 percent of the blocks of a given device may fail before the expected end of its life, and (5) to ensure reliability of reading and writing, power must not be interrupted during minimum specified reading and writing times. The first development comprises interrelated software components that regulate reading, writing, and erasure operations to minimize migration of data and unevenness in wear; perform erasures during idle times; quickly make erased blocks available for writing; detect and report failed blocks; maintain the overall state of a flash memory to satisfy real-time performance requirements; and detect and initialize a new flash memory device. The second development is a combination of hardware and software that senses the failure of a main power supply and draws power from a capacitive storage circuit designed to hold enough energy to sustain operation until reading or writing is completed.

  12. Advances of Flash LIDAR Development Onboard Uav

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Yang, J.; Li, X.; Yang, X.

    2012-07-01

    A small cost-low civilian UAV (Unmanned Aerial Vehicle - UAV) platform usually requests that all carried components should be light in weight, small in volume, and efficient in energy. This paper presents the advance of a pre-mature of flash LiDAR system including laser emitting system, associate with the pulsed voltage technology. A complete laser emitting system, including laser diode, conic lens, alignment, divergence angle, etc., has been designed and implemented. The laser emitting system is first simulated and tested using 3D-Tool software, and then manufactured by an industrial company. In addition, a novel power supply topology based on two coupled coils, pulse generator circuit, and a fast switch, is proposed since several 100 V in voltage, 10-100 A in current, several hundred millisecond in pulse width is needed for flash LiDAR system onboard a small low-cost civilian UAV platform, and the traditional power supply had problems in efficiency and bulk. Finally, laser emitting and the power supply are assembled and tested. The size of laser footprint is 4398.031 mm x 4398.031 mm in x and y axes, respectively, when shitting from a flight height of 300 m, which is close to the theoretic size of 4.5 m x 4.5 m. The difference of 102 mm can meet the requirement of flash LiDAR data collection at a flight height of 300 m. Future work on extensive and on-going investigation and investments for a prototype of flash LiDAR system is drawn up as well.

  13. Immersion and dry lithography monitoring for flash memories (after develop inspection and photo cell monitor) using a darkfield imaging inspector with advanced binning technology

    NASA Astrophysics Data System (ADS)

    Parisi, P.; Mani, A.; Perry-Sullivan, C.; Kopp, J.; Simpson, G.; Renis, M.; Padovani, M.; Severgnini, C.; Piacentini, P.; Piazza, P.; Beccalli, A.

    2009-12-01

    After-develop inspection (ADI) and photo-cell monitoring (PM) are part of a comprehensive lithography process monitoring strategy. Capturing defects of interest (DOI) in the lithography cell rather than at later process steps shortens the cycle time and allows for wafer re-work, reducing overall cost and improving yield. Low contrast DOI and multiple noise sources make litho inspection challenging. Broadband brightfield inspectors provide the highest sensitivity to litho DOI and are traditionally used for ADI and PM. However, a darkfield imaging inspector has shown sufficient sensitivity to litho DOI, providing a high-throughput option for litho defect monitoring. On the darkfield imaging inspector, a very high sensitivity inspection is used in conjunction with advanced defect binning to detect pattern issues and other DOI and minimize nuisance defects. For ADI, this darkfield inspection methodology enables the separation and tracking of 'color variation' defects that correlate directly to CD variations allowing a high-sampling monitor for focus excursions, thereby reducing scanner re-qualification time. For PM, the darkfield imaging inspector provides sensitivity to critical immersion litho defects at a lower cost-of-ownership. This paper describes litho monitoring methodologies developed and implemented for flash devices for 65nm production and 45nm development using the darkfield imaging inspector.

  14. Flash drive memory apparatus and method

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor)

    2010-01-01

    A memory apparatus includes a non-volatile computer memory, a USB mass storage controller connected to the non-volatile computer memory, the USB mass storage controller including a daisy chain component, a male USB interface connected to the USB mass storage controller, and at least one other interface for a memory device, other than a USB interface, the at least one other interface being connected to the USB mass storage controller.

  15. 76 FR 55417 - In the Matter of Certain Dynamic Random Access Memory and Nand Flash Memory Devices and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... COMMISSION In the Matter of Certain Dynamic Random Access Memory and Nand Flash Memory Devices and Products... States after importation of certain dynamic random access memory and NAND flash memory devices and... the sale within the United States after importation of certain dynamic random access memory and...

  16. Multi-Level Bitmap Indexes for Flash Memory Storage

    SciTech Connect

    Wu, Kesheng; Madduri, Kamesh; Canon, Shane

    2010-07-23

    Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data at the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.

  17. Charge Trapping Flash Memory With High-k Dielectrics

    NASA Astrophysics Data System (ADS)

    Eun, Dong Seog

    2011-12-01

    High capacity and affordable price of flash memory make portable electronic devices popular, which in turn stimulates the further scaling down effort of the flash memory cells. Indeed the flash memory cells have been scaling down aggressively and face several crucial challenges. As a result, the technology trend is shifting from the floating-gate cell to the charge-trap cell in order to overcome fatal interference problems between cells. There are critical problems in the charge-trap memory cell which will become main-stream in the near future. The first potential problem is related to the memory retention which is degraded by the charge leakage through thin tunnel dielectrics. The second is the reduction of charge-storage capacity in the scaled down SiN trapping layer. The third is the low operation-efficiency resulting from the methods used to solve the first two problems. Using high-k tunnel dielectrics can solve the first problem. The second problem can be overcome by adopting a high-k trapping dielectric. The dielectric constant of the blocking layer must be higher than those of the tunnel dielectric and the trapping dielectric in order to maintain operation efficiency. This dissertation study is focused on adopting high-k dielectrics in all three of the aforementioned layers for figure generations of flash memory technology. For the high-k tunnel dielectric, the MAD Si3N4 and the MAD Al2O3 are used to fabricate the MANNS structure and the MANAS structure. The MANNS structure has the advantage of reducing the erase voltage due to its low barrier height for holes. In addition, the retention characteristic of the MANAS structure is not sensitive to temperature. The reason is that the carrier transport in MAD Al2O3 is dominated by F-N tunneling, which is nearly independent of temperature. Adopting TiOx as the trapping dielectric forms the MATAS structure. Although the charge capacity of TiOx is not very high, the operating voltage can be reduced to less than 10V

  18. Flash memory management system and method utilizing multiple block list windows

    NASA Technical Reports Server (NTRS)

    Chow, James (Inventor); Gender, Thomas K. (Inventor)

    2005-01-01

    The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.

  19. Proton irradiation effects on 2Gb flash memory

    SciTech Connect

    Wester, William; Nelson, Charles; Marriner, John

    2004-08-18

    The authors report total ionizing dose and single event effects on 2Gb Samsung flash memory devices after exposure to 200 MeV protons to various doses up to 83 krad(Si). They characterize observed failures and single event upsets on 22 devices from two different lots. Devices from both lots are robust to greater than 20 krad(Si) although they see evidence for lot-to-lot variation where only one lot appears robust up to about 50 krad(Si). Single event upsets are observed at a relatively low rate and are consistent with single isolated bit flips within registers that transfer bits to and from the flash memory cells.

  20. Modular Electronics for Flash Memory Production

    DTIC Science & Technology

    2011-12-28

    terms of size compared to conventional circuit elements. The development of molecular electronic devices for memory applications in computing...to understanding these physical phenomena arises from the inability to use conventional spectroscopic tools at the small length scales and low...Host ~®~^H^:i>V~®-~#-« «~®^^^|®-=-#^M»-. Figure 1. Chemical structures of the molecular wires incorporating, A, e-rich crown ether subunits which

  1. Radiation Tests on 2Gb NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc N.; Guertin, Steven M.; Patterson, J. D.

    2006-01-01

    We report on SEE and TID tests of highly scaled Samsung 2Gbits flash memories. Both in-situ and biased interval irradiations were used to characterize the response of the total accumulated dose failures. The radiation-induced failures can be categorized as followings: single event upset (SEU) read errors in biased and unbiased modes, write errors, and single-event-functional-interrupt (SEFI) failures.

  2. 78 FR 55095 - Certain Flash Memory Chips and Products Containing Same; Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... COMMISSION Certain Flash Memory Chips and Products Containing Same; Institution of Investigation AGENCY: U.S... the sale within the United States after importation of certain flash memory chips and products... memory chips and products containing the same by reason of infringement of one or more of claims 1-3...

  3. Solution processed molecular floating gate for flexible flash memories

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-01-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758

  4. Advances in flash flood monitoring using UAVs

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Russell, Andrew; Large, Andrew

    2016-04-01

    UAVs have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomenon may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilising the Kande-Lucas-Tomasi (KLT) algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 - 0.13m. The application of this approach to assess the hydraulic conditions present in Alyth Burn, Scotland during a 1:200 year flash flood resulted in the generation of an average 4.2 measurements/m2 at a rate of 508 measurements/s. Analysis of these vectors provide a rare insight into the complexity of channel-overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low with a spatial average across the area of ± 0.15m/s. Little difference is observed in the uncertainty attached to out-of-bank velocities (± 0.15m/s), and within-channel velocities (± 0.16m/s), illustrating the consistency of the approach.

  5. Graphene-quantum-dot nonvolatile charge-trap flash memories.

    PubMed

    Sin Joo, Soong; Kim, Jungkil; Kang, Soo Seok; Kim, Sung; Choi, Suk-Ho; Hwang, Sung Won

    2014-06-27

    Nonvolatile flash-memory capacitors containing graphene quantum dots (GQDs) of 6, 12, and 27 nm average sizes (d) between SiO2 layers for use as charge traps have been prepared by sequential processes: ion-beam sputtering deposition (IBSD) of 10 nm SiO2 on a p-type wafer, spin-coating of GQDs on the SiO2 layer, and IBSD of 20 nm SiO2 on the GQD layer. The presence of almost a single array of GQDs at a distance of ∼13 nm from the SiO2/Si wafer interface is confirmed by transmission electron microscopy and photoluminescence. The memory window estimated by capacitance-voltage curves is proportional to d for sweep voltages wider than  ± 3 V, and for d = 27 nm the GQD memories show a maximum memory window of 8 V at a sweep voltage of  ± 10 V. The program and erase speeds are largest at d = 12 and 27 nm, respectively, and the endurance and data-retention properties are the best at d = 27 nm. These memory behaviors can be attributed to combined effects of edge state and quantum confinement.

  6. Effect of Radiation Exposure on the Retention of Commercial NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Chen, D.; Friendlich, M.; Carts, M. A.; Seidleck, C. M.; LaBel, K. A.

    2011-01-01

    We have compared the data retention of irradiated commercial NAND flash memories with that of unirradiated controls. Under some circumstanc es, radiation exposure has a significant effect on the retention of f lash memories.

  7. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2010

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.

    2010-01-01

    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) and multi-level cell (MLC) NAND flash memories manufactured by Micron Technology.

  8. Radiation Tests of Highly scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories--Update 2011

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.

    2011-01-01

    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) 32Gb and multi-level cell (MLC) 64Gb NAND flash memories manufactured by Micron Technology.

  9. 75 FR 82071 - In the Matter of Certain Flash Memory Chips and Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Matter of Certain Flash Memory Chips and Products Containing Same; Notice of Commission Decision Not To... United States after importation of certain flash memory chips and products containing the same by...

  10. 75 FR 82071 - In the Matter of Certain Flash Memory Chips and Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... the Matter of Certain Flash Memory Chips and Products Containing Same; Notice of Commission Decision... States after importation of certain flash memory chips and products containing the same by reason...

  11. 77 FR 74222 - Certain Dynamic Random Access Memory and NAND Flash Memory Devices and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... COMMISSION Certain Dynamic Random Access Memory and NAND Flash Memory Devices and Products Containing Same... Bentonville, Arkansas (collectively, ``the remaining respondents''); Elpida Memory, Inc. of Tokyo, Japan and Elpida Memory (USA) of Sunnyvale, California (collectively, ``Elpida''); and SK Hynix Inc. (f/k/a...

  12. 76 FR 41824 - In the Matter of Certain Flash Memory Chips And Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... COMMISSION In the Matter of Certain Flash Memory Chips And Products Containing Same; Notice of Commission..., Certain Flash Memory Chips and Products Containing Same on the basis of a settlement agreement. The... importation of certain flash memory chips and products containing same by reason of infringement of...

  13. 76 FR 25707 - In the Matter of Certain Flash Memory and Products Containing Same; Notice of Commission Decision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... COMMISSION In the Matter of Certain Flash Memory and Products Containing Same; Notice of Commission Decision... importation of certain flash memory and products containing same by reason of infringement of certain claims... remedy is a limited exclusion order barring entry of infringing flash memory devices or...

  14. Comparison of TID Response and SEE Characterization of Single and Multi Level High Density NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.; Harboe-Sorensen, Reno; Virtanen, Ari

    2009-01-01

    Heavy ion single-event measurements and TID response for 8Gb commercial NAND flash memories are reported. Radiation results of multi-level flash technology are compared with results from single-level flash technology. In general, these commercial high density memories appear to be much less susceptible to SEE and have better TID response compared to older generations of flash memories. The charge pump survived up to 600 krads.

  15. Investigation of Current Spike Phenomena During Heavy Ion Irradiation of NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Berg, Melanie; Friendlich, Mark; Wilcox, Ted; Seidleck, Christina; LaBel, Kenneth A.; Irom, Farokh; Buchner, Steven P.; McMorrow, Dale; Mavis, David G.; Eaton, Paul H.; Castillo, James

    2011-01-01

    A series of heavy ion and laser irradiations were performed to investigate previously reported current spikes in flash memories. High current events were observed, however, none matches the previously reported spikes. Plausible mechanisms are discussed.

  16. Memristive behavior in a junctionless flash memory cell

    SciTech Connect

    Orak, Ikram; Ürel, Mustafa; Dana, Aykutlu; Bakan, Gokhan

    2015-06-08

    We report charge storage based memristive operation of a junctionless thin film flash memory cell when it is operated as a two terminal device by grounding the gate. Unlike memristors based on nanoionics, the presented device mode, which we refer to as the flashristor mode, potentially allows greater control over the memristive properties, allowing rational design. The mode is demonstrated using a depletion type n-channel ZnO transistor grown by atomic layer deposition (ALD), with HfO{sub 2} as the tunnel dielectric, Al{sub 2}O{sub 3} as the control dielectric, and non-stoichiometric silicon nitride as the charge storage layer. The device exhibits the pinched hysteresis of a memristor and in the unoptimized device, R{sub off}/R{sub on} ratios of about 3 are presented with low operating voltages below 5 V. A simplified model predicts R{sub off}/R{sub on} ratios can be improved significantly by adjusting the native threshold voltage of the devices. The repeatability of the resistive switching is excellent and devices exhibit 10{sup 6 }s retention time, which can, in principle, be improved by engineering the gate stack and storage layer properties. The flashristor mode can find use in analog information processing applications, such as neuromorphic computing, where well-behaving and highly repeatable memristive properties are desirable.

  17. Optimal memory configuration analysis in tri-hybrid solid-state drives with storage class memory and multi-level cell/triple-level cell NAND flash memory

    NASA Astrophysics Data System (ADS)

    Matsui, Chihiro; Yamada, Tomoaki; Sugiyama, Yusuke; Yamaga, Yusuke; Takeuchi, Ken

    2017-04-01

    This paper analyzes the best mix of memories in a tri-hybrid solid-state drive (SSD) with storage class memory (SCM) and multi-level cell (MLC)/triple-level cell (TLC) NAND flash memory. SCM is fast but its cost is high. Although MLC NAND flash memory is slow, it is more cost effective than SCM. For further cost efficiency, TLC NAND flash memory is denser and less expensive than MLC NAND flash. Performance of tri-hybrid SSD is evaluated in various memory configurations. Moreover, the optimum memory configuration is changed according to the application characteristics. If 10% cost increase is allowed compared to the MLC NAND flash only SSD, SCM/MLC NAND flash hybrid SSD provides the best performance with hot/random workload, whereas SCM/MLC/TLC NAND flash tri-hybrid SSD achieves the best for hot/sequential and cold/random workloads. In addition, it is possible to add long latency but low-cost SCM to the tri-hybrid SSD. As a result, tri-hybrid SSD with slow SCM achieves the best performance.

  18. 78 FR 48188 - Certain Flash Memory Chips and Products Containing the Same Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...] [FR Doc No: 2013-19093] INTERNATIONAL TRADE COMMISSION [Docket No. 2971] Certain Flash Memory Chips... Memory Chips and Products Containing the Same, DN 2971; the Commission is soliciting comments on any... flash memory chips and products containing the same. The complaint names as respondents...

  19. An overview of advanced nonvolatile memory technologies

    SciTech Connect

    Dressendorfer, P.V.

    1991-01-01

    This report is an overview of advanced nonvolatile memory technologies. The memory technologies discussed are: floating gate nonvolatile memory technologies; SNOS nonvolatile technology; ferroelectric technology; and thin film magnetic memories.

  20. Flash Memory Reliability: Read, Program, and Erase Latency Versus Endurance Cycling

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2010-01-01

    This report documents the efforts and results of the fiscal year (FY) 2010 NASA Electronic Parts and Packaging Program (NEPP) task for nonvolatile memory (NVM) reliability. This year's focus was to measure latency (read, program, and erase) of NAND Flash memories and determine how these parameters drift with erase/program/read endurance cycling.

  1. Flash!

    NASA Astrophysics Data System (ADS)

    Schilling, Govert

    2002-04-01

    About three times a day our sky flashes with a powerful pulse of gamma ray bursts (GRB), invisible to human eyes but not to astronomers' instruments. The sources of this intense radiation are likely to be emitting, within the span of seconds or minutes, more energy than the sun will in its entire 10 billion years of life. Where these bursts originate, and how they come to have such incredible energies, is a mystery scientists have been trying to solve for three decades. The phenomenon has resisted study -- the flashes come from random directions in space and vanish without trace -- until very recently. In what could be called a cinematic conflation of Flash Gordon and The Hunt for Red October, Govert Schilling's Flash!: The Hunt for the Biggest Explosions in the Universe describes the exciting and ever-changing field of GRB research. Based on interviews with leading scientists, Flash! provides an insider's account of the scientific challenges involved in unravelling the enigmatic nature of GRBs. A science writer who has followed the drama from the very start, Schilling describes the ambition and jealousy, collegiality and competition, triumph and tragedy, that exists among those who have embarked on this recherche. Govert Schilling is a Dutch science writer and astronomy publicist. He is a contributing editor of Sky and Telescope magazine, and regularly writes for the news sections of Science and New Scientist. Schilling is the astronomy writer for de Volkskrant, one of the largest national daily newspapers in The Netherlands, and frequently talks about the Universe on Dutch radio broadcasts. He is the author of more than twenty popular astronomy books, and hundreds of newspaper and magazine articles on astronomy.

  2. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2012

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Allen, Gregory R.

    2012-01-01

    The space radiation environment poses a certain risk to all electronic components on Earth-orbiting and planetary mission spacecraft. In recent years, there has been increased interest in the use of high-density, commercial, nonvolatile flash memories in space because of ever-increasing data volumes and strict power requirements. They are used in a wide variety of spacecraft subsystems. At one end of the spectrum, flash memories are used to store small amounts of mission-critical data such as boot code or configuration files and, at the other end, they are used to construct multi-gigabyte data recorders that record mission science data. This report examines single-event effect (SEE) and total ionizing dose (TID) response in single-level cell (SLC) 32-Gb, multi-level cell (MLC) 64-Gb, and Triple-level (TLC) 64-Gb NAND flash memories manufactured by Micron Technology with feature size of 25 nm.

  3. 78 FR 49287 - Certain Flash Memory Chips and Products Containing the Same Correction to Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Flash Memory Chips and Products Containing the Same Correction to Notice of Receipt of... FR 48188, August 7, 2013) of receipt of complaint entitled, Certain Flash Memory Chips and...

  4. 76 FR 40931 - In the Matter of Certain Flash Memory and Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Flash Memory and Products Containing Same; Notice of Commission... importation of certain flash memory and products containing same by reason of infringement of certain...

  5. 76 FR 4375 - In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of... flash memory devices and products containing same by reason of infringement of certain claims of...

  6. 75 FR 11909 - In the Matter of: Certain Flash Memory Chips and Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of: Certain Flash Memory Chips and Products Containing Same; Notice of Commission... flash memory chips and products containing the same by reason of infringement of various claims...

  7. Scalable Wordline Shielding Scheme using Dummy Cell beyond 40 nm NAND Flash Memory for Eliminating Abnormal Disturb of Edge Memory Cell

    NASA Astrophysics Data System (ADS)

    Park, Ki-Tae; Lee, SeungChul; Sel, Jong-Sun; Choi, Jungdal; Kim, Kinam

    2007-04-01

    A scalable wordline shielding scheme using dummy cell in NAND flash memory is presented to eliminate abnormal disturb of edge memory cell which causes to degradation of NAND flash performance. The proposed NAND flash is also able to improve more NAND scaling compared to conventional NAND string beyond sub-40 nm technology node. By using a proposed program scheme which includes an optimized bias voltage and adjusted Vth of dummy cell, almost abnormal disturbance of edge memory cell is removed and over 58% capacitive coupling noise between select transistor and edge memory cell can be reduced from both simulation and experimental results which used 63 nm NAND flash technology. The proposed NAND flash also improves Vth distribution of memory cell by providing almost equal operation conditions for all memory cells in NAND string.

  8. Tunable bandgap energy of fluorinated nanocrystals for flash memory applications produced by low-damage plasma treatment.

    PubMed

    Huang, Chi-Hsien; Lin, Chih-Ting; Wang, Jer-Chyi; Chou, Chien; Ye, Yu-Ren; Cheng, Bing-Ming; Lai, Chao-Sung

    2012-11-30

    A plasma system with a complementary filter to shield samples from damage during tetrafluoromethane (CF(4)) plasma treatment was proposed in order to incorporate fluorine atoms into gadolinium oxide nanocrystals (Gd(2)O(3)-NCs) for flash memory applications. X-ray photoelectron spectroscopy confirmed that fluorine atoms were successfully introduced into the Gd(2)O(3)-NCs despite the use of a filter in the plasma-enhanced chemical vapour deposition system to shield against several potentially damaging species. The number of incorporated fluorine atoms can be controlled by varying the treatment time. The optimized memory window of the resulting flash memory devices was twice that of devices treated by a filterless system because more fluorine atoms were incorporated into the Gd(2)O(3)-NCs film with very little damage. This enlarged the bandgap energy from 5.48 to 6.83 eV, as observed by ultraviolet absorption measurements. This bandgap expansion can provide a large built-in electric field that allows more charges to be stored in the Gd(2)O(3)-NCs. The maximum improvement in the retention characteristic was >60%. Because plasma damage during treatment is minimal, maximum fluorination can be achieved. The concept of simply adding a filter to a plasma system to prevent plasma damage exhibits great promise for functionalization or modification of nanomaterials for advanced nanoelectronics while introducing minimal defects.

  9. Tunable bandgap energy of fluorinated nanocrystals for flash memory applications produced by low-damage plasma treatment

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Hsien; Lin, Chih-Ting; Wang, Jer-Chyi; Chou, Chien; Ye, Yu-Ren; Cheng, Bing-Ming; Lai, Chao-Sung

    2012-11-01

    A plasma system with a complementary filter to shield samples from damage during tetrafluoromethane (CF4) plasma treatment was proposed in order to incorporate fluorine atoms into gadolinium oxide nanocrystals (Gd2O3-NCs) for flash memory applications. X-ray photoelectron spectroscopy confirmed that fluorine atoms were successfully introduced into the Gd2O3-NCs despite the use of a filter in the plasma-enhanced chemical vapour deposition system to shield against several potentially damaging species. The number of incorporated fluorine atoms can be controlled by varying the treatment time. The optimized memory window of the resulting flash memory devices was twice that of devices treated by a filterless system because more fluorine atoms were incorporated into the Gd2O3-NCs film with very little damage. This enlarged the bandgap energy from 5.48 to 6.83 eV, as observed by ultraviolet absorption measurements. This bandgap expansion can provide a large built-in electric field that allows more charges to be stored in the Gd2O3-NCs. The maximum improvement in the retention characteristic was >60%. Because plasma damage during treatment is minimal, maximum fluorination can be achieved. The concept of simply adding a filter to a plasma system to prevent plasma damage exhibits great promise for functionalization or modification of nanomaterials for advanced nanoelectronics while introducing minimal defects.

  10. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    PubMed Central

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-01-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices. PMID:26201747

  11. Advancement of flash hydrogasification: Task VIII. Performance testing

    SciTech Connect

    Falk, A.Y.; Schuman, M.D.; Kahn, D.R.

    1986-06-01

    This topical report documents the technical effort required to investigate and verify the reaction chemistry associated with the Rockwell Advanced Flash Hydropyrolysis (AFHP) concept for the production of substitute natural gas (SNG) from coal. The testing phase of the program included 5 preburner performance evaluation tests (14 test conditions) and 11 coal-fed reactor tests (19 test conditions). The reactor test parameters investigated spanned exist temperatures from 1775 to 2050/sup 0/F, residence times from 2 to 8 s, inlet gas-to-coal ratios from 0.15 to 0.27 lb-mole/lb, and inlet-steam-to-H/sub 2/ mole ratios from 0.15 to 0.86. One test was conducted to investigate the effect of CH/sub 4/ addition to the hydrogen feed stream (22 mole % CH/sub 4/), with subsequent partial oxidation of the CH/sub 4/ to CO/sub x/ in the preburner system, on the AFHP reactor chemistry and product gas composition. Overall carbon conversion and total carbon conversion to gases (namely, CH/sub 4/, C/sub 2/H/sub 6/, CO, and CO/sub 2/) ranged from 53 to 68% and 35 to 68%, respectively. The gas produced was primarily CH/sub 4/ (31 to 53% carbon conversion to CH/sub 4/). Carbon conversion to total liquids was strongly dependent on reactor exit temperature and to a lesser extent on residence time, with values ranging from about 20% to 1775/sup 0/F and 2-S residence time to zero at 1975/sup 0/F and residence times greater than 5 s. Carbon conversion to C/sub 6/H/sub 6/ asd high as 11.2% was obtained. Carbon conversion to CO/sub x/ ranged from 3.5 to 29.4%. Methane addition was found not to significantly affect the AFHP reactor chemistry. As a result of this program, Rockwell has expanded its data base and significantly improved its correlation model describing the processes occurring during flash hydropyrolysis. The correlation provides an excellent tool for subsequent process evaluations to determine the economic potential of the Rockwell coal hydrogasification process. 23 refs., 51 figs

  12. Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template.

    PubMed

    Miura, Atsushi; Tsukamoto, Rikako; Yoshii, Shigeo; Yamashita, Ichiro; Uraoka, Yukiharu; Fuyuki, Takashi

    2008-06-25

    We demonstrated non-volatile flash memory fabrication by utilizing uniformly sized cobalt oxide (Co(3)O(4)) bionanodot (Co-BND) architecture assembled by a cage-shaped supramolecular protein template. A fabricated high-density Co-BND array was buried in a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure to use as the charge storage node of a floating nanodot gate memory. We observed a clockwise hysteresis in the drain current-gate voltage characteristics of fabricated BND-embedded MOSFETs. Observed hysteresis obviously indicates a memory operation of Co-BND-embedded MOSFETs due to the charge confinement in the embedded BND and successful functioning of embedded BNDs as the charge storage nodes of the non-volatile flash memory. Fabricated Co-BND-embedded MOSFETs showed good memory properties such as wide memory windows, long charge retention and high tolerance to repeated write/erase operations. A new pathway for device fabrication by utilizing the versatile functionality of biomolecules is presented.

  13. Simultaneous Roll Transfer and Interconnection of Flexible Silicon NAND Flash Memory.

    PubMed

    Kim, Do Hyun; Yoo, Hyeon Gyun; Hong, Sung Min; Jang, Bongkyun; Park, Dae Yong; Joe, Daniel J; Kim, Jae-Hyun; Lee, Keon Jae

    2016-10-01

    Ultrathin silicon-based flexible 16 × 16 NAND flash memory (f-NAND) is demonstrated utilizing roll-to-plate packaging. The roll-based thermo-compression bonding of the anisotropic conductive film (ACF) transfers and simultaneously interconnects the f-NAND on a flexible printed circuit board. Reliable circuitry operation of the 16 × 16 f-NAND is confirmed with excellent flexibility and stable ACF interconnections.

  14. Total ionizing dose effects in high voltage devices for flash memory

    NASA Astrophysics Data System (ADS)

    Liu, Zhangli; Hu, Zhiyuan; Zhang, Zhengxuan; Shao, Hua; Chen, Ming; Bi, Dawei; Ning, Bingxu; Wang, Ru; Zou, Shichang

    2010-12-01

    The effect of size and substrate bias conditions after irradiation on the total ionizing dose response of high voltage devices for flash memory has been investigated. Different sensitivity of transistors with different gate width was observed, which is well known as the radiation induced narrow channel effect. A charge sharing model was used to explain this effect. The negative substrate bias voltage after irradiation showed considerable impact on the parasitic transistor's response by suppressing leakage current.

  15. Enhancement of the electrical characteristics for vertical NAND flash memory devices using a modified array structure

    NASA Astrophysics Data System (ADS)

    An, Sung Woo; Kim, Tae Whan

    2017-04-01

    The electrical characteristics of vertical NAND flash memory devices with a modified structure were investigated by using a technology computer-aided design simulation tool in order to reduce the cell-to-cell interference. The threshold voltage shift of memory devices with a modified cell with a protruding distance of 3 nm was reduced by 88% compared to that of conventional cell. When the programming operation of the target cell with a modified array structure is performed, the cell-to-cell interference decreases due to the programmed charges of adjacent cells.

  16. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    PubMed

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  17. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  18. Comparison of electron and hole charge-discharge dynamics in germanium nanocrystal flash memories

    NASA Astrophysics Data System (ADS)

    Akca, Imran B.; Dâna, Aykutlu; Aydinli, Atilla; Turan, Rasit

    2008-02-01

    Electron and hole charge and discharge dynamics are studied on plasma enhanced chemical vapor deposition grown metal-oxide-silicon germanium nanocrystal flash memory devices. Electron and hole charge and discharge currents are observed to differ significantly and depend on annealing conditions chosen for the formation of nanocrystals. At low annealing temperatures, holes are seen to charge slower but to escape faster than electrons. They discharge slower than electrons when annealing temperatures are raised. The results suggest that discharge currents are dominated by the interface layer acting as a quantum well for holes and by direct tunneling for elec-trons.

  19. Quantum memories: emerging applications and recent advances.

    PubMed

    Heshami, Khabat; England, Duncan G; Humphreys, Peter C; Bustard, Philip J; Acosta, Victor M; Nunn, Joshua; Sussman, Benjamin J

    2016-11-12

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  20. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  1. Quantum memories: emerging applications and recent advances

    NASA Astrophysics Data System (ADS)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-11-01

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  2. Advanced 3D polarimetric flash ladar imaging through foliage

    NASA Astrophysics Data System (ADS)

    Murray, James T.; Moran, Steven E.; Roddier, Nicolas; Vercillo, Richard; Bridges, Robert; Austin, William

    2003-08-01

    High-resolution three-dimensional flash ladar system technologies are under development that enables remote identification of vehicles and armament hidden by heavy tree canopies. We have developed a sensor architecture and design that employs a 3D flash ladar receiver to address this mission. The receiver captures 128×128×>30 three-dimensional images for each laser pulse fired. The voxel size of the image is 3"×3"×4" at the target location. A novel signal-processing algorithm has been developed that achieves sub-voxel (sub-inch) range precision estimates of target locations within each pixel. Polarization discrimination is implemented to augment the target-to-foliage contrast. When employed, this method improves the range resolution of the system beyond the classical limit (based on pulsewidth and detection bandwidth). Experiments were performed with a 6 ns long transmitter pulsewidth that demonstrate 1-inch range resolution of a tank-like target that is occluded by foliage and a range precision of 0.3" for unoccluded targets.

  3. Effects of abnormal cell-to-cell interference on p-type floating gate and control gate NAND flash memory

    NASA Astrophysics Data System (ADS)

    Kim, Yong Jun; Kang, Jun Geun; Lee, Byungin; Cho, Gyu-Seog; Park, Sung-Kye; Choi, Woo Young

    2014-01-01

    Abnormal cell-to-cell interference occurring in NAND flash memory has been investigated. In the case of extremely downscaled NAND flash memory, cell-to-cell interference increases abnormally. The abnormal cell-to-cell interference has been observed in a p-type floating gate (FG)/control gate (CG) cells for the first time. It has been found that the depletion region variation leads to the abnormal cell-to-cell interference. The depletion region variation of FG and CG is determined by state of neighbor cells. The depletion region variation affects CG-to-FG coupling capacitance and threshold voltage variation (ΔVT). Finally, it is observed that there is a symmetrical relationship between n- and p-type FG/CG NAND flash memory in terms of cell-to-cell interference.

  4. Asymmetric programming: a highly reliable metadata allocation strategy for MLC NAND flash memory-based sensor systems.

    PubMed

    Huang, Min; Liu, Zhaoqing; Qiao, Liyan

    2014-10-10

    While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.

  5. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    PubMed Central

    Huang, Min; Liu, Zhaoqing; Qiao, Liyan

    2014-01-01

    While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473

  6. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    PubMed Central

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks. PMID:22315541

  7. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    PubMed

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  8. The influence of Ti doping and annealing on Ce2Ti2O7 flash memory devices

    NASA Astrophysics Data System (ADS)

    Kao, Chyuan Haur; Chen, Su Zhien; Luo, Yang; Chiu, Wang Ting; Chiu, Shih Wei; Chen, I. Chien; Lin, Chan-Yu; Chen, Hsiang

    2017-02-01

    In this research, a CeO2 film with Ti doping was used as a trapping layer in metal oxide high-K-oxide-Si (MOHOS)-type memory devices. Since incorporation of Ti atoms into the film could fix dangling bonds and defects, the Ce2Ti2O7 trapping layer with annealing treatment could have a larger memory window and a faster programming/erasing speed. To confirm the origin, multiple material analyses indicate that annealing at an appropriate temperature and Ti doping could enhance crystallization. The Ce2Ti2O7-based memory device is promising for future industrial flash memory applications.

  9. 76 FR 13207 - In the Matter of Certain Flash Memory and Products Containing Same Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Flash Memory and Products Containing Same Notice of Request for Statements on the Public Interest Section 337 of the Tariff Act of 1930 provides that if the Commission...

  10. Gate Annealing of Cycling Endurance and Interface States for Highly Reliable Flash Memory

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Kyeong; Hong, Se-Hee; Shim, Sa-Yong; Park, Min-Hee; Hwang, Kyung-Pil; Lee, Min-Kyu; Lee, Ju-Yeab; Woo, Won-Sic; Noh, Keum-Hwan; Lee, Hee-Kee; Om, Jae-Chul; Lee, Seok-Kiu; Bae, Gi-Hyun

    2008-01-01

    We report on superior cycling endurance due to a low interface trap density, which accounts for the high gate annealing temperature in flash memory. The interface trap density was characterized using a charge pumping method (CPM). The cycling VTH shift in an erase state value of 1.35 V at 850 °C temperature of an annealing, as measured on a 90-nm-technology 1-Mbit cell array, selected randomly from 1 Gbit cells, drops to less than 0.9 V after annealing at 950 °C. These superior electrical properties resulted from a complete relaxation of silicon interface trap charges due to a plasma-induced attack during gate annealing at temperatures over 950 °C for a long time. Therefore, the key factor for highly reliable endurance with cycling is believed to be the interface trap control of the thermal annealing carried out after gate etching.

  11. [Hypofractionation in locally advanced breast cancer: "flash" scheme].

    PubMed

    Padilha, Marisa; Gonçalves, Sara; Fardilha, Carlos; Melo, Gilberto; Miranda, Cristina; Alves, Paula

    2013-01-01

    de 68,7% (57 doentes), em quatro anos. Dez doentes (12%) morreram por progressão da doença ou persistência tumoral Em 42 doentes (50,6%) não se verificaram evidência ou progressão de doença e três doentes (3,6%) apresentaram melhoria clínica. Conclusões:O “Flash Mamário” é uma modalidade de tratamento segura, relativamente aos efeitos secundários, e opção terapêutica válida para doentes idosos ou com baixo Performance Status, com o diagnóstico de carcinoma localmente avançado ou estádio IIb ou IV, a título neoadjuvante ou paliativo. Há menor risco de recidiva/progressão, nos doentes com melhor estado geral, sendo a taxa de sobrevivência global maior.

  12. Effect with high density nano dot type storage layer structure on 20 nm planar NAND flash memory characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeshi; Muraguchi, Masakazu; Seo, Moon-Sik; Park, Sung-kye; Endoh, Tetsuo

    2014-01-01

    The merits, concerns and design principle for the future nano dot (ND) type NAND flash memory cell are clarified, by considering the effect of storage layer structure on NAND flash memory characteristics. The characteristics of the ND cell for a NAND flash memory in comparison with the floating gate type (FG) is comprehensively studied through the read, erase, program operation, and the cell to cell interference with device simulation. Although the degradation of the read throughput (0.7% reduction of the cell current) and slower program time (26% smaller programmed threshold voltage shift) with high density (10 × 1012 cm-2) ND NAND are still concerned, the suppress of the cell to cell interference with high density (10 × 1012 cm-2) plays the most important part for scaling and multi-level cell (MLC) operation in comparison with the FG NAND. From these results, the design knowledge is shown to require the control of the number of nano dots rather than the higher nano dot density, from the viewpoint of increasing its memory capacity by MLC operation and suppressing threshold voltage variability caused by the number of dots in the storage layer. Moreover, in order to increase its memory capacity, it is shown the tunnel oxide thickness with ND should be designed thicker (>3 nm) than conventional designed ND cell for programming/erasing with direct tunneling mechanism.

  13. Highly compact and accurate circuit-level macro modeling of gate-all-around charge-trap flash memory

    NASA Astrophysics Data System (ADS)

    Kim, Seunghyun; Lee, Sang-Ho; Kim, Young-Goan; Cho, Seongjae; Park, Byung-Gook

    2017-01-01

    In this paper, a highly reliable circuit model of gate-all-around (GAA) charge-trap flash (CTF) memory cell is proposed, considering the transient behaviors for describing the program operations with improved accuracy. Although several compact models have been reported in the previous literature, time-dependent behaviors have not been precisely reflected and the failures tend to get worse as the operation time elapses. Furthermore, the developed SPICE models in this work have been verified by the measurement results of the fabricated flash memory cells having silicon-oxide-nitride-oxide-silicon (SONOS). This more realistic model would be beneficial in designing the system architectures and setting up the operation schemes for the leading three-dimensional (3D) stack CTF memory.

  14. Pilot plant test of the advanced flash stripper for CO2 capture.

    PubMed

    Lin, Yu-Jeng; Chen, Eric; Rochelle, Gary T

    2016-10-20

    Alternative stripping processes have been proposed to reduce energy use for CO2 capture, but only a few have been applied to pilot-scale experiments. This paper presents the first pilot plant test results of one of the most promising stripper configurations, the advanced flash stripper with cold and warm rich solvent bypass. The campaign using aqueous piperazine was carried out at UT Austin in 2015. The advanced flash stripper improves the heat duty by over 25% compared to previous campaigns using the two-stage flash, achieving 2.1 GJ per tonne CO2 of heat duty and 32 kJ mol(-1) CO2 of total equivalent work. The bypass control strategy proposed minimized the heat duty. The test successfully demonstrated the remarkable energy performance and the operability of this advanced system. An Aspen Plus® model was validated using the pilot plant data and used to explore optimum operating and design conditions. The irreversibility analysis showed that the pilot plant performance has attained 50% thermodynamic efficiency and further energy improvement should focus on the absorber and the cross exchanger by increasing absorption rate and solvent capacity.

  15. Investigation of impact of post-metallization annealing on reliability of 65 nm NOR floating-gate flash memories

    NASA Astrophysics Data System (ADS)

    Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Yan, Feng

    2016-12-01

    This paper investigates the impact of post-metallization annealing (PMA) in pure nitrogen ambient on the reliability of 65 nm NOR-type floating-gate flash memory devices. The experimental results show that, with PMA process, the cycling performance of flash cells, especially for the erasing speed is obviously degraded compared to that without PMA. It is found that the bulk oxide traps and tunnel oxide/Si interface traps are significantly increased with PMA treatment. The water/moisture residues left in the interlayer dielectric layers diffuse to tunnel oxide during PMA process is considered to be responsible for these traps generation, which further enhances the degradation of erase performance. Skipping PMA treatment is proposed to suppress the water diffusion effect on erase performance degradation of flash cells.

  16. Hierarchically built gold nanoparticle supercluster arrays as charge storage centers for enhancing the performance of flash memory devices.

    PubMed

    Suresh, Vignesh; Kusuma, Damar Yoga; Lee, Pooi See; Yap, Fung Ling; Srinivasan, M P; Krishnamoorthy, Sivashankar

    2015-01-14

    Flash memory devices with high-performance levels exhibiting high charge storage capacity, good charge retention, and high write/erase speeds with lower operating voltages are widely in demand. In this direction, we demonstrate hierarchical self-assembly of gold nanoparticles based on block copolymer templates as a promising route to engineer nanoparticle assemblies with high nanoparticle densities for application in nanocrystal flash memories. The hierarchical self-assembly process allows systematic multiplication of nanoparticle densities with minimal increase in footprint, thereby increasing the charge storage density without an increase in operating voltage. The protocol involves creation of a parent template composed of gold nanoclusters that guides the self-assembly of diblock copolymer reverse micelles which in turn directs electrostatic assembly of gold nanoparticles resulting in a three-level hierarchical system. Capacitance-voltage (C-V) measurements of the hierarchical nanopatterns with a metal-insulator-semiconductor capacitor configuration reveal promising enhancement in memory window as compared to nonhierarchical nanoparticle controls. Capacitance-time (C-t) measurements show that over half the stored charges were retained when extrapolated to 10 years. The fabrication route can be readily extended to programmed density multiplication of features made of other potential charge storage materials such as platinum, palladium, or hybrid metal/metal oxides for next generation, solution-processable flash memory devices.

  17. Channel shape and interpoly dielectric material effects on electrical characteristics of floating-gate-type three-dimensional fin channel flash memories

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Nabatame, Toshihide; Nguyen, Num; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Chikyow, Toyohiro; Masahara, Meishoku

    2015-04-01

    Floating-gate (FG)-type three-dimensional (3D) fin channel flash memories with triangular fin (TF) and rectangular fin (RF) channels and different interpoly dielectric (IPD) materials have been successfully fabricated using (100)- and (110)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. The electrical characteristics of the fabricated FG-type 3D fin channel flash memories including threshold voltage (Vt) variability, program/erase (P/E) speed, memory window, endurance, and data retention at room temperature and 85 °C have been comparatively investigated. A higher P/E speed, a larger memory window, and a lower-voltage operation are experimentally obtained in the TF channel flash memories with an Al2O3-nitride-oxide (ANO) IPD layer (TF-ANO) than in the RF channel ones with the same ANO IPD layer (RF-ANO) and the TF channel ones with an oxide-nitride-oxide (ONO) IPD layer (TF-ONO). The larger memory window and lower-voltage operation of TF-ANO flash memories are due to the high-k effect of the Al2O3 layer and the electric field enhancement at the sharp foot edges of the TF channels. It was also found that data retention for all fabricated FG-type 3D fin channel flash memories shows a weak dependence on temperature.

  18. Active Flash: Performance-Energy Tradeoffs for Out-of-Core Processing on Non-Volatile Memory Devices

    SciTech Connect

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S; Desnoyers, Peter; Shipman, Galen M

    2012-01-01

    In this abstract, we study the performance and energy tradeoffs involved in migrating data analysis into the flash device, a process we refer to as Active Flash. The Active Flash paradigm is similar to 'active disks', which has received considerable attention. Active Flash allows us to move processing closer to data, thereby minimizing data movement costs and reducing power consumption. It enables true out-of-core computation. The conventional definition of out-of-core solvers refers to an approach to process data that is too large to fit in the main memory and, consequently, requires access to disk. However, in Active Flash, processing outside the host CPU literally frees the core and achieves real 'out-of-core' analysis. Moving analysis to data has long been desirable, not just at this level, but at all levels of the system hierarchy. However, this requires a detailed study on the tradeoffs involved in achieving analysis turnaround under an acceptable energy envelope. To this end, we first need to evaluate if there is enough computing power on the flash device to warrant such an exploration. Flash processors require decent computing power to run the internal logic pertaining to the Flash Translation Layer (FTL), which is responsible for operations such as address translation, garbage collection (GC) and wear-leveling. Modern SSDs are composed of multiple packages and several flash chips within a package. The packages are connected using multiple I/O channels to offer high I/O bandwidth. SSD computing power is also expected to be high enough to exploit such inherent internal parallelism within the drive to increase the bandwidth and to handle fast I/O requests. More recently, SSD devices are being equipped with powerful processing units and are even embedded with multicore CPUs (e.g. ARM Cortex-A9 embedded processor is advertised to reach 2GHz frequency and deliver 5000 DMIPS; OCZ RevoDrive X2 SSD has 4 SandForce controllers, each with 780MHz max frequency

  19. Multi-layer high- κ interpoly dielectric for floating gate flash memory devices

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; He, Wei; Chan, Daniel S. H.; Cho, Byung Jin

    2008-04-01

    We present a systematic simulation and experimental study of tunneling leakage current of the interpoly dielectric (IPD) layer in a floating gate (FG) type flash memory. IPD layers with different structural and material combinations such as HfLaO and 4% Tb-doped HfO 2 were studied. It is shown that compared with a conventional Al 2O 3-HfO 2-Al 2O 3 high-low-high barrier structure, the HfO 2-Al 2O 3-HfO 2 multilayer IPD stack with a low-high-low barrier structure has a lower leakage current due to the longer effective electron tunneling distance. Results also show that multilayer IPD structure has advantage of better thermal stability compared to the single layer IPD. Further work with simulations and experiments results suggest that the presence of a thin interfacial layer between polysilicon FG and IPD can increase the magnitude of leakage current by two or three orders. Nitridation of polysilicon floating gate reduced the leakage current by around two orders of magnitude at a constant equivalent oxide thickness. This is due to the elimination of the interfacial layer between polysilicon and high- κ IPD.

  20. A high efficiency all-PMOS charge pump for 3D NAND flash memory

    NASA Astrophysics Data System (ADS)

    Liyin, Fu; Yu, Wang; Qi, Wang; Zongliang, Huo

    2016-07-01

    For 3D vertical NAND flash memory, the charge pump output load is much larger than that of the planar NAND, resulting in the performance degradation of the conventional Dickson charge pump. Therefore, a novel all PMOS charge pump with high voltage boosting efficiency, large driving capability and high power efficiency for 3D V-NAND has been proposed. In this circuit, the Pelliconi structure is used to enhance the driving capability, two auxiliary substrate bias PMOS transistors are added to mitigate the body effect, and the degradation of the output voltage and boost efficiency caused by the threshold voltage drop is eliminated by dynamic gate control structure. Simulated results show that the proposed charge pump circuit can achieve the maximum boost efficiency of 86% and power efficiency of 50%. The output voltage of the proposed 9 stages charge pump can exceed 2 V under 2 MHz clock frequency in 2X nm 3D V-NAND technology. Our results provide guidance for the peripheral circuit design of high density 3D V-NAND integration.

  1. Impact of the array background pattern on cycling-induced threshold-voltage instabilities in nanoscale NAND Flash memories

    NASA Astrophysics Data System (ADS)

    Paolucci, G. M.; Bertuccio, M.; Monzio Compagnoni, C.; Beltrami, S.; Spinelli, A. S.; Lacaita, A. L.; Visconti, A.

    2015-11-01

    This paper highlights that cycling-induced threshold-voltage instabilities in nanoscale NAND Flash technologies display a non-negligible dependence on the background pattern of the memory array during idle/bake periods. Experimental results clearly reveal, in fact, that instabilities in a (victim) cell do not depend only on its memory state, but also on the memory state of its first neighboring (aggressor) cells. The magnitude of this new cell-to-cell interference effect, moreover, appears to depend on the memory state of the victim cell, decreasing with the increase of its threshold-voltage level. From all of the gathered experimental evidence a physical picture explaining the phenomenon is provided, which is, finally, confirmed with the help of numerical simulations.

  2. Investigation of Hafnium oxide/Copper resistive memory for advanced encryption applications

    NASA Astrophysics Data System (ADS)

    Briggs, Benjamin D.

    The Advanced Encryption Standard (AES) is a widely used encryption algorithm to protect data and communications in today's digital age. Modern AES CMOS implementations require large amounts of dedicated logic and must be tuned for either performance or power consumption. A high throughput, low power, and low die area AES implementation is required in the growing mobile sector. An emerging non-volatile memory device known as resistive memory (ReRAM) is a simple metal-insulator-metal capacitor device structure with the ability to switch between two stable resistance states. Currently, ReRAM is targeted as a non-volatile memory replacement technology to eventually replace flash. Its advantages over flash include ease of fabrication, speed, and lower power consumption. In addition to memory, ReRAM can also be used in advanced logic implementations given its purely resistive behavior. The combination of a new non-volatile memory element ReRAM along with high performance, low power CMOS opens new avenues for logic implementations. This dissertation will cover the design and process implementation of a ReRAM-CMOS hybrid circuit, built using IBM's 10LPe process, for the improvement of hardware AES implementations. Further the device characteristics of ReRAM, specifically the HfO2/Cu memory system, and mechanisms for operation are not fully correlated. Of particular interest to this work is the role of material properties such as the stoichiometry, crystallinity, and doping of the HfO2 layer and their effect on the switching characteristics of resistive memory. Material properties were varied by a combination of atomic layer deposition and reactive sputtering of the HfO2 layer. Several studies will be discussed on how the above mentioned material properties influence switching parameters, and change the underlying physics of device operation.

  3. A 2-bit/Cell Gate-All-Around Flash Memory of Self-Assembled Silicon Nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Hung-Bin; Chang, Chun-Yen; Hung, Min-Feng; Tang, Zih-Yun; Cheng, Ya-Chi; Wu, Yung-Chun

    2013-02-01

    This work presents gate-all-around (GAA) polycrystalline silicon (poly-Si) nanowires (NWs) channel poly-Si/SiO2/Si3N4/SiO2/poly-Si (SONOS) nonvolatile memory (NVM) with a self-assembled Si nanocrystal (Si-NC) embedded charge trapping (CT) layer. Fabrication of the Si-NCs is simple and compatible with the current flash process. The 2-bit operations based on channel hot electrons injection for programming and channel hot holes injection for erasing are clearly achieved by the localized discrete trap. In the programming and erasing characteristics studies, the GAA structure can effectively reduce operation voltage and shorten pulse time. One-bit programming or erasing does not affect the other bit. In the high-temperature retention characteristics studies, the cell embedded with Si-NCs shows excellent electrons confinement vertically and laterally. With respect to endurance characteristics, the memory window does not undergo closure after 104 program/erase (P/E) cycle stress. The 2-bit operation for GAA Si-NCs NVM provides scalability, reliability and flexibility in three-dimensional (3D) high-density flash memory applications.

  4. Performance and reliability of HfAlO x-based interpoly dielectrics for floating-gate Flash memory

    NASA Astrophysics Data System (ADS)

    Govoreanu, B.; Wellekens, D.; Haspeslagh, L.; Brunco, D. P.; De Vos, J.; Aguado, D. Ruiz; Blomme, P.; van der Zanden, K.; Van Houdt, J.

    2008-04-01

    This paper discusses the performance and reliability of aggressively scaled HfAlO x-based interpoly dielectric stacks in combination with high-workfunction metal gates for sub-45 nm non-volatile memory technologies. It is shown that a less than 5 nm EOT IPD stack can provide a large program/erase (P/E) window, while operating at moderate voltages and has very good retention, with an extrapolated 10-year retention window of about 3 V at 150 °C. The impact of the process sequence and metal gate material is discussed. The viability of the material is considered in view of the demands of various Flash memory technologies and direction for further improvements are discussed.

  5. Numerical model of a single nanocrystal devoted to the study of disordered nanocrystal floating gates of new flash memories

    NASA Astrophysics Data System (ADS)

    Leroy, Yann; Armeanu, Dumitru; Cordan, Anne-Sophie

    2011-05-01

    The improvement of our model concerning a single nanocrystal that belongs to a nanocrystal floating gate of a flash memory is presented. In order to extend the gate voltage range applicability of the model, the 3D continuum of states of either metallic or semiconducting electrodes is discretized into 2D subbands. Such an approach gives precise information about the mechanisms behind the charging or release processes of the nanocrystal. Then, the self-energy and screening effects of an electron within the nanocrystal are evaluated and introduced in the model. This enables a better determination of the operating point of the nanocrystal memory. The impact of those improvements on the charging or release time of the nanocrystal is discussed.

  6. High-speed and parallel approach for decoding of binary BCH codes with application to Flash memory devices

    NASA Astrophysics Data System (ADS)

    Prashantha Kumar, H.; Sripati, U.; Shetty, K. Rajesh

    2012-05-01

    In this article, we propose a high-speed decoding algorithm for binary BCH codes that can correct up to 7 bits in error. Evaluation of the error-locator polynomial is the most complicated and time-consuming step in the decoding of a BCH code. We have derived equations for specifying the coefficients of the error-locator polynomial, which can form the basis for the development of a parallel architecture for the decoder. This approach has the advantage that all the coefficients of the error locator polynomial are computed in parallel (in one step). The roots of error-locator polynomial can be obtained by Chien's search and inverting these roots gives the error locations. This algorithm can be employed in any application where high-speed decoding of data encoded by a binary BCH code is required. One important application is in Flash memories where data integrity is preserved using a long, high-rate binary BCH code. We have synthesized generator polynomials for binary BCH codes (error-correcting capability, s ? ) that can be employed in Flash memory devices to improve the integrity of information storage. The proposed decoding algorithm can be used as an efficient, high-speed decoder in this important application.

  7. Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories

    NASA Astrophysics Data System (ADS)

    Han, Su-Ting; Zhou, Ye; Chen, Bo; Zhou, Li; Yan, Yan; Zhang, Hua; Roy, V. A. L.

    2015-10-01

    Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal

  8. A 72% error reduction scheme based on temperature acceleration for long-term data storage applications: Cold flash and millennium memories

    NASA Astrophysics Data System (ADS)

    Yamazaki, Senju; Iwasaki, Tomoko Ogura; Hachiya, Shogo; Takahashi, Tomonori; Takeuchi, Ken

    2016-07-01

    A solid-state drive (SSD) with 1Xnm triple-level cell (TLC) NAND flash is proposed for low cost data storage applications with long-term data-retention requirements. Specifically, cold data storage requires 20 years data-retention with 100 write/erase (W/E) cycles, whereas digital archive storage requires 1000 years retention time with 1 W/E cycle. To achieve these requirements, a flexible-nLC scheme is proposed to improve the reliability of 1Xnm TLC NAND flash (Yamazaki et al., 2015). The proposed scheme combines two schemes, n-out-of-8 level cell (nLC) (Tanakamaru et al., 2014) and asymmetric coding (AC) (Tanakamaru et al., 2012) with the addition of a vertical flag. By measuring 1Xnm TLC NAND flash memory, the proposed scheme reduces errors by 72% and 69% for digital archive and cold flash respectively, compared to the conventional nLC scheme.

  9. Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory applications

    NASA Astrophysics Data System (ADS)

    You, Hee-Wook; Cho, Won-Ju

    2010-03-01

    MHOS (metal-HfO2-SiO2-Si) structure capacitors were fabricated to investigate the charge trapping properties of HfO2 layer with various thicknesses for the applications of charge trap flash (CTF) memory devices. Also, the centroid of charge trap in HfO2 layer was extracted by constant current stress method and compared with that of conventional Si3N4 layer. The gate leakage current of MHOS capacitor due to tunneling was significantly reduced by stacking the HfO2 trap layer on thin SiO2 tunnel layer. The MHOS capacitors showed a larger memory window than the MNOS (metal-Si3N4-SiO2-Si) capacitors at the same trap layer thickness, because the HfO2 layer has better charge trapping efficiency than the Si3N4 layer. It is found that ultrathin HfO2 trap layer with a thickness of 2 nm stored almost the same charges with Si3N4 layer with a thickness of 7 nm. Consequently, the application of ultrathin HfO2 to charge storage layer can considerably improve the performance and enhance the high density of CTF memory.

  10. Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer

    NASA Astrophysics Data System (ADS)

    Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien

    2017-03-01

    Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.

  11. A Hierarchical Statistic Methodology for Advanced Memory System Evaluation

    SciTech Connect

    Sun, X.-J.; He, D.; Cameron, K.W.; Luo, Y.

    1999-04-12

    Advances in technology have resulted in a widening of the gap between computing speed and memory access time. Data access time has become increasingly important for computer system design. Various hierarchical memory architectures have been developed. The performance of these advanced memory systems, however, varies with applications and problem sizes. How to reach an optimal cost/performance design eludes researchers still. In this study, the authors introduce an evaluation methodology for advanced memory systems. This methodology is based on statistical factorial analysis and performance scalability analysis. It is two fold: it first determines the impact of memory systems and application programs toward overall performance; it also identifies the bottleneck in a memory hierarchy and provides cost/performance comparisons via scalability analysis. Different memory systems can be compared in terms of mean performance or scalability over a range of codes and problem sizes. Experimental testing has been performed extensively on the Department of Energy's Accelerated Strategic Computing Initiative (ASCI) machines and benchmarks available at the Los Alamos National Laboratory to validate this newly proposed methodology. Experimental and analytical results show this methodology is simple and effective. It is a practical tool for memory system evaluation and design. Its extension to general architectural evaluation and parallel computer systems are possible and should be further explored.

  12. Fabrication and Characterization of NOR-Type Tri-Gate Flash Memory with Improved Inter-Poly Dielectric Layer by Rapid Thermal Oxidation

    NASA Astrophysics Data System (ADS)

    Kamei, Takahiro; Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku

    2012-06-01

    Floating-gate (FG)-type tri-gate flash memories with an improved inter-poly dielectric (IPD) layer have been successfully fabricated by introducing a newly developed rapid thermal oxidation (RTO) process, and their NOR-mode operation including threshold voltage (Vt) variations before and after one program/erase (P/E) cycle have been systematically investigated. It was experimentally confirmed that the gate breakdown voltage (BVg) is greatly increased from 12 to 19 V by introducing the RTO process thanks to the high quality and thin thermal silicon dioxide (SiO2) formation on the FG surface and etched edge regions, which effectively blocks the leakage pass of the IPD layer. A source-drain (SD) breakdown voltage (BVDS) as high as 4.5 V was obtained even when the gate length (Lg) was as small as 117 nm. It was also experimentally confirmed that the memory window increases with increasing gate voltage (Vg) in NOR-mode programming thanks to the increased efficiency of channel hot electron (CHE) injection. The developed tri-gate flash memory with improved IPD layer is useful for the further scaling of NOR-type flash memory.

  13. Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer

    PubMed Central

    Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien

    2017-01-01

    Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV. PMID:28272529

  14. Field-dependent charge trapping analysis of ONO inter-poly dielectrics for NAND flash memory applications

    NASA Astrophysics Data System (ADS)

    Moon, Pyung; Lim, Jun Yeong; Youn, Tae-Un; Park, Sung-Kye; Yun, Ilgu

    2014-04-01

    The effect of the operation voltage on the leakage current of SiO2/Si3N4/SiO2 (ONO) stack is investigated which is used for the inter-poly dielectric (IPD) of the floating gate (FG) type NAND flash memory. In this work, the field dependent charge trapping mechanism of ONO stack and the effect of the trapped charges on the electrical characteristics are examined. The leakage current density-electric field (J-E) and the capacitance-voltage (C-V) characteristics are measured for various test samples of ONO stack by varying the voltage sweep ranges. The charge trapping/detrapping mechanisms of ONO stack are observed as the range of the applied sweep voltage is increased and then decreased to a given voltage, which is corresponding to the given electric field. The numbers of trapped and detrapped charges are extracted from the difference of J-E curves using the same recursive voltage sweeps and the effects on the electrical characteristics of ONO stack are demonstrated. Moreover, the dominant trapping layer is also investigated by varying the thickness of ONO stack.

  15. Number of traps and trap depth position on statistical distribution of random telegraph noise in scaled NAND flash memory

    NASA Astrophysics Data System (ADS)

    Tomita, Toshihiro; Miyaji, Kousuke

    2016-04-01

    The dependence of random telegraph noise (RTN) amplitude distribution on the number of traps and trap depth position is investigated using three-dimensional Monte Carlo device simulation including random dopant fluctuation (RDF) in a 30 nm NAND multi level flash memory. The ΔV th tail distribution becomes broad at fixed double traps, indicating that the number of traps greatly affects the worst RTN characteristics. It is also found that for both fixed single and fixed double traps, the ΔV th distribution in the lowest cell threshold voltage (V th) state shows the broadest distribution among all cell V th states. This is because the drain current flows at the channel surface in the lowest cell V th state, while at a high cell V th, it flows at the deeper position owing to the fringing coupling between the control gate (CG) and the channel. In this work, the ΔV th distribution with the number of traps following the Poisson distribution is also considered to cope with the variations in trap number. As a result, it is found that the number of traps is an important factor for understanding RTN characteristics. In addition, considering trap position in the tunnel oxide thickness direction is also an important factor.

  16. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Perks, Matthew T.; Russell, Andrew J.; Large, Andrew R. G.

    2016-10-01

    Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomena may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilizing the Kande-Lucas-Tomasi (KLT) algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 to 0.13 m. The application of this approach to assess the hydraulic conditions present in the Alyth Burn, Scotland, during a 1 : 200 year flash flood resulted in the generation of an average 4.2 at a rate of 508 measurements s-1. Analysis of these vectors provides a rare insight into the complexity of channel-overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low, with a spatial average across the area of ±0.15 m s-1. Little difference is observed in the uncertainty attached to out-of-bank velocities (±0.15 m s-1), and within-channel velocities (±0.16 m s-1), illustrating the consistency of the approach.

  17. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    PubMed Central

    Jewett, Don L; Hart, Toryalai; Larson-Prior, Linda J; Baird, Bill; Olson, Marram; Trumpis, Michael; Makayed, Katherine; Bavafa, Payam

    2006-01-01

    Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves). Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone)]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1) Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2) These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3) The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide new methods for

  18. Improving Read Disturb Characteristics by Using Double Common Source Line and Dummy Switch Architecture in Multi Level Cell NAND Flash Memory with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kang, Myounggon; Park, Ki-Tae; Song, Youngsun; Lim, Youngho; Suh, Kang-Deog; Shin, Hyungcheol

    2011-04-01

    Two new NAND structures using double common source line (CSL) and dummy switch and their read operation schemes as a solution for NAND flash memories have been proposed. Compared with conventional scheme, the proposed read schemes improves read disturb characteristics beyond sub-30 nm technology node. By using proposed read scheme, the number of fail bits of proposed NAND was decreased than those of conventional NAND at read cycles. Also, it was proven that they contribute to improve the performance and suppress the power consumption. The proposed NAND was verified by both simulation and experimental measurements in a fabricated 40 nm multi level cell (MLC) NAND device.

  19. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    SciTech Connect

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.

  20. Overview of emerging nonvolatile memory technologies

    PubMed Central

    2014-01-01

    class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820

  1. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  2. Hot Flashes

    MedlinePlus

    Diseases and Conditions Hot flashes By Mayo Clinic Staff Hot flashes are sudden feelings of warmth, which are usually most intense over the ... skin may redden, as if you're blushing. Hot flashes can also cause profuse sweating and may ...

  3. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    SciTech Connect

    Islam, Sk Masiul Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P.; Chakraborty, S.

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  4. Flash X-ray testing of ER3400 EAROMS

    NASA Astrophysics Data System (ADS)

    Abare, W. E.; Riley, R. M.; Thygeson, T. L.

    1983-12-01

    Flash X-ray testing of ER3400 MNOS memories demonstrates their memory volatility. Flash X-ray test data is presented for four bias conditions and two write pulse widths. A simple electrical screening technique is described which increases the memory vulnerability threshold. Permanent shifts in access time and memory reference voltage from accumulated doses are discussed.

  5. Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory

    NASA Astrophysics Data System (ADS)

    Kang, Minji; Kim, Yeong-A.; Yun, Jin-Mun; Khim, Dongyoon; Kim, Jihong; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2014-10-01

    In this study, we investigated chemically exfoliated two-dimensional (2-D) nanoflakes of molybdenum disulfide (MoS2) as charge-storing elements for use in organic multilevel memory devices (of the printed/flexible non-volatile type) based on organic field-effect transistors (OFETs) containing poly(3-hexylthiophene) (P3HT). The metallic MoS2 nanoflakes were exfoliated in 2-methoxyethanol by the lithium intercalation method and were deposited as nano-floating gates between polystyrene and poly(methyl methacrylate), used as bilayered gate dielectrics, by a simple spin-coating and low temperature (<150 °C) process. In the developed OFET memory devices, electrons could be trapped/detrapped in the MoS2 nano-floating gates by modulating the charge carrier density in the active channel through gate bias control. Optimal memory characteristics were achieved by controlling the thickness and concentration of few-layered MoS2 nanoflakes, and the best device showed reliable non-volatile memory properties: a sufficient memory window of ~23 V, programming-reading-erasing cycling endurance of >102 times, and most importantly, quasi-permanent charge-storing characteristics, i.e., a very long retention time (longer than the technological requirement of commercial memory devices (>10 years)). In addition, we successfully developed multilevel memory cells (2 bits per cell) by controlling the gate bias magnitude.In this study, we investigated chemically exfoliated two-dimensional (2-D) nanoflakes of molybdenum disulfide (MoS2) as charge-storing elements for use in organic multilevel memory devices (of the printed/flexible non-volatile type) based on organic field-effect transistors (OFETs) containing poly(3-hexylthiophene) (P3HT). The metallic MoS2 nanoflakes were exfoliated in 2-methoxyethanol by the lithium intercalation method and were deposited as nano-floating gates between polystyrene and poly(methyl methacrylate), used as bilayered gate dielectrics, by a simple spin-coating and

  6. Analysis of Si-SiO2 Interface Using Charge Pumping Method with Various Capping Materials between Gate Stacks and Inter Layer Dielectric in NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Kyeong; Kim, Se-Jun; Park, Kyoung-Hwan; Choi, Eun-Seok; Lee, Min-Kyu; Kim, Hyeon-Soo; Noh, Keum-Hwan; Om, Jae-Chul; Lee, Hee-Kee; Bae, Gi-Hyun

    2006-09-01

    We report the dependence of Si-SiO2 interface trap density after Fowler-Nordheim (F/N) stress on various capping materials between gate stacks and an inter layer dielectric (ILD) in a NAND Flash memory cell. The interface trap density was characterized by charge pumping method (CPM). When the capping layer is an oxide, the Nit after F/N stress is approximately 2× 1011 cm-2, which is about 50% smaller than that with a nitride layer. We found that the oxide layer causes compressive stress whereas the nitride layer causes a relatively high tensile stress in the underlying substrate by measuring the warp change of the substrate. To correlate the interface state density and data retention characteristics, we measured Vt shift after high-temperature baking. When an oxide capping layer is used, the retention characteristics of memory devices are greatly improved compared to the nitride capping case. These results show a good correlation between the interface characteristics and mechanical stress behaviors.

  7. An advanced CCD emulator with 32MB image memory

    NASA Astrophysics Data System (ADS)

    O'Connor, P.; Fried, J.; Kotov, I.

    2012-07-01

    As part of the LSST sensor development program we have developed an advanced CCD emulator for testing new multichannel readout electronics. The emulator, based on an Altera Stratix II FPGA for timing and control, produces 4 channels of simulated video waveforms in response to an appropriate sequence of horizontal and vertical clocks. It features 40MHz, 16-bit DACs for reset and video generation, 32MB of image memory for storage of arbitrary grayscale bitmaps, and provision to simulate reset and clock feedthrough ("glitches") on the video channels. Clock inputs are qualified for proper sequences and levels before video output is generated. Binning, region of interest, and reverse clock sequences are correctly recognized and appropriate video output will be produced. Clock transitions are timestamped and can be played back to a control PC. A simplified user interface is provided via a daughter card having an ARM M3 Cortex microprocessor and miniature color LCD display and joystick. The user can select video modes from stored bitmap images, or flat, gradient, bar, chirp, or checkerboard test patterns; set clock thresholds and video output levels; and set row/column formats for image outputs. Multiple emulators can be operated in parallel to simulate complex CCDs or CCD arrays.

  8. Dual phase TiO(x)N(y)/TiN charge trapping layer for low-voltage and high-speed flash memory application.

    PubMed

    Zhang, Gang; Yoo, Won Jong

    2009-12-01

    Flash memory using a dual phase TiO(x)N(y)/TiN charge trapping layer has been fabricated and its electrical properties were investigated. The TiO(x)N(y)/TiN layer was formed by partial oxidation of a pre-deposited TiN layer, and the formation of TiO(x)N(y)/SiO(x)N(y) was confirmed by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The enlarged conduction (deltaphi(c) = 3.6 eV) and valence (deltaphi(v) = 2.5 eV) band offsets of the TiO(x)N(y)/TiN to SiO2 enabled low-voltage (+/- 6 V) and fast programming/erasing (P: 2.7 x 10(4) V/s and E: -5.1 x 10(4) V/s) operations, while the transition layer suppressed the trapped charge leakage, giving rise to good 10-year data retention with less than 35% V(th) decay.

  9. Experimental Study of Floating-Gate-Type Metal-Oxide-Semiconductor Capacitors with Nanosize Triangular Cross-Sectional Tunnel Areas for Low Operating Voltage Flash Memory Application

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Guo, Ruofeng; Kamei, Takahiro; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku

    2012-06-01

    The floating-gate (FG)-type metal-oxide-semiconductor (MOS) capacitors with planar (planar-MOS) and three-dimensional (3D) nanosize triangular cross-sectional tunnel areas (3D-MOS) have successfully been fabricated by introducing rapid thermal oxidation (RTO) and postdeposition annealing (PDA), and their electrical characteristics between the control gate (CG) and FG have been systematically compared. It was experimentally found in both planar- and 3D-MOS capacitors that the uniform and higher breakdown voltages are obtained by introducing RTO owing to the high-quality thermal oxide formation on the surface and etched edge regions of the n+ polycrystalline silicon (poly-Si) FG, and the leakage current is highly suppressed after PDA owing to the improved quality of the tetraethylorthosilicate (TEOS) silicon dioxide (SiO2) between CG and FG. Moreover, a lower breakdown voltage between CG and FG was obtained in the fabricated 3D-MOS capacitors as compared with that of planar-MOS capacitors thanks to the enhanced local electric field at the tips of triangular tunnel areas. The developed nanosize triangular cross-sectional tunnel area is useful for the fabrication of low operating voltage flash memories.

  10. Advancing neuroscience through epigenetics: molecular mechanisms of learning and memory.

    PubMed

    Molfese, David L

    2011-01-01

    Humans share 96% of our 30,000 genes with Chimpanzees. The 1,200 genes that differ appear at first glance insufficient to describe what makes us human and them apes. However, we are now discovering that the mechanisms that regulate how genes are expressed tell a much richer story than our DNA alone. Sections of our DNA are constantly being turned on or off, marked for easy access, or secluded and hidden away, all in response to ongoing cellular activity. In the brain, neurons encode information-in effect memories-at the cellular level. Yet while memories may last a lifetime, neurons are dynamic structures. Every protein in the synapse undergoes some form of turnover, some with half-lives of only hours. How can a memory persist beyond the lifetimes of its constitutive molecular building blocks? Epigenetics-changes in gene expression that do not alter the underlying DNA sequence-may be the answer. In this article, epigenetic mechanisms including DNA methylation and acetylation or methylation of the histone proteins that package DNA are described in the context of animal learning. Through the interaction of these modifications a "histone code" is emerging wherein individual memories leave unique memory traces at the molecular level with distinct time courses. A better understanding of these mechanisms has implications for treatment of memory disorders caused by normal aging or diseases including schizophrenia, Alzheimer's, depression, and drug addiction.

  11. Flash Heating

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2000-03-01

    Meteorites contain millimeter-sized objects called chondrules. They were melted in the solar nebula, the cloud of gas and dust in which the Sun and planets formed. Numerous experiments on rock powders have been done to understand the melting process and the cooling rates chondrules experienced. Most meteorite specialists believe that chondrules formed by flash heating, with almost instantaneous melting, though the length of time they remained molten is uncertain. Can conventional laboratory furnaces heat rock powders rapidly enough to flash melt them? Susan Maharaj and Roger Hewins (Rutgers University, New Brunswick) tested this idea by inserting tiny wires of pure elements (which have precise melting temperatures) into compressed rock powders about 3.5 mm in diameter, and placing the samples into a furnace heated to a range of temperatures. They found that at 1600 C, a sample took only six seconds to reach 1538 C. When placed into a furnace at 1500 C, samples took ten seconds to reach 1495 C. This shows that the flash heating process can be studied in conventional laboratory furnaces.

  12. Advancing Reversible Shape Memory by Tuning Network Architecture

    NASA Astrophysics Data System (ADS)

    Li, Qiaoxi; Zhou, Jing; Vatankhah Varnosfaderani, Mohammad; Nykypanchuk, Dmytro; Gang, Oleg; Sheiko, Sergei; University of north carolina at chapel hill Collaboration; Brookhaven National Lab-CFN Collaboration

    Recently, reversible shape memory (RSM) has been realized in conventional semi-crystalline elastomers without applying any external force and synthetic programming. The mechanism is ascribed to counteraction between thermodynamically driven relaxation of a strained polymer network and kinetically preferred self-seeding recrystallization of constrained network strands. In order to maximize RSM's performance in terms of (i) range of reversible strain, (ii) rate of strain recovery, and (iii) relaxation time of reversibility, we have designed a systematic series of networks with different topologies and crosslinking densities, including purposely introduced dangling chains and irregular meshes. Within a broad range of crosslink density ca. 50-1000 mol/m3, we have demonstrated that the RSM's properties improve significantly with increasing crosslink density, regardless of network topology. Actually, one of the most irregular networks with densest crosslinking allowed achieving up to 80% of the programmed strain being fully reversible, fast recovery rate up to 0.05 K-1, and less than 15% decrease of reversibility after hours of annealing at partial melt state. With this understanding and optimization of RSM, we pursue an idea of shape control through self-assembly of shape-memory particles. For this purpose, 3D printing has been employed to prepare large assemblies of particles possessing specific shapes and morphologies.

  13. New Rule Use Drives the Relation between Working Memory Capacity and Raven's Advanced Progressive Matrices

    ERIC Educational Resources Information Center

    Wiley, Jennifer; Jarosz, Andrew F.; Cushen, Patrick J.; Colflesh, Gregory J. H.

    2011-01-01

    The correlation between individual differences in working memory capacity and performance on the Raven's Advanced Progressive Matrices (RAPM) is well documented yet poorly understood. The present work proposes a new explanation: that the need to use a new combination of rules on RAPM problems drives the relation between performance and working…

  14. Lunar Impact Flash Locations

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    A bright impact flash detected by the NASA Lunar Impact Monitoring Program in March 2013 brought into focus the importance of determining the impact flash location. A process for locating the impact flash, and presumably its associated crater, was developed using commercially available software tools. The process was successfully applied to the March 2013 impact flash and put into production on an additional 300 impact flashes. The goal today: provide a description of the geolocation technique developed.

  15. Memory

    MedlinePlus

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  16. Advancing reversible shape memory by tuning the polymer network architecture

    SciTech Connect

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; Nykypanchuk, Dmytro; Gang, Oleg; Sheiko, Sergei S.

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loose network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K–1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.

  17. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K–1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  18. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  19. Resistive switching behavior in Lu2O3 thin film for advanced flexible memory applications

    PubMed Central

    2014-01-01

    In this article, the resistive switching (RS) behaviors in Lu2O3 thin film for advanced flexible nonvolatile memory applications are investigated. Amorphous Lu2O3 thin films with a thickness of 20 nm were deposited at room temperature by radio-frequency magnetron sputtering on flexible polyethylene terephthalate substrate. The structural and morphological changes of the Lu2O3 thin film were characterized by x-ray diffraction, atomic force microscopy, and x-ray photoelectron spectroscopy analyses. The Ru/Lu2O3/ITO flexible memory device shows promising RS behavior with low-voltage operation and small distribution of switching parameters. The dominant switching current conduction mechanism in the Lu2O3 thin film was determined as bulk-controlled space-charge-limited-current with activation energy of traps of 0.33 eV. The oxygen vacancies assisted filament conduction model was described for RS behavior in Lu2O3 thin film. The memory reliability characteristics of switching endurance, data retention, good flexibility, and mechanical endurance show promising applications in future advanced memory. PMID:24387704

  20. Scanning nonlinear dielectric microscopy observation of accumulated charges in metal-SiO2-SiN-SiO2-Si flash memory by detecting higher-order nonlinear permittivity

    NASA Astrophysics Data System (ADS)

    Honda, Koichiro; Cho, Yasuo

    2012-12-01

    Using scanning nonlinear dielectric microscopy with high-sensitivity capacitance variation detection capability, we succeeded in the high-resolution visualization of accumulated charges in metal-SiO2-SiN-SiO2-Si flash memory by detecting the higher-order (2-4 order) nonlinear permittivity. The obtained image contrast can be interpreted using a higher-order differential coefficient (dnC/dVn) of a quasi-static C-V curve of the SiO2-SiN-SiO2-Si interface capacitance as a function of externally applied voltage. Moreover, by using a higher-order nonlinear image, the charge concentration resolution can be improved. Thus, improved resolution of the spatial charge distribution is expected through improvement of the concentration resolution by the imaging of higher-order nonlinear dielectric terms.

  1. Secrets of a Flash Card-Carrying Teacher.

    ERIC Educational Resources Information Center

    Hawkes, Mel

    1983-01-01

    Eight ways to use flash cards in mathematics instruction are described. These games and other gimmicks help increase students' concentration, build memory skills, sharpen thinking skills, and enliven drills. (PP)

  2. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    SciTech Connect

    Bergman, Keren

    2014-08-28

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM

  3. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  4. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters.

    PubMed

    Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N; Long, De-Liang; Georgiev, Vihar P; Asenov, Asen; Pedersen, Rasmus H; Gadegaard, Nikolaj; Mirza, Muhammad M; Paul, Douglas J; Poblet, Josep M; Cronin, Leroy

    2014-11-27

    Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2](4-) as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(v)2O6](2-) moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call 'write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

  5. ASA-FTL: An adaptive separation aware flash translation layer for solid state drives

    DOE PAGES

    Xie, Wei; Chen, Yong; Roth, Philip C.

    2016-11-03

    Here, the flash-memory based Solid State Drive (SSD) presents a promising storage solution for increasingly critical data-intensive applications due to its low latency (high throughput), high bandwidth, and low power consumption. Within an SSD, its Flash Translation Layer (FTL) is responsible for exposing the SSD’s flash memory storage to the computer system as a simple block device. The FTL design is one of the dominant factors determining an SSD’s lifespan and performance. To reduce the garbage collection overhead and deliver better performance, we propose a new, low-cost, adaptive separation-aware flash translation layer (ASA-FTL) that combines sampling, data clustering and selectivemore » caching of recency information to accurately identify and separate hot/cold data while incurring minimal overhead. We use sampling for light-weight identification of separation criteria, and our dedicated selective caching mechanism is designed to save the limited RAM resource in contemporary SSDs. Using simulations of ASA-FTL with both real-world and synthetic workloads, we have shown that our proposed approach reduces the garbage collection overhead by up to 28% and the overall response time by 15% compared to one of the most advanced existing FTLs. We find that the data clustering using a small sample size provides significant performance benefit while only incurring a very small computation and memory cost. In addition, our evaluation shows that ASA-FTL is able to adapt to the changes in the access pattern of workloads, which is a major advantage comparing to existing fixed data separation methods.« less

  6. ASA-FTL: An adaptive separation aware flash translation layer for solid state drives

    SciTech Connect

    Xie, Wei; Chen, Yong; Roth, Philip C.

    2016-11-03

    Here, the flash-memory based Solid State Drive (SSD) presents a promising storage solution for increasingly critical data-intensive applications due to its low latency (high throughput), high bandwidth, and low power consumption. Within an SSD, its Flash Translation Layer (FTL) is responsible for exposing the SSD’s flash memory storage to the computer system as a simple block device. The FTL design is one of the dominant factors determining an SSD’s lifespan and performance. To reduce the garbage collection overhead and deliver better performance, we propose a new, low-cost, adaptive separation-aware flash translation layer (ASA-FTL) that combines sampling, data clustering and selective caching of recency information to accurately identify and separate hot/cold data while incurring minimal overhead. We use sampling for light-weight identification of separation criteria, and our dedicated selective caching mechanism is designed to save the limited RAM resource in contemporary SSDs. Using simulations of ASA-FTL with both real-world and synthetic workloads, we have shown that our proposed approach reduces the garbage collection overhead by up to 28% and the overall response time by 15% compared to one of the most advanced existing FTLs. We find that the data clustering using a small sample size provides significant performance benefit while only incurring a very small computation and memory cost. In addition, our evaluation shows that ASA-FTL is able to adapt to the changes in the access pattern of workloads, which is a major advantage comparing to existing fixed data separation methods.

  7. Flash protection controller

    DOEpatents

    Galbraith, Lee K.

    1981-01-01

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  8. Flash protection controller

    DOEpatents

    Galbraith, L.K.

    1979-12-07

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  9. Turbulence in Reynolds' flashes

    NASA Astrophysics Data System (ADS)

    Cerbus, Rory; Liu, Chien-Chia; Gioia, Gustavo; Chakraborty, Pinaki

    2016-11-01

    Osborne Reynolds' seminal work from 1883 revealed that the transition from quiescent, laminar flow to a turbulent pipe filled with roiling eddies is mediated by localized flashes of fluctuations. Later work has unveiled many features of these flashes: they proliferate or fade away, maintain their shape or continually expand. The nature of the fluctuations in the flashes, however, has remained mysterious. Here, using measures traditionally attributed to high Reynolds number (Re) flows, we present experimental results on the fluctuations of the flashes. Our results suggest that the transition to turbulence is the low Re limit of the high Re, fully developed flow. Okinawa Institute of Science and Technology.

  10. Probing S-state advancements and recombination pathways in photosystem II with a global fit program for flash-induced oxygen evolution pattern.

    PubMed

    Pham, Long Vo; Messinger, Johannes

    2016-06-01

    The oxygen-evolving complex (OEC) in photosystem II catalyzes the oxidation of water to molecular oxygen. Four decades ago, measurements of flash-induced oxygen evolution have shown that the OEC steps through oxidation states S(0), S(1), S(2), S(3) and S(4) before O(2) is released and the S(0) state is reformed. The light-induced transitions between these states involve misses and double hits. While it is widely accepted that the miss parameter is S state dependent and may be further modulated by the oxidation state of the acceptor side, the traditional way of analyzing each flash-induced oxygen evolution pattern (FIOP) individually did not allow using enough free parameters to thoroughly test this proposal. Furthermore, this approach does not allow assessing whether the presently known recombination processes in photosystem II fully explain all measured oxygen yields during Si state lifetime measurements. Here we present a global fit program that simultaneously fits all flash-induced oxygen yields of a standard FIOP (2 Hz flash frequency) and of 11-18 FIOPs each obtained while probing the S(0), S(2) and S(3) state lifetimes in spinach thylakoids at neutral pH. This comprehensive data treatment demonstrates the presence of a very slow phase of S(2) decay, in addition to the commonly discussed fast and slow reduction of S(2) by YD and QB(-), respectively. Our data support previous suggestions that the S(0)→S(1) and S(1)→S(2) transitions involve low or no misses, while high misses occur in the S(2)→S(3) or S(3)→S(0) transitions.

  11. Write/erase stress relaxation effect on data-retention and read-disturb errors in triple-level cell NAND flash memory with round-robin wear-leveling

    NASA Astrophysics Data System (ADS)

    Deguchi, Yoshiaki; Kobayashi, Atsuro; Takeuchi, Ken

    2017-04-01

    This study analyzes the influence of the interval of time (t S-P) between write/erase endurance stress and programming the final data for the data-retention and read-disturb error evaluations in 1X nm triple-level cell (TLC) NAND flash memories. During the interval of time after the write/erase endurance stresses, electrons are de-trapped from the tunnel dielectric. Eventually, the data-retention error decreases in read-“cold” data which is infrequently read. By introducing long t S-P, e.g., 3 h, with round-robin wear-leveling, the bit error rate (BER) of the read-cold data can be decreased by 47%. Moreover, in read-“hot” data which is frequently read, the BER decreases because V TH-down errors are decreased by introducing long t S-P in over 600 read cycles, while the BER does not decrease in case of the smaller read cycles (<600) because V TH-up errors increase during the read operations. This work introduces the mechanism of the V TH-down error in read-“hot” data. The measured BER of the read-hot data decreases by 74% by introducing optimal t S-P with round-robin wear-leveling.

  12. 0.6-1.0 V operation set/reset voltage (3 V) generator for three-dimensional integrated resistive random access memory and NAND flash hybrid solid-state drive

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Hachiya, Shogo; Ishii, Tomoya; Ning, Sheyang; Tsurumi, Kota; Takeuchi, Ken

    2016-04-01

    A 0.6-1.0 V, 25.9 mm2 boost converter is proposed to generate resistive random access memory (ReRAM) write (set/reset) voltage for three-dimensional (3D) integrated ReRAM and NAND flash hybrid solid-state drive (SSD). The proposed boost converter uses an integrated area-efficient V BUF generation circuit to obtain short ReRAM sector write time, small circuit size, and small energy consumption simultaneously. In specific, the proposed boost converter reduces ReRAM sector write time by 65% compared with a conventional one-stage boost converter (Conventional 1) which uses 1.0 V operating voltage. On the other hand, by using the same ReRAM sector write time, the proposed boost converter reduces 49% circuit area and 46% energy consumption compared with a conventional two-stage boost converter (Conventional 2). In addition, by using the proposed boost converter, the operating voltage, V DD, can be reduced to 0.6 V. The lowest 159 nJ energy consumption can be obtained when V DD is 0.7 V.

  13. Flash-Type Discrimination

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.

  14. Flash Flood Nowcasting in an Urban Watershed

    NASA Astrophysics Data System (ADS)

    Sharif, H.; Yates, D.; Roberts, R.; Brandes, E.

    2003-04-01

    Flash floods occur when particular meteorological events are combined with certain hydrologic conditions. Several approaches to nowcast flash floods are being developed,> However, predictions of the magnitude and timing of flash flood events is a major challenge. Nowcasts of convective storm events need to be linked with robust hydrologic modeling and analysis in order to produce useful flash flood predictions in terms of timing, and the spatial and temporal distribution of the runoff. Advances in radar-rainfall estimation and two-dimensional physically based runoff modeling offer tools to improve flash flooding forecasting and to reduce the potential for loss of life and property damage in urban catchments. The ability to model extreme hydrologic events in detail was demonstrated using the physically based distributed-parameter hydrologic model GSSHA (Downer and Ogden, 2002) on an urban watershed in Denver, Colorado (Sharif et al., 2002). The study addressed the necessary detail in urban topography and drainage characteristics needed for accurate simulations of urban flood events. With this kind of detailed hydrologic model, accurate short-range meteorological nowcasts (30 60 minutes) would prove useful. Such a nowcast is available from the National Center for Atmospheric Research’s (NCAR) Autonowcaster, a data fusion system that combines several predictor fields with membership functions and weighting schemes to produce automated time and place specific nowcasts of convective rainfall. Predictor fields are derived from characteristics of boundary layer convergence regions, storm characteristics, and dynamic and kinematic attributes of the boundary layer. Simple extrapolations are also used as benchmark nowcasts. The GSSHA model was coupled with the Autonowcaster to produce distributed, physics-based hydrologic predictions in the urban setting. Flash flood predictions of the coupled system are compared to predictions computed using traditional approaches and

  15. The Flash Grab Effect

    PubMed Central

    Cavanagh, Patrick; Anstis, Stuart

    2013-01-01

    When an object moves back and forth, its trajectory appears significantly shorter than it actually is. The object appears to stop and reverse well before its actual reversal point, as if there is some averaging of location within a window of about 100 ms (Sinico et al, 2009). Surprisingly, if a bar is flashed at the physical end point of the trajectory, right on top of the object, just as it reverses direction, the flash is also shifted – grabbed by the object – and is seen at the perceived endpoint of the trajectory rather than the physical endpoint. This can shift the perceived location of the flash by as much as 2 or 3 times its physical size and by up to several degrees of visual angle. We first show that the position shift of the flash is generated by the trajectory shortening, as the same shift is seen with or without the flash. The flash itself is only grabbed if it is presented within a small spatiotemporal attraction zone around the physical end point of the trajectory. Any flash falling in that zone is pulled toward the perceived endpoint. The effect scales linearly with speed, up to a maximum, and is independent of the contrast of the moving stimulus once it is above 5%. Finally, we demonstrate that this position shift requires attention. These results reveal a new “flash grab” effect in the family of motion-induced position shifts. Although it most resembles the flash drag effect, it differs from this in the following ways: 1) it has a different temporal profile, 2) it requires attention, 3) it is about 10 times larger. PMID:23872166

  16. Understanding Green Flashes

    NASA Astrophysics Data System (ADS)

    Young, Andrew T.

    1998-05-01

    Most astronomers learn about green flashes from either Minnaert's old book (Dover, 1954) or O'Connell's ``The Green Flash....'' Both have defects. Minnaert's account mostly represents what was known in the 1920s; it repeats Mulder's 3-fold classification, which omits Joule's second type of flash --- the one most commonly seen from mountain observatories. O'Connell searched only the astronomical literature, missing Dietze's crucially important paper (Z.f.Met. 9, 169 (1955)) showing that the ``textbook'' mechanism cannot produce flashes visible to the naked eye. He also erred in thinking that distortions of the setting Sun arise in the upper atmosphere (they are due to the marine boundary layer), and copied an error from Feenstra Kuiper's thesis that misidentified a common mirage-like phenomenon as Wegener's ``blank strip'' (Young et al., Appl. Opt. 36, 2689 (1997).) Most phenomena shown in O'Connell's book are caused by inversion layers below eye level, not above as in Wegener's phenomenon. The two commonest forms of green flash are associated with the inferior mirage and the mock mirage, corresponding to Fisher's Type A and Type B sunsets, respectively. Superrefraction, advocated by Wood and by Rayleigh as the cause of large flashes, actually suppress them: the airmass is proportional to the refraction (by Laplace's extinction theorem), so no green is transmitted when refraction is much larger than average. Although there is a physical green flash that can be photographed, the colors seen at sunset are strongly modified by bleaching of the L cones. Most ``green'' sunset flashes are actually yellow. Writers should stop representing Jules Verne's ``ancient legend'' as fact, as it was invented by Verne as a plot device for his novel ``Le Rayon Vert.'' Green-flash photos and simulations will be shown. This material is based upon work supported by the NSF under Award No. ATM-9714357.

  17. Memories.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  18. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  19. Flash Bulletin: Fireflies

    ERIC Educational Resources Information Center

    Brown, Debbie

    1984-01-01

    Explains the flashes of light emitted by fireflies as competition, species-specific code, species identification and mating behavior and ecology. Suggests activities to conduct to study the insects and their behavior. (ERB)

  20. Longitudinal Diagnostics of Short Bunches at FLASH

    SciTech Connect

    Khan, Shaukat

    2009-01-22

    Novel acceleration concepts such as laser- or beam-driven plasma acceleration require advanced diagnostic techniques to characterize and monitor the beam. A particular challenge is to measure bunch lengths of the order of 10 femtoseconds. Several methods are currently explored at the free-electron laser FLASH at DESY/Hamburg and will be discussed it this paper, such as electro-optical sampling, streaking bunches with a transversely deflecting cavity, and -most recently implemented at FLASH--the optical-replica synthesizer, a laser-based technique promising a time resolution of a few femtoseconds.

  1. Flash flood awareness in southwest Virginia.

    PubMed

    Knocke, Ethan T; Kolivras, Korine N

    2007-02-01

    Flash floods are one of the most dangerous weather-related natural disasters in the world. These events develop less than six hours after a rainfall event and create hazardous situations for people and extensive damage to property. It is critical for flash flood conditions to be warned of in a timely manner to minimize impacts. There is currently a knowledge gap between flood experts and the general public about the level of perceived risk that the latter has toward the powerful flood waters and how events should be warned of, which affects the communication capabilities and efficiency of the warning process. Prior research has addressed risk perception of natural disasters, but there is little emphasis on flash floods within flood-prone regions of the United States. This research utilizes an online survey of 300 respondents to determine the current state of flash flood awareness and preparation in southwest Virginia. Analysis of trends involved the use of chi-squared tests (chi2) and simple frequency and percentage calculations. Results reveal that a knowledge base of flash floods does exist, but is not advanced enough for proper awareness. Young adults have a lower understanding and are not as concerned about flood impacts. Increased exposure and perceived risk play a key role in shaping the way a person approaches flash floods. People do monitor flood events, but they are unaware of essential guidance and communication mechanisms. Finally, results suggest that the current method of warning about flash floods is not provided at an appropriate level of detail for effective communication.

  2. Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongkun; Goda, Kazuo; Kitsuregawa, Masaru

    Recently, flash memory is emerging as the storage device. With price sliding fast, the cost per capacity is approaching to that of SATA disk drives. So far flash memory has been widely deployed in consumer electronics even partly in mobile computing environments. For enterprise systems, the deployment has been studied by many researchers and developers. In terms of the access performance characteristics, flash memory is quite different from disk drives. Without the mechanical components, flash memory has very high random read performance, whereas it has a limited random write performance because of the erase-before-write design. The random write performance of flash memory is comparable with or even worse than that of disk drives. Due to such a performance asymmetry, naive deployment to enterprise systems may not exploit the potential performance of flash memory at full blast. This paper studies the effectiveness of using non-in-place-update (NIPU) techniques through the IO path of flash-based transaction processing systems. Our deliberate experiments using both open-source DBMS and commercial DBMS validated the potential benefits; x3.0 to x6.6 performance improvement was confirmed by incorporating non-in-place-update techniques into file system without any modification of applications or storage devices.

  3. Flash fire propensity of materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.

  4. 450mm wafer patterning with jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Thompson, Ecron; Hellebrekers, Paul; Hofemann, Paul; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-09-01

    The next step in the evolution of wafer size is 450mm. Any transition in sizing is an enormous task that must account for fabrication space, environmental health and safety concerns, wafer standards, metrology capability, individual process module development and device integration. For 450mm, an aggressive goal of 2018 has been set, with pilot line operation as early as 2016. To address these goals, consortiums have been formed to establish the infrastructure necessary to the transition, with a focus on the development of both process and metrology tools. Central to any process module development, which includes deposition, etch and chemical mechanical polishing is the lithography tool. In order to address the need for early learning and advance process module development, Molecular Imprints Inc. has provided the industry with the first advanced lithography platform, the Imprio® 450, capable of patterning a full 450mm wafer. The Imprio 450 was accepted by Intel at the end of 2012 and is now being used to support the 450mm wafer process development demands as part of a multi-year wafer services contract to facilitate the semiconductor industry's transition to lower cost 450mm wafer production. The Imprio 450 uses a Jet and Flash Imprint Lithography (J-FILTM) process that employs drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for markets including NAND Flash memory, patterned media for hard disk drives and displays. This paper reviews the recent performance of the J-FIL technology (including overlay, throughput and defectivity), mask development improvements provided by Dai Nippon Printing, and the application of the technology to a 450mm lithography platform.

  5. Assessment of vulnerability to extreme flash floods in design storms.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  6. Assessment of Vulnerability to Extreme Flash Floods in Design Storms

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2011-01-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years. PMID:21845165

  7. The Forensic Potential of Flash Memory

    DTIC Science & Technology

    2009-09-01

    use of some APIs. The presentation compares MIAT to the Paraben Device Seizure, a proprietary tool that also utilizes logical acquisition methods...The data recovery coverage is better than the Paraben system; is equal in integrity, but is slower in acquisition time [23]. 4. Remnant Data In

  8. Probabilistic Flash Flood Forecasting using Stormscale Ensembles

    NASA Astrophysics Data System (ADS)

    Hardy, J.; Gourley, J. J.; Kain, J. S.; Clark, A.; Novak, D.; Hong, Y.

    2013-12-01

    Flash flooding is one of the most costly and deadly natural hazards in the US and across the globe. The loss of life and property from flash floods could be mitigated with better guidance from hydrological models, but these models have limitations. For example, they are commonly initialized using rainfall estimates derived from weather radars, but the time interval between observations of heavy rainfall and a flash flood can be on the order of minutes, particularly for small basins in urban settings. Increasing the lead time for these events is critical for protecting life and property. Therefore, this study advances the use of quantitative precipitation forecasts (QPFs) from a stormscale NWP ensemble system into a distributed hydrological model setting to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Rainfall error characteristics of the individual members are first diagnosed and quantified in terms of structure, amplitude, and location (SAL; Wernli et al., 2008). Amplitude and structure errors are readily correctable due to their diurnal nature, and the fine scales represented by the CAPS QPF members are consistent with radar-observed rainfall, mainly showing larger errors with afternoon convection. To account for the spatial uncertainty of the QPFs, we use an elliptic smoother, as in Marsh et al. (2012), to produce probabilistic QPFs (PQPFs). The elliptic smoother takes into consideration underdispersion, which is notoriously associated with stormscale ensembles, and thus, is good for targeting the approximate regions that may receive heavy rainfall. However, stormscale details contained in individual members are still needed to yield reasonable flash flood simulations. Therefore, on a case study basis, QPFs from individual members are then run through the hydrological model with their predicted structure and corrected amplitudes, but the locations of individual rainfall elements are perturbed within the PQPF elliptical regions using Monte

  9. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    Solid State Commun. 17 1425 [4]Gunnarsson O and Lundqvist B I 1976 Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism Phys. Rev. B 13 4274 [5]Langreth D C and Mehl M J 1981 Beyond the local-density approximation in calculations of ground-state electronic properties Phys. Rev. B 47 446 [6]Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Van der Waals density functional for general geometries Phys. Rev. Lett. 92 246401 Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond Phys. Rev. B 76 125112 [7]Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 A higher-accuracy van der Waals density functional Phys. Rev. B 82 081101 [8]Rapcewicz K and Ashcroft N W 1991 Fluctuation attraction in condensed matter: a nonlocal functional approach Phys. Rev. B 44 4032 Lundqvist B I, Andersson Y, Shao H, Chan S and Langreth D C 1995 Density functional theory including van der Waals forces Int. J. Quant. Chem. 56 247 [9]Langreth D C et al 2009 A density functional for sparse matter J. Phys.: Condens. Matter 21 084203 [10]For example, Kohn W, Meir Y and Makarov D E 1998 The exchange-correlation energy of a metallic surface Phys. Rev. Lett. 80 4153 Kurth S and Perdew J P 1999 Phys. Rev. B 59 10461 Dobson J F and Wang J 1999 Phys. Rev. Lett. 82 2123 Pitarke J M and Perdew J P 2003 Phys. Rev. B 67 045101 Vydrov O A and van Voorhi T 2009 Phys. Rev. Lett. 103 063004 [11]For example, Grimme S 2004 J. Comput. Phys. 25 1463 Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154004 [12]Burke K 2012 Perspectives on density functional theory J. Chem. Phys. 136 150901 Van der Waals interactions in advanced materials contents Van der Waals interactions in advanced materials, in memory of David C LangrethPer Hyldgaard and Talat S

  10. Depomedroxyprogesterone acetate for hot flashes.

    PubMed

    Barton, Debra; Loprinzi, Charles; Quella, Susan; Sloan, Jeff; Pruthi, Sandya; Novotny, Paul

    2002-12-01

    To evaluate the efficacy of a long-acting preparation of medroxyprogesterone acetate for hot flash management, 3 men receiving androgen ablation therapy for prostate cancer and 15 women with a history of breast cancer were treated as part of clinical practice with three biweekly intramuscular injections of 500 mg depomedroxyprogesterone. A review of hot flash diaries and patient charts were completed to evaluate the effectiveness and tolerability of these injections for managing hot flashes. Treatment was associated with an approximate 90% decrease in hot flashes (95% CI 82-97%). Daily hot flash frequency decreased from a mean of 10.9 on the first day of treatment (95% CI 8.0-13.8 hot flashes per day) to a mean of 1.1 hot flashes 6 weeks later (95% CI 0.5-1.8 hot flashes) and to a mean of 0.7 hot flashes 12 weeks following therapy initiation (95% CI 0.1-1.2). Improvement in the hot flashes remained for months after discontinuing the injections in many patients. Reported side effects were minimal. This experience suggests that treatment with depomedroxyprogesterone may be an effective and well-tolerated option for the treatment of hot flashes.

  11. A method for probabilistic flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Hardy, Jill; Gourley, Jonathan J.; Kirstetter, Pierre-Emmanuel; Hong, Yang; Kong, Fanyou; Flamig, Zachary L.

    2016-10-01

    Flash flooding is one of the most costly and deadly natural hazards in the United States and across the globe. This study advances the use of high-resolution quantitative precipitation forecasts (QPFs) for flash flood forecasting. The QPFs are derived from a stormscale ensemble prediction system, and used within a distributed hydrological model framework to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Before creating the PFFFs, it is important to characterize QPF uncertainty, particularly in terms of location which is the most problematic for hydrological use of QPFs. The SAL methodology (Wernli et al., 2008), which stands for structure, amplitude, and location, is used for this error quantification, with a focus on location. Finally, the PFFF methodology is proposed that produces probabilistic hydrological forecasts. The main advantages of this method are: (1) identifying specific basin scales that are forecast to be impacted by flash flooding; (2) yielding probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the QPFs; (3) improving lead time by using stormscale NWP ensemble forecasts; and (4) not requiring multiple simulations, which are computationally demanding.

  12. Hybrid triple-level-cell/multi-level-cell NAND flash storage array with chip exchangeable method

    NASA Astrophysics Data System (ADS)

    Hachiya, Shogo; Johguchi, Koh; Miyaji, Kousuke; Takeuchi, Ken

    2014-01-01

    This paper proposes a mix-and-match design method for triple level cell (TLC)/multi level cell (MLC) NAND flash hybrid and exchangeable storage arrays. A TLC-NAND flash provides an low cost and high capacity memory solution. However the reliability and access latency of TLC NAND flash are degraded from MLC NAND flash. Additionally, the block unit write is preferable for TLC NAND flash since the write order is complicated due to narrow data margin and write disturbance. The proposed solution combines TLC and MLC NAND flash memories for a storage array. To reduce access to TLC NAND flash, the stored data is screened and only the static frozen data are stored into TLC NAND flash with a Round-Robin frozen data collection algorithm (RR-FDCA). Furthermore, the proposed chip exchanging method extends the solid-state drive (SSD) lifetime without system suspending. As a result, in spite of moderate characteristics of TLC NAND flash, the proposed storage array can achieve 29% write energy saving and 56% write performance enhancement with 17% cost reduction, compared with the conventional MLC-only SSD.

  13. The Relieving Effects of BrainPower Advanced, a Dietary Supplement, in Older Adults with Subjective Memory Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Zhu, Jingfen; Shi, Rong; Chen, Su; Dai, Lihua; Shen, Tian; Feng, Yi; Gu, Pingping; Shariff, Mina; Nguyen, Tuong; Ye, Yeats; Rao, Jianyu; Xing, Guoqiang

    2016-01-01

    Subjective memory complaints (SMCs) are common in older adults that can often predict further cognitive impairment. No proven effective agents are available for SMCs. The effect of BrainPower Advanced, a dietary supplement consisting of herbal extracts, nutrients, and vitamins, was evaluated in 98 volunteers with SMCs, averaging 67 years of age (47–88), in a randomized, double-blind, placebo-controlled trial. Subjective hypomnesis/memory loss (SML) and attention/concentration deficits (SAD) were evaluated before and after 12-week supplementation of BrainPower Advanced capsules (n = 47) or placebo (n = 51), using a 5-point memory questionnaire (1 = no/slight, 5 = severe). Objective memory function was evaluated using 3 subtests of visual/audio memory, abstraction, and memory recall that gave a combined total score. The BrainPower Advanced group had more cases of severe SML (severity ⩾ 3) (44/47) and severe SAD (43/47) than the placebo group (39/51 and 37/51, < 0.05, < 0.05, resp.) before the treatment. BrainPower Advanced intervention, however, improved a greater proportion of the severe SML (29.5%)(13/44) (P < 0.01) and SAD (34.9%)(15/43)(P < 0.01) than placebo (5.1% (2/39) and 13.5% (5/37), resp.). Thus, 3-month BrainPower Advanced supplementation appears to be beneficial to older adults with SMCs. PMID:27190539

  14. Observations of Umbral Flashes

    NASA Astrophysics Data System (ADS)

    Rouppe van der Voort, L. H. M.; Krijger, J. M.

    2003-10-01

    We present observations of oscillations in the chromosphere of the umbra of sunspots. The observations were obtained with the Swedish Vacuum Solar Telescope (SVST) and the Dutch Open Telescope (DOT) on La Palma, comprising spectrograms and filtergrams in the Ca II H line. The sawtooth pattern in the spectroscopic time evolution of the Ca II H core is shown as well as evidence for a connection between umbral flashes and running penumbral waves from image sequences. Running waves, coherent over a large fraction of the penumbra, seem to be excited by flashes that occur close to the umbra-penumbral boundary. Comparing the intensity oscillations in the Ca II H line with TRACE observations in the 1600 Å passband, we find a phase difference of approximately 25 ° with 1600 Å leading the Ca II H intensity oscillation which we attribute to complex dynamical behaviour.

  15. Flash Lidar Data Processing

    NASA Astrophysics Data System (ADS)

    Bergkoetter, M. D.; Ruppert, L.; Weimer, C. S.; Ramond, T.; Lefsky, M. A.; Burke, I. C.; Hu, Y.

    2009-12-01

    Late last year, a prototype Flash LIDAR instrument flew on a series of airborne tests to demonstrate its potential for improved vegetation measurements. The prototype is a precursor to the Electronically Steerable Flash LIDAR (ESFL) currently under development at Ball Aerospace and Technology Corp. with funding from the NASA Earth Science Technology Office. ESFL may soon significantly expand our ability to measure vegetation and forests and better understand the extent of their role in global climate change and the carbon cycle - all critical science questions relating to the upcoming NASA DESDynI and ESA BIOMASS missions. In order to more efficiently exploit data returned from the experimental Flash Lidar system and plan for data exploitation from future flights, Ball funded a graduate student project (through the Ball Summer Intern Program, summer 2009) to develop and implement algorithms for post-processing of the 3-Dimensional Flash Lidar data. This effort included developing autonomous algorithms to resample the data to a uniform rectangular grid, geolocation of the data, and visual display of large swaths of data. The resampling, geolocation, surface hit detection, and aggregation of frame data are implemented with new MATLAB code, and the efficient visual display is achieved with free commercial viewing software. These efforts directly support additional tests flights planned as early as October 2009, including possible flights over Niwot Ridge, CO, for which there is ICESat data, and a sea-level coastal area in California to test the effect of higher altitude (above ground level) on the divergence of the beams and the beam spot sizes.

  16. Physics Flash August 2016

    SciTech Connect

    Kippen, Karen Elizabeth

    2016-08-25

    Physics Flash is the newsletter for the Physics Division at Los Alamos National Laboratory. This newsletter is for August 2016. The following topics are covered: "Accomplishments in the Trident Laser Facility", "David Meyerhofer elected as chair-elect APS Nominating Committee", "HAWC searches for gamma rays from dark matter", "Proton Radiography Facility commissions electromagnetic magnifier", and "Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks."

  17. Physics Flash December 2016

    SciTech Connect

    Kippen, Karen Elizabeth

    2016-12-01

    This is the December 2016 issue of Physics Flash, the newsletter of the Physics Division of Los Alamos National Laboratory (LANL). In this issue, the following topics are covered: Novel liquid helium technique to aid highly sensitive search for a neutron electrical dipole moment; Silverleaf: Prototype Red Sage experiments performed at Q-site; John L. Kline named 2016 APS Fellow; Physics students in the news; First Entropy Engine quantum random number generator hits the market; and celebrating service.

  18. Flash Rust & Waterjetting Study

    SciTech Connect

    DORSH, P.M..

    2001-11-14

    Certain areas of the primary wall in the AY-101 tank annulus are being cleaned with a remotely operated waterjet. There is some concern on how it will effect the surface of the tank wall after cleaning and how to prevent rust and corrosion from developing on the wall in the future. This study addresses the cause and effects of flash rust, which typically develops on steel surfaces after the waterjetting process.

  19. Memory-related white matter tract integrity in amyotrophic lateral sclerosis: an advanced neuroimaging and neuropsychological study.

    PubMed

    Christidi, Foteini; Karavasilis, Efstratios; Zalonis, Ioannis; Ferentinos, Panagiotis; Giavri, Zoi; Wilde, Elisabeth A; Xirou, Sophia; Rentzos, Michalis; Zouvelou, Vasiliki; Velonakis, George; Toulas, Panagiotis; Efstathopoulos, Efstathios; Poulou, Loukia; Argyropoulos, Georgios; Athanasakos, Athanasios; Zambelis, Thomas; Levin, Harvey S; Karandreas, Nikolaos; Kelekis, Nikolaos; Evdokimidis, Ioannis

    2017-01-01

    We aimed to investigate structural changes in vivo in memory-related white matter tracts (i.e., perforant pathway zone [PPZ]; uncinate fasciculus [UF]; fornix) using diffusion tensor tractography and evaluate possible associations with memory performance in nondemented patients with amyotrophic lateral sclerosis (ALS). Forty-two ALS patients and 25 healthy controls (HCs) underwent a 30-directional diffusion-weighted imaging on a 3T MR scanner, followed by tractography of PPZ, UF, and fornix and analysis of fractional anisotropy (FA), axial diffusivity and radial diffusivity (Dr). Patients were administered neuropsychological measures of verbal (list learning via Rey Auditory Verbal Learning Test [RAVLT] and prose memory via Babcock Story Recall Test) and nonverbal (Rey's Complex Figure Test) episodic memory. After correcting for multiple comparisons, ALS patients showed increased Dr in the left PPZ compared to HC. We then fitted a multivariate general linear model within ALS patients with neuropsychological measures as dependent variables and age, age(2), gender, verbal IQ, and diffusion tensor tractography metrics with at least medium effect size differences between ALS and HC as independent variables. We found that (1) left PPZ FA, gender, and verbal IQ contributed to RAVLT-Total Learning; (2) left PPZ FA, left UF Dr, and gender contributed to RAVLT-Immediate Recall; and (3) left PPZ FA and left UF axial diffusivity contributed to Babcock Story Recall Test-Immediate and Delayed Recall. Advanced neuroimaging techniques verified in this study previously reported neuropathological findings regarding PPZ degeneration in ALS. We also detected a unique contribution of microstructural changes in hippocampal and frontotemporal white matter tracts on patients' memory profile.

  20. Optimal flash rate and duty cycle for flashing visual indicators.

    NASA Technical Reports Server (NTRS)

    Markowitz, J.

    1971-01-01

    This experiment examined the ability of observers to determine, as quickly as possible, whether a visual indicator was steadily on or flashing. Six flash rates (periods) were combined factorially with three duty cycles (on-off ratios) to define 18 ?types' of intermittent signals. Experimental sessions were divided into six runs of 100 trials, each run utilizing one of the six flash rates. On any given trial in a run, the probability of a steady signal occurring was 0.5 and the probability of a flashing signal occurring was 0.5. A different duty cycle was employed daily for each experimental session. In all, 400 trials were devoted to each of the flash rates at each duty cycle. Accuracy and latency of response were the dependent variables of interest. The results show that the observers view the light for an interval of time appropriate to the expected flash rate and duty cycle; whether they judge the light to be steady or intermittent depends upon whether the light is extinguished during the predetermined waiting period. Adoption of this temporal criterion delays responding in comparison to those tasks involving responses to light onset. The decision or response criteria held by the observers are also sensitive to the parameters of the flashing light: observers become increasingly willing to call a flashing light ?steady' as flash duration increases.

  1. A review of modeling techniques for advanced effects in shape memory alloy behavior

    NASA Astrophysics Data System (ADS)

    Cisse, Cheikh; Zaki, Wael; Ben Zineb, Tarak

    2016-10-01

    micro, micro-macro and macro scales focusing pseudoelastic and shape memory effects. The paper reviews and discusses various techniques used in the literature for modeling complex behaviors observed in shape memory alloys (SMAs) that go beyond the core pseudoelastic and shape memory effects. These behaviors, which will be collectively referred to herein as ‘secondary effects’, include mismatch between austenite and martensite moduli, martensite reorientation under nonproportional multiaxial loading, slip and transformation-induced plasticity and their influence on martensite transformation, strong thermomechanical coupling and the influence of loading rate, tensile-compressive asymmetry, and the formation of internal loops due to incomplete phase transformation. In addition, because of their importance for practical design considerations, the paper discusses functional and structural fatigue, and fracture mechanics of SMAs.

  2. Flash signal evolution, mate choice, and predation in fireflies.

    PubMed

    Lewis, Sara M; Cratsley, Christopher K

    2008-01-01

    Many key advances in our understanding of firefly biology and signaling have been made over the past two decades. Here we review this recent research, which includes new phylogenetic results that shed light on the evolution of courtship signal diversity within the family Lampyridae, new insights into firefly flash control, and the discovery of firefly nuptial gifts. We present a comprehensive overview of sexual selection in lampyrids, including evidence from Photinus fireflies that females choose their mates on the basis of male flash signals, and discuss the importance of examining both precopulatory and postcopulatory sexual selection in this group. Finally, we review recent findings on firefly chemical defenses, and discuss their implications for flash signal evolution in response to generalist predators as well as specialist predatory fireflies. This review provides new insight into how firefly flash signals have been shaped by the dual evolutionary processes of sexual selection (mate choice) and natural selection (predation), and proposes several exciting directions for future research.

  3. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX).

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-06-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  4. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  5. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  6. Methods of flash sintering

    DOEpatents

    Raj, Rishi; Cologna, Marco; Francis, John S.

    2016-05-10

    This disclosure provides methods of flash sintering and compositions created by these methods. Methods for sintering multilayered bodies are provided in which a sintered body is produced in less than one minute. In one aspect, each layer is of a different composition, and may be constituted wholly from a ceramic or from a combination of ceramic and metallic particles. When the body includes a layer of an anode composition, a layer of an electrolyte composition and a layer of a cathode composition, the sintered body can be used to produce a solid oxide fuel cell.

  7. Advances in Early Memory Development Research: Insights about the Dark Side of the Moon

    ERIC Educational Resources Information Center

    Courage, Mary L.; Howe, Mark L.

    2004-01-01

    Over the past three decades impressive progress has been made in documenting the development of encoding, storage, and retrieval processes in preverbal infants and children. This literature includes an extensive and diverse database as well as theoretical conjecture about the underlying processes that drive early memory development. A selective…

  8. Constructing Patriotism: Teaching History and Memories in Global Worlds. Advances in Cultural Psychology: Constructing Human Development

    ERIC Educational Resources Information Center

    Carretero, Mario

    2011-01-01

    Memory construction and national identity are key issues in our societies, as well as it is patriotism. How can we nowadays believe and give sense to traditional narrations that explain the origins of nations and communities? How do these narrations function in a process of globalization? How should we remember the recent past? In the construction…

  9. Analog Nonvolatile Computer Memory Circuits

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd

    2007-01-01

    In nonvolatile random-access memory (RAM) circuits of a proposed type, digital data would be stored in analog form in ferroelectric field-effect transistors (FFETs). This type of memory circuit would offer advantages over prior volatile and nonvolatile types: In a conventional complementary metal oxide/semiconductor static RAM, six transistors must be used to store one bit, and storage is volatile in that data are lost when power is turned off. In a conventional dynamic RAM, three transistors must be used to store one bit, and the stored bit must be refreshed every few milliseconds. In contrast, in a RAM according to the proposal, data would be retained when power was turned off, each memory cell would contain only two FFETs, and the cell could store multiple bits (the exact number of bits depending on the specific design). Conventional flash memory circuits afford nonvolatile storage, but they operate at reading and writing times of the order of thousands of conventional computer memory reading and writing times and, hence, are suitable for use only as off-line storage devices. In addition, flash memories cease to function after limited numbers of writing cycles. The proposed memory circuits would not be subject to either of these limitations. Prior developmental nonvolatile ferroelectric memories are limited to one bit per cell, whereas, as stated above, the proposed memories would not be so limited. The design of a memory circuit according to the proposal must reflect the fact that FFET storage is only partly nonvolatile, in that the signal stored in an FFET decays gradually over time. (Retention times of some advanced FFETs exceed ten years.) Instead of storing a single bit of data as either a positively or negatively saturated state in a ferroelectric device, each memory cell according to the proposal would store two values. The two FFETs in each cell would be denoted the storage FFET and the control FFET. The storage FFET would store an analog signal value

  10. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  11. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  12. Geomorphological factors of flash floods

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Yulia

    2016-04-01

    Growing anthropogenic load, rise of extreme meteorological events frequency and total precipitation depth often lead to increasing danger of catastrophic fluvial processes worldwide. Flash floods are one of the most dangerous and less understood types of them. Difficulties of their study are mainly related to short duration of single events, remoteness and hard access to origin areas. Most detailed researches of flash floods focus on hydrological parameters of the flow itself and its meteorological factors. At the same time, importance of the basin geological and geomorphological structure for flash floods generation and the role they play in global sediment redistribution is yet poorly understood. However, understanding and quantitative assessment of these features is a real basis for a complete concept of factors, characteristics and dynamics of flash floods. This work is a review of published data on flash floods, and focuses on the geomorphological factors of the phenomenon. We consider both individual roles and interactions between different geomorphological features (the whole basin parameters, characteristics of the single slopes and valley bottom). Special attention is paid to critical values of certain factors. This approach also highlights the gaps or less studied factors of flash floods. Finally, all data is organized into a complex diagram that may be used for flash floods modeling. This also may help to reach a new level of flash flood predictions and risk assessment.

  13. Superoxide flashes in single mitochondria.

    PubMed

    Wang, Wang; Fang, Huaqiang; Groom, Linda; Cheng, Aiwu; Zhang, Wanrui; Liu, Jie; Wang, Xianhua; Li, Kaitao; Han, Peidong; Zheng, Ming; Yin, Jinhu; Wang, Weidong; Mattson, Mark P; Kao, Joseph P Y; Lakatta, Edward G; Sheu, Shey-Shing; Ouyang, Kunfu; Chen, Ju; Dirksen, Robert T; Cheng, Heping

    2008-07-25

    In quiescent cells, mitochondria are the primary source of reactive oxygen species (ROS), which are generated by leakiness of the electron transport chain (ETC). High levels of ROS can trigger cell death, whereas lower levels drive diverse and important cellular functions. We show here by employing a newly developed mitochondrial matrix-targeted superoxide indicator, that individual mitochondria undergo spontaneous bursts of superoxide generation, termed "superoxide flashes." Superoxide flashes occur randomly in space and time, exhibit all-or-none properties, and provide a vital source of superoxide production across many different cell types. Individual flashes are triggered by transient openings of the mitochondrial permeability transition pore stimulating superoxide production by the ETC. Furthermore, we observe a flurry of superoxide flash activity during reoxygenation of cardiomyocytes after hypoxia, which is inhibited by the cardioprotective compound adenosine. We propose that superoxide flashes could serve as a valuable biomarker for a wide variety of oxidative stress-related diseases.

  14. Accounting for rainfall systematic spatial variability in flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kévin; Labat, David; Dartus, Denis

    2016-10-01

    Just as with the storms that cause them, flash floods are highly variable and non-linear phenomena in both time and space; hence understanding and anticipating the genesis of flash floods is far from straightforward. There is therefore a huge requirement for tools with the potential to provide advance warning of situations likely to lead to flash floods, and thus provide additional time for the flood forecasting services. The Flash Flood Guidance (FFG) method is used on US catchments to estimate the average number of inches of rainfall for given durations required to produce flash flooding. This rainfall amount is used afterwards as a flood warning threshold. In Europe, flash floods often occur on small catchments (approximately 100 km2) and it has already been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, an improved FFG method which accounts for rainfall spatial variability is proposed. The objectives of this paper are (i) to assess the FFG method applicability on French Mediterranean catchments with a distributed process-oriented hydrological model and (ii) to assess the effect of the rainfall spatial variability on this method. The results confirm the influence of the spatial variability of rainfall events in relation with its interaction with soil properties.

  15. Advances in the behavioural testing and network imaging of rodent recognition memory

    PubMed Central

    Kinnavane, Lisa; Albasser, Mathieu M.; Aggleton, John P.

    2015-01-01

    Research into object recognition memory has been galvanised by the introduction of spontaneous preference tests for rodents. The standard task, however, contains a number of inherent shortcomings that reduce its power. Particular issues include the problem that individual trials are time consuming, so limiting the total number of trials in any condition. In addition, the spontaneous nature of the behaviour and the variability between test objects add unwanted noise. To combat these issues, the ‘bow-tie maze’ was introduced. Although still based on the spontaneous preference of novel over familiar stimuli, the ability to give multiple trials within a session without handling the rodents, as well as using the same objects as both novel and familiar samples on different trials, overcomes key limitations in the standard task. Giving multiple trials within a single session also creates new opportunities for functional imaging of object recognition memory. A series of studies are described that examine the expression of the immediate-early gene, c-fos. Object recognition memory is associated with increases in perirhinal cortex and area Te2 c-fos activity. When rats explore novel objects the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to the dentate gyrus and CA3, is engaged. In contrast, when familiar objects are explored the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to CA1, takes precedence. The switch to the perforant pathway (novel stimuli) from the temporoammonic pathway (familiar stimuli) may assist the enhanced associative learning promoted by novel stimuli. PMID:25106740

  16. Dietary advanced glycation end products are associated with decline in memory in young elderly.

    PubMed

    West, Rebecca K; Moshier, Erin; Lubitz, Irit; Schmeidler, James; Godbold, James; Cai, Weijing; Uribarri, Jaime; Vlassara, Helen; Silverman, Jeremy M; Beeri, Michal Schnaider

    2014-09-01

    We recently reported that serum methylglyoxal (sMG) is associated with a faster rate of decline in a global measure of cognition in the very elderly. We here provide for the first time evidence in which high levels of dietary AGE (dAGE) are associated with faster rate of decline in memory in 49 initially non-demented young elderly (p=0.012 in mixed regression models adjusting for sociodemographic and cardiovascular factors). Since modifying the levels of AGEs in the diet may be relatively easy, these preliminary results suggest a simple strategy to diminish cognitive compromise in the elderly and warrant further investigation.

  17. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  18. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  19. Computational Analysis of Advanced Shape-Memory Alloy Devices Through a Robust Modeling Framework

    NASA Astrophysics Data System (ADS)

    Scalet, Giulia; Conti, Michele; Auricchio, Ferdinando

    2017-03-01

    Shape-memory alloys (SMA) provide significant advantages in various industrial fields, but their manufacturing and commercialization are currently hindered. This is attributed mainly to the poor knowledge of material behavior and the lack of standards in its mechanical characterization. SMA products are usually developed by trial-and-error testing to address specific design requirements, thus increasing costs and time. The development of simulation tools offers a possible solution to assist engineers and designers and allows to better understand SMA transformation phenomena. Accordingly, the purpose of the present paper is to numerically analyze and predict the response of spring-like actuators and septal occluders, which are industrial components exploiting the shape-memory and pseudoelastic properties of SMAs, respectively. The methodology includes two main stages: the implementation of the three-dimensional phenomenological model known as Souza-Auricchio model and the finite element modeling of the device. A discussion about the steps of each stage, as parameter identification and model generalizations, is provided. Validation results are presented through a comparison with the results of a performed experimental campaign. The framework proves good prediction capabilities and allows to reduce the number of experimental tests in the future.

  20. Ballistic Flash Characterization: Penetration and Back-Face Flash

    DTIC Science & Technology

    2012-03-01

    14 Figure 3: Shot T210 Flash X-Radius vs Time .................................................................. 24 Figure 4: 7075 Set A Model...Cumulative Area ................................................................. 35 Figure 5: 7075 Set A Model Average Area...35 Figure 6: 7075 Set B Model Cumulative Area

  1. Quick-low-density parity check and dynamic threshold voltage optimization in 1X nm triple-level cell NAND flash memory with comprehensive analysis of endurance, retention-time, and temperature variation

    NASA Astrophysics Data System (ADS)

    Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken

    2016-08-01

    NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.

  2. Evaporant feed device facilitates flash vapor deposition process in vacuum

    NASA Technical Reports Server (NTRS)

    Hermann, W. A.; Stirn, R. J.

    1967-01-01

    Mechanism using a helix sequentially feeds prescribed amounts of metal charges into an evaporation boat used for flash vapor deposition of the evaporants onto a substrate in a vacuum chamber. The helix is advanced by external manual controls extending through sealed feed- through devices into the chamber wall.

  3. Memory Dysfunction

    PubMed Central

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  4. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism.

  5. Advanced compilation techniques in the PARADIGM compiler for distributed-memory multicomputers

    NASA Technical Reports Server (NTRS)

    Su, Ernesto; Lain, Antonio; Ramaswamy, Shankar; Palermo, Daniel J.; Hodges, Eugene W., IV; Banerjee, Prithviraj

    1995-01-01

    The PARADIGM compiler project provides an automated means to parallelize programs, written in a serial programming model, for efficient execution on distributed-memory multicomputers. .A previous implementation of the compiler based on the PTD representation allowed symbolic array sizes, affine loop bounds and array subscripts, and variable number of processors, provided that arrays were single or multi-dimensionally block distributed. The techniques presented here extend the compiler to also accept multidimensional cyclic and block-cyclic distributions within a uniform symbolic framework. These extensions demand more sophisticated symbolic manipulation capabilities. A novel aspect of our approach is to meet this demand by interfacing PARADIGM with a powerful off-the-shelf symbolic package, Mathematica. This paper describes some of the Mathematica routines that performs various transformations, shows how they are invoked and used by the compiler to overcome the new challenges, and presents experimental results for code involving cyclic and block-cyclic arrays as evidence of the feasibility of the approach.

  6. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  7. Electronic Flash In Data Acquisition

    NASA Astrophysics Data System (ADS)

    Miller, C. E.

    1982-02-01

    Photographic acquisition of data often may be simplified, or the data quality improved upon by employing electronic flash sources with traditional equipment or techniques. The relatively short flash duration compared to movie camera shutters, or to the long integration time of video camera provides improved spatial resolution through blur reduction, particularly important as image movement becomes a significant fraction of film format dimension. Greater accuracy typically is achieved in velocity and acceleration determinations by using a stroboscopic light source rather than a movie camera frame-rate control as a time standard. Electrical efficiency often is an important advantage of electronic flash sources since almost any necessary light level for exposure may be produced, yet the source typically is "off" most of the time. Various synchronization techniques greatly expand the precise control of exposure. Biomechanical and sports equipment studies may involve velocities up to 200 feet-per-second, and often will have associated very rapid actions of interest. The need for brief exposures increases H.s one "ZOOMS in on the action." In golf, for example, the swing may be examined using 100 microsecond (Us) flashes at rates of 60 or 120 flashes-per-second (FPS). Accurate determination of linear and rotational velocity of the ball requires 10 Us flashes at 500-1,000 FPS, while sub-Us flashes at 20,000-50,000 FPS are required to resolve the interaction of the ball and the club, head. Some seldom. used techniques involving streak photography are described, with enhanced results obtained by combining strobe with the usual continuous light source. The combination of strobe and a fast electro-mechanical shutter is considered for Us photography under daylight conditions.

  8. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  9. Effects of advanced aging on the neural correlates of successful recognition memory

    PubMed Central

    Wang, Tracy H.; Kruggel, Frithjof; Rugg, Michael D.

    2009-01-01

    Functional neuroimaging studies have reported that the neural correlates of retrieval success (old>new effects) are larger and more widespread in older than in young adults. In the present study we investigated whether this pattern of age-related ‘over-recruitment’ continues into advanced age. Using functional magnetic resonance imaging (fMRI), retrieval-related activity from two groups (N = 18 per group) of older adults aged 84–96 yrs (‘old-old’) and 64–77 yrs (‘young-old’) was contrasted. Subjects studied a series of pictures, half of which were presented once, and half twice. At test, subjects indicated whether each presented picture was old or new. Recognition performance of the old-old subjects for twice-studied items was equivalent to that of the young-old subjects for once-studied items. Old>new effects common to the two groups were identified in several cortical regions, including medial and lateral parietal and prefrontal cortex. There were no regions where these effects were of greater magnitude in the old-old group, and thus no evidence of over-recruitment in this group relative to the young-old individuals. In one region of medial parietal cortex, effects were greater (and only significant) in the young-old group. The failure to find evidence of over-recruitment in the old-old subjects relative to the young-old group, despite their markedly poorer cognitive performance, suggests that age-related over-recruitment effects plateau in advanced age. The findings for the medial parietal cortex underscore the sensitivity of this cortical region to increasing age. PMID:19428399

  10. Novel approach for low-cost muzzle flash detection system

    NASA Astrophysics Data System (ADS)

    Voskoboinik, Asher

    2008-04-01

    A low-cost muzzle flash detection based on CMOS sensor technology is proposed. This low-cost technology makes it possible to detect various transient events with characteristic times between dozens of microseconds up to dozens of milliseconds while sophisticated algorithms successfully separate them from false alarms by utilizing differences in geometrical characteristics and/or temporal signatures. The proposed system consists of off-the-shelf smart CMOS cameras with built-in signal and image processing capabilities for pre-processing together with allocated memory for storing a buffer of images for further post-processing. Such a sensor does not require sending giant amounts of raw data to a real-time processing unit but provides all calculations in-situ where processing results are the output of the sensor. This patented CMOS muzzle flash detection concept exhibits high-performance detection capability with very low false-alarm rates. It was found that most false-alarms due to sun glints are from sources at distances of 500-700 meters from the sensor and can be distinguished by time examination techniques from muzzle flash signals. This will enable to eliminate up to 80% of falsealarms due to sun specular reflections in the battle field. Additional effort to distinguish sun glints from suspected muzzle flash signal is made by optimization of the spectral band in Near-IR region. The proposed system can be used for muzzle detection of small arms, missiles and rockets and other military applications.

  11. An energy-efficient SIMD DSP with multiple VLIW configurations and an advanced memory access unit for LTE-A modem LSIs

    NASA Astrophysics Data System (ADS)

    Tomono, Mitsuru; Ito, Makiko; Nomura, Yoshitaka; Mouri, Makoto; Hirose, Yoshio

    2015-12-01

    Energy efficiency is the most important factor in the design of wireless modem LSIs for mobile handset systems. We have developed an energy-efficient SIMD DSP for LTE-A modem LSIs. Our DSP has mainly two hardware features in order to reduce energy consumption. The first one is multiple VLIW configurations to minimize accesses to instruction memories. The second one is an advanced memory access unit to realize complex memory accesses required for wireless baseband processing. With these features, performance of our DSP is about 1.7 times faster than a base DSP on average for standard LTE-A Libraries. Our DSP achieves about 20% improvement in energy efficiency compared to a base DSP for LTE-A modem LSIs.

  12. Advanced Engine Cycles Analyzed for Turbofans With Variable-Area Fan Nozzles Actuated by a Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2002-01-01

    Advanced, large commercial turbofan engines using low-fan-pressure-ratio, very high bypass ratio thermodynamic cycles can offer significant fuel savings over engines currently in operation. Several technological challenges must be addressed, however, before these engines can be designed. To name a few, the high-diameter fans associated with these engines pose a significant packaging and aircraft installation challenge, and a large, heavy gearbox is often necessary to address the differences in ideal operating speeds between the fan and the low-pressure turbine. Also, the large nacelles contribute aerodynamic drag penalties and require long, heavy landing gear when mounted on conventional, low wing aircraft. Nevertheless, the reduced fuel consumption rates of these engines are a compelling economic incentive, and fans designed with low pressure ratios and low tip speeds offer attractive noise-reduction benefits. Another complication associated with low-pressure-ratio fans is their need for variable flow-path geometry. As the design fan pressure ratio is reduced below about 1.4, an operational disparity is set up in the fan between high and low flight speeds. In other words, between takeoff and cruise there is too large a swing in several key fan parameters-- such as speed, flow, and pressure--for a fan to accommodate. One solution to this problem is to make use of a variable-area fan nozzle (VAFN). However, conventional, hydraulically actuated variable nozzles have weight, cost, maintenance, and reliability issues that discourage their use with low-fan-pressure-ratio engine cycles. United Technologies Research, in cooperation with NASA, is developing a revolutionary, lightweight, and reliable shape memory alloy actuator system that can change the on-demand nozzle exit area by up to 20 percent. This "smart material" actuation technology, being studied under NASA's Ultra-Efficient Engine Technology (UEET) Program and Revolutionary Concepts in Aeronautics (Rev

  13. Flashing light in microalgae biotechnology.

    PubMed

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera.

  14. Flash floods warning technique based on wireless communication networks data

    NASA Astrophysics Data System (ADS)

    David, Noam; Alpert, Pinhas; Messer, Hagit

    2010-05-01

    Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.

  15. Flash sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  16. FLASH SPECTROSCOPY AND FLASH FLUORIMETRY IN PHOTOSYNTHETIC STUDIES

    DTIC Science & Technology

    A comparative study of the flash induced forma tion of a pigment , X, absorbing at 515 millimicron in different classes of algae was made. This...that it occurs as a non- photosynthetic inter mediate, specifically as a consequence of damag ing photo-oxidation processes was examined. The latter

  17. Hot Flashes amd Night Sweats (PDQ)

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Hot Flashes and Night Sweats (PDQ®)–Patient Version Overview ... quality of life in many patients with cancer. Hot flashes and night sweats may be side effects ...

  18. From Hot Flashes to Cool Insights: Menopause

    MedlinePlus

    ... page please turn JavaScript on. Feature: Menopause From Hot Flashes to Cool Insights: Menopause Winter 2017 Table ... experienced the menopausal transition. Researching "the menopause transition" Hot flashes, weight gain, night sweats, insomnia, and moodiness— ...

  19. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    NASA Astrophysics Data System (ADS)

    Wu, Yuanqing; Kowitz, Christoph; Sun, Shuyu; Salama, Amgad

    2015-03-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.

  20. Recent Advances in Understanding the Reminiscence Bump: The Importance of Cues in Guiding Recall from Autobiographical Memory.

    PubMed

    Koppel, Jonathan; Rubin, David C

    2016-04-01

    The reminiscence bump is the increased proportion of autobiographical memories from youth and early adulthood observed in adults over 40. It is one of the most robust findings in autobiographical memory research. Although described as a single period of increased memories, a recent meta-analysis which reported the beginning and ending ages of the bump from individual studies found that different classes of cues produce distinct bumps that vary in size and temporal location. The bump obtained in response to cue words is both smaller and located earlier in the lifespan than the bump obtained when important memories are requested. The bump obtained in response to odor cues is even earlier. This variation in the size and location of the reminiscence bump argues for theories based primarily on retrieval rather than encoding and retention, which most current theories stress. Furthermore, it points to the need to develop theories of autobiographical memory that account for this flexibility in the memories retrieved.

  1. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology

    PubMed Central

    Gong, Guohua; Wang, Xianhua; Wei-LaPierre, Lan; Cheng, Heping; Dirksen, Robert

    2016-01-01

    Abstract Significance: Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of “mitochondrial flash” activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. Recent Advances: The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. Critical Issues: We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. Future Directions: Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534–549. PMID:27245241

  2. Multi-stage flash degaser

    DOEpatents

    Rapier, P.M.

    1980-06-26

    A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

  3. Undergraduate Separations Utilizing Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Horowitz, G.

    2000-02-01

    This article describes the procedures used to carry out four flash chromatography experiments: the isolation of the carotenes, chlorophylls and xanthophylls from a spinach extract; the separation of ß-carotene from tetraphenyl cyclopentadienone; the isolation of (+) and (-) carvone from caraway and spearmint oil; and the purification of benzil from benzoin. Apparatus used is nonbreakable, easy to use, and inexpensive.

  4. Nonvolatile Memory Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  5. The Magnocellular visual pathway and the flash-lag illusion.

    PubMed

    Chappell, Mark; Mullen, Kathy T

    2010-09-27

    Determining how the visual system locates moving stimuli continues to be an experimental and theoretical challenge. By making a moving visual stimulus equiluminant with its background, and immersing it in luminance noise, the spatial lead it normal enjoys over a flashed stimulus (the flash-lag illusion) was completely eliminated (the illusion was actually reversed for 6 out of 11 participants). As this manipulation is typically used to reduce Magnocellular (M) visual pathway processing, this is strong evidence that processing in this pathway advances the moving stimulus' perceived position. However, when the flashed stimulus was also made equiluminant in luminance noise, the illusion reappeared, indicating that M pathway processing contributed to its perception too. The presence of the illusion when both stimuli were equiluminant in luminance noise indicates that the illusion can be generated in the absence of M cell activation. To explicate the result with moving stimuli, we displayed two adjacent moving stimuli, one luminance-modulated, and the other equiluminant in noise. The latter was perceived to significantly lag the former (an 'M-P-Hess' illusion), and 39% of the difference in flash-lag illusions, with comparable moving stimulus contrasts, could be accounted for by this illusion.

  6. Review of Emerging New Solid-State Non-Volatile Memories

    NASA Astrophysics Data System (ADS)

    Fujisaki, Yoshihisa

    2013-04-01

    The integration limit of flash memories is approaching, and many new types of memory to replace conventional flash memories have been proposed. Unlike flash memories, new nonvolatile memories do not require storage of electric charges. The possibility of phase-change random-access memories (PCRAMs) or resistive-change RAMs (ReRAMs) replacing ultrahigh-density NAND flash memories has been investigated; however, many issues remain to be overcome, making the replacement difficult. Nonetheless, ferroelectric RAMs (FeRAMs) and magnetoresistive RAMs (MRAMs) are gradually penetrating into fields where the shortcomings of flash memories, such as high operating voltage, slow rewriting speed, and limited number of rewrites, make their use inconvenient. For instance, FeRAMs are widely used in ICs that require low power consumption such as smart cards and wireless tags. MRAMs are used in many kinds of controllers in industrial equipment that require high speed and unlimited rewrite operations. For successful application of new non-volatile semiconductor memories, such memories must be practically utilized in new fields in which flash memories are not applicable, and their technologies must be further developed.

  7. Advanced Archival Memory

    DTIC Science & Technology

    1977-07-01

    I-—- •- - - - pii.. Jim »», ii t<Km<i<itmmmmmi \\i • imirmmmmmimmw I p.II .1 p v «.„..,„., A8A lOOkV As I014 <I00> 650...calculation techniques for boton implanted in silicon, for example, the curves of Figure A-ll are generated. -271

  8. Multi-stage flash degaser

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

  9. Firefly flashing under strong static magnetic field.

    PubMed

    Barua, Anurup Gohain; Iwasaka, Masakazu; Miyashita, Yuito; Kurita, Satoru; Owada, Norio

    2012-02-01

    Firefly flashing has been the subject of numerous scientific investigations. Here we present in vivo flashes from male specimens of three species of fireflies-two Japanese species Luciola cruciata, Luciola lateralis and one Indian species Luciola praeusta-positioned under a superconducting magnet. When the OFF state of the firefly becomes long after flashing in an immobile state under the strong static magnetic field of strength 10 Tesla for a long time, which varies widely from species to species as well as from specimen to specimen, the effect of the field becomes noticeable. The flashes in general are more rapid, and occasionally overlap to produce broad compound flashes. We present the broadest flashes recorded to date, and propose that the strong static magnetic field affects the neural activities of fireflies, especially those in the spent up or 'exhausted' condition.

  10. Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1

    ScienceCinema

    None

    2016-07-12

    Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which is collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago)

 This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).

  11. Radiation Issues and Applications of Floating Gate Memories

    NASA Technical Reports Server (NTRS)

    Scheick, L. Z.; Nguyen, D. N.

    2000-01-01

    The radiation effects that affect various systems that comprise floating gate memories are presented. The wear-out degradation results of unirradiated flash memories are compared to irradiated flash memories. The procedure analyzes the failure to write and erase caused by wear-out and degradation of internal charge pump circuits. A method is described for characterizing the radiation effects of the floating gate itself. The rate dependence, stopping power dependence, SEU susceptibility and applications of floating gate in radiation environment are presented. The ramifications for dosimetry and cell failure are discussed as well as for the long term use aspects of non-volatile memories.

  12. Changes of flash droughts over China

    NASA Astrophysics Data System (ADS)

    Wang, Linying; Yuan, Xing

    2016-04-01

    The rapidly evolving drought events, which are recently termed as "flash droughts", can seriously affect vegetation and water supply due to extreme heat, low soil moisture and high evapotranspiration (ET). The changes of flash droughts are not only caused by natural climate variability similar to the traditional drought events, but also associated with global warming since abnormally high temperature is an important criterion for the triggering of flash droughts. Here, we have assessed the long-term trend and variability of flash droughts over China from 1979 to 2010, based on over two thousand meteorological observations of surface air temperature and three global reanalysis products for the soil moisture and ET estimations. Our results suggest that the flash droughts are most likely to occur in humid and semihumid regions, such as southern and northeastern China. Basically, there are increasing trends for flash droughts over different regions in China mainly due to the temperature increases. The increasing trends of flash droughts do not decline during the second half of the study period, but the warming hiatus does exist over many regions of China. The underlying mechanisms are being attributed by investigating the changes in temperature, soil moisture and ET over different parts of China. This study uniquely demonstrates the favorable regions for the occurrence of flash droughts over China, and is targeted at attributing the changes of flash droughts within the context of the understanding of the terrestrial water and energy cycle in a changing climate.

  13. Dry-Column Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Shusterman, Alan J.; McDougal, Patrick G.; Glasfeld, Arthur

    1997-10-01

    Dry-column flash chromatography is a safe, powerful, yet easily learned preparative chromatography technique. It has proven useful in research, and an adaptation of the technique for use in large teaching laboratories (general chemistry, organic chemistry) is described here. The student version is similar to vacuum filtration, uses the same compact, readily available glassware, and inexpensive and safe solvents (ethyl acetate and hexane) and adsorbent (Merck grade 60 silica gel). The technique is sufficiently simple and powerful that a beginning student can successfully resolve diastereomers on sample scales ranging from 100 mg to >1 g.

  14. From Secure Memories to Smart Card Security

    NASA Astrophysics Data System (ADS)

    Handschuh, Helena; Trichina, Elena

    Non-volatile memory is essential in most embedded security applications. It will store the key and other sensitive materials for cryptographic and security applications. In this chapter, first an overview is given of current flash memory architectures. Next the standard security features which form the basis of so-called secure memories are described in more detail. Smart cards are a typical embedded application that is very vulnerable to attacks and that at the same time has a high need for secure non-volatile memory. In the next part of this chapter, the secure memories of so-called flash-based high-density smart cards are described. It is followed by a detailed analysis of what the new security challenges for such objects are.

  15. Cancer treatment: dealing with hot flashes and night sweats

    MedlinePlus

    ... ency/patientinstructions/000826.htm Cancer treatment: dealing with hot flashes and night sweats To use the sharing ... JavaScript. Certain types of cancer treatments can cause hot flashes and night sweats. Hot flashes are when ...

  16. Au Contraire: Gifted in a Flash (Mob)

    ERIC Educational Resources Information Center

    Delisle, James R.

    2012-01-01

    A "flash mob" is defined by Wikipedia as "a large group of people who assemble suddenly in a public place, perform an unusual and pointless act for a brief time, then disperse." Fueled by social media and Smartphones, flash mobs have been used, primarily, as entertaining diversions by addicted techies with (apparently) tons of time on their hands.…

  17. Organic flash cycles for efficient power production

    SciTech Connect

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  18. The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems.

    PubMed

    Shomrat, T; Turchetti-Maia, A L; Stern-Mentch, N; Basil, J A; Hochner, B

    2015-09-01

    In this review we show that the cephalopod vertical lobe (VL) provides a good system for assessing the level of evolutionary convergence of the function and organization of neuronal circuitry for mediating learning and memory in animals with complex behavior. The pioneering work of JZ Young described the morphological convergence of the VL with the mammalian hippocampus, cerebellum and the insect mushroom body. Studies in octopus and cuttlefish VL networks suggest evolutionary convergence into a universal organization of connectivity as a divergence-convergence ('fan-out fan-in') network with activity-dependent long-term plasticity mechanisms. Yet, these studies also show that the properties of the neurons, neurotransmitters, neuromodulators and mechanisms of long-term potentiation (LTP) induction and maintenance are highly variable among different species. This suggests that complex networks may have evolved independently multiple times and that even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them.

  19. Statistical Evolution of the Lightning Flash

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.

    2012-12-01

    Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest

  20. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  1. Hartmann wavefront measurements at FLASH

    NASA Astrophysics Data System (ADS)

    Keitel, Barbara; Flöter, Bernhard; Kreis, Svea; Kuhlmann, Marion; Mann, Klaus; Mey, Tobias; Plönjes, Elke; Schäfer, Bernd; Tiedtke, Kai

    2013-05-01

    We report on online measurements of photon beam parameters during mirror alignment in the soft x-ray spectral region of FLASH, the free-electron laser in Hamburg. A compact Hartmann sensor operating in the wavelength range from 6 to 35nm was used to determine the wavefront quality of individual free-electron laser (FEL) pulses during the alignment procedure as well as aberrations. Beam characterization and alignment of beamline BL3 was performed with λ13.5??/ 116 accuracy for wavefront rms (W???). Second moment beam parameters are computed using a spherical reference wavefront generated by a 5μm pinhole. The Hartmann sensor was used for alignment of the ellipsoidal focusing mirror of beamline BL3, resulting in a reduction of (W???;) by 33%.

  2. [Nikola Tesla: flashes of inspiration].

    PubMed

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  3. Flash Droughts over the United States

    NASA Astrophysics Data System (ADS)

    Lettenmaier, D. P.; Mo, K. C.

    2015-12-01

    Flash drought refers to relatively short periods of warm surface temperature and anomalously low and rapid decreasing soil moisture (SM). Based on the physical mechanisms associated with flash droughts, we classify them into two categories: heat wave and precipitation (P) deficit flash droughts. We analyze the flash droughts based on the observations and the land surface model reconstructed soil moisture (SM) and evaporation (ET) from 1916 to 2013. Heat wave flash droughts are most likely to occur over the Midwest and the Pacific Northwest during the growing season. They do not occur often. The maximum frequency of occurrence is only 4%. Heat wave flash drought is temperature driven. High temperatures increase the transpiration and drive down soil moisture and cause drought to occur. The P deficit flash droughts are more common than the heat wave droughts and the maximum frequency of occurrence is about 8- 10 %. They are most likely to occur over the southern United States with a maximum over the Southern Plains. They are P driven. Heat waves are caused by P deficits. P deficits drive down SM and cause ET to decreases and temperature to increase.

  4. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  5. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  6. SONOS Nonvolatile Memory Cell Programming Characteristics

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory is gaining favor over conventional EEPROM FLASH memory technology. This paper characterizes the SONOS write operation using a nonquasi-static MOSFET model. This includes floating gate charge and voltage characteristics as well as tunneling current, voltage threshold and drain current characterization. The characterization of the SONOS memory cell predicted by the model closely agrees with experimental data obtained from actual SONOS memory cells. The tunnel current, drain current, threshold voltage and read drain current all closely agreed with empirical data.

  7. Flash Flooding Events in South Central Texas.

    DTIC Science & Technology

    1982-08-01

    I AD-ALI 977 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFa OH F/G 4/2 FLASH FLOODING EVENTS IN SOUTH CENTRAL TEXAS. CU) N AU 82 T W UTLEY UNCLASSIFIED...COVERED Flash Flooding Events in South Central Texas THESIS/ESeAMAN S. PERFORMING ORG. REPORI NUMBER 7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(s) Tom...and to flash flooding events which occurred in 1981 they proved to be excellent predi’ctors. When compared to the 1981 National Weather Service

  8. Summary Report for ASC L2 Milestone #4782: Assess Newly Emerging Programming and Memory Models for Advanced Architectures on Integrated Codes

    SciTech Connect

    Neely, J. R.; Hornung, R.; Black, A.; Robinson, P.

    2014-09-29

    This document serves as a detailed companion to the powerpoint slides presented as part of the ASC L2 milestone review for Integrated Codes milestone #4782 titled “Assess Newly Emerging Programming and Memory Models for Advanced Architectures on Integrated Codes”, due on 9/30/2014, and presented for formal program review on 9/12/2014. The program review committee is represented by Mike Zika (A Program Project Lead for Kull), Brian Pudliner (B Program Project Lead for Ares), Scott Futral (DEG Group Lead in LC), and Mike Glass (Sierra Project Lead at Sandia). This document, along with the presentation materials, and a letter of completion signed by the review committee will act as proof of completion for this milestone.

  9. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Flashing light units. 234.217 Section 234.217..., Inspection, and Testing Maintenance Standards § 234.217 Flashing light units. (a) Each flashing light unit.... (b) Each flashing light unit shall be maintained to prevent dust and moisture from entering...

  10. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flashing light units. 234.217 Section 234.217..., Inspection, and Testing Maintenance Standards § 234.217 Flashing light units. (a) Each flashing light unit.... (b) Each flashing light unit shall be maintained to prevent dust and moisture from entering...

  11. Light flash phenomena induced by HzE particles

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Pease, V. P.

    1980-01-01

    Astronauts and Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes are closed and adapted to darkness. These phenomena have been collectively labelled as light flashes. Visual phenomena which are similar in appearance to those observed in space have been demonstrated at the number of accelerator facilities by expressing the eyes of human subjects to beams of various types of radiation. In some laboratory experiments Cerenkov radiation was found to be the basis for the flashes observed while in other experiments Cerenkov radiation could apparently be ruled out. Experiments that differentiate between Cerenkov radiation and other possible mechanisms for inducing visual phenomena was then compared. The phenomena obtained in the presence and absence of Cerenkov radiation were designed and conducted. A new mechanism proposed to explain the visual phenomena observed by Skylab astronauts as they passed through the South Atlantic Anomaly, namely nuclear interactions in and near the sensitive layer of the retina, is covered. Also some studies to search for similar transient effects of space radiation on sensors and microcomputer memories are described.

  12. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    NASA Technical Reports Server (NTRS)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  13. The flash-lag effect and the flash-drag effect in the same display.

    PubMed

    Murai, Yuki; Murakami, Ikuya

    2016-09-01

    Visual motion distorts the perceived position of a stimulus. In the flash-drag effect (FDE), the perceived position of a flash appears to be shifted in the direction of nearby motion. In the flash-lag effect (FLE), a flash adjacent to a moving stimulus appears to lag behind. The FLE has been explained by several models, including the differential latency hypothesis, that a moving stimulus has a shorter processing latency than a flash does. The FDE even occurs when the flash is presented earlier than the moving stimulus, and it has been discussed whether this temporal property can be explained by the differential latency model. In the present study, we simultaneously quantified the FDE and FLE using the random jump technique (Murakami, 2001b) and compared their temporal properties. While the positional offset between a randomly jumping stimulus and a flashed stimulus determined the FLE, a drifting grating appeared next to the flash at various stimulus-onset asynchronies to induce the FDE. The grating presented up to 200 ms after the flash onset induced the FDE, whose temporal tuning was explained by a simple convolution model incorporating stochastic fluctuations of differential latency estimated from the FLE data and a transient-sustained temporal profile of motion signals. Thus, a common temporal mechanism to compute the stimulus position in reference to surrounding stimuli governs both the FDE and the FLE.

  14. A Simple Lightning Flash Polarity Discriminating Counter.

    ERIC Educational Resources Information Center

    Devan, K. R. S.; Jayaratne, E. R.

    1990-01-01

    Described are the apparatus and procedures needed for a demonstration of a determination of the polarity of charges carried by individual ground flashes of lightning. Discussed are materials, apparatus construction, and experimental results. (CW)

  15. An Inexpensive, Foolproof Apparatus for Flash Chromatography.

    ERIC Educational Resources Information Center

    Thompson, Wayne J.; Hanson, Bryan A.

    1984-01-01

    Describes a new, modified "flash chromatography" apparatus which overcomes difficulties found in conventional apparatus. For example, an expensive teflon pressure valve is not necessary in the modified version. The apparatus is suitable as an instructional tool in undergraduate courses. (JN)

  16. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  17. Flash Flood Trail near Parras, Coahuila, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Evidence of a recent flash flood can be seen in the form of light brown sediment that flowed down gullies and mountain sides forming ponds of debris over agricultural areas in the broad valley near the town of Parras (26.5N, 102.5W). This part of Mexico has extensive vineyards, orchards and both dry land and irrigated agriculture. Based on the photo, it appears that flash flood waters damaged some 300 square miles of property in this area alone.

  18. Hydrodynamic simulations of the core helium flash

    NASA Astrophysics Data System (ADS)

    Mocák, Miroslav; Müller, Ewald; Weiss, Achim; Kifonidis, Konstantinos

    2008-10-01

    We desribe and discuss hydrodynamic simulations of the core helium flash using an initial model of a 1.25 M⊙ star with a metallicity of 0.02 near at its peak. Past research concerned with the dynamics of the core helium flash is inconclusive. Its results range from a confirmation of the standard picture, where the star remains in hydrostatic equilibrium during the flash (Deupree 1996), to a disruption or a significant mass loss of the star (Edwards 1969; Cole & Deupree 1980). However, the most recent multidimensional hydrodynamic study (Dearborn et al. 2006) suggests a quiescent behavior of the core helium flash and seems to rule out an explosive scenario. Here we present partial results of a new comprehensive study of the core helium flash, which seem to confirm this qualitative behavior and give a better insight into operation of the convection zone powered by helium burning during the flash. The hydrodynamic evolution is followed on a computational grid in spherical coordinates using our new version of the multi-dimensional hydrodynamic code HERAKLES, which is based on a direct Eulerian implementation of the piecewise parabolic method.

  19. Simulation of a supercellular storm using a three-dimensional mesoscale model with an explicit lightning flash scheme

    NASA Astrophysics Data System (ADS)

    Barthe, Christelle; Pinty, Jean-Pierre

    2007-03-01

    A complete lightning flash scheme is implemented in the three-dimensional (3-D) nonhydrostatic mesoscale model Méso-NH of the French community. The scheme, which is part of the electrical scheme, follows a new approach with two steps. First, lightning flashes are modeled as bidirectional leaders to mimic the vertical propagation of the initial discharge channels along the electric field. Then, a probabilistic branching algorithm is adapted from the dielectric breakdown concept to reinforce the flash propagation toward distant regions of high charge density but immersed in a weak electric field. This results in a high increase of the total length of the lightning flash channel and also in a better capture of the morphology of intracloud lightning flashes. The electrification and lightning schemes are tested for an ideal case of a supercellular storm. The model succeeds in reproducing the general features of a storm and the electric charge cycle. Sensitivity analyses show that the implementation of a branching stage is necessary and efficient enough to relax the growth of the electric field. The intracloud discharges generated by the model look realistic with a two-layer horizontal structure extending over tens of kilometers from the triggering area. The lightning flash length and the quantity of charge neutralized are ten times more important when the branching algorithm is taken into account. The main conclusion drawn from this study is the feasibility and the benefit of an advanced treatment of lightning flashes in 3-D numerical simulations with an electrification scheme.

  20. Analysis of Flash Lidar Field Test Data for Safe Lunar Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Keim, Jason A.; Ivanov, Tonislav

    2010-01-01

    In May 2008, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project conducted a helicopter field test of a commercial flash lidar to assess its applicability to safe lunar landing. The helicopter flew several flights, which covered a variety of slant ranges and viewing angles, over man-made and natural lunar-like terrains. The collected data were analyzed to assess the performance of the sensor and the performance of two algorithms: Hazard Detection (HD) and Hazard Relative Navigation (HRN). The collected flash lidar data were also used to validate a high fidelity flash lidar software model used in ALHAT Monte Carlo simulations. The field test results, combined with prior simulation results, advanced the technology readiness level of the HD algorithm to TRL 5 and the HRN algorithm to TRL 4.

  1. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  2. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  3. An "anomalous" triggered lightning flash in Florida

    NASA Astrophysics Data System (ADS)

    Gamerota, W. R.; Uman, M. A.; Hill, J. D.; Pilkey, J.; Ngin, T.; Jordan, D. M.; Mata, C. T.

    2013-04-01

    An "anomalous" rocket-and-wire triggered lightning flash, a flash whose leaders do not follow the triggering wire remnants to ground, is characterized via high-speed video images at 10 and 300 kilo-frames per second, still camera images, 66-72 MHz source locations from a Lightning Mapping Array, channel-base current, and electric field and electric field derivative (dE/dt) measurements. This is the first anomalous flash of about 410 classically triggered flashes in north-central Florida. The flash began with an upward positively charged leader (UPL) initiating from the tip of the upward-moving triggering wire about 280 m above ground level. All but the bottom 17 m of wire exploded (became luminous) 37.6 ms after UPL initiation. A stepped leader initiated, likely from the top of the wire remnants, 282 m above ground level about 1.3 ms after the wire explosion and propagated downward for 2.1 ms, attaching to the top of a grounded utility pole 117 m southwest of the launching facility. The line charge density on the stepped leader is estimated to be of the order of 10-3 C m-1. Contrary to previously reported "anomalous" flashes in France and New Mexico (roughly 16% and 31%, respectively, of their triggered flashes), in our event, there was not a tens of milliseconds current-zero period preceding the stepped leader, there was no observed downward dart leader in the UPL channel prior to the stepped leader to ground, and there was a failed attempt to reestablish current in the exploded-wire channel between the UPL and ground.

  4. Memory B cells.

    PubMed

    Kurosaki, Tomohiro; Kometani, Kohei; Ise, Wataru

    2015-03-01

    The immune system can remember a previously experienced pathogen and can evoke an enhanced response to reinfection that depends on memory lymphocyte populations. Recent advances in tracking antigen-experienced memory B cells have revealed the existence of distinct classes of cells that have considerable functional differences. Some of these differences seem to be determined by the stimulation history during memory cell formation. To induce rapid recall antibody responses, the contributions of other types of cells, such as memory T follicular helper cells, have also now begun to be appreciated. In this Review, we discuss these and other recent advances in our understanding of memory B cells, focusing on the underlying mechanisms that are required for rapid and effective recall antibody responses.

  5. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  6. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  7. Computational Models of Human Performance: Validation of Memory and Procedural Representation in Advanced Air/Ground Simulation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Labacqz, J. Victor (Technical Monitor)

    1997-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) under joint U.S. Army and NASA cooperative is intended to assist designers of complex human/automation systems in successfully incorporating human performance capabilities and limitations into decision and action support systems. MIDAS is a computational representation of multiple human operators, selected perceptual, cognitive, and physical functions of those operators, and the physical/functional representation of the equipment with which they operate. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. We have extended the human performance models to include representation of both human operators and intelligent aiding systems in flight management, and air traffic service. The focus of this development is to predict human performance in response to aiding system developed to identify aircraft conflict and to assist in the shared authority for resolution. The demands of this application requires representation of many intelligent agents sharing world-models, coordinating action/intention, and cooperative scheduling of goals and action in an somewhat unpredictable world of operations. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper, we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication

  8. General review of flashing jet studies.

    PubMed

    Polanco, Geanette; Holdø, Arne Erik; Munday, George

    2010-01-15

    The major concern on the management of superheated liquids, in industrial environments, is the large potential hazards involved in cases of any accidental release. There is a possibility that a violent phase change could take place inside the fluid released generating a flashing jet. This violent phase change might produce catastrophic consequences, such as explosions, fires or toxic exposure, in the installations and in the surroundings. The knowledge and understanding of the mechanisms involved in those releases become an important issue in the prevention of these consequences and the minimization of their impact. This work presents a comprehensive review of information about flashing processes. The review begins with a description of the single phase jet followed by a description of the two-phase flashing jet. The concepts and implications of the thermodynamic and mechanical effects on the behaviour of the jets are considered at the beginning of the review. Following the review is devoted to the classification of the different study approaches used to understand flashing processes in the past, highlighting various critical parameters on the behaviour and the hazard consequences of flashing jets. The review also contains an extensive compilation of experimental, theoretical and numerical data relating to these phenomena, which includes information on the distinct characteristics of the jet, since type of jet, velocity distribution, expansion angle and mass phase change all require individual estimation.

  9. Firefly light flashing: oxygen supply mechanism.

    PubMed

    Tsai, Yueh-Lin; Li, Chia-Wei; Hong, Tzay-Ming; Ho, Jen-Zon; Yang, En-Cheng; Wu, Wen-Yen; Margaritondo, G; Hsu, Su-Ting; Ong, Edwin B L; Hwu, Y

    2014-12-19

    Firefly luminescence is an intriguing phenomenon with potential technological applications, whose biochemistry background was only recently established. The physics side of this phenomenon, however, was still unclear, specifically as far as the oxygen supply mechanism for light flashing is concerned. This uncertainty is due to the complex microscopic structure of the tracheal system: without fully knowing its geometry, one cannot reliably test the proposed mechanisms. We solved this problem using synchrotron phase contrast microtomography and transmission x-ray microscopy, finding that the oxygen consumption corresponding to mitochondria functions exceeds the maximum rate of oxygen diffusion from the tracheal system to the photocytes. Furthermore, the flashing mechanism uses a large portion of this maximum rate. Thus, the flashing control requires passivation of the mitochondria functions, e.g., by nitric oxide, and switching of the oxygen supply from them to photoluminescence.

  10. Digital Speckle X-Ray Flash Photography

    NASA Astrophysics Data System (ADS)

    Grantham, S. G.; Proud, W. G.

    2002-07-01

    The new technique of digital speckle X-ray flash photography (DSXFP), which has been successfully applied to polyester and cement specimens, is being further developed and used to study materials in ballistic situations in a way not previously possible. The technique involves seeding the specimen with a lead layer and then taking flash X-ray images before and during an impact event. Digital cross-correlation can then be used to make measurements of the internal displacements occurring throughout the specimen. Using a stereoscopic geometry the out of plane displacements can also be determined and a full 3-dimensional displacement map constructed. In this paper these two powerful and complementary techniques of flash X-rays and DSXFP are used to study the ballistic response of a borosilicate sample to produce information that other techniques are unable to provide.

  11. Orbital debris characterization with impact flash signatures

    SciTech Connect

    Ang, J.A.

    1991-12-31

    Orbital debris is recognized as a serious and growing threat to man`s utilization and exploration of space. While some information is available on the material composition of orbital debris, most measurements of orbital debris size and velocity distributions do not distinguish material type. The analysis and understanding of impact flash signatures can lead to an in-situ detector system with the ability to determine size and impact velocity distribution for orbital debris segregated by material type. This detector concept is based on an understanding of how material shock properties govern the flash signature arising from the impact of a piece of orbital debris (impactor) against a witness plate (target). Analytical results are presented that identify the most promising witness plate materials with respect to producing impact flash signatures that characterize the orbital debris material. 7 refs.

  12. Orbital debris characterization with impact flash signatures

    SciTech Connect

    Ang, J.A.

    1991-01-01

    Orbital debris is recognized as a serious and growing threat to man's utilization and exploration of space. While some information is available on the material composition of orbital debris, most measurements of orbital debris size and velocity distributions do not distinguish material type. The analysis and understanding of impact flash signatures can lead to an in-situ detector system with the ability to determine size and impact velocity distribution for orbital debris segregated by material type. This detector concept is based on an understanding of how material shock properties govern the flash signature arising from the impact of a piece of orbital debris (impactor) against a witness plate (target). Analytical results are presented that identify the most promising witness plate materials with respect to producing impact flash signatures that characterize the orbital debris material. 7 refs.

  13. Light-Flash Wind-Direction Indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.

    1993-01-01

    Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.

  14. Process for energy reduction with flash fusing

    SciTech Connect

    Berkes, J.S.

    1987-10-06

    This patent describes a process for affecting a reduction in the energy needed for accomplishing the flash fusing of a developed image which comprises (1) providing a toner composition with resin particles, pigment articles, and wax. The wax possesses a lower melting temperature than the resin particles and is selected from the group consisting of polyethylene and polypropylene with a molecular weight of less than about 6,000; (2) introducing the aforementioned toner composition into a xerographic imaging apparatus having incorporated therein a flash fusing device; (3) generating an electrostatic latent image in the imaging apparatus, and subsequently developing this image with the toner composition; (4) transferring the image to a supporting substrate; and (5) permanently attaching the image to the substrate with energy emitted from a flash fusing device, and wherein there is formed between the supporting substrate and the toner composition during fusing a wax layer.

  15. Mental models of flash floods and landslides.

    PubMed

    Wagner, Klaus

    2007-06-01

    Perceptions of flash floods and landslides were analyzed in four communities of the Bavarian Alps using the mental model approach. Thirty-eight qualitative interviews, two telephone surveys with 600 respondents, and two onsite interviews (74/95 respondents) were conducted. Mental models concerning flash floods are much better developed than those for landslides because the key physical processes for flash floods are easier for the general public to recognize and understand. Mental models are influenced by the local conditions. People who have a better knowledge about the hazards are those who use many different sources to inform themselves, express fear about natural hazards, or have previous experience with hazards. Conclusions for how to improve information for the general public are discussed.

  16. Non-volatile memory for checkpoint storage

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Cipolla, Thomas M.; Coteus, Paul W.; Gara, Alan; Heidelberger, Philip; Jeanson, Mark J.; Kopcsay, Gerard V.; Ohmacht, Martin; Takken, Todd E.

    2014-07-22

    A system, method and computer program product for supporting system initiated checkpoints in high performance parallel computing systems and storing of checkpoint data to a non-volatile memory storage device. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity. In one embodiment, the non-volatile memory is a pluggable flash memory card.

  17. Radiation Test Challenges for Scaled Commerical Memories

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Ladbury, Ray L.; Cohn, Lewis M.; Oldham, Timothy

    2007-01-01

    As sub-100nm CMOS technologies gather interest, the radiation effects performance of these technologies provide a significant challenge. In this talk, we shall discuss the radiation testing challenges as related to commercial memory devices. The focus will be on complex test and failure modes emerging in state-of-the-art Flash non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs), which are volatile. Due to their very high bit density, these device types are highly desirable for use in the natural space environment. In this presentation, we shall discuss these devices with emphasis on considerations for test and qualification methods required.

  18. Surface XPS characterization of NiTi shape memory alloy after advanced oxidation processes in UV/H 2O 2 photocatalytic system

    NASA Astrophysics Data System (ADS)

    Wang, R. M.; Chu, C. L.; Hu, T.; Dong, Y. S.; Guo, C.; Sheng, X. B.; Lin, P. H.; Chung, C. Y.; Chu, P. K.

    2007-08-01

    Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H 2O 2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H 2O 2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO 2 phase, some titanium suboxides (TiO, Ti 2O 3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH - are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H 2O 2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.

  19. Photoinjector drive laser of the FLASH FEL.

    PubMed

    Will, Ingo; Templin, Horst I; Schreiber, Siegfried; Sandner, Wolfgang

    2011-11-21

    The upgraded photoinjector drive laser of the free-electron laser facility FLASH at DESY Hamburg is described in this paper. This laser produces trains of 800 and 2400 ultraviolet picosecond pulses at 1 MHz and 3 MHz repetition rate in the trains, respectively. The amplifying elements of the system are Nd:YLF-rods, which are pumped by fiber-coupled semiconductor diodes. Compared to the flashlamp-pumped photocathode laser previously used at FLASH, the new diode-pumped laser features a better reliability and a significantly improved stability of its pulse parameters.

  20. Early Onset Hot Flashes May Signal Higher Heart Risks

    MedlinePlus

    ... medlineplus.gov/news/fullstory_164627.html Early Onset Hot Flashes May Signal Higher Heart Risks Study found ... 13, 2017 THURSDAY, April 13, 2017 (HealthDay News) -- Hot flashes may be more than a troublesome nuisance ...

  1. Memorial symptom assessment scale.

    PubMed

    Chang, Victor T; Hwang, Shirley S; Thaler, Howard T; Kasimis, Basil S; Portenoy, Russell K

    2004-04-01

    Patients with advanced illnesses often have multiple symptoms. As interest in palliative care and interventions for symptom control increase, the ability to assess multiple symptoms has become more important. A number of instruments have been developed to meet this need in cancer patients. This article reviews the development and applications of a multidimensional instrument, the Memorial Symptom Assessment Scale. The Memorial Symptom Assessment Scale has 32 symptoms and three dimensions of frequency, severity, and distress. Shorter versions - The Memorial Symptom Assessment Scale Short Form (32 symptoms with one dimension) and the Condensed Memorial Symptom Assessment Scale (14 symptoms with one dimension), and a version for children aged 7-12 years, have also been developed. A distinctive feature is the summary subscales for physical distress, psychological distress, and The Global Distress Index. The Memorial Symptom Assessment Scale has proven useful in description of symptom epidemiology, the role of symptoms in pain, fatigue, and spirituality; as a predictor of survival, and in proxy assessments of pain. The Memorial Symptom Assessment Scale has been used in studies of cancer and AIDS patients, and patients with advanced medical illnesses. Possible future roles of instruments such as the Memorial Symptom Assessment Scale include use in clinical trials, for pharmacoeconomic analyses, definition of symptom clusters and symptom burden, the development of symptom outcome measures, symptom monitoring, and improving care for patients. Continued research is needed for the versions of the Memorial Symptom Assessment Scale and other symptom instruments in different populations and applications.

  2. Physical principles and current status of emerging non-volatile solid state memories

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yang, C.-H.; Wen, J.

    2015-07-01

    Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for

  3. Modular, Microprocessor-Controlled Flash Lighting System

    NASA Technical Reports Server (NTRS)

    Kiefer, Dwayne; Gray, Elizabeth; Skupinski, Robert; Stachowicz, Arthur; Birchenough, William

    2006-01-01

    A microprocessor-controlled lighting system generates brief, precisely timed, high-intensity flashes of light for scientific imaging at frame rates up to about 1 kHz. The system includes an array of light-emitting diodes (LEDs) that are driven in synchronism with an externally generated timing signal (for example, a timing signal generated by a video camera). The light output can be varied in peak intensity, pulse duration, pulse delay, and pulse rate, all depending on the timing signal and associated externally generated control signals. The array of LEDs comprises as many as 16 LED panels that can be attached together. Each LED panel is a module consisting of a rectangular subarray of 10 by 20 LEDs of advanced design on a printed-circuit board in a mounting frame with a power/control connector. The LED panels are controlled by an LED control module that contains an AC-to-DC power supply, a control board, and 8 LED-panel driver boards. In prior LED panels, the LEDs are packaged at less than maximum areal densities in bulky metal housings that reduce effective active areas. In contrast, in the present LED panels, the LEDs are packed at maximum areal density so as to afford 100-percent active area and so that when panels are joined side by side to form the array, there are no visible seams between them and the proportion of active area is still 100 percent. Each panel produces an illuminance of .5 x 10( exp 4) lux at a distance of 5.8 in. (approx.1.6 cm). The LEDs are driven according to a pulse-width-modulation control scheme that makes it safe to drive the LEDs beyond their rated steady-state currents in order to generate additional light during short periods. The drive current and the pulse-width modulation for each LED panel can be controlled independently of those of the other 15 panels. The maximum allowable duration of each pulse of drive current is a function of the amount of overdrive, the total time to be spent in overdrive operation, and the limitations

  4. Photorealistic rendering application to the design of LED flash lens

    NASA Astrophysics Data System (ADS)

    Chern, Jyh-Long

    2012-10-01

    LED flash module becomes popular in current mobile communication devices, such as for the smart phones and tablet. As a lighting apparatus for image taking, photo rendering performance is crucial. We explore the LED flash lens design with a stress of photorealistic rendering application toward a high-performance LED flash illumination.

  5. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Flashing light units. 234.217 Section 234.217... light units. (a) Each flashing light unit shall be properly positioned and aligned and shall be visible to a highway user approaching the crossing. (b) Each flashing light unit shall be maintained...

  6. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Flashing light units. 234.217 Section 234.217... light units. (a) Each flashing light unit shall be properly positioned and aligned and shall be visible to a highway user approaching the crossing. (b) Each flashing light unit shall be maintained...

  7. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Flashing light units. 234.217 Section 234.217... light units. (a) Each flashing light unit shall be properly positioned and aligned and shall be visible to a highway user approaching the crossing. (b) Each flashing light unit shall be maintained...

  8. Flash Cards and Animation Software for Education.

    ERIC Educational Resources Information Center

    Byers, John A.

    1999-01-01

    Describes how a software program for DOS/Windows manages a collection of pictures such as photographic slides, overheads, or computer images in one or more databases. Explains how it transforms image files to raw binary files that can then be displayed like flash cards, or as an animated series of images. (Author/LRW)

  9. ESCITALOPRAM TREATMENT OF MENOPAUSAL HOT FLASHES

    PubMed Central

    Freedman, Robert R.; Kruger, Michael L.; Tancer, Manuel E.

    2011-01-01

    Objective To determine the effects of 10 mg and 20 mg/day of escitalopram on objectively-recorded hot flashes and on the rectal temperature threshold for sweating. Method Two studies were performed: 16 women received 10 mg/day and 26 women received 20 mg/day escitalopram for eight weeks. They were randomly assigned in equal numbers to receive active drug or placebo in double-blind fashion. Hot flash frequency was measured with an ambulatory recorder during the first three weeks and during the eighth week of the study. The rectal temperature threshold for sweating was measured during the first and eighth weeks of the study using published methods. Results In the first study, there were no significant effects whatsoever for any measure. In the second study, the escitalopram group showed an average decline in hot flash frequency of 14.4%, whereas, the placebo group showed an average increase of 6.7% (P < .05). However, there were no significant effects across time for either group. There were no significant effects whatsoever for rectal temperature sweating thresholds. Conclusions Escitalopram at 10 mg or 20 mg/day is not effective in the treatment of menopausal hot flashes. PMID:21540755

  10. Flash Cards: Common Chinese-Cantonese Characters.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    This set of flash cards is designed to accompany the Defense Language Institute's instructional programs in Cantonese Chinese. Each card displays six Chinese characters, for a total of 1500 characters. Each character is printed two inches tall. Above each character are transcriptions of the Chinese words represented by the character (marked for…

  11. Assessment of flash flood warning procedures

    NASA Astrophysics Data System (ADS)

    Johnson, Lynn E.

    2000-01-01

    Assessment of four alternate flash flood warning procedures was conducted to ascertain their suitability for forecast operations using radar-rainfall imagery. The procedures include (1) areal mean basin effective rainfall, (2) unit hydrograph, (3) time-area, and (4) 2-D numerical modeling. The Buffalo Creek flash flood of July 12, 1996, was used as a case study for application of each of the procedures. A significant feature of the Buffalo Creek event was a forest fire that occurred a few months before the flood and significantly affected watershed runoff characteristics. Objectives were to assess the applicability of the procedures for watersheds having spatial and temporal scale similarities to Buffalo Creek, to compare their technical characteristics, and to consider forecaster usability. Geographic information system techniques for hydrologic database development and flash flood potential computations are illustrated. Generalizations of the case study results are offered relative to their suitability for flash flood forecasting operations. Although all four methods have relative advantages, their application to the Buffalo Creek event resulted in mixed performance. Failure of any method was due primarily to uncertainties of the land surface response (i.e., burn area imperviousness). Results underscore the need for model calibration; a difficult requirement for real-time forecasting.

  12. A polychromatic flash photolysis apparatus (PFPA).

    PubMed

    Uhl, R; Meyer, B; Desel, H

    1984-11-01

    A wide variety of biologically relevant chemical intermediates have been identified and characterised by their spectral properties. When rapid kinetics, i.e. rapid changes in these spectral properties are studied, the equipment designed for these studies (flash photolysis-, T-jump apparatus) usually allows only the registration of intensity changes of the monitoring light beam at one particular wavelength. Quite frequently, however, particularly in biological systems, the reactions of interest are too complex to be fully understood using single wavelength techniques. We have therefore designed and built a flash photolysis apparatus which permits the simultaneous recording of absorbance changes at 32 wavelengths, freely selectable between 300 and 1000 nm, as well as changes in fluorescence, luminescence, birefringence and light scattering. The apparatus, which we have called Polychromatic Flash Photolysis Apparatus (PFPA), acquires up to 8000 difference spectra per second with an amplitude resolution of better than 0.0001 absorbance unit. Data acquisition and activation of an actinic xenon flash unit occurs under computer control. The same computer is responsible for data storage, handling and graphic display. This communication describes the PFPA, its performance, and, as a demonstration of its potential usefulness, its application to the measurement of the light driven photocycle of bacterial rhodopsin, the proton pumping protein of Halobacterium halobium.

  13. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  14. Compact Flash X-Ray Units

    DTIC Science & Technology

    1995-07-01

    Flash x-ray units are used to diagnose pulsed power driven experiments on the Pegasus machine at Los Alamos. Several unique designs of Marx powered...employing an x-ray tube configuration which allows closely spaced x-ray emitting anodes. These units all emit a 10 ns FWHM x-ray pulse. Their Marx banks

  15. Sight-Word Practice in a Flash!

    ERIC Educational Resources Information Center

    Erwin, Robin W., Jr.

    2016-01-01

    For learners who need sight-word practice, including young students and struggling readers, digital flash cards may promote automatic word recognition when used as a supplemental activity to regular reading instruction. A novel use of common presentation software efficiently supports this practice strategy.

  16. Flash Diffusivity Technique Applied to Individual Fibers

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Yowell, Leonard; Wang, Hsin

    2007-01-01

    A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.

  17. Initiation Locations of Lightning Flashes in Two Florida Thunderstorms

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Karunarathna, N.; Stolzenburg, M.; Karunarathne, S.

    2015-12-01

    In this presentation we investigate the initiation locations of all intracloud (IC) and cloud-to-ground (CG) lightning flashes in two small thunderstorms which occurred over NASA/Kennedy Space Center on July 22, 2011. Initiation points of 47 of the 58 lightning flashes (19 IC and 28 CG) were identified using the first initial breakdown (IB) pulse of each flash measured with E-change data. In this study 32 of the flashes had an LDAR2 (VHF) location coincident with the first IB pulse. For 15 flashes we used Position By Fast Antenna or PBFA [Karunarathne et al., 2013, JGR Atmospheres] to determine the location of the first IB pulse. (The remaining flashes had neither LDAR2 nor PBFA locations of the first IB pulse.) All these initiation points were then mapped onto radar reflectivity of the parent thundercloud. The initiation points of the flashes tend to cluster in specific regions in thundercloud. Lightning activity in both thunderstorms lasted 35 minutes, and all the flash initiation points in each storm occurred within a horizontal region of 4 km by 8 km. Flash initiation altitudes for IC flashes of the two thunderstorms ranged from 5.1 km to 12.1 km altitude while for CG flashes the altitude ranged from 4.6 km to 8.1 km. Based on available radar data for 14 IC flashes and 27 CG flashes, all but one of the IC flashes originated in 10 dBZ - 30 dBZ reflectivity regions while 22 of the CG flashes originated in 30 dBZ - 40 dBZ reflectivities. During the lifetimes of these two storms, no Narrow Bipolar Events occurred.

  18. An Advanced Flash Suppression Network Involving Alkali Salts

    DTIC Science & Technology

    1984-12-01

    a fuel are: H, 0, OH, H2 , 02, HO2 , and H 0. To include carbon monoxide as a fuelthe species CO and CO2 must be added to this list. Since we are...KOH -54.50 56.90 c, b 12 K02 -25.00 62.00 f 13 Co -26.40 47.20 b 14 CO2 -94.10 51.10 b a) J. Phys. & Chem. Ref. Data, Vol.4, 1975. b) JANAF...23.0000 -4.3000 -21.7186 3738 KH + K02 = KO + KOH -38.3000 4.5000 -39.6410 3839 KH + CO2 = KOH + CO -13.1000 5.7000 -14.7986 3940 KO + KO = K + K02

  19. Memory Matters

    MedlinePlus

    ... different parts. Some of them are important for memory. The hippocampus (say: hih-puh-KAM-pus) is one of the more important parts of the brain that processes memories. Old information and new information, or memories, are ...

  20. A spiking neuron model for synchronous flashing of fireflies.

    PubMed

    Kim, DaeEun

    2004-01-01

    Certain species of fireflies show a group behavior of synchronous flashing. Their synchronized and rhythmic flashing has received much attention among many researchers, and there has been a study of biological models for their entrainment of flashing. The synchronous behavior of fireflies resembles the firing synchrony of integrate-and-fire neurons with excitatory or inhibitory connections. This paper shows an analysis of spiking neurons specialized for a firefly flashing model, and provides simulation results of multiple neurons with various transmission delays and coupling strengths. It also explains flashing patterns of some firefly species and examines the synchrony conditions depending on transmission delays and coupling strengths.

  1. Global optical lightning flash rates determined with the Forte satellite

    SciTech Connect

    Light, T.; Davis, S. M.; Boeck, W. L.; Jacobson, A. R.; Suszcynsky, D. M.

    2003-01-01

    Using FORTE photodiode detector (PDD) observations of lightning, we have determined the geographic distribution of nighttime flash rate density. We estimate the PDD flash detection efficiency to be 62% for total lightning through comparison to lightning observations by the TRMM satellite's Lightning Imaging Sensor (LIS), using cases in which FORTE and TRMM viewed the same storm. We present here both seasonal and l,ot,al flash rate maps. We examine some characteristics of the optical emissions of lightning in both high and low flash rate environments, and find that while lightning occurs less frequently over ocean, oceanic lightning flashes are somewhat more powerful, on average, than those over land.

  2. Treatment of Advanced or Recurrent Endometrial Carcinoma with Doxorubicin in Patients Progressing after Paclitaxel/Carboplatin: Memorial Sloan-Kettering Cancer Center (MSKCC) Experience from 1995-2009

    PubMed Central

    Makker, Vicky; Hensley, Martee L.; Zhou, Qin; Iasonos, Alexia; Aghajanian, Carol. A.

    2013-01-01

    Objective Long-term survival for patients with advanced endometrial carcinoma is poor, and limited options exist for the management of recurrent disease. Our goal was to investigate the activity of doxorubicin in the second-line setting in patients who progressed after paclitaxel/carboplatin adjuvant treatment. Methods We conducted a retrospective analysis of patients with recurrent endometrial carcinoma who were treated at Memorial Sloan-Kettering Cancer Center from 1995-2009, and who received paclitaxel/carboplatin adjuvant chemotherapy followed by second-line doxorubicin therapy at time of recurrence. The median PFS and OS times following paclitaxel/carboplatin and following second-line doxorubicin therapy were estimated using the Kaplan-Meier method. Toxicity was assessed by the treating physician at each visit and graded using version 4.0 of Common Terminology Criteria for Adverse Events (CTCAE). Patient presentation, treatment, patterns of recurrence, and patient outcomes were summarized. Results Seventeen patients were included in study analyses. The median PFS from completion of paclitaxel/carboplatin was 8.0 months (95% CI: 4.5-13.6 months). At the time of recurrence, all 17 patients were treated with doxorubicin as second-line therapy. No patient achieved objective response of stable disease. The median PFS of this cohort following doxorubicin treatment was 2.1 months (95% CI: 0.95-2.7) months. Median OS was 5.8 months (95% CI: 1.0-15.0 months). There is only one patient still alive; her median follow-up time is 49.4 months. Predominant doxorubicin-related grade 2 toxicities included nausea/vomiting (18.8%), fatigue (18.8%), and neutropenia (12.5%). No grade 3 or 4 toxicities occurred. Conclusions Among patients with advanced endometrial carcinoma who had received adjuvant paclitaxel/carboplatin, treatment with doxorubicin at time of disease recurrence failed to achieve any objective responses and was associated with a very short (2 months) time to

  3. Matter Flashed at Ultra Speed

    NASA Astrophysics Data System (ADS)

    2007-06-01

    "REM observations of GRB060418 and GRB060607A: the onset of the afterglow and the initial fireball Lorentz factor determination", by E. Molinari, S. D. Vergani, D. Malesani, S. Covino, et al. The paper is available at http://dx.doi.org/10.1051/0004-6361:20077388 (A&A, 469, L13-L16, 2007). The REM team is formed by G. Chincarini, E. Molinari, F.M. Zerbi, L.A. Antonelli, S. Covino, P. Conconi, L. Nicastro, E. Palazzi, M. Stefanon, V. Testa, G. Tosti, F. Vitali, A. Monfardini, F. D'Alessio, P. D'Avanzo, D. Fugazza, G. Malaspina, S. Piranomonte, S.D. Vergani, P.A. Ward, S. Campana, P. Goldoni, D. Guetta, D. Malesani, N. Masetti, E.J.A. Meurs, L. Norci, E. Pian, A. Fernandez-Soto, L. Stella, G. Tagliaferri, G. Ihle, L. Gonzalez, A. Pizarro, P. Sinclair, and J. Valenzuela. Notes Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. They come in two different flavours, long and short ones. Over the past few years, international efforts have convincingly shown that long gamma-ray bursts are linked with the ultimate explosion of massive stars (hypernovae; see e.g. ESO PR 16/03) while the short ones most likely originate from the violent collision of neutron stars and/or black holes (see e.g. ESO PR 26/05 and 32/05). Irrespective of the original source of the GRB energy, the injection of so much energy into a confined volume will cause a fireball to form. Gamma-ray photons have nearly a million times more energy than the 'visual' photons the eye can see. Strictly speaking, the Lorentz factor is the ratio between the total and rest-mass energy of the fireball. REM (Rapid Eye Mount) is a small (60 cm mirror diameter) rapid reaction automatic telescope dedicated to monitor the prompt afterglow of Gamma Ray Burst events. It is located at the ESO La Silla Observatory in Chile. For more information, see

  4. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrottet, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight comptuer can use the 3-D map of terain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing airctarft. The aircraft flight tests were perfomed over Moonlike terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  5. Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  6. Phenomenology of the sound-induced flash illusion.

    PubMed

    Abadi, Richard V; Murphy, Jonathan S

    2014-07-01

    Past studies, using pairings of auditory tones and visual flashes, which were static and coincident in space but variable in time, demonstrated errors in judging the temporal patterning of the visual flashes-the sound-induced flash illusion. These errors took one of the two forms: under-reporting (sound-induced fusion) or over-reporting (sound-induced fission) of the flash numbers. Our study had three objectives: to examine the robustness of both illusions and to consider the effects of stimulus set and response bias. To this end, we used an extended range of fixed spatial location flash-tone pairings, examined stimuli that were variable in space and time and measured confidence in judging flash numbers. Our results indicated that the sound-induced flash illusion is a robust percept, a finding underpinned by the confidence measures. Sound-induced fusion was found to be more robust than sound-induced fission and a most likely outcome when high numbers of flashes were incorporated within an incongruent flash-tone pairing. Conversely, sound-induced fission was the most likely outcome for the flash-tone pairing which contained two flashes. Fission was also shown to be strongly driven by stimuli confounds such as categorical boundary conditions (e.g. flash-tone pairings with ≤2 flashes) and compressed response options. These findings suggest whilst both fission and fusion are associated with 'auditory driving', the differences in the occurrence and strength of the two illusions not only reflect the separate neuronal mechanisms underlying audio and visual signal processing, but also the test conditions that have been used to investigate the sound-induced flash illusion.

  7. Non-Volatile Memory Technology Symposium 2001: Proceedings

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Daud, Taher; Strauss, Karl

    2001-01-01

    This publication contains the proceedings for the Non-Volatile Memory Technology Symposium 2001 that was held on November 7-8, 2001 in San Diego, CA. The proceedings contains a a wide range of papers that cover current and new memory technologies including Flash memories, Magnetic Random Access Memories (MRAM and GMRAM), Ferro-electric RAM (FeRAM), and Chalcogenide RAM (CRAM). The papers presented in the proceedings address the use of these technologies for space applications as well as radiation effects and packaging issues.

  8. [Learning and memory].

    PubMed

    Lombroso, Paul

    2004-09-01

    Memory is broadly divided into declarative and nondeclarative forms of memory. The hippocampus is required for the formation of declarative memories, while a number of other brain regions including the striatum, amygdala and nucleus accumbens are involved in the formation of nondeclarative memories. The formation of all memories require morphological changes of synapses: new ones must be formed or old ones strengthened. These changes are thought to reflect the underlying cellular basis for persistent memories. Considerable advances have occurred over the last decade in our understanding of the molecular bases of how these memories are formed. A key regulator of synaptic plasticity is a signaling pathway that includes the mitogen activated protein (MAP) kinase. As this pathway is required for normal memory and learning, it is not surprising that mutations in members of this pathway lead to disruptions in learning. Neurofibromatosis, Coffin-Lowry syndrome and Rubinstein-Taybi syndrome are three examples of developmental disorders that have mutations in key components of the MAP kinase signaling pathway.

  9. 'European approach' to arc flash risk.

    PubMed

    Baillie, Jonathan

    2011-11-01

    DuPont claims that electrical arc, and the resulting "arc flash", are among the deadliest, least understood hazards of electricity", and can potentially occur in many industrial and other applications, including hospital plant rooms. Technical and engineering personnel from DuPont Engineering Technology, DuPont Personal Protection, and external independent experts, have thus collaborated to develop "a European approach to electrical arc risk assessment". The resulting free online resource, the DuPont Arc-Guide, sets out key steps to minimise serious arc flash incident risk, and details a range of optional, paid-for tailored risk assessment services, and an accompanying secure web portal, offering more in-depth guidance on this important, but apparently often overlooked, issue. HEJ editor Jonathan Baillie reports.

  10. Flash butt welding of marine pipeline materials

    SciTech Connect

    Turner, D.L. Jr.; Paton, B.E.; Lebedev, V.K.; Kutchuk-Yatsenko, S.I.

    1982-04-01

    US engineers agree that Soviet flash butt welding machines used to join segments of marine pipelines substantially reduce manpower and increase production rates over conventional methods (manual shielded metal arc welding). Extensive tests with a Soviet-built prototype machine (K775) and US-manufactured support equipment confirmed the system's reliability, wide operating tolerances, and easy adaptability to variable welding parameters. In addition, radiographic, ultrasonic, and mechanical tests demonstrated that a strip-chart recording of welding parameters is a good indicator of weld quality, lending itself to in-process control and rapid diagnosis of equipment problems. Because of the K775 prototype's success, McDermott is proceeding with the design and manufacture of production flash butt welding machines for marine pipeline construction.

  11. Electrical Safety and Arc Flash Protections

    SciTech Connect

    R. Camp

    2008-03-04

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  12. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  13. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, John D.; Darab, John G.; Gross, Mark E.

    1999-01-01

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

  14. Synchronized Flashing Lights For Approach And Docking

    NASA Technical Reports Server (NTRS)

    Book, Michael L.; Howard, Richard T.; Bryan, Thomas C.; Bell, Joseph L.

    1994-01-01

    Proposed optoelectronic system for guiding vehicle in approaching and docking with another vehicle includes active optical targets (flashing lights) on approached vehicle synchronized with sensor and image-processing circuitry on approaching vehicle. Conceived for use in automated approach and docking of two spacecraft. Also applicable on Earth to manually controlled and automated approach and docking of land vehicles, aircraft, boats, and submersible vehicles, using GPS or terrestrial broadcast time signals for synchronization. Principal advantage: optical power reduced, with consequent enhancement of safety.

  15. Evaluation of Flash Bainite in 4130 Steel

    DTIC Science & Technology

    2011-07-01

    austenitized) to above 1050°C (>A3) using either oxy-propane or induction heating . After heating , the material is purportedly quenched within...and Gleeble heat affected zone tests were performed on AISI 4130 steel plate. When possible, testing was baselined against conventional quench and...observed on the fracture surface of some the Flash Bainite impact toughness specimens. The impact toughness testing on the Gleeble heat affected zone

  16. Progress towards regional flash flood modelling

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Coxon, G.; Quinn, N.; Freer, J. E.

    2015-12-01

    Flash flooding causes widespread disruption and damage across the UK, with recent research indicating that the occurrence and severity of intense rainfall is likely to increase in the future. To date, our ability to model such events at anything other than local scales has been hindered both by a lack of data at adequate spatial and temporal resolutions and a limited understanding of the processes involved in flooding from short duration, high intensity rainfall events. To enable effective flood risk management and decisions, it is essential that we improve our understanding of the variability in risk from such events across the UK and this requires an ability to undertake flash flood modelling at regional scales. In this study, we have implemented a coupled hydrological - hydrodynamic model for the representation of flash flooding at regional scales over long durations. To provide inputs to these models, we have developed a gridded sub-daily (hourly) rainfall record of the UK from 1993 to 2011. This enables us to more accurately represent flooding resulting from short duration rainfall events that are poorly represented by commonly utilised daily rainfall data. For a given region of interest we cascade rainfall estimates from our sub-daily dataset into a semi-distributed hydrological model (Dynamic Topmodel) in order to generate river discharge estimates which are then used to force a widely utilised inundation model (LISFLOOD-FP). Here we present the results from a test case in order to demonstrate the capabilities of the modelling framework over a variety of events with differing characteristics. The results will provide an insight into our capabilities of representing flash flooding and highlight key areas for future model development and enhanced process understanding.

  17. A Flash Sterilizer using Peracetic Acid

    DTIC Science & Technology

    1976-07-01

    REPORT 7606 / A FLASH STERILIZER USING PERACETIC ACID H. BRUCE CRANFORD, JR. C Reproduced From Best Available Copy US ARMY MEDICAL BIOENGINEERING...Operating Room area whereby an accidentally contaminated Instrument can be * rapidly resterilized using peracetic acid and returned to use was designedand...Pvoperties of Peracetic Acid 5 S..Proposed Design Approach 6 "Equipment 11 SUMM•ARY 17 BIBLIOGRAPHY 19 A*?ENDICES 23 A. Ltr, HQDA. (SGRD-SDM), WASH, DC, A-1

  18. FILTR: Flash Isotope Library and Training Resource

    SciTech Connect

    Campbell, D; Trombino, D

    2007-07-26

    The subject of radiation detection is replete with complex concepts and challenging nomenclature. Furthermore, a daunting variety of radioactive isotopes may be encountered during the routine operation of a radiation detector. Individuals tasked with searching for illicit sources of radiation must remain vigilant while navigating through more frequently encountered mundane and legitimate radioactive sources. The Flash Isotope Library and Training Resource (FILTR) is being developed as an easily accessible and intuitive reference tool to manage the high volume of complex information required for this task. FILTR is an extended version of the Primary Utility for Nuclear Terminology (PUNT) software developed by the Counter Measures Test Beds group at Lawrence Livermore National Laboratory for the United States Secret Service. Authored in the Flash multimedia development environment, FILTR contains detailed information on potentially encountered isotopes as well as training on radiation and operational procedures. Reference material is organized to present critical information quickly while facilitating more in-depth investigation through an intuitive interface and engaging content. FILTR is being developed for a diverse audience of law enforcement organizations and government agencies and a wide range of skill sets from expert analysts to officers whose primary role is not radiation detection. Additionally, the wide compatibility of Flash content will allow FILTR to be readily accessible through the growing number of multi-media enabled electronic devices, including PDAs and cellular phones.

  19. Microdose Induced Data Loss on Floating Gate Memories

    NASA Technical Reports Server (NTRS)

    Guertin, Steven M.; Nguyen, Duc M.; Patterson, Jeffrey D.

    2006-01-01

    Heavy ion irradiation of flash memories shows loss of stored data. The fluence dependence is indicative of microdose effects. Other qualitative factors identifying the effect as microdose are discussed. The data is presented, and compared to statistical results of a microdose target-based model.

  20. LIQUIDARMOR CM Flashing and Sealant, High Impact Technology Demonstration

    SciTech Connect

    Hun, Diana E.; Bhandari, Mahabir S.

    2016-12-01

    Air leakage is responsible for about 1.1 quads of energy or 6% of the total energy used by commercial buildings in the US. Consequently, infiltration and exfiltration are among the largest envelope-related contributors to the heating, ventilation, and air conditioning loads in commercial buildings. New air sealing technologies have recently emerged that aim to improve the performance of air barrier systems by simplifying their installation procedure. LIQUIDARMORTM CM Flashing and Sealant is an example of these new advanced material technologies. This technology is a spray-applied sealant and liquid flashing and can span gaps that are up to ¼ in. wide without a supporting material. ORNL verified the performance of LIQUIDARMORTM CM with field tests and energy simulations from a building in which LIQUIDARMORTM CM was one of components of the air barrier system. The Homeland Security Training Center (HTC) at the College of DuPage in Glen Ellyn, IL, served as the demonstration site. Blower door test results show the average air leakage rate in the demonstration site to be 0.15 cfm/ft2 at 1.57 psf, or 63% lower than the 0.4 cfm at 1.57 psf specified in the 2015 International Energy Conservation Code (IECC). According to simulation results, HTC lowered its annual heating and cooling cost by about $3,000 or 9% compared to a similar building that lacked an air barrier system. This demonstration project serves as an example of the level of building envelope airtightness that can be achieved by using air barrier materials that are properly installed, and illustrates the energy and financial savings that such an airtight envelope could attain.

  1. Anatomy of a Flash Flood in the Amargosa Desert, U.S.A.

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Prudic, D. E.; Glancy, P. A.; Beck, D. A.

    2004-12-01

    In August 2004, intense convective rainstorms caused flash flooding throughout the Amargosa River drainage network, temporarily closing Death Valley National Park and causing two fatalities when runoff from Furnace Creek and other channels overtopped roadways in the Park. In 1998, we began installing streambed temperature loggers, pressure transducers, and scour chains in the normally dry channel and selected tributaries of the river in the Amargosa Desert and Oasis Valley. The primary objective of this work is to improve understanding of ground-water recharge from ephemeral streamflows under current climatic conditions. Two weeks after the flash flooding, we visited instrumented sites and estimated peak flows by surveying high-water marks and corresponding channel geometries. Time series of temperatures and stages, together with peak-flow estimates, reveal the routing and evolution of distinct flood pulses in the upper Amargosa River basin. The data also reveal previously undocumented details of individual flash-flood hydrographs, including initial and subsequent flood pulses at two sites. Arid environments are prone to flash flooding not only because vegetation is sparse, but also because the surface-water network is decoupled from underlying ground water by a thick unsaturated zone. Nonlinear interactions between runoff (with energy potentials on the order of a meter of head) and the unsaturated zone (with energy potentials on the order of negative hundreds of meters of head) keep advancing fronts of flood pulses sharp. Profiles of water content beneath the main channel before and after the passage of a flood pulse, together with down-channel attenuation of flow volume within individual pulses, show the leaky nature of dry alluvial channels and the efficiency at which flash floods become potential recharge.

  2. Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Roback, Vincent E.; Brewster, Paul F.; Hines, Glenn D.; Bulyshev, Alexander E.

    2016-01-01

    3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications.

  3. Arc Flash Boundary Calculations Using Computer Software Tools

    SciTech Connect

    Gibbs, M.D.

    2005-01-07

    Arc Flash Protection boundary calculations have become easier to perform with the availability of personal computer software. These programs incorporate arc flash protection boundary formulas for different voltage and current levels, calculate the bolted fault current at each bus, and use built in time-current coordination curves to determine the clearing time of protective devices in the system. Results of the arc flash protection boundary calculations can be presented in several different forms--as an annotation to the one-line diagram, as a table of arc flash protection boundary distances, and as printed placards to be attached to the appropriate equipment. Basic arc flash protection boundary principles are presented in this paper along with several helpful suggestions for performing arc flash protection boundary calculations.

  4. Comparison of flash calculations in compositional reservoir simulation

    SciTech Connect

    Wang, P.; Barker, J.W.

    1995-12-31

    This paper compares several recent flash algorithms in the context of compositional reservoir simulation. We evaluate three reduced equation methods: (1) the 3-equation flash of Michelsen, which applies only when all binary interaction coefficients (k{sub ij}) are zero; (2) Hendricks and van Bergen; and (3) Kaul and Thrasher. We also evaluate; (4) the non-iterative flash; and (5) the method of Young. We find that these last two methods, which are similar in concept, work well for reservoir simulation where the flash must be closely coupled with the solution of the pressure equation, and where a good initial guess is generally available. The reduced equation flashes offer no significant improvement over these other methods; this is true even for the 3-equation flash which solves a simpler problem (with k{sub ij} = 0).

  5. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows

    NASA Astrophysics Data System (ADS)

    Borga, Marco; Stoffel, Markus; Marchi, Lorenzo; Marra, Francesco; Jakob, Matthias

    2014-10-01

    Flash floods and debris flows develop at space and time scales that conventional observation systems for rainfall, streamflow and sediment discharge are not able to monitor. Consequently, the atmospheric, hydrological and geomorphic controls on these hydrogeomorphic processes are poorly understood, leading to highly uncertain warning and risk management. On the other hand, remote sensing of precipitation and numerical weather predictions have become the basis of several flood forecasting systems, enabling increasingly accurate detection of hazardous events. The objective of this paper is to provide a review on current European and international research on early warning systems for flash floods and debris flows. We expand upon these themes by identifying: (a) the state of the art; (b) knowledge gaps; and (c) suggested research directions to advance warning capabilities for extreme hydrogeomorphic processes. We also suggest three areas in which advancements in science will have immediate and important practical consequence, namely development of rainfall estimation and nowcasting schemes suited to the specific space-time scales, consolidating physical, engineering and social datasets of flash floods and debris-flows, integration of methods for multiple hydrogeomorphic hazard warning.

  6. Susceptibility to the Flash-Beep Illusion Is Increased in Children Compared to Adults

    ERIC Educational Resources Information Center

    Innes-Brown, Hamish; Barutchu, Ayla; Shivdasani, Mohit N.; Crewther, David P.; Grayden, David B.; Paolini, Antonio

    2011-01-01

    Audio-visual integration was studied in children aged 8-17 (N = 30) and adults (N = 22) using the "flash-beep illusion" paradigm, where the presentation of two beeps causes a single flash to be perceived as two flashes ("fission" illusion), and a single beep causes two flashes to be perceived as one flash ("fusion" illusion). Children reported…

  7. A European flash flood indicator based on a distributed runoff coefficient

    NASA Astrophysics Data System (ADS)

    Raynaud, Damien; Thielen, Jutta; Revilla-Romero, Beatriz; Netgeka, Victor

    2013-04-01

    Europe and more particularly the Mediterranean region are particularly exposed to flash flood hazard. They are usually triggered by a combination of intense precipitation and high runoff production. Recently, a purely rainfall based indicator that provides an early warning for flash floods several days in advance using probabilistic numerical weather prediction has been developed. This indicator, called the European Precipitation Index based on Climatology (EPIC) provides probabilistic forecasts and covers the European part of the Mediterranean 5 days in advance and with a good detection rate up to 3 days as part of the operational European Flood Awareness System (EFAS) [Alfieri 2011, Alfieri 2012]. It consists in summing up at each cell of a 1 x 1 km river network the forecasted rainfall data falling on the whole upstream area for durations of 6, 12 and 24 h and converting these values in return periods originating from a 20 years climatology of the indicator. Computations are performed for catchments with areas up to 5000 km² to focus on flash flood prone basins. The main weakness of EPIC is that it is only rainfall based and does not take into account any hydrological features such as slope, land use or initial soil moisture conditions which can have a significant impact on flash flood triggering. This study proposes an improvement of the EPIC indicator by introducing hydrologically relevant parameters. Making use of the hydrological model set up of EFAS, a soil moisture-runoff relationship is generated for each 5 x 5 km cell of the domain using an automated fitting procedure and the 22 years climatology of the hydrological model LISFLOOD. This relationship is then used to calculated the spatially distributed daily runoff coefficient from the initial soil moisture conditions which are provided on a daily basis by the flood forecasts of EFAS. Downscaling the daily runoff coefficient to the 1 x 1 km river network the different rainfall contributions within a sub

  8. Front-flash thermal imaging characterization of continuous fiber ceramic composites.

    SciTech Connect

    Deemer, C.

    1999-04-23

    Infrared thermal imaging has become increasingly popular as a nondestructive evaluation method for characterizing materials and detecting defects. One technique, which was utilized in this study, is front-flash thermal imaging. We have developed a thermal imaging system that uses this technique to characterize advanced material systems, including continuous fiber ceramic composite (CFCC) components. In a front-flash test, pulsed heat energy is applied to the surface of a sample, and decay of the surface temperature is then measured by the thermal imaging system. CFCC samples with drilled flat-bottom holes at the back surface (to serve as ''flaws'') were examined. The surface-temperature/time relationship was analyzed to determine the depths of the flaws from the front surface of the CFCC material. Experimental results on carbon/carbon and CFCC samples are presented and discussed.

  9. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Peterson, Harold S.; Schultz, Elise V.; Matthee, Retha; Schultz, Christopher J.; Petersen, Walter A,; Bain, Lamont

    2012-01-01

    Objective: To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type (intracloud [IC] vs. cloud-to-ground [CG] ) and extent. Data and Methodology: a) NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TradeMark) (NLDN) observations following ordinary convective cells through their lifecycle. b) LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles (Koshak et al. 2012). c) LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler (DD) and polarimetric radar analyses of UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, Cband, polarimetric) and KHTX (S-band, Doppler).

  10. Pilot evaluation of bupropion for the treatment of hot flashes.

    PubMed

    Pérez, Domingo G; Loprinzi, Charles L; Sloan, Jeff; Novotny, Paul; Barton, Debra; Carpenter, Lisa; Smith, Deanne; Christensen, Brad; Rummans, Teresa

    2006-06-01

    Bupropion is commonly used in the treatment of nicotine dependence and depression, and in most people, does not cause sexual dysfunction, weight gain, or sedation. Given its attractive side effect profile, the efficacy of other newer antidepressants against hot flashes and anecdotal observations of resolution of hot flashes in some patients taking bupropion for nicotine dependence, it was decided to explore its clinical activity as a hot flash remedy in a pilot study. Between January 1999 and October 2004, 21 patients (7 men and 14 women) were enrolled in the study. Self-completed daily hot flash diaries were used to document the frequency and severity of hot flashes at baseline (week 1) and during the treatment period (weeks 2 through 5). Participants received bupropion 150 mg every morning for the first 3 days and then 150 mg twice per day for a total of 4 weeks. One woman did not provide any hot flash information and was excluded from the analysis. Five women could not complete the study because of side effects. The study did not show a reduction in hot flash frequency and/or severity significantly higher than what would be expected with a placebo. Even though the sample size was small, these results are consistent with bupropion's mechanism of action (norepinephrine reuptake inhibition without serotonergic effects) and what it is now hypothesized about the pathophysiology of hot flashes (increased noradrenergic activity and decreased serotonergic activity). These data suggest that bupropion should not be further investigated as a remedy for hot flashes.

  11. SUMO modification regulates the transcriptional activity of FLASH

    SciTech Connect

    Alm-Kristiansen, Anne Hege; Norman, Ingrid Louise; Matre, Vilborg; Gabrielsen, Odd Stokke

    2009-09-25

    FLASH is a huge multifunctional nuclear protein that has been linked to apoptotic signalling, transcriptional control and Cajal body function. To gain further insight into the functions of the FLASH protein, we performed a yeast two-hybrid screening with FLASH as bait and identified the SUMO-conjugating enzyme Ubc9 as an interaction partner. The main interaction surface for Ubc9 was found in the C-terminal part of FLASH, which is also a target for sumoylation. We identified K1813 as the major sumoylation site in FLASH, being enhanced by the SUMO E3 ligases Pc2 and PIASy. Disruption of this SUMO-conjugation site did not change the speckled subnuclear localization of FLASH, but it caused a reduction in FLASH activity as measured in a Gal4-tethering assay. Interestingly, the SUMO-specific protease SENP1 activated FLASH in the same assay. Overall, our results point to a complex involvement of sumoylation in modulating the function of FLASH.

  12. Ultra-fast annealing to reduce the residual stress in ultra-thin chips using flash light

    NASA Astrophysics Data System (ADS)

    Jeon, Eun-Beom; Park, Junhong; Kim, Hak-Sung

    2014-04-01

    The continuing trend of miniaturization in electronic equipment includes demands for thinner and smaller semiconductor devices with higher performance. To ensure the reliability of electronic devices and to enable high-throughput packaging processes, the mechanical properties of ultra-thin chips need to be accurately understood. One important consideration is the residual stress generated during wafer thinning due to the shear force between the grinding wheel and polish pad; this stress can degrade the fracture strength of ultra-thin devices. To reduce this residual stress, we developed a flash light irradiation annealing technique, including optimization of the irradiation conditions of flash light energy, pulse number and pulse duration. The distributions of residual stresses within ultra-thin flash memory chips before and after the annealing were measured using Raman spectroscopy, and their fracture strength was measured using a ball-on-ring test. Also, transmission electron microscopy (TEM) analysis and beam transfer function tests were performed to investigate the changes in mechanical properties and changes to the silicon lattice effected by the annealing. The ultra-fast flash light annealing was found to reduce the residual stress of ultra-thin chips by 50%, thereby improving their fracture strength by 20% compared to unannealed chips.

  13. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  14. 3D flash lidar imager onboard UAV

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Liu, Yilong; Yang, Jiazhi; Zhang, Rongting; Su, Chengjie; Shi, Yujun; Zhou, Xiang

    2014-11-01

    A new generation of flash LiDAR sensor called GLidar-I is presented in this paper. The GLidar-I has been being developed by Guilin University of Technology in cooperating with the Guilin Institute of Optical Communications. The GLidar-I consists of control and process system, transmitting system and receiving system. Each of components has been designed and implemented. The test, experiments and validation for each component have been conducted. The experimental results demonstrate that the researched and developed GLiDAR-I can effectively measure the distance about 13 m at the accuracy level about 11cm in lab.

  15. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  16. Apollo-Soyuz light-flash observations.

    PubMed

    Budinger, T F; Tobias, C A; Huesman, R H; Upham, F T; Wieskamp, T F; Hoffman, R A

    1977-01-01

    While dark adapted, two Apollo-Soyuz astronauts saw eighty-two light flash events during a complete 51 degrees orbit which passed near the north magnetic pole and through the South Atlantic Anomaly. The frequency of events at the polar parts of the orbit is 25 times that noted in equatorial latitudes and no increased frequency was noted in the South Atlantic Anomaly at the 225-km altitude. The expected flux of heavy particles at the northern and southern points is 1-2 min-1 per eye, and the efficiency for seeing HZE particles which were below the Cerenkov threshold is 50%.

  17. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  18. Towards Terabit Memories

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Memories have been the major yardstick for the continuing validity of Moore's law. In single-transistor-per-Bit dynamic random-access memories (DRAM), the number of bits per chip pretty much gives us the number of transistors. For decades, DRAM's have offered the largest storage capacity per chip. However, DRAM does not scale any longer, both in density and voltage, severely limiting its power efficiency to 10 fJ/b. A differential DRAM would gain four-times in density and eight-times in energy. Static CMOS RAM (SRAM) with its six transistors/cell is gaining in reputation because it scales well in cell size and operating voltage so that its fundamental advantage of speed, non-destructive read-out and low-power standby could lead to just 2.5 electrons/bit in standby and to a dynamic power efficiency of 2aJ/b. With a projected 2020 density of 16 Gb/cm², the SRAM would be as dense as normal DRAM and vastly better in power efficiency, which would mean a major change in the architecture and market scenario for DRAM versus SRAM. Non-volatile Flash memory have seen two quantum jumps in density well beyond the roadmap: Multi-Bit storage per transistor and high-density TSV (through-silicon via) technology. The number of electrons required per Bit on the storage gate has been reduced since their first realization in 1996 by more than an order of magnitude to 400 electrons/Bit in 2010 for a complexity of 32Gbit per chip at the 32 nm node. Chip stacking of eight chips with TSV has produced a 32GByte solid-state drive (SSD). A stack of 32 chips with 2 b/cell at the 16 nm node will reach a density of 2.5 Terabit/cm². Non-volatile memory with a density of 10 × 10 nm²/Bit is the target for widespread development. Phase-change memory (PCM) and resistive memory (RRAM) lead in cell density, and they will reach 20 Gb/cm² in 2D and higher with 3D chip stacking. This is still almost an order-of-magnitude less than Flash. However, their read-out speed is ~10-times faster, with as yet

  19. Memory Matters

    MedlinePlus

    ... blood vessel (which carries the blood) bursts. continue Brain Injuries Affect Memory At any age, an injury to ... with somebody's memory. Some people who recover from brain injuries need to learn old things all over again, ...

  20. Symptom Clusters among MsFLASH Clinical Trial Participants

    PubMed Central

    Woods, Nancy Fugate; Hohensee, Chancellor; Carpenter, Janet S.; Cohen, Lee; Ensrud, Kristine; Freeman, Ellen W.; Guthrie, Katherine A.; Joffe, Hadine; LaCroix, Andrea Z.; Otte, Julie L.

    2015-01-01

    Objective Women experience multiple co-occurring symptoms (symptom clusters) during the menopausal transition and early postmenopause. Although symptom clusters have been identified among community-dwelling midlife women, to date there have been no studies of midlife participants in clinical trials for hot flashes. Our objective was to identify symptom clusters using standardized measures completed by participants in the Menopausal Strategies: Finding Lasting Answers to Symptoms and Health (MsFLASH) clinical trial at baseline including: hot flash interference, and sleep, depressive, anxiety, and pain symptoms. Methods Data from all women randomized to interventions and controls from MsFLASH studies 1, 2, and 3 (N=899) were included; 797 with complete data were used in the analyses. Scores from standardized measures obtained at baseline included: Hot Flash Related Daily Interference Scale (HFRDIS), Insomnia Severity Index (ISI), Pittsburgh Sleep Quality Index (PSQI), Patient Health Questionnaire (PHQ 9) measure of depressed mood, Generalized Anxiety Disorder (GAD), and Brief Pain Inventory PEG scores. Latent class analysis was used to identify symptom clusters using standardized scale scores and their established cut points. Results We identified 5 classes using the BIC and AIC criteria. Women in classes 1 and 2 had high hot flash interference levels relative to the others, and class 1 (10.5% of total) included severe hot flash interference, severe sleep symptoms, and moderately severe pain symptoms (hot flash, sleep, pain). In class 2 (14.1%), severe hot flash interference was paired with the severe sleep symptoms, and moderate to severe depressed and anxious mood symptoms and pain (hot flash, sleep, mood, pain). In class 3 (39.6%) women reported moderately severe sleep symptoms with moderate hot flash interference, and low severity mood and pain symptoms (hot flash, sleep). Those in class 4 (7.0%) reported moderate hot flash interference with severe levels of

  1. Characteristics of flash initiations in a supercell cluster with tornadoes

    NASA Astrophysics Data System (ADS)

    Zheng, Dong; MacGorman, Donald R.

    2016-01-01

    Flash initiations within a supercell cluster during 10-11 May 2010 in Oklahoma were investigated based on observations from the Oklahoma Lightning Mapping Array and the Norman, Oklahoma, polarimetric radar (KOUN). The flash initiations at positions dominated by graupel, dry snow, small hail and crystals accounted for 44.3%, 44.1%, 8.0% and 3.0% of the total flashes, respectively. During the tornadic stage of the southern supercell in the cluster, flash initiations associated with graupel occupied the main body, the right flank and the forward flank of the supercell, while those associated with dry snow dominated the outskirts of the adjacent forward anvil, right anvil and rear anvil. The flash initiations associated with small hail were concentrated around the main updraft, particularly toward its front side. Highly dense flash initiations were located in the regions overlying the differential reflectivity (ZDR) arc and right anvil. The average initial height of the flashes decreased gradually from the rear to the front and from the right to the left flanks, while the height range over which initiations occurred reached a maximum at the front of the updraft. The flashes that were initiated in the adjacent forward anvils were largest on average, followed by those in the regions ahead of the updraft and near the ZDR arc. This study supports the concept of charge pockets and further deduces that the pockets in the right anvil are the most abundant and compact due to the frequent flash initiations, small-sized flashes and thin layers including flash initiations.

  2. Aging, Spatial Disparity, and the Sound-Induced Flash Illusion

    PubMed Central

    DeLoss, Denton J.; Andersen, George J.

    2015-01-01

    The present study examined age-related differences in multisensory integration and the effect of spatial disparity on the sound-induced flash illusion—-an illusion used in previous research to assess age-related differences in multisensory integration. Prior to participation in the study, both younger and older participants demonstrated their ability to detect 1–2 visual flashes and 1–2 auditory beep presented unimodally. After passing the pre-test, participants were then presented 1–2 flashes paired with 0–2 beeps that originated from one of five speakers positioned equidistantly 100cm from the participant. One speaker was positioned directly below the screen, two speakers were positioned 50cm to the left and right from the center of the screen, and two more speakers positioned to the left and right 100cm from the center of the screen. Participants were told to report the number of flashes presented and to ignore the beeps. Both age groups showed a significant effect of the beeps on the perceived number of flashes. However, neither younger nor older individuals showed any significant effect of spatial disparity on the sound-induced flash illusion. The presence of a congruent number of beeps increased accuracy for both older and younger individuals. Reaction time data was also analyzed. As expected, older individuals showed significantly longer reaction times when compared to younger individuals. In addition, both older and younger individuals showed a significant increase in reaction time for fusion trials, where two flashes and one beep are perceived as a single flash, as compared to congruent single flash trials. This increase in reaction time was not found for fission trials, where one flash and two beeps were perceived as two flashes. This suggests that processing may differ for the two forms for fission as compared to fusion illusions. PMID:26619352

  3. Potential Use of a Bayesian Network for Discriminating Flash Type from Future GOES-R Geostationary Lightning Mapper (GLM) data

    NASA Technical Reports Server (NTRS)

    Solakiewiz, Richard; Koshak, William

    2008-01-01

    Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian

  4. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  5. Flash vacuum pyrolysis of lignin model compounds

    SciTech Connect

    Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

  6. Memory B cells: total recall.

    PubMed

    Phan, Tri Giang; Tangye, Stuart G

    2017-03-28

    Immunological memory is a cornerstone of adaptive immune responses in higher vertebrates. The remarkable ability to generate memory cells following Ag exposure, in the context of natural infection or immunization, provides long-lived protection against infectious diseases, often for the hosts' lifetime. Indeed, the generation of memory B cells and long-lived plasma cells underpins the success of most vaccines. The concept of immunological memory is not new-it was first proposed nearly 2500 years ago. While our understanding of the complexities of humoral and cell-mediated memory continues to evolve, important aspects of this process remain unresolved. Here, we will provide an overview of recent advances in B-cell memory in mice and humans, and in health and disease.

  7. Genetic Polymorphisms, Hormone Levels, and Hot Flashes in Midlife Women

    PubMed Central

    Schilling, Chrissy; Gallicchio, Lisa; Miller, Susan R.; Langenberg, Patricia; Zacur, Howard; Flaws, Jodi A.

    2007-01-01

    Objective Hot flashes disrupt the lives of millions of women each year. Although hot flashes are a public health concern, little is known about risk factors that predispose women to hot flashes. Thus, the objective of this study was to examine whether sex steroid hormone levels and genetic polymorphisms in hormone biosynthesis and degradation enzymes are associated with the risk of hot flashes. Methods In a cross-sectional study design, midlife women aged 45 to 54 years (n=639) were recruited from Baltimore and its surrounding counties. Participants completed a questionnaire and donated a blood sample for steroid hormone analysis and genotyping. The associations between genetic polymorphisms and hormone levels, as well as the associations between genetic polymorphisms, hormone levels, and hot flashes were examined using statistical models. Results A polymorphism in CYP1B1 was associated with lower dehydroepiandrosterone-sulfate (DHEA-S) and progesterone levels, while a polymorphism in CYP19 (aromatase) was associated with higher testosterone and DHEA-S levels. Lower progesterone and sex hormone binding globulin levels, lower free estradiol index, and a higher ratio of total androgens to total estrogens were associated with the experiencing of hot flashes. A polymorphism in CYP1B1 and a polymorphism in 3βHSD were both associated with hot flashes. Conclusion Some genetic polymorphisms may be associated with altered levels of hormones in midlife women. Further, selected genetic polymorphisms and altered hormone levels may be associated with the risk of hot flashes in midlife women. PMID:17187946

  8. Inserting a Flash movie into a PowerPoint presentation.

    PubMed

    Elfarssi, Saïd

    2007-02-01

    Macromedia Flash is a multimedia authoring software that is used to create dynamic presentations for the World Wide Web. Flash allows you to mix sound, animation, and graphics into a single file that can be added to a PowerPoint presentation for dynamic effect.

  9. Intraoperative monitoring of flash visual evoked potential under general anesthesia.

    PubMed

    Hayashi, Hironobu; Kawaguchi, Masahiko

    2017-04-01

    In neurosurgical procedures that may cause visual impairment in the intraoperative period, the monitoring of flash visual evoked potential (VEP) is clinically used to evaluate visual function. Patients are unconscious during surgery under general anesthesia, making flash VEP monitoring useful as it can objectively evaluate visual function. The flash stimulus input to the retina is transmitted to the optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation (geniculocalcarine tract), and visual cortical area, and the VEP waveform is recorded from the occipital region. Intraoperative flash VEP monitoring allows detection of dysfunction arising anywhere in the optic pathway, from the retina to the visual cortex. Particularly important steps to obtain reproducible intraoperative flash VEP waveforms under general anesthesia are total intravenous anesthesia with propofol, use of retinal flash stimulation devices using high-intensity light-emitting diodes, and a combination of electroretinography to confirm that the flash stimulus has reached the retina. Relatively major postoperative visual impairment can be detected by intraoperative decreases in the flash VEP amplitude.

  10. Initial Electric Field Changes of Lightning Flashes in Two Thunderstorms

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Stolzenburg, M.; Karunarathne, S.; Chapman, R.

    2015-12-01

    In a study of lightning initiation, Marshall et al. [2014, JGR Atmospheres] found that an initial electric field change (IEC) occurred before the initial breakdown (IB) pulses in 18 cloud-to-ground (CG) flashes and in 18 intracloud (IC) flashes. Because the IECs were small in amplitude and slowly developing (i.e., primarily electrostatic events), they were only detected by sensors within the reversal distance of each flash. In this presentation we report on a search for IECs in two small Florida thunderstorms that occurred close to several E-change sensors. One storm had 57 flashes; the other had only 13 flashes. The key result is that 69 of the 70 flashes began with detectable IECs. For the one flash without a detectable IEC, the closest sensor was at the reversal distance, presumably masking the IEC. Three of the flashes analyzed seemed to begin twice, in the sense that they had two sets of IB pulses; each beginning was preceded by an IEC.

  11. Algorithms for Lunar Flash Video Search, Measurement, and Archiving

    NASA Technical Reports Server (NTRS)

    Swift, Wesley; Suggs, Robert; Cooke, William

    2007-01-01

    Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching Lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of Lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.

  12. Two probable optical flashes from gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Bradt, H. V.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Evans, W. D.

    1984-01-01

    Two images on archival photographic plates which are most likely records of optical flashes from gamma-ray bursters (GRBs) were examined. One of these images appears on a 1901 plate in the field of the 5 Nov. 1979 GRB, while the other is in the field of the 13 Jan. 1979 GRB on a plate exposed in 1944. The 1901 optical transient image is circular in shape, while all normal star images are trailed by 8 in. No optical transients are found in a control region which is 34.3 times larger than the GRB error regions examined. Independent limits on the optical flash rate from the sky yield a probability of less than 0.0001 that any one of the optical transients is due to a background flash. A total exposure of 2.7 years was examined for GRB flashes at known GRB locations on the Harvard plates and a total of three GRB flashes were seen, that the average recurrence time scale for optical flashes is roughly one year. The optical fluence of these optical flashes was measured. For the three currently known GRB optical flashes, the ratio of gamma-ray fluence (from a modern burst) to the optical fluence (from a archival burst) were measured to be 800, 900, and 900.

  13. Macromedia Flash as a Tool for Mathematics Teaching and Learning

    ERIC Educational Resources Information Center

    Garofalo, Joe; Summers, Tim

    2004-01-01

    Macromedia Flash is a powerful and robust development tool. Because of its graphical, sound, and animation capabilities (and ubiquitous browser plug-in), major companies employ it in their website development (see www.nike.com or www.espn.com). These same features also make Flash a valuable environment for building multi-representational "movies"…

  14. Temporal Ventriloquism: Sound Modulates the Flash-Lag Effect

    ERIC Educational Resources Information Center

    Vroomen, Jean; de Gelder, Beatrice

    2004-01-01

    A sound presented in close temporal proximity to a visual stimulus can alter the perceived temporal dimensions of the visual stimulus (temporal ventriloquism). In this article, the authors demonstrate temporal ventriloquism in the flash-lag effect (FLE), a visual illusion in which a flash appears to lag relative to a moving object. In Experiment…

  15. Flash signals, nuptial gifts and female preference in photinus fireflies.

    PubMed

    Cratsley, Christopher K

    2004-06-01

    The evolution of male courtship signals such as the bioluminescent flashes of fireflies may be shaped, at least in part, by female preference for particular characteristics of the male signal. These female preferences for male courtship signals may arise as a result of the benefits of choosing males with particular traits. One possible benefit of mate choice occurs if females can use male courtship signals as an honest indicator of male nutritional contributions at mating, nuptial gifts. This paper reviews female preference for male flash characteristics in Photinus fireflies (Coleoptera: Lampyridae), and the potential for females to use male flash characteristics to predict nuptial gift quality. In Photinus firefly species with single pulse flashes females preferentially respond to flashes of greater intensity and duration. Male Photinus provide a nuptial gift to females at mating in the form of a spermatophore and flash duration serves as a good predictor of spermatophore mass for males collected early in the season. However, Photinus fireflies do not feed as adults, so spermatophore mass decreases with subsequent matings. In response, nutrient-limited females may stop preferentially responding to longer duration flashes, increasing their overall responsiveness later in the mating season as they forage for spermatophores. Therefore, the evolution of male courtship signals in Photinus fireflies is the product not only of female preference for male flash characteristics, but also the costs and benefits of female choice that shape these preferences.

  16. Treatment of Menopausal Hot Flashes with 5-Hydroxytryptophan

    PubMed Central

    Freedman, Robert R.

    2010-01-01

    Objective Much recent research has focused on nonhormonal treatments for menopausal hot flashes. The purpose of the present study was to determine the effects of 5-Hydroxytroptophan (5-HTP), the immediate precursor of serotonin, upon menopausal hot flashes. Selective, serotonergic, reuptake inhibitors (SSRI’s), which increase the amount of serotonin in the synaptic gap, have shown some promise in the amelioration of hot flashes. Methods We administered 5-HTP or placebo, in double-blind fashion, to 24 postmenopausal women reporting frequent hot flashes. Treatment outcome was measured using a miniature, electronic, hot flash recorder. Results No significant effects of 150 mg/day 5-HTP upon hot flash frequency were found. The 5-HTP group had 23.8 ± 5.7 (SD) hot flashes/24 hours prior to treatment and 18.5 ± 9.6 at the end of treatment. The placebo group had 18.5 ± 9.6 before treatment and 22.6 ± 12.4 at treatment completion. Conclusions At the dose given, 5-HTP does not significantly ameliorate frequency of menopausal hot flashes, as measured objectively with an electronic recorder. Given the small size, this study must be considered preliminary in nature. PMID:20031347

  17. Behavioral Treatment of Menopausal Hot Flashes: Evaluation by Objective Methods.

    ERIC Educational Resources Information Center

    Germaine, Leonard M.; Freedman, Robert R.

    1984-01-01

    Used latency to hot flash onset under heat stress to evaluate the effects of relaxation treatment or a control procedure in 14 menopausal women. Following treatment, the latency to hot flash onset during heat stress was increased in relaxation subjects. Reported symptom frequency was significantly reduced in relaxation subjects. (BH)

  18. Algorithms for Lunar Flash Video Search, Measurement, and Archiving

    NASA Technical Reports Server (NTRS)

    Swift, Wesley; Suggs, Robert; Cooke, Bill

    2007-01-01

    Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, Z and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.

  19. Kinetics of Reactions of Monomeric Nitrosomethane Induced by Flash Photolysis.

    ERIC Educational Resources Information Center

    Kozubek, H.; And Others

    1984-01-01

    Describes an experiment in which the kinetics of dimerization of nitrosamine induced by a flash of light is measured. The experiment can be performed with a commercial ultraviolet-VIS spetrophotometer with easy to make modifications. The experiment demonstrates a flash photolysis system not always available in university chemistry laboratories.…

  20. Intraoperative monitoring of flash visual evoked potential under general anesthesia

    PubMed Central

    Hayashi, Hironobu

    2017-01-01

    In neurosurgical procedures that may cause visual impairment in the intraoperative period, the monitoring of flash visual evoked potential (VEP) is clinically used to evaluate visual function. Patients are unconscious during surgery under general anesthesia, making flash VEP monitoring useful as it can objectively evaluate visual function. The flash stimulus input to the retina is transmitted to the optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation (geniculocalcarine tract), and visual cortical area, and the VEP waveform is recorded from the occipital region. Intraoperative flash VEP monitoring allows detection of dysfunction arising anywhere in the optic pathway, from the retina to the visual cortex. Particularly important steps to obtain reproducible intraoperative flash VEP waveforms under general anesthesia are total intravenous anesthesia with propofol, use of retinal flash stimulation devices using high-intensity light-emitting diodes, and a combination of electroretinography to confirm that the flash stimulus has reached the retina. Relatively major postoperative visual impairment can be detected by intraoperative decreases in the flash VEP amplitude. PMID:28367282

  1. Lightning Mapping Array flash detection performance with variable receiver thresholds

    NASA Astrophysics Data System (ADS)

    Chmielewski, Vanna C.; Bruning, Eric C.

    2016-07-01

    This study characterizes Lightning Mapping Array performance for networks that participated in the Deep Convective Clouds and Chemistry field program using new Monte Carlo and curvature matrix model simulations. These open-source simulation tools are readily adapted to real-time operations or detailed studies of performance. Each simulation accounted for receiver threshold and location, as well as a reference distribution of source powers and flash sizes based on thunderstorm observations and the mechanics of station triggering. Source and flash detection efficiency were combined with solution bias and variability to predict flash area distortion at long ranges. Location errors and detection efficiency were highly dependent on the station configuration and thresholds, especially at longer ranges, such that performance varied more than expected across different networks and with azimuth within networks. Error characteristics matched prior studies, which led to an increase in flash distortion with range. Predicted flash detection efficiency exceeded 95% within 100 km of all networks.

  2. Lightning Mapping Array flash detection performance with variable receiver thresholds.

    PubMed

    Chmielewski, Vanna C; Bruning, Eric C

    2016-07-27

    This study characterizes Lightning Mapping Array performance for networks that participated in the Deep Convective Clouds and Chemistry field program using new Monte Carlo and curvature matrix model simulations. These open-source simulation tools are readily adapted to real-time operations or detailed studies of performance. Each simulation accounted for receiver threshold and location, as well as a reference distribution of source powers and flash sizes based on thunderstorm observations and the mechanics of station triggering. Source and flash detection efficiency were combined with solution bias and variability to predict flash area distortion at long ranges. Location errors and detection efficiency were highly dependent on the station configuration and thresholds, especially at longer ranges, such that performance varied more than expected across different networks and with azimuth within networks. Error characteristics matched prior studies, which led to an increase in flash distortion with range. Predicted flash detection efficiency exceeded 95% within 100 km of all networks.

  3. The flash-lag effect during illusory chopstick rotation.

    PubMed

    Anstis, Stuart

    2007-01-01

    In the 'flash-lag' effect, a static object that is briefly flashed next to a moving object appears to lag behind the moving object. A flash was put up next to an intersection that appeared to be moving clockwise along a circular path but was actually moving counterclockwise [the chopstick illusion; Anstis, 1990, in AI and the Eye Eds A Blake, T Troscianko (London: John Wiley) pp 105 117; 2003, in Levels of Perception Eds L Harris, M Jenkin (New York: Springer) pp 90 93]. As a result, the flash appeared displaced clockwise. This was appropriate to the physical, not the subjective, direction of rotation, and it suggests that the flash-lag illusion occurs early in the visual system, before motion signals are parsed into moving objects.

  4. Memory protection

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  5. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont

    2012-01-01

    (non-severe multi-cell) over Northern Alabama. The LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby Doppler radar network, including the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR, C-band, polarimetric). The LNOM estimated SAD and lightning NOx production profiles are placed in the context of radar derived profiles of vertical motion, precipitation types and amounts. Finally, these analyses are used to determine if storm integrated flash channel extent is as well correlated to volumetric updraft and precipitation ice characteristics in the mixed phase region as flash rate for these individual convective cells.

  6. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Schultz, E. V.; Matthee, R.; Schultz, C. J.; Petersen, W. A.; Bain, L.

    2012-12-01

    (non-severe multi-cell) over Northern Alabama. The LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby Doppler radar network, including the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, C-band, polarimetric). The LNOM estimated SAD and lightning NOx production profiles are placed in the context of radar derived profiles of vertical motion, precipitation types and amounts. Finally, these analyses are used to determine if storm integrated flash channel extent is as well correlated to volumetric updraft and precipitation ice characteristics in the mixed phase region as flash rate for these individual convective cells.

  7. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  8. Features of positive ground flashes observed in Kathmandu Nepal

    NASA Astrophysics Data System (ADS)

    Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath

    2016-07-01

    Lightning vertical electric fields pertinent to the subtropical thunderstorms occurring over the rugged terrain have been measured and recorded at a hilly station Kathmandu, Nepal. In the present work, waveforms of the positive ground flashes have been selected from all the records and were analyzed. To the best of our knowledge, this is the first time that fine structure of electric field signature pertinent to the positive return stroke; have been analyzed and presented from Nepal. One hundred and thirty three (133) of the total of four hundred twenty-five (425) flashes were selected from seven thunderstorm days and analyzed. Of the data recorded for seven days, 133 flashes (31.3%) were positive flashes and 276 flashes (64.9%) were cloud flashes. Majority of the positive ground flashes were found to be single stroke ones, whereas, the average number of strokes per flash is found to be 1.1 with a maximum value of 4. Majority of the positive ground flashes were found either lacking the initial breakdown process and the leader stage or these processes could not be detected. The return strokes are found to be succeeded by large in cloud activity in the continuing current portion of the flash. The average zero-crossing time of the positive return strokes was found to be 60.45 μs with a range of 447.81 μs and the average rise time was found to be 9.44 μs with a range of 42.56 μs.

  9. Kappa Agonists as a Novel Therapy for Menopausal Hot Flashes

    PubMed Central

    Oakley, Amy E.; Steiner, Robert A.; Chavkin, Charles; Clifton, Donald K.; Ferrara, Laura K.; Reed, Susan D.

    2015-01-01

    Objective Postmenopausal hot flash etiology is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing Kisspeptin, Neurokinin B, and Dynorphin (KNDy neurons), located adjacent to the thermoregulatory center, regulate pulsatile secretion of GnRH and LH. Dynorphin may inhibit this system by binding kappa opioid receptors within the vicinity of KNDy neurons. We hypothesize that hot flashes are reduced by KNDy neuron manipulation. Methods A double-blind, cross-over, placebo-controlled pilot study evaluated the effect of a kappa agonist (KA).Hot flash frequency was the primary outcome. Twelve healthy postmenopausal women with moderate-severe hot flashes, ages 48-60 years, were randomized. Eight women with sufficient baseline hot flashes for statistical analysis completed all 3 interventions: placebo, standard Pentazocine/Naloxone (50/0.5 mg) or low-dose Pentazocine/Naloxone (25/0.25 mg). In an inpatient research setting, each participant received the 3 interventions, in randomized order, on 3 separate days. On each day, an intravenous catheter was inserted for luteinizing hormone (LH) blood sampling, and skin conductance and Holter monitors were placed. Subjective hot flash frequency and severity were recorded. Results Mean hot flash frequency 2-7 hours following therapy initiation was lower than that for placebo (KA standard-dose: 4.75 ± 0.67; KA low-dose: 4.50 ± 0.57; and placebo: 5.94 ± 0.78 hot flashes/5 hours; p =0.025). Hot flash intensity did not vary between interventions. LH pulsatility mirrored objective hot flashes in some, but not all women. Conclusions This pilot suggests that kappa agonists may affect menopausal vasomotor symptoms. PMID:25988798

  10. Mapping Flash Flood Severity in the United States

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2015-12-01

    Flash floods have been a major natural hazard in terms of both fatalities and property damage. In the United States, flash floods have only been characterized on a case study basis due to the lack of a comprehensive database matching flood characteristics with geospatial and geomorphologic information. To characterize the ability of a basin to produce flash floods, a new variable called "Flashiness" is derived from the slope of the rising limb in hydrograph time series. It is the basis to document and predict the flash flood potential and severity over the U.S. First a representative and long archive of flood events spanning 78 years is used to analyze the spatial and temporal variability of observed flashiness. The areas and seasons prone to flash floods are documented, highlighting the flash flood alley in Texas, Appalachians, West Coast, and North American monsoon in Arizona etc. Then the flashiness is linked to geomorphologic and climatologic attributes to identify the basin characteristics driving the ability to produce flash floods. The significant impact of characteristics such as slope, precipitation, and basin area are quantified. Next the model is used to predict flashiness all over the continental U.S., specifically over regions poorly covered by hydrological observations. It highlights ungauged areas prone to flash floods such as parts of Florida, Southern Wisconsin, Montana and South Dakota etc. Finally these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  11. Studying the hydro-meteorological extremes. The benefits from the European Flash Flood research oriented HYDRATE project.

    NASA Astrophysics Data System (ADS)

    Tsanis, Ioannis K.; Koutroulis, Aristeidis G.; Daliakopoulos, Ioannis N.; Grillakis, Emmanouil G.

    2010-05-01

    The present paper summarizes the advances of flash flood research for the Greek case study, within the frame of HYDRATE EC funded project. As a first step, a collation of homogenous primary data on flash floods occurred in Greece based on various data sources resulted in 21 documented events, enriching the HYDRATE database. Specific major events were selected for further detailed data collation and analysis. A common intensive post event field survey was conducted by various researchers with different skills and experience, in order to document the 18th of September 2007, Western Slovenia flash flood event. The observation strategy and the lessons learned during this campaign were applied successfully for surveying an event in Crete. Two flash flood events occurred in Crete were selected for detailed analysis, the 13th of January 1994 event occurred in Giofiros basin and the 17th of October 2006 event occurred in Almirida basin. Several techniques, like distributed rainfall-runoff modelling, hydraulic modelling, indirect and empirical peak discharge estimation, were applied for the understanding of the dominant flash flood processes and the effect of initial conditions on peak discharge. In a more general framework, the seasonality of the hydrometeorologic characteristics of floods that occurred in Crete during the period 1990-2007 and the atmospheric circulation conditions during the flood events were examined. During the three and a half years research period, many lessons have learnt from a fruitful collaboration among the project partners. HYDRATE project improved the scientific basis of flash flood research and provided research knowledge on flood risk management.

  12. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  13. Experimental evaluation of a solar fired flash pyrolysis of biomass reactor

    SciTech Connect

    Antal, M.J. Jr.; Edwards, W.E.; Steenblik, R.A.; Brown, C.T.; Knight, J.A.; Elston, L.W.; Hurst, D.R.

    1981-01-01

    A Princeton-Georgia Institute of Technology flash pyrolysis of biomass test program was conducted at the DOE Advanced Components Test Facility (CTF) at Georgia Tech in August 1980. The 400 kWth solar thermal facility was used to provide a source of highly concentrated radiant energy for the flash pyrolysis of four types of biomass in a steam counterflow quartz reactor. The biomass materials were microcrystalline cellulose, hardwood sawdust, ground corn cob, and Kraft lignin. The experiments at Princeton and Georgia Tech suggest the use of concentrated radiant energy as a selective means for the production of either a hydrocarbon rich synthesis gas or sugar related syrups from biomass by flash pyrolysis. Experiments at Princeton have indicated that sugar related syrups are selectively produced when the biomass particles are rapidly heated by radiation in a cool gaseous environment. The gas temperatures in the reactor during the test program at Georgia Tech were relatively high, which selectively turned the chemistry toward the production of hydrocarbon rich synthesis gases.

  14. Estimation of the relative severity of floods in small ungauged catchments for preliminary observations on flash flood preparedness: a case study in Korea.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2012-04-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments.

  15. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  16. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  17. Unpredictable visual changes cause temporal memory averaging.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2007-09-01

    Various factors influence the perceived timing of visual events. Yet, little is known about the ways in which transient visual stimuli affect the estimation of the timing of other visual events. In the present study, we examined how a sudden color change of an object would influence the remembered timing of another transient event. In each trial, subjects saw a green or red disk travel in circular motion. A visual flash (white frame) occurred at random times during the motion sequence. The color of the disk changed either at random times (unpredictable condition), at a fixed time relative to the motion sequence (predictable condition), or it did not change (no-change condition). The subjects' temporal memory of the visual flash in the predictable condition was as veridical as that in the no-change condition. In the unpredictable condition, however, the flash was reported to occur closer to the timing of the color change than actual timing. Thus, an unpredictable visual change distorts the temporal memory of another visual event such that the remembered moment of the event is closer to the timing of the unpredictable visual change.

  18. Condor: a simulation tool for flash X-ray imaging.

    PubMed

    Hantke, Max F; Ekeberg, Tomas; Maia, Filipe R N C

    2016-08-01

    Flash X-ray imaging has the potential to determine structures down to molecular resolution without the need for crystallization. The ability to accurately predict the diffraction signal and to identify the optimal experimental configuration within the limits of the instrument is important for successful data collection. This article introduces Condor, an open-source simulation tool to predict X-ray far-field scattering amplitudes of isolated particles for customized experimental designs and samples, which the user defines by an atomic or a refractive index model. The software enables researchers to test whether their envisaged imaging experiment is feasible, and to optimize critical parameters for reaching the best possible result. It also aims to support researchers who intend to create or advance reconstruction algorithms by simulating realistic test data. Condor is designed to be easy to use and can be either installed as a Python package or used from its web interface (http://lmb.icm.uu.se/condor). X-ray free-electron lasers have high running costs and beam time at these facilities is precious. Data quality can be substantially improved by using simulations to guide the experimental design and simplify data analysis.

  19. Climatic and geomorphic controls on flash flood response in Europe

    NASA Astrophysics Data System (ADS)

    Marchi, Lorenzo; Borga, Marco; Preciso, Emanuele; Gaume, Eric

    2010-05-01

    High-resolution data enabling identification and analysis of the hydrometeorological causative processes of flash floods have been collected and analysed for 25 extreme flash floods (60 drainage basins) across Europe. Criteria for flood selection were high intensity of triggering rainfall and flood response and availability of reliable high-resolution data. Hydrometeorological data collected for each event were checked by using a hydrological model. The derivation and analysis of summarising variables has made it possible to outline some characteristics of flash floods in various morphoclimatic regions of Europe. Peak discharge data for more than 50% of the studied watersheds derive from post-flood surveys in ungauged streams. This stresses both the significance of post-flood surveys in building and extending flash flood databases, and the need to develop new methods for flash-flood hazard assessment able to take into account data from post-event analysis. Catchments do not need to be particularly steep to favour flash flooding. However, relief is important since it may affect flash flood occurrence in specific catchments by combination of two main mechanisms: orographic effects augmenting precipitation and anchoring convection, and topographic relief promoting rapid concentration of streamflow. Examination of data shows a peculiar seasonality effect on flash flood occurrence, with events in the Mediterranean and Alpine-Mediterranean regions mostly occurring in autumn, whereas events in the inland Continental region commonly occur in summer, revealing different climatic forcing. Consistently with this seasonality effect, spatial extent and duration of the events is generally smaller for the Continental events with respect to those occurring in the Mediterranean region. Furthermore, the flash flood regime is usually more intense in the Mediterranean Region than in the Continental areas. The runoff coefficients of the studied flash floods are usually rather low (mean

  20. Kinematic and Microphysical Control of Lightning Flash Rate over Northern Alabama

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Bain, Anthony L.; Matthee, Retha; Schultz, Christopher J.; Schultz, Elise V.; Deierling, Wiebke; Petersen, Walter A.

    2015-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep convection and the production of nitrogen oxides (NO (sub x)) via lightning (LNO (sub x)). A critical step in estimating LNO (sub x) production in a cloud-resolving model (CRM) without explicit lightning is to estimate the flash rate from available model parameters that are statistically and physically correlated. As such, the objective of this study is to develop, improve and evaluate lightning flash rate parameterizations in a variety of meteorological environments and storm types using radar and lightning mapping array (LMA) observations taken over Northern Alabama from 2005-2012, including during DC3. UAH's Advanced Radar for Meteorological and Operational Research (ARMOR) and the Weather Surveillance Radar - 1988 Doppler (WSR 88D) located at Hytop (KHTX) comprises the dual-Doppler and polarimetric radar network, which has been in operation since 2004. The northern Alabama LMA (NA LMA) in conjunction with Vaisala's National Lightning Detection Network (NLDN) allow for a detailed depiction of total lightning during this period. This study will integrate ARMOR-KHTX dual Doppler/polarimetric radar and NA LMA lightning observations from past and ongoing studies, including the more recent DC3 results, over northern Alabama to form a large data set of 15-20 case days and over 20 individual storms, including both ordinary multicell and supercell convection. Several flash rate parameterizations will be developed and tested, including those based on 1) graupel/small hail volume; 2) graupel/small hail mass, and 3) convective updraft volume. Sensitivity of the flash rate parameterizations to storm intensity, storm morphology and environmental conditions will be explored.

  1. Luminosity with Intracloud-Type Initial Breakdown Pulses and Terrestrial Gamma-ray Flash Candidates

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Maribeth; Marshall, Thomas; Karunarathne, Sumedhe; Orville, Richard

    2016-04-01

    High-speed video data for three hybrid lightning flashes show luminosity increases at visible wavelengths that are time-correlated with large, intracloud (IC) type initial breakdown (IB) pulses in electric field change (E-change) data. In one case, a diffuse luminosity increase is visible for 280-300 us, apparently centered near 9 km altitude. At the same time, locations of VHF sources and E-change pulses indicate breakdown activity occurring at altitudes of 9.2-10.2 km altitude, and the initial leader was developing rapidly upward. The second case has a diffuse luminosity increase at the time of three large IC-type IB pulses, while the initial leader is advancing upward from about 7 km altitude. In the third example, a series of luminosity bursts are visible at the times of several large-amplitude IC-type IB pulses, although the center of the activity is apparently above the video frame. In all three hybrid flashes, the luminous IC-type IB pulses are relatively complicated and large in E-change amplitude, and most have distinct electrostatic offset at horizontal distances of 20-25 km from a sensor. Such large amplitude IB pulses have been associated with the production of terrestrial gamma ray flashes (TGFs) in prior work [Marshall et al., 2013, doi:10.1002/jgrd.50866]. No satellite or ground-based TGF observations were available for these events, hence it is not known if these TGF candidates produced gammas or other high energy radiation. This presentation describes the video and E-change observations during the intracloud and cloud-to-ground initial breakdown periods of these flashes and implications for TGF production.

  2. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V.; Pitts, Todd Alan

    2009-02-24

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  3. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V.; Pitts, Todd Alan

    2008-09-02

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  4. MENOPAUSAL HOT FLASHES: MECHANISMS, ENDOCRINOLOGY, TREATMENT

    PubMed Central

    Freedman, Robert R.

    2015-01-01

    Hot flashes (HFs) are a rapid and exaggerated heat dissipation response, consisting of profuse sweating, peripheral vasodilation, and feelings of intense, internal heat. They are triggered by small elevations in core body temperature (Tc) acting within a greatly reduced thermoneutral zone, i.e., the Tc region between the upper (sweating) and lower (shivering) thresholds. This is due in part, but not entirely, to estrogen depletion at menopause. Elevated central sympathetic activation, mediated through α2-adrenergic receptors, is one factor responsible for narrowing of the thermoneutral zone. Procedures which reduce this activation, such as paced respiration and clonidine administration, ameliorate HFs as will peripheral cooling. HFs are responsible for some, but not all, of the sleep disturbance reported during menopause. Recent work calls into question the role of serotonin in HFs. PMID:24012626

  5. Flash photolysis-shock tube studies

    SciTech Connect

    Michael, J.V.

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  6. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  7. Menopausal hot flashes: mechanisms, endocrinology, treatment.

    PubMed

    Freedman, Robert R

    2014-07-01

    Hot flashes (HFs) are a rapid and exaggerated heat dissipation response, consisting of profuse sweating, peripheral vasodilation, and feelings of intense, internal heat. They are triggered by small elevations in core body temperature (Tc) acting within a greatly reduced thermoneutral zone, i.e., the Tc region between the upper (sweating) and lower (shivering) thresholds. This is due in part, but not entirely, to estrogen depletion at menopause. Elevated central sympathetic activation, mediated through α2-adrenergic receptors, is one factor responsible for narrowing of the thermoneutral zone. Procedures which reduce this activation, such as paced respiration and clonidine administration, ameliorate HFs as will peripheral cooling. HFs are responsible for some, but not all, of the sleep disturbance reported during menopause. Recent work calls into question the role of serotonin in HFs. This article is part of a Special Issue entitled 'Menopause'.

  8. Article coated with flash bonded superhydrophobic particles

    DOEpatents

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  9. Measurement of g Using a Flashing LED

    NASA Astrophysics Data System (ADS)

    Terzella, T.; Sundermier, J.; Sinacore, J.; Owen, C.; Takai, H.

    2008-10-01

    In one of the classic free-fall experiments, a small mass is attached to a strip of paper tape and both are allowed to fall through a spark timer, where sparks are generated at regular time intervals. Students analyze marks (dots) left on the tape by the timer, thereby generating distance-versus-time data, which they analyze to extract the acceleration due to gravity g with good results. The apparatus, however, is cumbersome and often frustrating for students. High-tech versions of this experiment are done with an object dropped and followed by a motion sensor connected to a computer. The sensor relies on ultrasonic ranging to record distance and time data, which may then be displayed graphically. Students inspect the graphs to determine the value of g. Although the results are excellent, the emphasis on the computer's ability to collect and analyze data leaves little analysis for the students to perform.2 Furthermore, neither technique gives an intuitive display of what is happening. The motivation for our work was to overcome these issues by developing an innovative method for measuring g. In our version of the experiment, students drop a flashing LED at a known frequency and record its trajectory using long exposure photography with a digital camera. Proper choice of flashing LED timing parameters produces an image that allows for an accurate measurement of g and at the same time helps to explain what happens during free fall. The experiment remains high-tech in the sense that students learn to use updated equipment to record data and to carry out the analysis.

  10. Characterization of the self magnetic pinch diode at high voltages for flash radiography.

    SciTech Connect

    Cordova, Steve Ray; Portillo, Salvador; Oliver, Bryan Velten; Threadgold, James R.; Crotch, Ian; Ziska, Derek Raymond

    2008-10-01

    The Sandia Laboratories Advanced Radiographic Technologies Department, in collaboration with the United Kingdom Atomic Weapons Establishment, has been conducting research into the development of the Self-Magnetic-Pinched diode as an x-ray source suitable for flash radiographic experiments. We have demonstrated that this source is capable of meeting and exceeding the initial requirements of 250 rads (measured at one meter) with a 2.75 mm source spot-size. Recent experiments conducted on the RITS-6 accelerator have demonstrated the ability of this diode to meet intermediate requirements with a sub 3 mm source spot size and a dose in excess of 400 rads at one meter.

  11. Tamoxifen, hot flashes and recurrence in breast cancer.

    PubMed

    Mortimer, Joanne E; Flatt, Shirley W; Parker, Barbara A; Gold, Ellen B; Wasserman, Linda; Natarajan, Loki; Pierce, John P

    2008-04-01

    We utilized data from the comparison group of the Women's Healthy Eating and Living randomized trial to investigate an "a priori" hypothesis suggested by CYP2D6 studies that hot flashes may be an independent predictor of tamoxifen efficacy. A total of 1551 women with early stage breast cancer were enrolled and randomized to the comparison group of the WHEL multi-institutional trial between 1995 and 2000. Their primary breast cancer diagnoses were between 1991 and 2000. At study entry, 864 (56%) of these women were taking tamoxifen, and hot flashes were reported by 674 (78%). After 7.3 years of follow-up, 127 of those who took tamoxifen at baseline had a confirmed breast cancer recurrence. Women who reported hot flashes at baseline were less likely to develop recurrent breast cancer than those who did not report hot flashes (12.9% vs 21%, P = 0.01). Hot flashes were a stronger predictor of breast cancer specific outcome than age, hormone receptor status, or even the difference in the stage of the cancer at diagnosis (Stage I versus Stage II). These findings suggest an association between side effects, efficacy, and tamoxifen metabolism. The strength of this finding suggests that further study of the relationship between hot flashes and breast cancer progression is warranted. Additional work is warranted to clarify the mechanism of hot flashes in this setting.

  12. Pilot evaluation of citalopram for the relief of hot flashes.

    PubMed

    Barton, Debra L; Loprinzi, Charles L; Novotny, Paul; Shanafelt, Tait; Sloan, Jeff; Wahner-Roedler, Dietlind; Rummans, Teresa A; Christensen, Bradley; Dakhill, Shaker R; Martin, Laura S

    2003-01-01

    Symptoms associated with premature menopause are a significant problem for women with a history of breast cancer who cannot take hormone replacement therapy. Thus, effective nonhormonal alternatives are needed to manage hot flashes, the most prevalent symptom of menopause. Previous studies have defined that venlafaxine, an anti-depressant, is an effective treatment for such hot flashes. Based on suggestive anecdotal information, we set out to evaluate, in a pilot trial, whether the antidepressant citalopram might be a good nonhormonal treatment option to add to our armamentarium for controlling hot flashes. A prospective pilot study was developed in which patients were studied for 5 weeks, with the first week used to establish a baseline, followed by 4 weeks of treatment with citalopram. During the first week of treatment, 10 mg/day of citalopram was taken while 20 mg/day was taken during each of the following three weeks. Hot-flash diaries were completed daily, symptom diaries and quality-of-life items were completed weekly and the Profile of Mood States was completed at baseline and at week 5. Evaluable patients who completed the study had a mean hot-flash frequency reduction of 58% and a mean hot-flash score reduction of 64% from baseline to week 5. The patients finishing the study also reported decreased anger, tension and depression, as well as improved mood. This pilot trial suggests that citalopram may be an effective non-hormonal treatment for hot flashes in women who can tolerate it.

  13. Flashbulb Memories

    PubMed Central

    Hirst, William; Phelps, Elizabeth A.

    2015-01-01

    We review and analyze the key theories, debates, findings, and omissions of the existing literature on flashbulb memories (FBMs), including what factors affect their formation, retention, and degree of confidence. We argue that FBMs do not require special memory mechanisms and are best characterized as involving both forgetting and mnemonic distortions, despite a high level of confidence. Factual memories for FBM-inducing events generally follow a similar pattern. Although no necessary and sufficient factors straightforwardly account for FBM retention, media attention particularly shapes memory for the events themselves. FBMs are best characterized in term of repetitions, even of mnemonic distortions, whereas event memories evidence corrections. The bearing of this literature on social identity and traumatic memories is also discussed. PMID:26997762

  14. Virtual memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Virtual memory was conceived as a way to automate overlaying of program segments. Modern computers have very large main memories, but need automatic solutions to the relocation and protection problems. Virtual memory serves this need as well and is thus useful in computers of all sizes. The history of the idea is traced, showing how it has become a widespread, little noticed feature of computers today.

  15. Skilled Memory.

    DTIC Science & Technology

    1980-11-06

    Morse code (Bryan & Harter , 1899). In every case, memory performance of the expert seems to violate the established limits of short- term memory. How is...of immediate memory. Quarterly Journal of Experimental psychology, 1958, 10, 12-21. Bryan, W. L., & Harter N. psychological Review, 1899, 6, 345-375...16, 1980 Page 5 Civil Govt Non Govt Dr. Susan Chipman 1 Dr. John R. Anderson Learning and Development Department of Psychology National Institute of

  16. Acupuncture For Hot Flashes In Prostate Cancer Patients

    PubMed Central

    Beer, Tomasz M.; Benavides, Maria; Emmons, Sandra L.; Hayes, Margaret; Liu, Guohui; Garzotto, Mark; Donovan, Deirdre; Katovic, Nina; Reeder, Caron; Eilers, Kristine

    2010-01-01

    Objectives Hot flashes are a common adverse effect of hormonal therapy for prostate cancer. We sought to determine the effect of acupuncture on hot flash frequency and intensity, quality of life, and sleep quality. Methods Men who had a hot flash score (HFS) > 4 while on androgen deprivation therapy for prostate cancer received acupuncture with electrostimulation biweekly for 4 weeks, then weekly for 6 weeks using a predefined treatment plan. The primary endpoint was a 50% reduction in HFS after 4 weeks of therapy, calculated from the patient daily hot flash diary. Hot flash related quality of life and sleep quality, and biomarkers potentially related to hot flashes, including serotonin, calcitonin gene-related peptide (CGRP), and urinary 5-HIAA were examined. Results Twenty-five men were enrolled between 9/2003 and 4/2007; 22 were eligible and evaluable. After four weeks, 9 of 22 patients (41%, 95%CI 21 to 64%) had a > 50% reduction in HFS. Twelve of 22 patients (55%, 95%CI 32 to 76%) met this response definition at any time during the course of therapy. No patients had a significant increase in HFS on therapy. Reduced HFS was associated with improvement in hot flash related quality of life and sleep quality. Conclusions Multiple placebo-controlled trials have demonstrated a 25% response rate to placebo treatment for hot flashes. 41% of patients responded by week 4 and 55% overall in this pilot study providing evidence of a potentially meaningful benefit. Further studies of acupuncture for hot flashes in this population are warranted. PMID:20494414

  17. Weak positive cloud-to-ground flashes in Northeastern Colorado

    NASA Technical Reports Server (NTRS)

    Lopez, Raul E.; Maier, Michael W.; Garcia-Miguel, Juan A.; Holle, Ronald L.

    1991-01-01

    The frequency distributions of the peak magnetic field associated with the first detected return stroke of positive and negative cloud-to-ground (CG) flashes were studied using lightning data from northeastern Colorado. These data were obtained during 1985 with a medium-to-high gain network of three direction finders (DF's). The median signal strength of positive flashes was almost two times that of the negatives for flashes within 300 km of the DF's, which have an inherent detection-threshold bias that tends to discriminate against weak signals. This bias increases with range, and affects the detection of positive and negative flashes in different ways, because of the differing character of their distributions. Positive flashes appear to have a large percentage of signals clustered around very weak values that are lost to the medium-to-high gain Colorado Detection System very quickly with increasing range. The resulting median for positive signals could thus appear to be much larger than the median for negative signals, which are more clustered around intermediate values. When only flashes very close to the DF's are considered, however, the two distributions have almost identical medians. The large percentage of weak positive signals detected close to the DF's has not been explored previously. They have been suggested to come from intracloud discharges and thus are improperly classified as CG flashes. Evidence in hand, points to their being real positive, albeit weak CG flashes. Whether or not they are real positive ground flashes, it is important to be aware of their presence in data from magnetic DF networks.

  18. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  19. FLASH is an essential component of Cajal bodies.

    PubMed

    Barcaroli, D; Dinsdale, D; Neale, M H; Bongiorno-Borbone, L; Ranalli, M; Munarriz, E; Sayan, A E; McWilliam, J M; Smith, T M; Fava, E; Knight, R A; Melino, G; De Laurenzi, V

    2006-10-03

    Cajal bodies are small nuclear organelles with a number of nuclear functions. Here we show that FLICE-associated huge protein (FLASH), originally described as a component of the apoptosis signaling pathway, is mainly localized in Cajal bodies and is essential for their structure. Reduction in FLASH expression by short hairpin RNA results in disruption of the normal architecture of the Cajal body and relocalization of its components. Because the function of FLASH in the apoptosis receptor signaling pathway has been strongly questioned, we have now identified a clear function for this protein.

  20. Gamma ray flashes add to mystery of upper atmosphere

    NASA Astrophysics Data System (ADS)

    Atmospheric electricity research has come a long way since Benjamin Franklin's kite-flying days. But what researchers have been learning lately about above-thunderstorm electricity has wrought a whole new era of mysteries.For a start, last summer a Colorado meteorologist sparked interest in a terrestrial phenomenon that the community first observed more than 100 years ago: optical flashes that occur above thunderstorms—at least 30 km above Earth. Walter Lyons with the Ft. Collins-based Mission Research Corporation, demonstrated that such flashes are not anomalies, as conventional scientific wisdom had held. He filmed hundreds of flashes during a 2-week period.

  1. NFPA 70E: Performing the electrical flash hazard analysis.

    PubMed

    Wallace, W Jon

    2005-08-01

    Arc flash hazards pose a serious risk to employee safety; proper safe work practices must be utilized. Electrical equipment > or = 50 volts must be deenergized and locked out/tagged out prior to servicing and maintenance unless doing so would increase hazards or is infeasible. Remember, convenience is not an acceptable reason for keeping equipment energized during servicing and maintenance. If electrical equipment must remain energized during Servicing and maintenance, NFPA 70E should be consulted to determine flash hazard boundaries as well as required PPE. Finally, circuit breakers and electrical disconnects must be marked to warn qualified employees of potential arc flash hazards.

  2. Nocturnal Hot Flashes: Relationship to Objective Awakenings and Sleep Stage Transitions

    PubMed Central

    Bianchi, Matt T.; Kim, Semmie; Galvan, Thania; White, David P.; Joffe, Hadine

    2016-01-01

    Study Objectives: While women report sleep interruption secondary to nighttime hot flashes, the sleep disrupting impact of nocturnal hot flashes (HF) is not well characterized. We utilized a model of induced HF to investigate the relationship of nighttime HF to sleep architecture and sleep-stage transitions. Methods: Twenty-eight healthy, premenopausal volunteers received the depot gonadotropin-releasing hormone agonist (GnRHa) leuprolide to rapidly induce menopause, manifesting with HF. Sleep disruption was measured on 2 polysomnograms conducted before and after 4–5 weeks on leuprolide, when HF had developed. Results: 165 HF episodes were recorded objectively during 48 sleep studies (mean 3.4 HF/night). After standardizing to sleep-stage time distribution, the majority of HF were recorded during wake (51.0%) and stage N1 (18.8%). Sixty-six percent of HF occurred within 5 minutes of an awakening, with 80% occurring just before or during the awakening. Objective HF were not associated with sleep disruption as measured by increased transitions to wake or N1, but self-reported nocturnal HF correlated with an increase from pre- to post-leuprolide in the rate of transitions to wake (p = 0.01), and to N1 (p = 0.008). Conclusions: By isolating the effect of HF on sleep in women without the confound of age-related sleep changes associated with natural menopause, this experimental model shows that HF arise most commonly during N1 and wake, typically preceding or occurring simultaneously with wake episodes. Perception of HF, but not objective HF, is linked to increased sleep-stage transitions, suggesting that sleep disruption increases awareness of and memory for nighttime HF events. Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT01116401. Citation: Bianchi MT, Kim S, Galvan T, White DP, Joffe H. Nocturnal hot flashes: relationship to objective awakenings and sleep stage transitions. J Clin Sleep Med 2016;12(7):1003–1009. PMID:26951410

  3. Heavy rainfall induced flash flood management

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Steinbrich, Andreas; Stölzle, Michael; Leistert, Hannes

    2016-04-01

    Heavy rain induced flash floods are still a serious hazard. In context of climate change even a rise of threat potential of flash flood must be suspected. To improve prediction of endangered areas hydraulic models was developed in the past that implement topography information in heigh resolution, gathered by laser scan applications. To run such models it is crucial to estimate the runoff input spatial distributed. However, this information is usually derived with relatively simple models lacking the process rigour that is required for prediction in engaged basins. Though available rain runoff models are able to model runoff response integral for measured catchments they do not indicate the spatial distribution of processes. Moreover they are commonly calibrated to measured runoff data and not applicable in other environments. Since runoff generation is commonly not measured, a calibration on it is hardly possible. In this study, we present a new approach for quantification of runoff generation in height spatial and temporal resolution. A suited model needs to work without calibration in every given environment under any given conditions. It is possible to develop such a model by combining spatial distributed input data of land surface properties (e.g. soil, geology, land use, …) with worldwide findings of runoff generation research. We developed such a model for the state of Baden-Württemberg, what has an extensive pool of spatial data. E.g. a digital elevation model of 1*1m² resolution, degree of sealing of the earth surface in 1*1m² resolution, soil properties (1:50.000) and geology (1:200.000). Within the state of Baden-Württemberg different regions are situated, with distinct environmental characteristics concerning as well climate, soil properties, land use, topography and geology. The model was tested and validated by modelling 36 observed flood events in 13 mesoscale catchments representing the different regions of Baden-Württemberg as well as by

  4. Multilevel Charge Storage in a Multiple Alloy Nanodot Memory

    NASA Astrophysics Data System (ADS)

    Lee, Gae-Hun; Lee, Jung-Min; Heub Song, Yun; Bea, Ji Chel; Tanaka, Tetsu; Koyanagi, Mitsumasa

    2011-09-01

    A multilevel charge storage in a multiple FePt alloy nanodot memory is investigated for the first time. It is demonstrated that the memory structure with multiple FePt nanodot layers effectively realizes a multilevel state by the adjustment of gate voltage. Metal oxide semiconductor (MOS) capacitors with four FePt nanodot layers as a floating gate are fabricated to evaluate the multilevel cell characteristic and reliability. Here, the effect of memory window for a nanodot diameter is also investigated, and it is found that a smaller dot size gives a larger window. From the results showing good endurance and retention characteristics for the multilevel states, it is expected that a multiple FePt nanodot memory using Fowler-Nordheim (FN) tunneling can be a candidate structure for the future multilevel NAND flash memory.

  5. Episodic Memories

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  6. Collaging Memories

    ERIC Educational Resources Information Center

    Wallach, Michele

    2011-01-01

    Even middle school students can have memories of their childhoods, of an earlier time. The art of Romare Bearden and the writings of Paul Auster can be used to introduce ideas about time and memory to students and inspire works of their own. Bearden is an exceptional role model for young artists, not only because of his astounding art, but also…

  7. Evaluation of flash supercritical fluid chromatography and alternate sample loading techniques for pharmaceutical medicinal chemistry purifications.

    PubMed

    Miller, Larry; Mahoney, Max

    2012-08-10

    Flash chromatography is the preferred approach for small molecule purification in pharmaceutical discovery. This paper will discuss the potential for flash supercritical fluid chromatography (SFC) as an alternative technology for these purifications. It was shown that the high sample loadings seen with flash LC could also be achieved using flash SFC. The dry load injection technique greatly increases the amount of sample that can be applied to a flash SFC column while still achieving separation. Flash SFC has much lower solvent usage and higher purification productivities relative to flash LC. Product concentrations post purification were higher for flash SFC vs. flash LC, reducing the time required to isolate dry product. There still exist a number of technical details to be worked out with flash SFC, mainly around the equipment and column/cartridge technology.

  8. Wedge Heat-Flux Indicators for Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2003-01-01

    Wedge indicators have been proposed for measuring thermal radiation that impinges on specimens illuminated by flash lamps for thermographic inspection. Heat fluxes measured by use of these indicators would be used, along with known thermal, radiative, and geometric properties of the specimens, to estimate peak flash temperatures on the specimen surfaces. These indicators would be inexpensive alternatives to high-speed infrared pyrometers, which would otherwise be needed for measuring peak flash surface temperatures. The wedge is made from any suitable homogenous material such as plastic. The choice of material is governed by the equation given. One side of the wedge is covered by a temperature sensitive compound that decomposes irreversibly when its temperature exceeds a rated temperature (T-rated). The uncoated side would be positioned alongside or in place of the specimen and exposed to the flash, then the wedge thickness at the boundary between the white and blackened portions measured.

  9. A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Attele, Rohan; Koshak, William

    2011-01-01

    A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.

  10. 2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is

  12. Hot Flashes and Quality of Life Among Breast Cancer Patients

    DTIC Science & Technology

    2006-08-01

    Quality of Life Among Breast Cancer Patients 5b. GRANT NUMBER DAMD17-03-1-0264 5c. PROGRAM...used approach to manage hot flashes with 44.2% of sample currently exercising . 15. SUBJECT TERMS Breast Cancer , Hot Flashes, Quality of Life ... breast cancer patients who were menopausal prior to treatment, at any of the time-points. b. to examine longitudinally the quality of life

  13. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  14. Memory and Self–Neuroscientific Landscapes

    PubMed Central

    Markowitsch, Hans J.

    2013-01-01

    Relations between memory and the self are framed from a number of perspectives—developmental aspects, forms of memory, interrelations between memory and the brain, and interactions between the environment and memory. The self is seen as dividable into more rudimentary and more advanced aspects. Special emphasis is laid on memory systems and within them on episodic autobiographical memory which is seen as a pure human form of memory that is dependent on a proper ontogenetic development and shaped by the social environment, including culture. Self and episodic autobiographical memory are seen as interlocked in their development and later manifestation. Aside from content-based aspects of memory, time-based aspects are seen along two lines—the division between short-term and long-term memory and anterograde—future-oriented—and retrograde—past-oriented memory. The state dependency of episodic autobiographical is stressed and implications of it—for example, with respect to the occurrence of false memories and forensic aspects—are outlined. For the brain level, structural networks for encoding, consolidation, storage, and retrieval are discussed both by referring to patient data and to data obtained in normal participants with functional brain imaging methods. It is elaborated why descriptions from patients with functional or dissociative amnesia are particularly apt to demonstrate the facets in which memory, self, and personal temporality are interwoven. PMID:24967303

  15. The Evolving Roles of Memory Immune Cells in Transplantation.

    PubMed

    Chen, Wenhao; Ghobrial, Rafik M; Li, Xian C

    2015-10-01

    Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article, we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance.

  16. Receptor and neural visual readaptation after exposure to colored flash.

    PubMed

    Wang, L; Persson, H E; Söderberg, P G; Tengroth, B

    1995-08-01

    The time needed to recover optokinetic nystagmus or electroretinography complexes after a glare inducing flash was measured to study the receptor and neural visual readaptation. Electroretinographs and optokinetic nystagmus were evoked with low intensity stimuli. The light from a flash tube was filtered with an interference filter (Tmax = 536 or 622 nm) and evenly distributed into a Goldmann hemisphere observed by the subject. The Recovery of the amplitude of the a-wave of the electroretinography is quicker than the recovery of optokinetic nystagmus after a low intensity glare inducing flash. The recovery time was shorter for a red than for a green flash of equivalent dose for both recovery modalities. The time difference between electroretinography a-wave and optokinetic nystagmus recovery was the same and independent of glare inducing flash wavelength. The recovery of the amplitude of the a-wave of the electroretinography was quicker than the recovery of optokinetic nystagmus after a low intensity glare inducing flash. This time difference between the recovery modalities may in part be due to the difference between the physiological stimuli used, but it is believed that most of the time difference is because the recovery of optokinetic nystagmus monitors more of the afferent visual pathway with complex post receptor neural mechanisms than the recovery of the a-wave.

  17. Spectral measurements of muzzle flash with multispectral and hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Piątkowski, T.; Polakowski, H.

    2011-08-01

    The paper presents some practical aspects of the measurements of muzzle flash signatures. Selected signatures of sniper shot in typical scenarios has been presented. Signatures registered during all phases of muzzle flash were analyzed. High precision laboratory measurements were made in a special ballistic laboratory and as a result several flash patterns were registered. The field measurements of a muzzle flash were also performed. During the tests several infrared cameras were used, including the measurement class devices with high accuracy and frame rates. The registrations were made in NWIR, SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Some typical infrared shot signatures were presented. Beside the cameras, the LWIR imaging spectroradiometer HyperCam was also used during the laboratory experiments and the field tests. The signatures collected by the HyperCam device were useful for the determination of spectral characteristics of the muzzle flash, whereas the analysis of thermal images registered during the tests provided the data on temperature distribution in the flash area. As a result of the measurement session the signatures of several types handguns, machine guns and sniper rifles were obtained which will be used in the development of passive infrared systems for sniper detection.

  18. Flash floods in the Tatra Mountain streams: frequency and triggers.

    PubMed

    Ballesteros-Cánovas, J A; Czajka, B; Janecka, K; Lempa, M; Kaczka, R J; Stoffel, M

    2015-04-01

    Flash floods represent a frequently recurring natural phenomenon in the Tatra Mountains. On the northern slopes of the mountain chain, located in Poland, ongoing and expected future changes in climate are thought to further increase the adverse impacts of flash floods. Despite the repeat occurrence of major floods in the densely populated foothills of the Polish Tatras, the headwaters have been characterized by a surprising lack of data, such that any analysis of process variability or hydrometeorological triggers has been largely hampered so far. In this study, dendrogeomorphic techniques have been employed in four poorly-gauged torrential streams of the northern slope of the Tatra Mountains to reconstruct temporal and spatial patterns of past events. Using more than 1100 increment cores of trees injured by past flash floods, we reconstruct 47 events covering the last 148 years and discuss synoptic situations leading to the triggering of flash floods with the existing meteorological and flow gauge data. Tree-ring analyses have allowed highlighting the seasonality of events, providing new insights about potential hydrometeorological triggers as well as a differentiating flash flood activity between catchments. Results of this study could be useful to design future strategies to deal with flash flood risks at the foothills of the Polish Tatras and in the Vistula River catchment.

  19. Upward lightning flashes characteristics from high-speed videos

    NASA Astrophysics Data System (ADS)

    Saba, Marcelo M. F.; Schumann, Carina; Warner, Tom A.; Ferro, Marco Antonio S.; Paiva, Amanda Romão.; Helsdon, John; Orville, Richard E.

    2016-07-01

    One hundred high-speed video recordings (72 cases in Brazil and 28 cases in USA) of negative upward lightning flashes were analyzed. All upward flashes were triggered by another discharge, most of them positive CG flashes. A negative leader passing over the tower(s) was frequently seen in the high-speed video recordings before the initiation of the upward leader. One triggering component can sometimes initiate upward leader in several towers. Characteristics of leader branching, ICC pulses, recoil leader incidence, and interpulse interval are presented in this work. A comparison of the results is done for data obtained in Brazil and USA. The duration of ICC and the total flash duration are on average longer in Brazil than in USA. Only one fourth of all upward leaders are followed by any return strokes both in Brazil and USA, and the average number of return strokes following each upward leader is very low. The presence and duration of CC following return strokes in Brazil is more than two times larger than in USA. Several parameters of upward flashes were compared with similar ones from cloud-to-ground flashes.

  20. Flash nanoprecipitation: particle structure and stability.

    PubMed

    Pustulka, Kevin M; Wohl, Adam R; Lee, Han Seung; Michel, Andrew R; Han, Jing; Hoye, Thomas R; McCormick, Alon V; Panyam, Jayanth; Macosko, Christopher W

    2013-11-04

    Flash nanoprecipitation (FNP) is a process that, through rapid mixing, stabilizes an insoluble low molecular weight compound in a nanosized, polymer-stabilized delivery vehicle. The polymeric components are typically amphiphilic diblock copolymers (BCPs). In order to fully exploit the potential of FNP, factors affecting particle structure, size, and stability must be understood. Here we show that polymer type, hydrophobicity and crystallinity of the small molecule, and small molecule loading levels all affect particle size and stability. Of the four block copolymers (BCP) that we have studied here, poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) was most suitable for potential drug delivery applications due to its ability to give rise to stable nanoparticles, its biocompatibility, and its degradability. We found little difference in particle size when using PLGA block sizes over the range of 5 to 15 kDa. The choice of hydrophobic small molecule was important, as molecules with a calculated water-octanol partition coefficient (clogP) below 6 gave rise to particles that were unstable and underwent rapid Ostwald ripening. Studies probing the internal structure of nanoparticles were also performed. Analysis of differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and (1)H NMR experiments support a three-layer core-shell-corona nanoparticle structure.

  1. A competitive aggregation model for flash nanoprecipitation.

    PubMed

    Cheng, Janine Chungyin; Vigil, R D; Fox, R O

    2010-11-15

    Flash NanoPrecipitation (FNP) is a novel approach for producing functional nanoparticles stabilized by amphiphilic block copolymers. FNP involves the rapid mixing of a hydrophobic active (organic) and an amphiphilic di-block copolymer with a non-solvent (water) and subsequent co-precipitation of nanoparticles composed of both the organic and copolymer. During this process, the particle size distribution (PSD) is frozen and stabilized by the hydrophilic portion of the amphiphilic di-block copolymer residing on the particle surface. That is, the particle growth is kinetically arrested and thus a narrow PSD can be attained. To model the co-precipitation process, a bivariate population balance equation (PBE) has been formulated to account for the competitive aggregation of the organic and copolymer versus pure organic-organic or copolymer-copolymer aggregation. Aggregation rate kernels have been derived to account for the major aggregation events: free coupling, unimer insertion, and aggregate fusion. The resulting PBE is solved both by direct integration and by using the conditional quadrature method of moments (CQMOM). By solving the competitive aggregation model under well-mixed conditions, it is demonstrated that the PSD is controlled primarily by the copolymer-copolymer aggregation process and that the energy barrier to aggregate fusion plays a key role in determining the PSD. It is also shown that the characteristic aggregation times are smaller than the turbulent mixing time so that the FNP process is always mixing limited.

  2. Flash microwave synthesis of trevorite nanoparticles

    SciTech Connect

    Bousquet-Berthelin, C. Chaumont, D.; Stuerga, D.

    2008-03-15

    Nickel ferrite nanoparticles have several possible applications as cathode materials for rechargeable batteries, named 'lithium-ion' batteries. In this study, NiFe{sub 2}O{sub 4} was prepared by microwave induced thermohydrolysis. The obtained nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), BET method, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). All the results show that the microwave one-step flash synthesis leads in a very short time to NiFe{sub 2}O{sub 4} nanoparticles with elementary particles size close to 4-5 nm, and high specific surfaces (close to 240 m{sup 2}/g). Thus, microwave heating appears as an efficient source of energy to produce quickly nanoparticles with complex composition as ferrite. - Graphical abstract: At the end of the 20th century, a new concept of battery was introduced, named 'Li ion', where electrodes are both lithium-storage materials. Compounds with a spinel structure are so investigated and microwave heating appears as an efficient source of energy to produce nanoparticles in a very short time and at low temperature, with controlled size (4-5 nm) and high specific area (240 m{sup 2}/g). Legend: Pictogram represents our original microwave reactor, the RAMO (French acronym of Reacteur Autoclave Micro-Onde), containing the reactants and submitted to the microwave irradiation. Multicolor candy represents obtained material.

  3. Studying white dwarf merger remnants with FLASH

    NASA Astrophysics Data System (ADS)

    Jenks, Malia

    2017-01-01

    There is still uncertainty as to the progenitor systems of type Ia supernova (SN Ia). Both single and double degenerate systems have been suggested as progenitors. In a double degenerate system a merger between the two white dwarfs, with total mass at or exceeding the Chandrasekhar mass, leads to the supernova. If the explosion occurs during the merging process it is a violent merger. If an explosion doesn't occur while the stars merge the system becomes a white dwarf of unstable mass. For mergers of this type with differing starting masses it has been shown that during the viscous evolution carbon burning starts far from the center and stably converts the star to oxygen and neon. In this case the star will eventually collapse to a neutron star and not produce an SN Ia. The case of similar mass mergers has been much less explored. Using the results of a smooth particle hydrodynamic merger we simulate the viscous evolution of models of different mass ratios with FLASH. These simulations test if a similar mass merger can lead to an SN Ia, and begin to probe where the transition from similar to dissimilar mass occurs.

  4. Hydroclimatology of flash flooding in Atlanta

    NASA Astrophysics Data System (ADS)

    Wright, Daniel B.; Smith, James A.; Villarini, Gabriele; Baeck, Mary Lynn

    2012-04-01

    The objective of this study is to characterize the climatology of extreme rainfall and flash flooding in Atlanta, Georgia using high-resolution land surface, rainfall, and discharge datasets. We examine nine urban watersheds in the Atlanta area that range in size from 3.7 to 225 km2 and exhibit a range of urban development and land-use characteristics. We develop a high-resolution 15 min, 1 km2 radar rainfall data set for the 2002-2010 period using the Hydro-NEXRAD system with volume scan reflectivity observations from the Atlanta WSR-88D radar and rainfall observations from a dense network of 72 U.S. Geological Survey rain gauges. Bias-corrected radar rainfall fields accurately capture the spatial and temporal structure of heavy rainfall. There is enhancement of heavy rainfall within and east of the urban core, and a rainfall minimum north and northwest of the city. There has been an increase in variability of annual flood peaks in Atlanta since the 1960s associated with urban impacts on runoff production. Flood response is dependent on a combination of basin size, drainage network structure, spatial distribution of land use, and basin storage in urban soils and storm water detention ponds. Future studies of urban rainfall modification in Atlanta and elsewhere should consider the influence of regional topography and other geographic features on the storm environment.

  5. Flash Nanoprecipitation: Particle Structure and Stability

    PubMed Central

    Pustulka, Kevin M.; Wohl, Adam R.; Lee, Han Seung; Michel, Andrew R.; Han, Jing; Hoye, Thomas R.; McCormick, Alon V.; Panyam, Jayanth; Macosko, Christopher W.

    2013-01-01

    Flash nanoprecipitation (FNP) is a process that, through rapid mixing, stabilizes an insoluble low molecular weight compound in a nano-sized, polymer-stabilized delivery vehicle. The polymeric components are typically amphiphilic diblock copolymers (BCPs). In order to fully exploit the potential of FNP, factors affecting particle structure, size, and stability must be understood. Here we show that polymer type, hydrophobicity and crystallinity of the small molecule, and small molecule loading levels all affect particle size and stability. Of the four block copolymers (BCP) that we have studied here, poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) was most suitable for potential drug delivery applications due to its ability to give rise to stable nanoparticles, its biocompatibility, and its degradability. We found little difference in particle size when using PLGA block sizes over the range of 5 to 15kDa. The choice of hydrophobic small molecule was important, as molecules with a calculated water-octanol partition coefficient (clogP) below 6 gave rise to particles that were unstable and underwent rapid Ostwald ripening. Studies probing the internal structure of nanoparticles were also performed. Analysis of differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and 1H-NMR experiments support a three-layer core-shell-corona nanoparticle structure. PMID:24053447

  6. NOAA/USGS Demonstration Flash-Flood and Debris-Flow Early-Warning System

    NASA Astrophysics Data System (ADS)

    Restrepo, P.; Cannon, S.; Laber, J.; Jorgensen, D.; Werner, K.

    2009-04-01

    Flash floods and debris flows are common following wildfires in southern California. On 25 December 2003, sixteen people were swept to their deaths by debris flows generated from basins in the San Bernardino Mountains that burned the previous fall. In an effort to reduce loss of life by floods and debris flows, the National Oceanic and Atmospheric Administration (NOAA) and the United States Geological Survey (USGS) established a prototype flash flood and debris flow early warning system for recently burned areas located in eight counties of southern California in the fall of 2005. This prototype system combines the existing NOAA's National Weather Service (NWS) Flash Flood Monitoring and Prediction (FFMP) system and USGS rainfall intensity-duration thresholds for debris flow and flash flood occurrence. Separate sets of thresholds are defined for the occurrence of debris flows and flash floods in response to storms during 1) the first winter after a fire, and 2) following a year of vegetative recovery. The FFMP was modified to identify when both flash floods and debris flows are likely to occur based on comparisons between precipitation (including radar estimates, in situ measurements, and short-term forecasts) and the rainfall intensity-duration thresholds developed specifically for burned areas. Advisory outlooks, watches, and warnings are disseminated to emergency management personnel through NOAA's Advanced Weather Information Processing System (AWIPS). The FFMP provides a cost-effective and efficient approach to implement a warning system on a 24-hour, 7-day-a-week basis. In 2004 the system was advanced to incorporate a web-based procedure developed by the NWS Weather Forecast Office (WFO) in Oxnard, CA that provides information about each fire to forecasters, and displays hazard maps generated by the USGS that show those basins most likely to produce the largest debris flow events within recently burned areas. During four years of operation, the WFOs in Oxnard

  7. "Know What to Do If You Encounter a Flash Flood": Mental Models Analysis for Improving Flash Flood Risk Communication and Public Decision Making.

    PubMed

    Lazrus, Heather; Morss, Rebecca E; Demuth, Julie L; Lazo, Jeffrey K; Bostrom, Ann

    2016-02-01

    Understanding how people view flash flood risks can help improve risk communication, ultimately improving outcomes. This article analyzes data from 26 mental models interviews about flash floods with members of the public in Boulder, Colorado, to understand their perspectives on flash flood risks and mitigation. The analysis includes a comparison between public and professional perspectives by referencing a companion mental models study of Boulder-area professionals. A mental models approach can help to diagnose what people already know about flash flood risks and responses, as well as any critical gaps in their knowledge that might be addressed through improved risk communication. A few public interviewees mentioned most of the key concepts discussed by professionals as important for flash flood warning decision making. However, most interviewees exhibited some incomplete understandings and misconceptions about aspects of flash flood development and exposure, effects, or mitigation that may lead to ineffective warning decisions when a flash flood threatens. These include important misunderstandings about the rapid evolution of flash floods, the speed of water in flash floods, the locations and times that pose the greatest flash flood risk in Boulder, the value of situational awareness and environmental cues, and the most appropriate responses when a flash flood threatens. The findings point to recommendations for ways to improve risk communication, over the long term and when an event threatens, to help people quickly recognize and understand threats, obtain needed information, and make informed decisions in complex, rapidly evolving extreme weather events such as flash floods.

  8. A study of lightning flashes attending periods of banded snowfall

    NASA Astrophysics Data System (ADS)

    Market, Patrick S.; Becker, Amy E.

    2009-01-01

    Lightning flashes (N = 1088) associated with 24 thundersnow events in the central United States were analyzed to document flash polarity, signal strength, and multiplicity. Negative lightning flashes (N = 872; 80%) dominated positive flashes (N = 216; 20%) with wintry precipitation in this study, which stands in contrast to the majority of the research done on winter thunderstorms (primarily in Japan). Otherwise, limited work has been done, although thundersnow has been documented in the mid-latitudes of North America, Europe and Asia. Statistics on peak amplitude were determined for negative (positive) flashes, yielding mean and standard deviation values of -24 kA +/- 22 kA (+38 kA +/- 34 kA). A subset of winter lightning events (N = 16) were then sought that occurred with banded (single or multiple) snowfall, as banding often denotes greater organization in the atmosphere (e.g., a jet streak aloft to aid in ascent, or a low level jet streak to aid with moisture and thermal transport) and thus the potential for deeper snow totals. Radar reflectivity values were recorded at the location of each lightning flash, as well as the maximum radar reflectivity within the associated snow band. The location of the lightning activity within the snow band was also noted as being either leading edge (LE), trailing edge (TE), core (C), or not correlated (NC), with respect to the motion of the parent band. The majority of lightning flashes were found downstream of areas of highest radar reflectivity with respect to the motion of the snow bands, and not with the highest reflectivity values. If one uses the highest reflectivity values in a snowband as a proxy for the greatest surface snowfall intensity, then the ground terminus of a cloud-to-ground lightning (CG) flash is often not co-located with the heaviest snowfall rates. However, the work completed here does place the location of the typical CG flash ~15 km downstream of the snowband location, so one could use the occurrence

  9. Injury pattern of the Flash-Ball, a less-lethal weapon used for law enforcement: report of two cases and review of the literature.

    PubMed

    Wahl, Peter; Schreyer, Nicolas; Yersin, Bertrand

    2006-10-01

    Less-lethal weapons are used in law enforcement to neutralize combative individuals and to disperse riot crowds. Local police recently used such an impact weapon, the Flash-Ball, in two different situations. This gun fires large rubber bullets with kinetic energies around 200 J. Although it is designed to avoid skin penetration, impacts at such energies may still create major trauma with associated severe injuries to internal organs. This is a report of 2 patients shot with the Flash-Ball who required medical attention. One could be discharged quickly, but the other required hospitalization for heart and lung contusion. Both patients required advanced investigations including computed tomography (CT) scan. The medical literature on injuries induced by less-lethal impact weapons is reviewed. Impacts from the Flash-Ball can cause significant injury to internal organs, even without penetration. Investigations as for other high-energy blunt traumas are called for in these cases.

  10. Investigating of Memory - Colours of Intellectually Disabled Children and Virtual Game Addict Students

    NASA Astrophysics Data System (ADS)

    Sik Lányi, Cecília

    We describe an investigation of memory colours. For this investigation Flash test software was developed. 75 observers used this test software in 4 groups: average elementary school children (aged: 8-9 years), intellectually disabled children (age: 9-15), virtual game addict university students (average age: 20) and university students who play with VR games rarely or never (average age: 20). In this pilot test we investigated the difference of memory colours of these 4 groups.

  11. Memory loss

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003257.htm Memory loss To use the sharing features on this ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  12. CTE characterization with post-flashed darks

    NASA Astrophysics Data System (ADS)

    Anderson, Jay

    2013-10-01

    This internal-orbit calibration program will take a combination of short {100s} and long {800s} darks with various levels of post-flash in order to re-calibrate the WFC3/UVIS CTE model. When a similar set of these images was taken in mid-2012, there were not as many warm pixels as there are now and CTE losses were lower. Furthermore, this program will explore a finer spacing of charge injection to help us understand exactly what happens above the "sweet-spot" background of 12 electrons. Once the model is recalibrated using this data set {which should be taken in early 2014}, we can feel confident in making the pixel-based correction part of the pipeline.The observations will be straightforward. We will take short 100s darks with PF levels of: 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 115, and 130, and 150 electrons -- 30 levels in all. We will also take 800s darks {can't fit longer} with a PF level of about 100e. We should be able to take two shorts and one deep in each orbit, this will take a total of 15 orbits. This will give us 15 long darks, which can be averaged together to get the noise down.It would be best if this program could be scheduled to be executed over the course of only a few days, since I would prefer not to have much change in the dark during acquisition of the data set.

  13. Phonological and Sensory Short-Term Memory Are Correlates and Both Affected in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Laasonen, Marja; Virsu, Veijo; Oinonen, Suvi; Sandbacka, Mirja; Salakari, Anita; Service, Elisabet

    2012-01-01

    We investigated whether poor short-term memory (STM) in developmental dyslexia affects the processing of sensory stimulus sequences in addition to phonological material. STM for brief binary non-verbal stimuli (light flashes, tone bursts, finger touches, and their crossmodal combinations) was studied in 20 Finnish adults with dyslexia and 24…

  14. Perceived Control and Hot Flashes in Treatment-seeking Breast Cancer Survivors and Menopausal Women

    PubMed Central

    Carpenter, Janet S.; Wu, Jingwei; Burns, Debra S.; Yu, Menggang

    2011-01-01

    Background Lower perceived control over hot flashes has been linked to fewer coping strategies, more catastrophizing, and greater hot flash severity and distress in midlife women; yet, this important concept has not yet been studied in breast cancer survivors. Objective To explore perceived control over hot flashes and hot flashes in breast cancer survivors compared to midlife women without cancer. Methods 99 survivors and 138 midlife women completed questionnaires and a prospective, electronic hot flash diary. All data were collected at a baseline assessment prior to randomization in a behavioral intervention study. Results Both groups had moderate perceived control over hot flashes. Control was not significantly related to hot flash frequency, but was significantly related to hot flash severity, bother, and interference in both groups. A significantly stronger association between control and hot flash interference was found for survivors than for mid-life women. Survivors using hot flash treatments perceived less control than survivors not using hot flash treatments, whereas the opposite was true in midlife women. Conclusions Findings extend our knowledge of perceived control over hot flashes in both survivors and midlife women. Implications for Practice Findings emphasize the importance of continued menopausal symptom assessment and management, support the importance of continuing nursing care even for survivors who are already using hot flash treatment, and suggest that nursing interventions aimed at improving perceived control over hot flashes may be more helpful for survivors than for midlife women. PMID:21946903

  15. Vaccination to gain humoral immune memory

    PubMed Central

    Sarkander, Jana; Hojyo, Shintaro; Tokoyoda, Koji

    2016-01-01

    The concept of immune memory forms the biological basis for vaccination programs. Despite advancements in the field of immune memory and vaccination, most current vaccines are evaluated by magnitude of antigen-specific antibody titers in serum or mucosa after vaccination. It has been shown, however, that antibody-mediated humoral immune memory is established regardless of the magnitude and duration of immune reactions, suggesting that assessment of vaccine efficacy should be performed for several years after vaccination. This long-term investigation is disadvantageous for prevalent and pandemic infections. Long-lived memory plasma cells and memory helper T cells which contribute to humoral immune memory are generated in the bone marrow after migration of memory cell precursors through bloodstream. Thus, it may be a novel evaluation strategy to assess the precursors of memory cells in the blood in the early phase of the immune reaction(s). We here review recent advances on the generation and maintenance of immune memory cells involved in humoral immunity and introduce a current concept of direct and short-term assessment of humoral immune memory formation upon vaccination as a correlate of protection. PMID:28090322

  16. Role of External Beam Radiotherapy in Patients With Advanced or Recurrent Nonanaplastic Thyroid Cancer: Memorial Sloan-Kettering Cancer Center Experience

    SciTech Connect

    Terezakis, Stephanie A. Lee, Kyungmouk S.; Ghossein, Ronald A.; Rivera, Michael; Tuttle, Robert M.; Wolden, Suzanne L.; Zelefsky, Michael J.; Wong, Richard J.; Patel, Snehal G.; Pfister, David G.; Shaha, Ashok R.; Lee, Nancy Y.

    2009-03-01

    Purpose: External beam radiotherapy (EBRT) plays a controversial role in the management of nonanaplastic thyroid cancer. We reviewed our institution's outcomes in patients treated with EBRT for advanced or recurrent nonanaplastic thyroid cancer. Methods and Materials: Between April 1989 and April 2006, 76 patients with nonanaplastic thyroid cancer were treated with EBRT. The median follow-up for the surviving patients was 35.3 months (range, 4.2-178.4). The lesions were primarily advanced and included Stage T2 in 5 (7%), T3 in 5 (7%), and T4 in 64 (84%) patients. Stage N1 disease was present in 60 patients (79%). Distant metastases before EBRT were identified in 27 patients (36%). The median total EBRT dose delivered was 6,300 cGy. The histologic features examined included medullary in 12 patients (16%) and nonmedullary in 64 (84%). Of the 76 patients, 71 (93%) had undergone surgery before RT, and radioactive iodine treatment was used in 56 patients (74%). Results: The 2- and 4-year overall locoregional control rate for all histologic types was 86% and 72%, respectively, and the 2- and 4-year overall survival rate for all patients was 74% and 55%, respectively. No significant differences were found in locoregional control, overall survival, or distant metastases-free survival for patients with complete resection, microscopic residual disease, or gross residual disease. Grade 3 acute mucositis and dysphagia occurred in 14 (18%) and 24 (32%) patients, respectively. Late adverse toxicity was notable for percutaneous endoscopic gastrostomy tube use in 4 patients (5%). Conclusion: The results of our study have shown that EBRT is effective for locoregional control of selected locally advanced or recurrent nonanaplastic thyroid malignancies, with acceptable acute toxicity.

  17. Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was

  18. Looking for the best flash floods indicators in Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Llasat, Maria-Carmen; Llasat-Botija, Montserrat; Turco, Marco

    2010-05-01

    Flash floods are a recurrent hazard in Mediterranean Region. From a global point of view, a distinction between two kinds of floods can be made (Llasat, 2009): a) Short-lived and strongly convective events (<3 h) of very intense precipitation (peaks above 3 mm/min) and total rainfall <100 mm, that usually appear during summer and early autumn and produce local flash-floods in small catchments; b) Moderate convective events that last less than 24 hours and the maximum precipitation is usually recorded in less than 6 hours, with accumulated rainfall above 200 mm, although in some occasions they can be produced in the context of a longest event; they can produce catastrophic flash floods, and are usually recorded in autumn and end of summer. First ones are more frequent and have an important social impact, due to the great urbanization of some areas in which ephemeral channels are present; they can bring road traffic to a standstill, give rise to power cuts, and sweep away cars parked in the littoral water courses or in adjoining streets, but lose of lives are usually the result of the imprudent behaviour of people. The second type of flash-flood has produced the highest number of casualties when they have affected flood-prone areas with high concentrations of people, and catastrophic damages. However, there is not an agreement about the criteria of damages evaluation, in the same sense that there are notable discrepancies between authors in the criteria used to estimate the vulnerability. A number above 185 flood events have been recorded between 1990 and 2006 in Mediterranean region (Llasat et al, in press). A great part of them have been flash-floods, but, in order to make a good characterization of them, it is needed to recur to the most suitable indicators (Gruntfest, 1997, Messner and Meyer, 2006). The presentation is based on the research developed in the framework of the European Project FLASH (http://flash-eu.tau.ac.il/index.php), and particularly in the

  19. Central Flash Analysis of the 29 June 2015 Occultation

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Bosh, A. S.; Sickafoose, A. A.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T. C.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S. E.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfueller, E.; Roeser, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleeve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    After an extensive prediction effort, the 29 June 2015 occultation by Pluto was observed from both airborne (Stratospheric Observatory for Infrared Astronomy - SOFIA) and numerous ground-based telescopes (Bosh et al. - this meeting). Real-time prediction updates allowed placement of the SOFIA telescope with its four detectors deep within the central-flash region of the atmospheric occultation. Fortuitously, the Mount John University Observatory (Lake Tekapo, New Zealand) was also within the central-flash region (Pasachoff et al. - this meeting). This happenstance resulted in multiple central-flash detections in several colors from each facility allowing direct comparison of different areas of the central-flash evolute.Here we examine and discuss the central-flash signatures from the highest signal-to-noise light curves from each facility. The relative orientations and asymmetries in the central flashes allow us to use them to tightly constrain the lower atmospheric ellipticity and orientation of likely winds with respect to Pluto’s figure. The ratio of the two separate central flashes is also a strong constraint on the geometric solution for the full occultation data set, and the absolute height of the central flashes with respect to those expected for a clear isothermal atmosphere places constraints on haze densities and thermal gradients in Pluto’s lower atmosphere. We can also compare the central-flash signatures in several colors (similar to Sickafoose et. al - this meeting) to establish bounds on haze-particle sizes in the lower atmosphere.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided, in part, by NASA grants SSO NNX15AJ82G (Lowell Observatory), PA NNX10AB27G (MIT), and PA NNX12AJ29G (Williams College), as well as the National Research Foundation of

  20. Future Development of Dense Ferroelectric Memories for Space Applications

    NASA Technical Reports Server (NTRS)

    Philpy, Stephen C.; Derbenwick, Gary F.

    2001-01-01

    The availability of high density, radiation tolerant, nonvolatile memories is critical for space applications. Ferroelectric memories, when fabricated with radiation hardened complementary metal oxide semiconductors (CMOS), can be manufactured and packaged to provide high density replacements for Flash memory, which is not radiation tolerant. Previous work showed ferroelectric memory cells to be resistant to single event upsets and proton irradiation, and ferroelectric storage capacitors to be resistant to neutron exposure. In addition to radiation hardness, the fast programming times, virtually unlimited endurance, and low voltage, low power operation make ferroelectric memories ideal for space missions. Previously, a commercial double level metal 64-kilobit ferroelectric memory was presented. Although the capabilities of radiation hardened wafer fabrication facilities lag behind those of the most modern commercial wafer fabrication facilities, several paths to achieving radiation tolerant, dense ferroelectric memories are emerging. Both short and long term solutions are presented in this paper. Although worldwide major semiconductor companies are introducing commercial ferroelectric memories, funding limitations must be overcome to proceed with the development of high density, radiation tolerant ferroelectric memories.

  1. Expression of the nos gene and firefly flashing: a test of the nitric-oxide-mediated flash control model.

    PubMed

    Ohtsuki, Hajime; Yokoyama, Jun; Ohba, Nobuyoshi; Ohmiya, Yoshihiro; Kawata, Masakado

    2014-04-19

    Fireflies (Coleoptera: Lampyridae) emit various types of light that differ among species and populations of the same species. Their lights are assumed to be biological properties that play important ecological and evolutionary roles. Some species in the Lampyridae emit periodic luminescence, the patterns of which are characterized by species-specific intervals. In previous work, it was predicted that the nitric oxide (NO) regulates the oxygen supply required for the bioluminescence reaction of fireflies. Here, the expression of the NO synthase (NOS) mRNA in some fireflies was examined to verify the predictive model of nitric-oxide-mediated flash control in these insects. The expression of the nos gene in the lantern organ was observed not only in nocturnal flashing species but also in diurnal non-flashing species. It was shown that the expression levels of nos were higher in the lantern of Luciola cruciata (Motschulsky) larvae, which that emits continuous light, than in other body parts, although expression in the lantern of the adults, who flash periodically, was not high. Furthermore, there was no significant difference in expression levels among adults of Luciola cruciata characterized by different flashing intervals. The data do not support the model of an NO-mediated flash control mechanism, during which oxygen becomes available for the luciferin-luciferase reaction through NO-mediated inhibition of mitochondrial respiration. It is also indicated that flash patterns do not co-vary with NOS production. However, high nos expression in the larval lantern suggests that NO may play a role in producing continuous light by functioning as a neurotransmitter signal for bioluminescence.

  2. Neural substrates of semantic memory.

    PubMed

    Hart, John; Anand, Raksha; Zoccoli, Sandra; Maguire, Mandy; Gamino, Jacque; Tillman, Gail; King, Richard; Kraut, Michael A

    2007-09-01

    Semantic memory is described as the storage of knowledge, concepts, and information that is common and relatively consistent across individuals (e.g., memory of what is a cup). These memories are stored in multiple sensorimotor modalities and cognitive systems throughout the brain (e.g., how a cup is held and manipulated, the texture of a cup's surface, its shape, its function, that is related to beverages such as coffee, and so on). Our ability to engage in purposeful interactions with our environment is dependent on the ability to understand the meaning and significance of the objects and actions around us that are stored in semantic memory. Theories of the neural basis of the semantic memory of objects have produced sophisticated models that have incorporated to varying degrees the results of cognitive and neural investigations. The models are grouped into those that are (1) cognitive models, where the neural data are used to reveal dissociations in semantic memory after a brain lesion occurs; (2) models that incorporate both cognitive and neuroanatomical information; and (3) models that use cognitive, neuroanatomic, and neurophysiological data. This review highlights the advances and issues that have emerged from these models and points to future directions that provide opportunities to extend these models. The models of object memory generally describe how category and/or feature representations encode for object memory, and the semantic operations engaged in object processing. The incorporation of data derived from multiple modalities of investigation can lead to detailed neural specifications of semantic memory organization. The addition of neurophysiological data can potentially provide further elaboration of models to include semantic neural mechanisms. Future directions should incorporate available and newly developed techniques to better inform the neural underpinning of semantic memory models.

  3. Risk factors, pathophysiology, and treatment of hot flashes in cancer.

    PubMed

    Fisher, William I; Johnson, Aimee K; Elkins, Gary R; Otte, Julie L; Burns, Debra S; Yu, Menggang; Carpenter, Janet S

    2013-05-01

    Hot flashes are prevalent and severe symptoms that can interfere with mood, sleep, and quality of life for women and men with cancer. The purpose of this article is to review existing literature on the risk factors, pathophysiology, and treatment of hot flashes in individuals with cancer. Electronic searches were conducted to identify relevant English-language literature published through June 15, 2012. Results indicated that risk factors for hot flashes in cancer include patient-related factors (eg, age, race/ethnicity, educational level, smoking history, cardiovascular risk including body mass index, and genetics) and disease-related factors (eg, cancer diagnosis and dose/type of treatment). In addition, although the pathophysiology of hot flashes has remained elusive, these symptoms are likely attributable to disruptions in thermoregulation and neurochemicals. Therapies that have been offered or tested fall into 4 broad categories: pharmacological, nutraceutical, surgical, and complementary/behavioral strategies. The evidence base for this broad range of therapies varies, with some treatments not yet having been fully tested or showing equivocal results. The evidence base surrounding all therapies is evaluated to enhance hot flash treatment decision-making by clinicians and patients.

  4. Risk Factors, Pathophysiology, and Treatment of Hot Flashes in Cancer

    PubMed Central

    Fisher, William I.; Johnson, Aimee K.; Elkins, Gary R.; Otte, Julie L.; Burns, Debra S.; Yu, Menggang; Carpenter, Janet S.

    2012-01-01

    Hot flashes are prevalent and severe symptoms that can interfere with mood, sleep, and quality of life for women and men with cancer. The purpose of this article is to review existing literature on the risk factors, pathophysiology, and treatment of hot flashes in persons with cancer. Electronic searches were conducted to identify relevant, English-language literature published through June 15, 2012. Results indicated that risk factors for hot flashes in cancer include patient-related factors (eg, age, race/ethnicity, educational level, smoking history, cardiovascular risk including BMI, and genetics) and disease-related factors (eg, cancer diagnosis, and dose/type of treatment). In addition, although the pathophysiology of hot flashes has remained elusive, these symptoms are likely attributable to disruptions in thermoregulation and neurochemicals. Therapies that have been offered or tested fall into 4 broad categories: pharmacological, nutraceutical, surgical, and complementary/behavioral strategies. The evidence base for this broad range of therapies varies, with some treatments not yet having been fully tested or showing equivocal results. The evidence base surrounding all therapies is evaluated to enhance hot flash treatment decision making by clinicians and patients. PMID:23355109

  5. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  6. A Unified Flash Flood Database across the United States

    USGS Publications Warehouse

    Gourley, Jonathan J.; Hong, Yang; Flamig, Zachary L.; Arthur, Ami; Clark, Robert; Calianno, Martin; Ruin, Isabelle; Ortel, Terry W.; Wieczorek, Michael; Kirstetter, Pierre-Emmanuel; Clark, Edward; Krajewski, Witold F.

    2013-01-01

    Despite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets.

  7. Flash Precision at the Start of Synchrony in Photuris frontalis.

    PubMed

    Copeland, Jonathan; Moiseff, Andrew

    2004-06-01

    Synchronous flashing occurs in certain species of Southeast Asian and North American fireflies. Most Southeast Asian synchrony involves stationary congregating fireflies, but North American synchrony occurs in flying fireflies that do not congregate. Southeast Asian synchrony is usually continuous, but North American synchrony is interrupted. Photuris frontalis, the only member of the North American genus Photuris to synchronize, shows an intermittent synchrony. This involves synchronization and repeated re-synchronizations while in flight. The precision that occurs at the start of synchrony was studied in Ph. frontalis using caged fireflies and photometry. Barrier experiments (using two fireflies) or flash entrainment experiments (using one LED and one firefly) were performed to measure the temporal precision of the first entrained flash. In both cases, the first entrained flash was close to unison synchrony (phase = 1.0) and showed little variability. The behavioral implications of the ability to synchronize with the first entrained flash are not known, but it might facilitate male-male interactions during brief, transient encounters such as maintaining distance between closely flying males in search of females.

  8. An Evaluation of Flash Cells Used in Critical Applications

    NASA Technical Reports Server (NTRS)

    Katz, Rich; Flowers, David; Bergevin, Keith

    2016-01-01

    Due to the common use of Flash technology in many commercial and industrial Programmable Logic Devices (PLDs) such as FPGAs and mixed-signal microcontrollers, flash technology is being utilized in fuzed munition applications. This presents a long-term reliability issue for both DoD and NASA safety- and mission-critical applications. A thorough understanding of the data retention failure modes and statistics associated with Flash data retention is of vital concern to the fuze safety community. A key retention parameter for a flash cell is the threshold voltage (VTH), which is an indirect indicator of the amount of charge stored on the cells floating gate. Initial test results based on a study of charge loss in flash cells in an FPGA device is presented. Statistical data taken from a small sample set indicates quantifiable charge loss for devices stored at both room temperature and 150 C. Initial evaluation of the distribution of threshold voltage in a large sample set (800 devices) is presented. The magnitude of charge loss from exposure to electrostatic discharge and electromagnetic fields is measured and presented. Simulated data (and measured data as available) resultant from harsh-environment testing (neutron, heavy ion, EMP) is presented.

  9. Flash X-Ray Studies Of Ballistic Phenomena

    NASA Astrophysics Data System (ADS)

    Webster, Edwin A.

    1983-03-01

    Frankford Arsenal was a pioneer in the development and application of flash radiography of ballistic phenomena. Frankford Arsenal first began using the Westinghouse Micronex flash X-ray system in 1941, and converted to Field Emission Corporation (now Hewlett-Packard) flash X-ray equipment in the early 1960's. When Frankford Arsenal closed in 1977, its missions and equipment were transferred to U.S. Army Armament Research and Development Command. The flash X-ray studies performed at Frankford Arsenal are now being continued at the ARRADCOM Test Site, Fort Dix, New Jersey as well as at ARRADCOM Headquarters, Dover, New Jersey. These studies are concerned with investigations of small caliber ammunition and weapons, and reduced scale models of large caliber projectiles. The important feature of flash X-rays in ballistics research and development is that high speed radiographs provide qualitative and quantitative information which frequently cannot be obtained by any other means or which can be obtained more easily and inexpensively by this technique. This paper describes some of the experimental applications of high speed radiography in obtaining data on various ballistic phenomena such as the determination of projectile penetration of armor plate, and particle size and orientation after penetration.

  10. Average evoked potential correlates of two-flash perceptual discrimination in cats.

    NASA Technical Reports Server (NTRS)

    Peck, C. K.; Lindsley, D. B.

    1972-01-01

    Average evoked potentials (AEPs) were recorded from the optic tract, lateral geniculate nucleus, and visual cortex of cats trained to discriminate between two successive flashes of light at various interflash intervals (IFI) and a single flash. The percent of correct responses to two-flash stimuli decreased sharply as IFI decreased from 100 to 20 msec. This behavioral response decrement was paralleled by a progressive overlapping of the AEPs to the two flashes and at 20 msec the AEPs resembled those to a single flash at all levels of the visual pathways. Implications for the coding of the information relevant to the discrimination of two flashes are discussed.

  11. A Developmental Psychopathology Model of Overgeneral Autobiographical Memory

    ERIC Educational Resources Information Center

    Valentino, Kristin

    2011-01-01

    Overgeneral memory (OGM) is a phenomenon that refers to difficulty retrieving specific autobiographical memories. The tendency to be overgeneral in autobiographical memory recall has been commonly observed among individuals with emotional disorders compared to those without emotional disorders. Despite significant advances in identifying…

  12. Interfacial phase-change memory.

    PubMed

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-07-03

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  13. Recent Flash X-Ray Injector Modeling

    SciTech Connect

    Houck, T; Blackfield, D; Burke, J; Chen, Y; Javedani, J; Paul, A C

    2004-11-10

    The injector of the Flash X-Ray (FXR) accelerator has a significantly larger than expected beam emittance. A computer modeling effort involving three different injector design codes was undertaken to characterize the FXR injector and determine the cause of the large emittance. There were some variations between the codes, but in general the simulations were consistent and pointed towards a much smaller normalized, rms emittance (36 cm-mr) than what was measured (193 cm-mr) at the exit of the injector using a pepperpot technique. The simulations also indicated that the present diode design was robust with respect to perturbations to the nominal design. Easily detected mechanical alignment/position errors and magnet errors did not lead to appreciable increase in the simulated emittance. The physics of electron emission was not modeled by any of the codes and could be the source of increased emittance. The nominal simulation assumed uniform Child-Langmuir Law emission from the velvet cathode and no shroud emission. Simulations that looked at extreme non-uniform cathode and shroud emission scenarios resulted in doubling of the emittance. An alternative approach was to question the pepperpot measurement. Simulations of the measurement showed that the pepperpot aperture foil could double the emittance with respect to the non-disturbed beam. This leads to a diplomatic explanation of the discrepancy between predicted and measured emittance where the fault is shared. The measured value is too high due to the effect of the diagnostic on the beam and the simulations are too low because of unaccounted cathode and/or shroud emission physics. Fortunately there is a relatively simple experiment that can resolve the emittance discrepancy. If the large measured emittance value is correct, the beam envelope is emittance dominated at modest values of focusing field and beam radius. Measurements of the beam envelope on an imaging foil at the exit of the injector would lead to an

  14. Modeling midwave infrared muzzle flash spectra from unsuppressed and flash-suppressed large caliber munitions

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Perram, Glen P.; Gross, Kevin C.

    2012-07-01

    Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800-6000 cm-1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm-1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ˜100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20-40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ˜1400 K, areas of greater than 32 m2, low soot emissivity of ˜0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ˜1000 K, areas of ˜5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1-2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ˜1550 K, optically thick plume core and ˜2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ˜5 MJ/kg.

  15. Memory technology in mobile devices—status and trends

    NASA Astrophysics Data System (ADS)

    Vihmalo, Jukka-Pekka; Lipponen, Veli

    2005-11-01

    Mobile devices like cellular phones are constantly adding more memory capacity and stretching the limits of scaling and miniaturisation. These are demanded by new features and applications that device manufacturers are pushing into their terminals. Solid-state storage memories like NAND Flash which are used widely in portable and removable data storage applications are starting to drive semiconductor technology development. At the same time mobile device memory subsystem requirements for higher performance and capacity and low power in leading edge products are breaking new barriers. This paper will review the technologies and architectures used in cellular mobile terminals today and present future challenges that must be met to continue digital convergence in mobile consumer devices. Features and requirements specific to mobile device memories will be presented in comparison to commodity components used in standard consumer electronics or personal computers.

  16. Fear Memory.

    PubMed

    Izquierdo, Ivan; Furini, Cristiane R G; Myskiw, Jociane C

    2016-04-01

    Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.

  17. Hot flashes and cardiac vagal control: a link to cardiovascular risk?

    PubMed Central

    Thurston, Rebecca C.; Christie, Israel C.; Matthews, Karen A.

    2010-01-01

    Objective The understanding of the physiology of hot flashes is incomplete. The autonomic nervous system has been hypothesized to play a role in hot flashes but has received limited empirical attention. Further, emerging research has linked hot flashes to cardiovascular risk. Reduced high frequency heart rate variability (HF-HRV), an index of vagal control of heart rate, has been associated with cardiovascular events. We hypothesized that decreases in HF-HRV would occur during hot flashes relative to periods preceding and following the hot flash. Methods Thirty peri- and postmenopausal women ages 40–60 reporting ≥4 hot flashes/day underwent laboratory hot flash provocation testing, with measurement of sternal skin conductance and electrocardiogram. Hot flashes were reported and identified from sternal skin conductance. HF-HRV was estimated using spectral analysis of the heart rate time series. The five minute interval during the hot flash was compared to two non-flash periods prior and following the hot flash via mixed effects models. Results HRV was significantly decreased during hot flashes relative to periods prior to (b=0.18, SE=0.05 p=0.0001) and after (b=0.16, SE=0.05, p=0.002) physiologically-measured hot flashes, controlling for age, race, education, task condition, menopausal status, task, hypertension status, diabetes status, physical activity, body mass index, smoking, and anxiety. Findings were unchanged considering self-reported hot flashes. Conclusions Significant decreases in cardiac vagal control occurred during hot flashes, which may help shed light on the physiology of hot flashes. The autonomic nervous system may deserve greater attention in understanding the mechanisms linking hot flashes to cardiovascular risk. PMID:20042892

  18. Hot flashes in prostate cancer: state of the science.

    PubMed

    Engstrom, Christine A

    2008-06-01

    The lack of progress concerning the concept of the hot flash experience in men is an indication of the need for exploration of this phenomenon. The hot flash experience in men is a problem that can no longer be ignored. The results of this literature review will provide a foundation for additional development of the concept and facilitate further inquiry into the phenomenon. The purpose of the article is to provide the current state of the science of hot flashes related to androgen ablation treatment in prostate cancer patients; sleep, sweating, cognitive impairment, and the implications on health-related quality of life. Due to the sparse literature on this concept in men, information is extrapolated from the literature on female breast cancer patients treated with hormones and on menopausal women.

  19. PNNL 331 Building Arc Flash Team Investigation Report

    SciTech Connect

    Deichman, Mark L.; Drewrey, John C.; Hodges, Hurtis; Madson, Vernon J.; Minton, Allen L.; Montgomery, Daniel M.; Olson, Marvin E.; Rojas, Pedro H.; Sanan, Sanjay K.; Sharp, Reed D.; Sparks, Bobby R.; Swearingen, Gary L.

    2006-06-06

    On Friday, April 21, 2006, a PNNL electrician was performing repair of an electrical system for the 331 Building chilled water pump (CHWP) No.2, when an electrical arc flash occurred inside a 480V combination motor starter. The electrician was taken to the on-site medical provider for evaluation and was released for return to work without restriction. The electrician was not shocked, but did receive a minor, superficial (first degree) burn on the left wrist. This report, the result of a thorough review by the 331 Building Arc Flash Assessment Team, provides an in-depth look at the steps leading up to the arc-flash and recommendations and opportunities for improvement.

  20. A simple experiment that demonstrates the ``green flash''

    NASA Astrophysics Data System (ADS)

    Courtial, Johannes

    2012-11-01

    The green flash occurs when, under certain atmospheric conditions, the top segment of the low sun is visibly green. It is surrounded—in at least a few minds—by an air of mystery. I describe a simple experiment that demonstrates different aspects of the green flash. The experiment uses an odd-shaped, water-filled, fish tank to simulate the refractive properties of the atmosphere; milk powder added to the water mimicks the atmosphere's scattering properties. A circular white-light source is viewed through the fish tank and the combination of refraction and scattering makes one end of the light source look green. The setup also allows experimentation with mirage effects, thereby drawing attention to their often neglected contribution to the green flash.

  1. Climatological analyses of LMA data with an open-source lightning flash-clustering algorithm

    NASA Astrophysics Data System (ADS)

    Fuchs, Brody R.; Bruning, Eric C.; Rutledge, Steven A.; Carey, Lawrence D.; Krehbiel, Paul R.; Rison, William

    2016-07-01

    Approximately 63 million lightning flashes have been identified and analyzed from multiple years of Washington, D. C., northern Alabama, and northeast Colorado lightning mapping array (LMA) data using an open-source flash-clustering algorithm. LMA networks detect radiation produced by lightning breakdown processes, allowing for high-resolution mapping of lightning flashes. Similar to other existing clustering algorithms, the algorithm described herein groups lightning-produced radiation sources by space and time to estimate total flash counts and information about each detected flash. Various flash characteristics and their sensitivity to detection efficiency are investigated to elucidate biases in the algorithm, detail detection efficiencies of various LMAs, and guide future improvements. Furthermore, flash density values in each region are compared to corresponding satellite estimates. While total flash density values produced by the algorithm in Washington, D. C. ( 20 flashes km-2 yr-1), and Alabama ( 35 flashes km-2 yr-1) are within 50% of satellite estimates, LMA-based estimates are approximately a factor of 3 larger (50 flashes km-2 yr-1) than satellite estimates in northeast Colorado. Accordingly, estimates of the ratio of in-cloud to cloud-to-ground flashes near the LMA network ( 20) are approximately a factor of 3 larger than satellite estimates in Colorado. These large differences between estimates may be related to the distinct environment conducive to intense convection, low-altitude flashes, and unique charge structures in northeast Colorado.

  2. A study of thunderstorm microphysical properties and lightning flash counts associated with terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Barnes, D. E.; Splitt, M. E.; Dwyer, J. R.; Lazarus, S.; Smith, D. M.; Rassoul, H. K.

    2015-04-01

    The terrestrial gamma ray flash (TGF) is an emission of highly energetic radiation produced by or at least in close association with lightning. Previous investigations attempted to isolate the production mechanisms and production altitude(s) of TGFs as well as macrophysical characteristics, while thunderstorm microphysical characteristics were largely ignored. This investigation into thunderstorms and their hydrometeor and flash characteristics utilize temporal and spatial coincident satellite passes between the Reuven Ramaty High Energy Solar Spectroscopic Imager and the Tropical Rainfall Measuring Mission to determine the bulk (or footprint) microphysical properties of two types of study events, the thunderstorm complexes which are associated with TGFs (TGF case) and the thunderstorm complexes which did not produce a TGF detected by Reuven Ramaty High Energy Solar Spectroscopic Imager during the pass (non-TGF case). Results are presented for two different comparison methods. The first case utilizes geographic region weighted by TGF distribution, and the second is based on TGF percentage of occurrence when compared to total flash count of data set. Results show that the associated storms around the TGF location possess differences in the hydrometeor concentrations: cloud liquid water, cloud ice, precipitation water, and precipitation ice. These results take place at different levels of the atmosphere, including the mixed phase region. Additionally, results will show that TGFs are a consistent percentage of observed flashes as the rate of TGFs as a function of Lightning Imaging Sensor flash count is relatively constant.

  3. Flash heat simulation events in the north Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Mazon, Jordi; Pino, David

    2013-04-01

    According to the definition of flash heat event proposed by Mazon et al. in the European Meteorology Meeting (2011 and 2012) from the studied case produced in the Northeast of the Iberian peninsula on 27th August 20120, some other flash heat events have been detected by automatic weather stations around the in the Mediterranean basin (South Italy, Crete island, South Greece and the northeast of the Iberian peninsula). Flash heat event covers those events in which a large increase of temperature last a spatial and temporal scale between heat wave (defined by the WMO as a phenomenon in which the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C, with respect to the 1961-1990 period) and heat burst (defined by the AMS as a rare atmospheric event characterized by gusty winds and a rapid increase in temperature and decrease in humidity that can last some minutes). Thus flash heat event may be considered as a rapid modification of the temperature that last several hours, lower than 48 hours, but usually less than 24 hours. Two different flash heat events have been simulated with the WRF mesoscale model in the Mediterranean basin. The results show that two different mechanisms are the main causes of these flash heat events. The first one occurred on 23rd March 2008 in Crete Island due to a strong Foehn effect caused by a strong south and southeast wind, in which the maximum temperature increased during some hours on the night at 32°C. The second one occurred on 1st August 2012 in the northeast of the Iberian Peninsula, caused by a rapid displacement of warm a ridge from North Africa that lasted around 24 hours.

  4. Multisensory integration, aging, and the sound-induced flash illusion.

    PubMed

    DeLoss, Denton J; Pierce, Russell S; Andersen, George J

    2013-09-01

    The present study examined age-related differences in multisensory integration and the role of attention in age-related differences in multisensory integration. The sound-induced flash illusion--the misperception of the number of visual flashes due to the simultaneous presentation of a different number of auditory beeps--was used to examine the strength of multisensory integration in older and younger observers. The effects of integration were examined when discriminating 1-3 flashes, 1-3 beeps, or 1-3 flashes presented with 1-3 beeps. Stimulus conditions were blocked according to these conditions with baseline (unisensory) performance assessed during the multisensory block. Older participants demonstrated greater multisensory integration--a greater influence of the beeps when judging the number of visual flashes--than younger observers. In a second experiment, the role of attention was assessed using a go/no-go paradigm. The results of Experiment 2 replicated those of Experiment 1. In addition, the strength of the illusion was modulated by the sensory domain of the go/no-go task, though this did not differ by age group. In the visual go/no-go task we found a decrease in the illusion, yet in the auditory go/no-go task we found an increase in the illusion. These results demonstrate that older individuals exhibit increased multisensory integration compared with younger individuals. Attention was also found to modulate the strength of the sound-induced flash illusion. However, the results also suggest that attention was not likely to be a factor in the age-related differences in multisensory integration.

  5. Discovery of intense gamma-ray flashes of atmospheric origin

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Bhat, P. N.; Mallozzi, R.; Horack, J. M.; Koshut, T.; Kouveliotou, C.; Pendleton, G. N.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.

    1994-01-01

    Observations have been made of a new terrestrial phenomenon: brief (approx. millisecond), intense flashes of gamma rays, observed with space-borne detectors. These flashes must originate at altitudes in the atmosphere above at least 30 km in order to be observable by orbiting detectors aboard the Compton Gamma-Ray Observatory (CGRO). At least a dozen events have been detected over the past 2 years. The photon spectra from the events are very hard and are consistent with bremsstrahlung emission from energetic (MeV) electrons. The most likely origin of these high energy electrons, while speculative at this time, is a rare type of high altitude electrical discharge above thunderstorm regions.

  6. Radiant flash pyrolysis of biomass using a xenon flashtube

    SciTech Connect

    Hopkins, M.W.; Antal, M.J. Jr.

    1984-06-01

    Biomass materials, including lignin, redwood, corn cob, Calotropis Procera, Leucaena wood, Kraft paper, newsprint, cow manure, D-glucose, and D-cellobiose, were pyrolyzed in vacuum by the visible radiant flux emitted from a Xenon flashtube. The flux density exceeded 8 kW/cm/sup 2/ during the 1 ms flash. Sirup yields were low (avg 25%), while the gas yield was high (avg 32%). The gaseous products were composed primarily of CO and CO/sub 2/. The high relative yields of CO establish the existence of a high temperature fragmentation pathway active during the flash pyrolysis of all biomass materials. 39 references, 2 figures, 5 tables.

  7. Parallel data analysis in a multichannel flash-ADC-system

    SciTech Connect

    Eckerlin, G.; Elsen, E.; Schmitt, H.V.D.; Wagner, A.; Walter, P.V.; Zimmer, M.

    1987-02-01

    Parallel analysis of drift chamber signals with M68000 processors has proven to be an efficient way to deal with the tremendous data flow generated by high speed (100 MHz) Flash-ADCs in real time. The authors report on the experience gained with a network of 34 processors, placed in 3 VME crates, to read out the 3072 Flash-ADC channels of the JADE Jet-Chamber at PETRA (1). The properties of such a system are compared to more conventional readout schemes for drift chambers.

  8. Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis

    SciTech Connect

    Nelson, Andrew T.

    2012-08-30

    The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

  9. A Real-Time Web Services Hub to Improve Situation Awareness during Flash Flood Events

    NASA Astrophysics Data System (ADS)

    Salas, F. R.; Liu, F.; Maidment, D. R.; Hodges, B. R.

    2011-12-01

    The central Texas corridor is one of the most flash flood-prone regions in the United States. Over the years, flash floods have resulted in hundreds of flood fatalities and billions of dollars in property damage. In order to mitigate risk to residents and infrastructure during flood events, both citizens and emergency responders need to exhibit proactive behavior instead of reactive. Real-time and forecasted flood information is fairly limited and hard to come by at varying spatial scales. The University of Texas at Austin has collaborated with IBM Research-Austin and ESRI to build a distributed real-time flood information system through a framework that leverages large scale data management and distribution, Open Geospatial Consortium standardized web services, and smart map applications. Within this paradigm, observed precipitation data encoded in WaterML is ingested into HEC-HMS and then delivered to a high performance hydraulic routing software package developed by IBM that utilizes the latest advancements in VLSI design, numerical linear algebra and numerical integration techniques on contemporary multicore architecture to solve fully dynamic Saint Venant equations at both small and large scales. In this paper we present a real-time flood inundation map application that in conjunction with a web services Hub, seamlessly integrates hydrologic information available through both public and private data services, model services and mapping services. As a case study for this project, we demonstrate how this system has been implemented in the City of Austin, Texas.

  10. 46 CFR 113.25-10 - Emergency red-flashing lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... heard over the background noise, there must be a red-flashing light or rotating beacon, in addition to... system. (b) A red-flashing light or rotating beacon must be installed so that it is visible in the...

  11. Recipe for a Flash Flood: Identifying Meteorological and Landscape Hydrological Conditions of Flash Flood Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Marjerison, R.; Walter, T.; Jessup, S.; Colucci, S. J.

    2012-12-01

    Flash floods are a serious concern in the Northeast US because they often result in property damage, injuries, or loss of life. The landscape hydrological and meteorological conditions that will result in a flash flood are difficult to quantify. In this study we aim to characterize the watersheds of a sample of flash floods in the Northeast US. We intend to show that in the Northeast US, different combinations of space- and time-variant watershed characteristics will lead to flooding under different precipitation profiles. A better understanding of the landscape hydrological factors (e.g. topography, soil characteristics) in flood-impacted watersheds could improve predictions of when and where floods are likely to occur.

  12. Physics and 3D in Flash Simulations: Open Source Reality

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Dusenbery, P.

    2009-12-01

    Over the last decade our ability to deliver simulations over the web has steadily advanced. The improvements in speed of the Adobe Flash engine, and the development of open source tools to expand it, allow us to deliver increasingly sophisticated simulation based games through the browser, with no additional downloads required. In this paper we will present activities we are developing as part of two asteroids education projects: Finding NEO (funded through NSF and NASA SMD), and Asteroids! (funded through NSF). The first activity is Rubble!, an asteroids deflection game built on the open source Box2D physics engine. This game challenges players to push asteroids in to safe orbits before they crash in to the Earth. The Box2D engine allows us to go well beyond simple 2-body orbital calculations and incorporate “rubble piles”. These objects, which are representative of many asteroids, are composed of 50 or more individual rocks which gravitationally bind and separate in realistic ways. Even bombs can be modeled with sufficient physical accuracy to convince players of the hazards of trying to “blow up” incoming asteroids. The ability to easily build games based on underlying physical models allows us to address physical misconceptions in a natural way: by having the player operate in a world that directly collides with those misconceptions. Rubble! provides a particularly compelling example of this due to the variety of well documented misconceptions regarding gravity. The second activity is a Light Curve challenge, which uses the open source PaperVision3D tools to analyze 3D asteroid models. The goal of this activity is to introduce the player to the concept of “light curves”, measurements of asteroid brightness over time which are used to calculate the asteroid’s period. These measurements can even be inverted to generate three dimensional models of asteroids that are otherwise too small and distant to directly image. Through the use of the Paper

  13. Fueling Memories

    PubMed Central

    Powell, Jonathan D.; Pollizzi, Kristen

    2012-01-01

    A hallmark of the adaptive immune response is rapid and robust activation upon rechallenge. In the current issue of Immunity van der Windt et al. (2012) provide an important link between mitochondrial respiratory capacity and the development of CD8+ T cell memory. PMID:22284413

  14. Childhood Memories.

    ERIC Educational Resources Information Center

    Soto, Lourdes Diaz

    2001-01-01

    Describes how artwork can be a valuable catalyst for discussions in preservice education classes, allowing students to explore how their work as educators relates to their childhood memories and can be shaped by childhood experiences. Examines an art exhibition in which diverse artists depicted autobiographical text in their paintings. Discusses…

  15. Retracing Memories

    ERIC Educational Resources Information Center

    Harrison, David L.

    2005-01-01

    There are plenty of paths to poetry but few are as accessible as retracing ones own memories. When students are asked to write about something they remember, they are given them the gift of choosing from events that are important enough to recall. They remember because what happened was funny or scary or embarrassing or heartbreaking or silly.…

  16. Hollow memories

    NASA Astrophysics Data System (ADS)

    2014-04-01

    A hollow-core optical fibre filled with warm caesium atoms can temporarily store the properties of photons. Michael Sprague from the University of Oxford, UK, explains to Nature Photonics how this optical memory could be a useful building block for fibre-based quantum optics.

  17. Priming analogical reasoning with false memories.

    PubMed

    Howe, Mark L; Garner, Sarah R; Threadgold, Emma; Ball, Linden J

    2015-08-01

    Like true memories, false memories are capable of priming answers to insight-based problems. Recent research has attempted to extend this paradigm to more advanced problem-solving tasks, including those involving verbal analogical reasoning. However, these experiments are constrained inasmuch as problem solutions could be generated via spreading activation mechanisms (much like false memories themselves) rather than using complex reasoning processes. In three experiments we examined false memory priming of complex analogical reasoning tasks in the absence of simple semantic associations. In Experiment 1, we demonstrated the robustness of false memory priming in analogical reasoning when backward associative strength among the problem terms was eliminated. In Experiments 2a and 2b, we extended these findings by demonstrating priming on newly created homonym analogies that can only be solved by inhibiting semantic associations within the analogy. Overall, the findings of the present experiments provide evidence that the efficacy of false memory priming extends to complex analogical reasoning problems.

  18. Use of positron emission tomography scan response to guide treatment change for locally advanced gastric cancer: the Memorial Sloan Kettering Cancer Center experience

    PubMed Central

    Won, Elizabeth; Shah, Manish A.; Schöder, Heiko; Strong, Vivian E.; Coit, Daniel G.; Brennan, Murray F.; Kelsen, David P.; Janjigian, Yelena Y.; Tang, Laura H.; Capanu, Marinela; Rizk, Nabil P.; Allen, Peter J.; Bains, Manjit S.

    2016-01-01

    Background Early metabolic response on 18-fluorodeoxyglucose-positron emission tomography (FDG-PET) during neoadjuvant chemotherapy is PET non-responders have poor outcomes whether continuing chemotherapy or proceeding directly to surgery. Use of PET may identify early treatment failure, sparing patients from inactive therapy and allowing for crossover to alternative therapies. We examined the effectiveness of PET directed switching to salvage chemotherapy in the PET non-responders. Methods Patients with locally advanced resectable FDG-avid gastric or gastroesophageal junction (GEJ) adenocarcinoma received bevacizumab 15 mg/kg, epirubicin 50 mg/m2, cisplatin 60 mg/m2 day 1, and capecitabine 625 mg/m2 bid (ECX) every 21 days. PET scan was obtained at baseline and after cycle 1. PET responders, (i.e., ≥35% reduction in FDG uptake at the primary tumor) continued ECX + bev. Non-responders switched to docetaxel 30 mg/m2, irinotecan 50 mg/mg2 day 1 and 8 plus bevacizumab every 21 days for 2 cycles. Patients then underwent surgery. The primary objective was to improve the 2-year disease free survival (DFS) from 30% (historical control) to 53% in the non-responders. Results Twenty evaluable patients enrolled before the study closed for poor accrual. Eleven were PET responders and the 9 non-responders switched to the salvage regimen. With a median follow-up of 38.2 months, the 2-year DFS was 55% [95% confidence interval (CI), 30–85%] in responders compared with 56% in the non-responder group (95% CI, 20–80%, P=0.93). Conclusions The results suggest that changing chemotherapy regimens in PET non-responding patients may improve outcomes. Results from this pilot trial are hypothesis generating and suggest that PET directed neoadjuvant therapy merits evaluation in a larger trial. PMID:27563439

  19. Memory Systems Do Not Divide on Consciousness: Reinterpreting Memory in Terms of Activation and Binding

    PubMed Central

    Reder, Lynne M.; Park, Heekyeong; Kieffaber, Paul D.

    2009-01-01

    There is a popular hypothesis that performance on implicit and explicit memory tasks reflects 2 distinct memory systems. Explicit memory is said to store those experiences that can be consciously recollected, and implicit memory is said to store experiences and affect subsequent behavior but to be unavailable to conscious awareness. Although this division based on awareness is a useful taxonomy for memory tasks, the authors review the evidence that the unconscious character of implicit memory does not necessitate that it be treated as a separate system of human memory. They also argue that some implicit and explicit memory tasks share the same memory representations and that the important distinction is whether the task (implicit or explicit) requires the formation of a new association. The authors review and critique dissociations from the behavioral, amnesia, and neuroimaging literatures that have been advanced in support of separate explicit and implicit memory systems by highlighting contradictory evidence and by illustrating how the data can be accounted for using a simple computational memory model that assumes the same memory representation for those disparate tasks. PMID:19210052

  20. SunFlash -- An entirely new concept for building-integrated PV. Final technical report, October 1997--June 1998

    SciTech Connect

    Farber, M.A.

    1998-10-01

    This project team has investigated an innovative and entirely new building product concept, the SunFlash, incorporating a photovoltaic module with integral mounting and sealing for watertight building integration. It can be used as a roof-integrated shingle for slant roofs, for vertical curtain walls, or in other applications. Key features of the SunFlash include the following: an integrated module concept whereby the module, backskin, edge seal and mounting and sealing are all a single molded unit of the same material; an extension of this concept to include the possibility of molded-in electrical connections; a novel encapsulant material with better adhesion, sealing, thermal creep, and UV stability properties than EVA; a crystalline silicon, glass-front module incorporating the advanced string ribbon solar cells; and accessories and features, including a module-integrated inverter, laminated exit wiring, mounting, and raceway wiring, that provide high-performance consistent with building practice. The objective of the SunFlash is a standardized, cost-effective, long-lasting solution to integrating and water-sealing modules into residential and commercial buildings, both new and retrofit.

  1. Effect of Escitalopram on Hot Flash Interference: A Randomized, Controlled Trial

    PubMed Central

    Carpenter, Janet S.; Guthrie, Katherine A.; Larson, Joseph C.; Freeman, Ellen W.; Joffe, Hadine; Reed, Susan D.; Ensrud, Kristine E.; LaCroix, Andrea Z.

    2012-01-01

    Objectives To estimate the effect of escitalopram 10–20 mg/day versus placebo for reducing hot flash interference in daily life and understand correlates and predictors of reductions in hot flash interference, a key measure of quality of life. Design Multi-site, randomized, double-blind, placebo-controlled clinical trial. Patients 205 midlife women (46% African-American) who met criteria participated. Setting MsFLASH clinical sites in Boston, Indianapolis, Oakland, and Philadelphia. Intervention After baseline, women were randomized to 1 pill of escitalopram 10 mg/day (n=104) or placebo (n=101) with follow-up at 4- and 8-weeks. At week 4, those not achieving 50% fewer hot flashes were increased to 2 pills daily (20 mg/day or 2 placebo pills). Main outcome measures The Hot Flash Related Daily Interference Scale; Correlates were variables from hot flash diaries; Predictors were baseline demographics, clinical variables, depression, anxiety, sleep quality, and hot flashes. Results Compared to placebo, escitalopram significantly reduced hot flash interference by 6.0 points at week 4 and 3.4 points at week 8 more than placebo (p=0.012). Reductions in hot flash interference correlated with changes in hot flash diary variables. However, baseline variables did not significantly predict reductions in hot flash interference. Conclusions Escitalopram 10–20mg/day for 8 weeks improves women’s quality of life and this benefit did not vary by demographic, clinical, mood, sleep, or hot flash variables. PMID:22480818

  2. 32 CFR 268.8 - Flash report of major foreign debt arrearages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Flash report of major foreign debt arrearages... OF DEFENSE § 268.8 Flash report of major foreign debt arrearages. Major foreign debt arrearages are monitored by the NAC. Therefore, periodically DSAA will request flash reports from the DoD Components...

  3. 32 CFR 268.8 - Flash report of major foreign debt arrearages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Flash report of major foreign debt arrearages... OF DEFENSE § 268.8 Flash report of major foreign debt arrearages. Major foreign debt arrearages are monitored by the NAC. Therefore, periodically DSAA will request flash reports from the DoD Components...

  4. 49 CFR 234.253 - Flashing light units and lamp voltage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Flashing light units and lamp voltage. 234.253... Maintenance, Inspection, and Testing Inspections and Tests § 234.253 Flashing light units and lamp voltage. (a) Each flashing light unit shall be inspected when installed and at least once every twelve months...

  5. Hot Flashes and Panic Attacks: A Comparison of Symptomatology, Neurobiology, Treatment, and a Role for Cognition

    ERIC Educational Resources Information Center

    Hanisch, Laura J.; Hantsoo, Liisa; Freeman, Ellen W.; Sullivan, Gregory M.; Coyne, James C.

    2008-01-01

    Despite decades of research, the causal mechanisms of hot flashes are not adequately understood, and a biopsychosocial perspective on hot flashes remains underdeveloped. This article explores overlooked parallels between hot flashes and panic attacks within 5 areas: course and symptomatology, physiological indicators, neurocircuitry and…

  6. 46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flashing the rays of a searchlight or other blinding...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-5 Flashing the rays of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding...

  7. 46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flashing the rays of a searchlight or other blinding...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-5 Flashing the rays of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding...

  8. 46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flashing the rays of a searchlight or other blinding...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-5 Flashing the rays of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding...

  9. 46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flashing the rays of a searchlight or other blinding...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-5 Flashing the rays of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding...

  10. 46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flashing the rays of a searchlight or other blinding...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-5 Flashing the rays of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding...

  11. Flashes of light-radiation therapy to the brain.

    PubMed

    Blumenthal, Deborah T; Corn, Benjamin W; Shtraus, Natan

    2015-08-01

    We present a series of three patients who received therapeutic external beam radiation to the brain and experienced a phenomenon of the sensation of flashes of bright or blue light, simultaneous with radiation delivery. We relate this benign phenomenon to low-dose exposure to the eye fields and postulate that the occurrence is underreported in this treated population.

  12. Flash floods, hydro-geomorphic response and risk management

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Borga, Marco; Gourley, Jonathan; Hürlimann, Marcel; Zappa, Massimilano; Gallart, Francesc

    2016-10-01

    Each year, natural disasters are responsible for fatalities and economic losses worldwide with 101 billion USD in economic losses and 7000 fatalities reported for 2014 (SwissRE, 2015). Even if earthquakes are responsible for most of these fatalities, flash floods and landslides are recognized as a significant source of threat to human lives (SwissRE, 2015). Jonkman (2005), in a global assessment of flood-related casualties, showed that flash floods lead to the highest mortality (number of fatalities divided by the number of affected people). They are also often associated with shallow landslides and geomorphic processes that can increase threat to human lives. Analysis of a global data set of fatalities from non-seismically triggered landslides (Petley, 2012) shows that 2620 fatal landslides were recorded worldwide in the period 2004-2010, causing a total of 32,322 recorded fatalities. In addition, heavy precipitation events, at the origin of flash floods and shallow landsliding are expected to increase in the future (e.g. Scoccimarro et al., 2016 for a recent study in Europe). Progress in flash floods and landslides understanding, forecasting and warning is therefore still needed to disentangle the complex interactions between hazards, exposure and vulnerability and to increase resilience (Borga et al., 2014).

  13. FLASH assembly of TALENs for high-throughput genome editing.

    PubMed

    Reyon, Deepak; Tsai, Shengdar Q; Khayter, Cyd; Foden, Jennifer A; Sander, Jeffry D; Joung, J Keith

    2012-05-01

    Engineered transcription activator–like effector nucleases (TALENs) have shown promise as facile and broadly applicable genome editing tools. However, no publicly available high-throughput method for constructing TALENs has been published, and large-scale assessments of the success rate and targeting range of the technology remain lacking. Here we describe the fast ligation-based automatable solid-phase high-throughput (FLASH) system, a rapid and cost-effective method for large-scale assembly of TALENs. We tested 48 FLASH-assembled TALEN pairs in a human cell–based EGFP reporter system and found that all 48 possessed efficient gene-modification activities. We also used FLASH to assemble TALENs for 96 endogenous human genes implicated in cancer and/or epigenetic regulation and found that 84 pairs were able to efficiently introduce targeted alterations. Our results establish the robustness of TALEN technology and demonstrate that FLASH facilitates high-throughput genome editing at a scale not currently possible with other genome modification technologies.

  14. Ultrafast-Contactless Flash Sintering using Plasma Electrodes

    PubMed Central

    Saunders, Theo; Grasso, Salvatore; Reece, Michael J.

    2016-01-01

    This paper presents a novel derivative of flash sintering, in which contactless flash sintering (CFS) is achieved using plasma electrodes. In this setup, electrical contact with the sample to be sintered is made by two arc plasma electrodes, one on either side, allowing current to pass through the sample. This opens up the possibility of continuous throughput flash sintering. Preheating, a usual precondition for flash sintering, is provided by the arc electrodes which heat the sample to 1400 °C. The best results were produced with pre-compacted samples (bars 1.8 mm thick) of pure B4C (discharge time 2s, current 4A) and SiC:B4C 50 wt% (3s at 6A), which were fully consolidated under a heating rate approaching 20000 °C/min. For the composite a cylindrical volume of 14 mm3 was sintered to full density with limited grain growth. PMID:27273255

  15. Spectral unfolds of PITHON Flash X-ray source.

    SciTech Connect

    Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Riordan, John C.

    2007-11-01

    Using a differential absorption spectrometer we obtained experimental spectral information for the PITHON Flash X-ray Machine located in San Leandro, California at L-3 Communications. Spectral information we obtained pertained to the 200 keV to 800 keV endpoint operation of PITHON. We also obtained data on the temporal behavior of high energy and low energy spectral content.

  16. An empirical explanation of the flash-lag effect.

    PubMed

    Wojtach, William T; Sung, Kyongje; Truong, Sandra; Purves, Dale

    2008-10-21

    When a flash of light is presented in physical alignment with a moving object, the flash is perceived to lag behind the position of the object. This phenomenon, known as the flash-lag effect, has been of particular interest to vision scientists because of the challenge it presents to understanding how the visual system generates perceptions of objects in motion. Although various explanations have been offered, the significance of this effect remains a matter of debate. Here, we show that: (i) contrary to previous reports based on limited data, the flash-lag effect is an increasing nonlinear function of image speed; and (ii) this function is accurately predicted by the frequency of occurrence of image speeds generated by the perspective transformation of moving objects. These results support the conclusion that perceptions of the relative position of a moving object are determined by accumulated experience with image speeds, in this way allowing for visual behavior in response to real-world sources whose speeds and positions cannot be perceived directly.

  17. Apparatus for Spraying Thin Films by the Flash Evaporation Method,

    DTIC Science & Technology

    The article describes a flash evaporation apparatus used for coating materials with compounds and alloys. The apparatus is simple and easy to produce and can be mounted in a conventional vacuum apparatus. The operation of this apparatus was tested during the spraying of the InSb thin films .

  18. Thermal diffusivity of nonflat plates using the flash method

    SciTech Connect

    Salazar, Agustin; Fuente, Raquel; Apinaniz, Estibaliz; Mendioroz, Arantza

    2011-01-15

    The flash method is the standard technique to measure the thermal diffusivity of solid samples. It consists of heating the front surface of an opaque sample by a brief light pulse and detecting the temperature evolution at its rear surface. The thermal diffusivity is obtained by measuring the time corresponding to the half maximum of the temperature rise, which only depends on the sample thickness and thermal diffusivity through a simple formula. Up to now, the flash method has been restricted to flat samples. In this work, we extend the flash method to measure the thermal diffusivity of nonflat samples. In particular, we focus on plates with cylindrical and spherical shapes. The theoretical model indicates that the same expression for flat samples can also be applied to cylindrical and spherical plates, except for extremely curved samples. Accordingly, a curvature limit for the application of the expression for flat samples is established. Flash measurements on lead foils of cylindrical shape confirm the validity of the model.

  19. Lightning flash density in relation to aerosol over Nanjing (China)

    NASA Astrophysics Data System (ADS)

    Tan, Y. B.; Peng, L.; Shi, Z.; Chen, H. R.

    2016-06-01

    Time series data of lightning flash density, aerosol optical depth (AOD), surface temperature, convective available potential energy (CAPE) and thunderstorm days for 10 years (2002-2011), cloud-to-ground lightning (CG), and AOD of 5 years for summer season, i.e., June, July, and August over Nanjing, China, have been analyzed, to investigate the impact of aerosols on lightning. The results indicate that the radiative effect of aerosol may be one of the main reason for the decrease of the lightning flash density in a long period, while the aerosol microphysical effect may be a major role in the increase of the percent of + CG flashes (P+ CG). The dependence of surface temperature, CAPE, and thunderstorm days on AOD (R = - 0.748, - 0.741, - 0.744), and the negative correlation (R = - 0.634) between lightning flash density and AOD may lend support for the radiative effect of aerosol on lightning. In addition, elevated aerosols may change the charge distribution in thundercloud, hence enhancing the positive cloud-to-ground lightning (+ CG) activity, as P+ CG is positively correlated with AOD.

  20. Recognizing Words and Reading Sentences with Microsecond Flash Displays

    PubMed Central

    Greene, Ernest

    2016-01-01

    Strings of dots can be used to construct easily identifiable letters, and these in turn can be used to write words and sentences. Prior work found that respondents could identify individual letters when all the dots were simultaneously flashed for an ultra-brief duration. Four of the experiments reported here constructed five-letter words with these dot-letters and a fifth experiment used them to write complete sentences. Respondents were able to recognize individual words that were displayed with a single, simultaneous ultra-brief flash of all the letters. Further, sentences could be efficiently read with a sequence of simultaneous flashes at a frequency that produced perceptual fusion. One experiment determined the frequency range that would produce flicker-fusion. Two experiments established the relation of intensity to probability of recognition with single flashes and with fused-flicker frequencies. Another established the intensities at which flicker-fused and steady displays were judged to be equal in brightness. The final experiment used those flicker-fused and steady intensities to display sentences. The two display conditions were read with equal efficiency, even though the flicker-fused displays provided light stimulation only 0.003% of the time. PMID:26800027

  1. Ultrafast-Contactless Flash Sintering using Plasma Electrodes.

    PubMed

    Saunders, Theo; Grasso, Salvatore; Reece, Michael J

    2016-06-08

    This paper presents a novel derivative of flash sintering, in which contactless flash sintering (CFS) is achieved using plasma electrodes. In this setup, electrical contact with the sample to be sintered is made by two arc plasma electrodes, one on either side, allowing current to pass through the sample. This opens up the possibility of continuous throughput flash sintering. Preheating, a usual precondition for flash sintering, is provided by the arc electrodes which heat the sample to 1400 °C. The best results were produced with pre-compacted samples (bars 1.8 mm thick) of pure B4C (discharge time 2s, current 4A) and SiC:B4C 50 wt% (3s at 6A), which were fully consolidated under a heating rate approaching 20000 °C/min. For the composite a cylindrical volume of 14 mm(3) was sintered to full density with limited grain growth.

  2. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  3. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  4. Premixing and flash vaporization in a two-stage combustor

    SciTech Connect

    Sjoblom, B.G.A.

    1982-01-01

    A double recirculation zone two-stage combustor fitted with airblast atomizers has been investigated in a previous work. This paper describes further tests with premixing tubes in the secondary combustion zone. Flash vaporization was employed to ensure complete vaporization of the secondary fuel, which was heated to 600K by the combustor inlet air. 9 refs.

  5. Hearing flashes and seeing beeps: Timing audiovisual events

    PubMed Central

    2017-01-01

    Many events from daily life are audiovisual (AV). Handclaps produce both visual and acoustic signals that are transmitted in air and processed by our sensory systems at different speeds, reaching the brain multisensory integration areas at different moments. Signals must somehow be associated in time to correctly perceive synchrony. This project aims at quantifying the mutual temporal attraction between senses and characterizing the different interaction modes depending on the offset. In every trial participants saw four beep-flash pairs regularly spaced in time, followed after a variable delay by a fifth event in the test modality (auditory or visual). A large range of AV offsets was tested. The task was to judge whether the last event came before/after what was expected given the perceived rhythm, while attending only to the test modality. Flashes were perceptually shifted in time toward beeps, the attraction being stronger for lagging than leading beeps. Conversely, beeps were not shifted toward flashes, indicating a nearly total auditory capture. The subjective timing of the visual component resulting from the AV interaction could easily be forward but not backward in time, an intuitive constraint stemming from minimum visual processing delays. Finally, matching auditory and visual time-sensitivity with beeps embedded in pink noise produced very similar mutual attractions of beeps and flashes. Breaking the natural auditory preference for timing allowed vision to take over as well, showing that this preference is not hardwired. PMID:28207786

  6. Collecting Response Times using Amazon Mechanical Turk and Adobe Flash

    PubMed Central

    Simcox, Travis; Fiez, Julie A.

    2017-01-01

    Crowdsourcing systems like Amazon's Mechanical Turk (AMT) allow data to be collected from a large sample of people in a short amount of time. This use has garnered considerable interest from behavioral scientists. So far, most experiments conducted on AMT have focused on survey-type instruments because of difficulties inherent in running many experimental paradigms over the Internet. This article investigated the viability of presenting stimuli and collecting response times using Adobe Flash to run ActionScript 3 code in conjunction with AMT. First, the timing properties of Adobe Flash were investigated using a phototransistor and two desktop computers running under several conditions mimicking those that may be present in research using AMT. This experiment revealed some strengths and weaknesses of the timing capabilities of this method. Next, a flanker task and a lexical decision task implemented in Adobe Flash were administered to participants recruited with AMT. The expected effects in these tasks were replicated. Power analyses were conducted to describe the number of participants needed to replicate these effects. A questionnaire was used to investigate previously undescribed computer use habits of 100 participants on AMT. We conclude that a Flash program in conjunction with AMT can be successfully used for running many experimental paradigms that rely on response times, although experimenters must understand the limitations of the method. PMID:23670340

  7. DETAIL OF TYPICAL ALUMINUM FLASHING AT THE BOTTOM OF AN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF TYPICAL ALUMINUM FLASHING AT THE BOTTOM OF AN EXTERIOR WALL AT UNIT B. VIEW FACING NORTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Duplex Type 1, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  8. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  9. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  10. Thermal diffusivity of nonflat plates using the flash method

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza

    2011-01-01

    The flash method is the standard technique to measure the thermal diffusivity of solid samples. It consists of heating the front surface of an opaque sample by a brief light pulse and detecting the temperature evolution at its rear surface. The thermal diffusivity is obtained by measuring the time corresponding to the half maximum of the temperature rise, which only depends on the sample thickness and thermal diffusivity through a simple formula. Up to now, the flash method has been restricted to flat samples. In this work, we extend the flash method to measure the thermal diffusivity of nonflat samples. In particular, we focus on plates with cylindrical and spherical shapes. The theoretical model indicates that the same expression for flat samples can also be applied to cylindrical and spherical plates, except for extremely curved samples. Accordingly, a curvature limit for the application of the expression for flat samples is established. Flash measurements on lead foils of cylindrical shape confirm the validity of the model.

  11. Recognizing Words and Reading Sentences with Microsecond Flash Displays.

    PubMed

    Greene, Ernest

    2016-01-01

    Strings of dots can be used to construct easily identifiable letters, and these in turn can be used to write words and sentences. Prior work found that respondents could identify individual letters when all the dots were simultaneously flashed for an ultra-brief duration. Four of the experiments reported here constructed five-letter words with these dot-letters and a fifth experiment used them to write complete sentences. Respondents were able to recognize individual words that were displayed with a single, simultaneous ultra-brief flash of all the letters. Further, sentences could be efficiently read with a sequence of simultaneous flashes at a frequency that produced perceptual fusion. One experiment determined the frequency range that would produce flicker-fusion. Two experiments established the relation of intensity to probability of recognition with single flashes and with fused-flicker frequencies. Another established the intensities at which flicker-fused and steady displays were judged to be equal in brightness. The final experiment used those flicker-fused and steady intensities to display sentences. The two display conditions were read with equal efficiency, even though the flicker-fused displays provided light stimulation only 0.003% of the time.

  12. Driver behaviour at rail level crossings: responses to flashing lights, traffic signals and stop signs in simulated rural driving.

    PubMed

    Lenné, Michael G; Rudin-Brown, Christina M; Navarro, Jordan; Edquist, Jessica; Trotter, Margaret; Tomasevic, Nebojsa

    2011-05-01

    Australian road and railway authorities have made a concerted effort to reduce the number of rail level crossings, particularly the higher risk passive crossings that are protected by devices such as 'give way' or 'stop' signs. To improve this situation, passive level crossings are often upgraded with active controls such as flashing red lights. Traffic signals may provide good safety outcomes at level crossings but remain untested. The primary purpose of this research was to compare driver behaviour at two railway level crossings with active controls, flashing red lights and traffic signals, to behaviour at the current standard passive level crossing control, a stop sign. Participants drove the MUARC advanced driving simulator for 30 min. During the simulated drive, participants were exposed to three level crossing scenarios. Each scenario consisted of one of three level crossing control types, and was associated with an oncoming train. Mean vehicle speed on approach to the level crossings decreased more rapidly in response to flashing lights than to traffic signals. While speed on approach was lowest for the stop-sign condition, the number of non-compliant drivers (i.e., those who did not stop) at the crossing was highest for this condition. While results indicate that traffic signals at rail level crossings do not appear to offer any safety benefits over and above flashing red lights, further avenues of research are proposed to reach more definitive conclusions. Compliance was lowest for the passive crossing control which provides further support for the ongoing passive crossing upgrades in Australia.

  13. Spatial memory and animal movement.

    PubMed

    Fagan, William F; Lewis, Mark A; Auger-Méthé, Marie; Avgar, Tal; Benhamou, Simon; Breed, Greg; LaDage, Lara; Schlägel, Ulrike E; Tang, Wen-wu; Papastamatiou, Yannis P; Forester, James; Mueller, Thomas

    2013-10-01

    Memory is critical to understanding animal movement but has proven challenging to study. Advances in animal tracking technology, theoretical movement models and cognitive sciences have facilitated research in each of these fields, but also created a need for synthetic examination of the linkages between memory and animal movement. Here, we draw together research from several disciplines to understand the relationship between animal memory and movement processes. First, we frame the problem in terms of the characteristics, costs and benefits of memory as outlined in psychology and neuroscience. Next, we provide an overview of the theories and conceptual frameworks that have emerged from behavioural ecology and animal cognition. Third, we turn to movement ecology and summarise recent, rapid developments in the types and quantities of available movement data, and in the statistical measures applicable to such data. Fourth, we discuss the advantages and interrelationships of diverse modelling approaches that have been used to explore the memory-movement interface. Finally, we outline key research challenges for the memory and movement communities, focusing on data needs and mathematical and computational challenges. We conclude with a roadmap for future work in this area, outlining axes along which focused research should yield rapid progress.

  14. Temporal integration of light flashes by the human circadian system

    PubMed Central

    Najjar, Raymond P.; Zeitzer, Jamie M.

    2016-01-01

    BACKGROUND. Beyond image formation, the light that is detected by retinal photoreceptors influences subcortical functions, including circadian timing, sleep, and arousal. The physiology of nonimage-forming (NIF) photoresponses in humans is not well understood; therefore, the development of therapeutic interventions based on this physiology, such as bright light therapy to treat chronobiological disorders, remains challenging. METHODS. Thirty-nine participants were exposed to 60 minutes of either continuous light (n = 8) or sequences of 2-millisecond light flashes (n = 31) with different interstimulus intervals (ISIs; ranging from 2.5 to 240 seconds). Melatonin phase shift and suppression, along with changes in alertness and sleepiness, were assessed. RESULTS. We determined that the human circadian system integrates flash sequences in a nonlinear fashion with a linear rise to a peak response (ISI = 7.6 ± 0.53 seconds) and a power function decrease following the peak of responsivity. At peak ISI, flashes were at least 2-fold more effective in phase delaying the circadian system as compared with exposure to equiluminous continuous light 3,800 times the duration. Flashes did not change melatonin concentrations or alertness in an ISI-dependent manner. CONCLUSION. We have demonstrated that intermittent light is more effective than continuous light at eliciting circadian changes. These findings cast light on the phenomenology of photic integration and suggest a dichotomous retinohypothalamic network leading to circadian phase shifting and other NIF photoresponses. Further clinical trials are required to judge the practicality of light flash protocols. TRIAL REGISTRATION. Clinicaltrials.gov NCT01119365. FUNDING. National Heart, Lung, and Blood Institute (1R01HL108441-01A1) and Department of Veterans Affairs Sierra Pacific Mental Illness Research, Education, and Clinical Center. PMID:26854928

  15. A Comparison of Radiometric Calibration Techniques for Lunar Impact Flashes

    NASA Technical Reports Server (NTRS)

    Suggs, R.

    2016-01-01

    Video observations of lunar impact flashes have been made by a number of researchers since the late 1990's and the problem of determination of the impact energies has been approached in different ways (Bellot Rubio, et al., 2000 [1], Bouley, et al., 2012.[2], Suggs, et al. 2014 [3], Rembold and Ryan 2015 [4], Ortiz, et al. 2015 [5]). The wide spectral response of the unfiltered video cameras in use for all published measurements necessitates color correction for the standard filter magnitudes available for the comparison stars. An estimate of the color of the impact flash is also needed to correct it to the chosen passband. Magnitudes corrected to standard filters are then used to determine the luminous energy in the filter passband according to the stellar atmosphere calibrations of Bessell et al., 1998 [6]. Figure 1 illustrates the problem. The camera pass band is the wide black curve and the blue, green, red, and magenta curves show the band passes of the Johnson-Cousins B, V, R, and I filters for which we have calibration star magnitudes. The blackbody curve of an impact flash of temperature 2800K (Nemtchinov, et al., 1998 [7]) is the dashed line. This paper compares the various photometric calibration techniques and how they address the color corrections necessary for the calculation of luminous energy (radiometry) of impact flashes. This issue has significant implications for determination of luminous efficiency, predictions of impact crater sizes for observed flashes, and the flux of meteoroids in the 10s of grams to kilogram size range.

  16. Some features of stroke occurrence in Florida lightning flashes

    NASA Astrophysics Data System (ADS)

    Thomson, E. M.; Galib, M. A.; Uman, M. A.; Beasley, W. H.; Master, M. J.

    1984-06-01

    Characteristics of stroke occurrence are investigated for lightning to ground observed near Tampa, Florida (latitude = 27.4°N, longitude = 82.2°W) during three days of convective thunderstorm activity in July 1979. Strokes were identified from both wideband (0.2 Hz to 1.5 MHz) electric field records and simultaneous video tape recordings from a network of TV cameras. The average number of strokes per flash was 4.0 for 105 flashes and the average number of channels per flash was 1.6 for 78 multiple-stroke flashes. Interstroke intervals were distributed according to a lognormal rather than a normal distribution with a geometric mean of 69 ms and standard deviation of 0.32 decades in the logarithmic distribution for 310 intervals. Interstroke intervals preceding new channels had a geometric mean of 83 ms and standard deviation of 0.33 decades in the logarithmic distribution for 28 intervals. By comparing our results with others in Florida and New Mexico, we could find no obvious relationship between these intervals and channel length. Histograms of interstroke interval plotted as a function of stroke order did not appear to reveal the systematic increase noted by workers in Japan. This conclusion is corroborated here on the basis of the same statistical tests used by the Japanese workers. The effectiveness of videotape records for determining stroke occurrence in daytime lightning is considered: although 82% of strokes were detected on the videotape record, for ground flashes with at least one stroke visible on TV, there was a significant difference at the 1% confidence level for the t test between the interstroke interval distribution obtained using both wideband electric field and videotape records and that obtained using only videotape records.

  17. Upper limits of flash flood stream power in Europe

    NASA Astrophysics Data System (ADS)

    Marchi, Lorenzo; Cavalli, Marco; Amponsah, William; Borga, Marco; Crema, Stefano

    2016-11-01

    Flash floods are characterized by strong spatial gradients of rainfall inputs that hit different parts of a river basin with different intensity. Stream power values associated with flash floods therefore show spatial variations that depend on geological controls on channel geometry and sediment characteristics, as well as on the variations of flood intensity: this stresses the need for a field approach that takes into account the variability of the controlling factors. Post-flood assessment of peak discharge after major floods makes it possible to analyse stream power in fluvial systems affected by flash floods. This study analyses the stream power of seven intense (return period of rainfall > 100 years at least in some sectors of the river basin) flash floods that occurred in mountainous basins of central and southern Europe from 2007 to 2014. In most of the analysed cross sections, high values of unit stream power were observed; this is consistent with the high severity of the studied floods. The highest values of cross-sectional stream power and unit stream power usually occur in Mediterranean regions. This is mainly ascribed to the larger peak discharges that characterize flash floods in these regions. The variability of unit stream power with catchment area is clearly nonlinear and has been represented by log-quadratic relations. The values of catchment area at which maximum values of unit stream power occur show relevant differences among the studied floods and are linked to the spatial scale of the events. Values of stream power are generally consistent with observed geomorphic changes in the studied cross sections: bedrock channels show the highest values of unit stream power but no visible erosion, whereas major erosion has been observed in alluvial channels. Exceptions to this general pattern, which mostly occur in semi-alluvial cross sections, urge the recognition of local or event-specific conditions that increase the resistance of channel bed and

  18. Flash flood warning based on fully dynamic hydrology modelling

    NASA Astrophysics Data System (ADS)

    Pejanovic, Goran; Petkovic, Slavko; Cvetkovic, Bojan; Nickovic, Slobodan

    2016-04-01

    Numerical hydrologic modeling has achieved limited success in the past due to, inter alia, lack of adequate input data. Over the last decade, data availability has improved substantially. For modelling purposes, high-resolution data on topography, river routing, and land cover and soil features have meanwhile become available, as well as the observations such as radar precipitation information. In our study, we have implemented the HYPROM model (Hydrology Prognostic Model) to predict a flash flood event at a smaller-scale basin in Southern Serbia. HYPROM is based on the full set of governing equations for surface hydrological dynamics, in which momentum components, along with the equation of mass continuity, are used as full prognostic equations. HYPROM also includes a river routing module serving as a collector for the extra surface water. Such approach permits appropriate representation of different hydrology scales ranging from flash floods to flows of large and slow river basins. The use of full governing equations, if not appropriately parameterized, may lead to numerical instability systems when the surface water in a model is vanishing. To resolve these modelling problems, an unconditionally stable numerical scheme and a method for height redistribution avoiding shortwave height noise have been developed in HYPROM, which achieve numerical convergence of u, v and h when surface water disappears. We have applied HYPROM, driven by radar-estimated precipitation, to predict flash flooding occurred over smaller and medium-size river basins. Two torrential rainfall cases have been simulated to check the accuracy of the model: the exceptional flooding of May 2014 in Western Serbia, and the convective flash flood of January 2015 in Southern Serbia. The second episode has been successfully predicted by HYPROM in terms of timing and intensity six hours before the event occurred. Such flash flood warning system is in preparation to be operationally implemented in the

  19. Effect of color of flash stimulus on variability of flash visual evoked potential latencies.

    PubMed

    Subramanian, Senthil Kumar; Gaur, Giriwar Singh; Narayan, Sunil K

    2012-01-01

    Visual Evoked Potentials (VEPs) are evoked potentials generated in response to visual stimuli. The flash VEP (FVEP) is used less frequently than pattern-reversal VEP (PR-VEP) because; it shows great variations in both latency and amplitude in normal subjects. The advantage of FVEP is its feasibility in non-cooperative subjects, which circumvents the major limitation of PR-VEP. The present study was undertaken to assess the effect of change of color of flashlight on variability of FVEP latencies. Healthy subjects in the age group of 18-30 years underwent the standard stimulus using white light, followed by altered stimuli done with red and blue light. 2 trials were given for each eye, for each type of stimulus. The same set of studies was repeated at the same clock time the following day. The inter-individual and intra-individual variability in the peak latency of P2 and N2 waveforms was assessed using coefficient of variation (COV). Both inter-individual and intra-individual variability was less when monochromatic light was used. Between red and blue FVEP, inter-individual variability was less in blue FVEP and the results of intra-individual variability was inconclusive. Monochromatic stimulation preferably with blue light reduced both inter-individual and intra-individual variability seen in latency of P2 and N2 waveforms in FVEP and hence recommended in preference to standard white stimulus for FVEP recording.

  20. The analysis of polarization characteristics on 40nm memory devices

    NASA Astrophysics Data System (ADS)

    Yoo, Minae; Park, Chanha; You, Taejun; Yang, Hyunjo; Min, Young-Hong; Park, Ki-Yeop; Yim, Donggyu; Park, Sungki

    2009-03-01

    Hyper NA system has been introduced to develop sub-60nm node memory devices. Especially memory industries including DRAM and NAND Flash business have driven much finer technology to improve productivity. Polarization at hyper NA has been well known as important optical technology to enhance imaging performance and also achieve very low k1 process. The source polarization on dense structure has been used as one of the major RET techniques. The process capabilities of various layers under specific illumination and polarization have been explored. In this study, polarization characteristic on 40nm memory device will be analyzed. Especially, TE (Transverse Electric) polarization and linear X-Y polarization on hyper NA ArF system will be compared and investigated. First, IPS (Intensity in Preferred State) value will be measured with PMM (Polarization Metrology Module) to confirm polarization characteristic of each machine before simulation. Next simulation will be done to estimate the CD variation impact of each polarization to different illumination. Third, various line and space pattern of DRAM and Flash device will be analyzed under different polarized condition to see the effect of polarization on CD of actual wafer. Finally, conclusion will be made for this experiment and future work will be discussed. In this paper, the behavior of 40nm node memory devices with two types of polarization is presented and the guidelines for polarization control is discussed based on the patterning performances.