Science.gov

Sample records for advanced flight simulator

  1. Applicability of Randomdec technique to flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. E., Jr.; Cole, H. A., Jr.

    1975-01-01

    The feasibility of Randomdec analysis to detect certain changes in a flight simulator system is studied. Results show that (1) additional studies are needed to ensure effectiveness; (2) a trade-off exists between development complexity and level of malfunction to be detected; and (3) although the system generally limits the input signals to less than about 5 Hz, higher frequency components in the range of 9 Hz and its harmonics are possible.

  2. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  3. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  4. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  5. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  6. Heads up display for the Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Brocker, D. H.; Ganzler, B. C.

    1975-01-01

    A heads-up flight director display designed for a V/STOL lift-fan transport simulation study is described. The pilot's visual flight scene had the heads-up display optically superimposed over the usual out-the-window, video flight scene. The flight director display required the development and integration of a flexible, programmable display generator, graphics assembler, display driver, computer interface system, and special collimating optics for the pilot's flight scene. The optical overlay was realistic because both scenes appeared at optical infinity, and the flexibility of this display device establishes its value as a research tool for use in future flight simulation programs.

  7. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  8. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  9. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  10. Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.

    1977-01-01

    Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.

  11. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    NASA Astrophysics Data System (ADS)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  12. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  13. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  14. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  15. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  16. Space flight visual simulation.

    PubMed

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed. PMID:11542842

  17. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  18. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  19. Flight simulation - A vital and expanding technology in aircraft development

    NASA Technical Reports Server (NTRS)

    Reynolds, P. A.; Hall, G. W.

    1978-01-01

    Flight simulation, both ground and in-flight, is experiencing major technological improvement and growth. The increased capabilities are providing new opportunities for support of the aircraft development process. The development of faster digital computers, improved visual displays, better motion systems and increased interest in simulation fidelity has improved the ground simulator to the point where it accomplishes a major portion of the aircraft development before work on the flight article begins. The efficiency of the ground simulator as a forecaster for the flight testing phase is becoming well established. In-flight simulation is properly being used to bridge the gap between the ground simulator and the flight test article. Simulation provides the vital link between analysis, aerodynamic tests, and subsystem tests and the flight test article. This paper describes the latest advances in flight simulation and its increasing role in the aircraft development process.

  20. Multi-man flight simulator

    NASA Technical Reports Server (NTRS)

    Macdonald, G.

    1983-01-01

    A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.

  1. The Business Flight Simulator.

    ERIC Educational Resources Information Center

    Dwyer, P.; Simpson, D.

    1989-01-01

    The authors describe a simulation program based on a workshop approach designed for postsecondary business students. Features and benefits of the workshop technique are discussed. The authors cover practical aspects of designing and implementing simulation workshops. (CH)

  2. Aerodynamic Simulation of Indoor Flight

    ERIC Educational Resources Information Center

    De Leon, Nelson; De Leon, Matthew N.

    2007-01-01

    We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…

  3. Single pilot scanning behavior in simulated instrument flight

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1979-01-01

    A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.

  4. Flight simulator with spaced visuals

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)

    1980-01-01

    A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.

  5. Determining the transferability of flight simulator data

    NASA Technical Reports Server (NTRS)

    Green, David

    1992-01-01

    This paper presented a method for collecting and graphically correlating subjective ratings and objective flight test data. The method enables flight-simulation engineers to enhance the simulator characterization of rotor craft flight in order to achieve maximum transferability of simulator experience.

  6. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General...

  7. Use of Convex supercomputers for flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1992-01-01

    The use of the Convex Computer Corporation supercomputers for flight simulation is discussed focusing on a real-time input/output system for supporting the flight simulation. The flight simulation computing system is based on two single processor control data corporation CYBER 175 computers, coupled through extended memory. The Advanced Real-Time Simulation System for digital data distribution and signal conversion is a state-of-the-art, high-speed fiber-optic-based, ring network system which is based on the computer automated measurement and control technology.

  8. Advancements of in-flight mass moment of inertia and structural deflection algorithms for satellite attitude simulators

    NASA Astrophysics Data System (ADS)

    Wright, Jonathan W.

    Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.

  9. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-command flight time in the make and model of airplane; and (4) The pilot in command and the instructor... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL...

  10. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-command flight time in the make and model of airplane; and (4) The pilot in command and the instructor... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL...

  11. Simulation of the Physics of Flight

    ERIC Educational Resources Information Center

    Lane, W. Brian

    2013-01-01

    Computer simulations continue to prove to be a valuable tool in physics education. Based on the needs of an Aviation Physics course, we developed the PHYSics of FLIght Simulator (PhysFliS), which numerically solves Newton's second law for an airplane in flight based on standard aerodynamics relationships. The simulation can be used to pique…

  12. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a) Flight simulators and flight training devices approved by the Administrator may be used in...

  13. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  14. Humanoid Flight Metabolic Simulator Project

    NASA Technical Reports Server (NTRS)

    Ross, Stuart

    2015-01-01

    NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.

  15. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  16. Full Motion Flight Simulator in the Classroom

    ERIC Educational Resources Information Center

    Christensen, Brad

    2005-01-01

    Virtual flight can be very entertaining, and computer-based simulators can also be educational, if organized and used correctly. When Berea College decided to find a flight simulator suited to the school's educational goals, the faculty settled on an ANT-18 Link trainer. This article begins with a discussion of Link trainers' history, and then…

  17. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.

  18. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... throwover control wheel that controls the elevator and ailerons, in place of fixed, dual controls, when—...

  19. Extending a Flight Management Computer for Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Sugden, Paul C.

    2005-01-01

    In modern transport aircraft, the flight management computer (FMC) has evolved from a flight planning aid to an important hub for pilot information and origin-to-destination optimization of flight performance. Current trends indicate increasing roles of the FMC in aviation safety, aviation security, increasing airport capacity, and improving environmental impact from aircraft. Related research conducted at the Langley Research Center (LaRC) often requires functional extension of a modern, full-featured FMC. Ideally, transport simulations would include an FMC simulation that could be tailored and extended for experiments. However, due to the complexity of a modern FMC, a large investment (millions of dollars over several years) and scarce domain knowledge are needed to create such a simulation for transport aircraft. As an intermediate alternative, the Flight Research Services Directorate (FRSD) at LaRC created a set of reusable software products to extend flight management functionality upstream of a Boeing-757 FMC, transparently simulating or sharing its operator interfaces. The paper details the design of these products and highlights their use on NASA projects.

  20. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  1. Advanced flight hardware for organic separations

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1997-01-01

    Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT fabricated and integrated the ADSEP flight hardware for a commercially-driven flight experiment as the initial step in marketing space processing services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  2. Psychological aspects of aeronautical flight simulation

    NASA Technical Reports Server (NTRS)

    Huff, E. M.; Nagel, D. C.

    1975-01-01

    Attention is given to the class of ground based devices which have been used by scientists, engineers, and test pilots to evaluate current or future aircraft systems. The characteristics of a flight simulator and its major subsystems are considered, taking into account simulator cockpits, visual scene attachments, aspects of visual attachment fidelity, simulator motion systems, motion system fidelity, and simulation computer systems. Questions related to psychological research and simulation are examined. Simulator validity criteria are discussed along with problems of subsystem fidelity.

  3. Flight trajectory simulation of fluid payload projectiles

    SciTech Connect

    Vaughn, H.R.; Wolfe, W.P.; Oberkampf, W.L.

    1985-01-01

    A flight trajectory simulation method has been developed for calculating the six degree of freedom motion of fluid filled projectiles. Numerically calculated internal fluid moments and experimentally known aerodynamic forces and moments are coupled to the projectile motion. Comparisons of predicted results with flight test data of an M483 155mm artillery projectile with a highly viscous payload confirm the accuracy of the simulation. This simulation clearly shows that the flight instability is due to the growth of the nutation component of angular motion caused by the viscous effects of the fluid payload. This simulation procedure, when used in conjunction with the previously developed method for calculating internal fluid moments, allows the designer to examine the effects of various liquid payloads and container geometries on the dynamic behavior of flight vehicles.

  4. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or...

  5. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or...

  6. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  7. Simulator study of a flight director display

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1983-01-01

    A six degree of freedom, fixed base simulation study of the use of a flight director by general aviation pilots in an instrument landing system approach was conducted. An autopilot command law was used to drive the flight director needles. Time histories of the pilot aircraft display system responses and standard deviations and means of the glide slope and localizer errors were obtained. The pilot aircraft display system responses with the flight director were very similar to the autopilot aircraft responses. Without the flight director, the pilot aircraft display system exhibited less damping than with the flight director. The sensitivity of the flight director command laws was judged to be about as high as it could be by the test subjects. Thus, further improvement in the pilot aircraft display system performance by increasing the gains in the command laws was precluded.

  8. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  9. Joint Institute for Advancement of Flight Sciences

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The program objectives were defined in the original proposal entitled "Program of Research in Flight Dynamics in the JIAFS at NASA Langley Research Center" which was originated March 20, 1975, and in yearly renewals of the research program dated December 1, 1979 to December 1, 1998. The program included three major topics: 1) Improvement of existing methods and development of new methods for flight and wind tunnel data analysis based on system identification methodology. 2) Application of these methods to flight and wind tunnel data obtained from advanced aircraft. 3) Modeling and control of aircraft, space structures and spacecraft. The principal investigator of the program was Dr. Vladislav Klein, Professor at The George Washington University, Washington, D.C.. Thirty-seven Graduate Research Scholar Assistants, two of them doctoral students, also participated in the program. The results of the research conducted during nineteen years of the total co-operative period were published in 23 NASA technical reports, 2 D.Sc. Dissertations, 14 M.S. Theses and 33 papers. The list of these publications is included. The results were also reported in more than 30 seminar lectures presented at various research establishments world-wide. For contributions to the research supported by the co-operative agreement, three NASA Awards were received: 1) NASA LARC Group Achievement Award, May 30, 1990, to Dr. V. Klein as a member of the X-29 Drop Model Team. 2) NASA Medal for Exceptional Engineering Achievement, March 27, 1992, to Dr. V. Klein for innovative contributions in the development of advanced techniques and computer programs in the field of system identification. 3) NASA LaRC Team Excellence Award, May 7, 1994, to Dr. V. Klein as a member of the X-31 Drop Model Team.

  10. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque; Merritt, Deborah S.

    2011-01-01

    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  11. Real time flight simulation methodology

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Cook, G.; Mcvey, E. S.

    1977-01-01

    Substitutional methods for digitization, input signal-dependent integrator approximations, and digital autopilot design were developed. The software framework of a simulator design package is described. Included are subroutines for iterative designs of simulation models and a rudimentary graphics package.

  12. Advanced Civil Transport Simulator Cockpit View

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Advanced Civil Transport Simulator (ACTS) is a futuristic aircraft cockpit simulator designed to provide full-mission capabilities for researching issues that will affect future transport aircraft flight stations and crews. The objective is to heighten the pilots situation awareness through improved information availability and ease of interpretation in order to reduce the possibility of misinterpreted data. The simulators five 13-inch Cathode Ray Tubes are designed to display flight information in a logical easy-to-see format. Two color flat panel Control Display Units with touch sensitive screens provide monitoring and modification of aircraft parameters, flight plans, flight computers, and aircraft position. Three collimated visual display units have been installed to provide out-the-window scenes via the Computer Generated Image system. The major research objectives are to examine needs for transfer of information to and from the flight crew; study the use of advanced controls and displays for all-weather flying; explore ideas for using computers to help the crew in decision making; study visual scanning and reach behavior under different conditions with various levels of automation and flight deck-arrangements.

  13. Data exchange protocols in flight simulators

    NASA Astrophysics Data System (ADS)

    Cifuentes, Jaime; Fernández, Ramón A.; Carriegos, Miguel V.

    2014-12-01

    Modeling and simulation are fundamental in early stages of engineering design and testing. That is the reason why aerospace engineering students need to learn those disciplines at the University. In particular, we propose the use of Simulink in combination with a X-Plane based flight simulator to improve the motivation of such students. Our approach suggests beginning with two simple lab assignments that help the students develop their very first models and simulation by acquiring some flight parameters and by sending commands to the aircraft.

  14. Vision Research for Flight Simulation. Final Report.

    ERIC Educational Resources Information Center

    Richards, Whitman, Ed.; Dismukes, Key, Ed.

    Based on a workshop on vision research issues in flight-training simulators held in June 1980, this report focuses on approaches for the conduct of research on what visual information is needed for simulation and how it can best be presented. An introduction gives an overview of the workshop and describes the contents of the report. Section 1…

  15. Automated Simulation Updates based on Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Ward, David G.

    2007-01-01

    A statistically-based method for using flight data to update aerodynamic data tables used in flight simulators is explained and demonstrated. A simplified wind-tunnel aerodynamic database for the F/A-18 aircraft is used as a starting point. Flight data from the NASA F-18 High Alpha Research Vehicle (HARV) is then used to update the data tables so that the resulting aerodynamic model characterizes the aerodynamics of the F-18 HARV. Prediction cases are used to show the effectiveness of the automated method, which requires no ad hoc adjustments by the analyst.

  16. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.

  17. Aid For Simulating Digital Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hartman, Richard M.

    1991-01-01

    DIVERS translator is computer program to convert descriptions of digital flight-control systems (DFCS) into computer program. Language developed to represent design charts of DFCS. Translator converts DIVERS source code into easily transportable language, while minimizing probability that results are affected by interpretation of programmer. Final translated program used as standard of comparison to verify operation of actual flight-control systems. Applicable to simulation of other control systems; for example, electrical circuits and logic processes. Written in C.

  18. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION... GROUND INSTRUCTORS General § 61.4 Qualification and approval of flight simulators and flight training devices. (a) Except as specified in paragraph (b) or (c) of this section, each flight simulator and...

  19. Flight Simulations Prep Shuttle Crew

    NASA Video Gallery

    As they simulate one of the three spacewalks scheduled for their upcoming mission to the International Space Station, Commander Ken Ham and Mission Specialist Mike Good discuss with Mike Massimino ...

  20. NLS Flight Simulation Laboratory (FSL) documentation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Flight Simulation Laboratory (FSL) Electronic Documentation System design consists of modification and utilization of the MSFC Integrated Engineering System (IES), translation of the existing FSL documentation to an electronic format, and generation of new drawings to represent the Engine Flight Simulation Laboratory design and implementation. The intent of the electronic documentation is to provide ease of access, local print/plot capabilities, as well as the ability to correct and/or modify the stored data by network users who are authorized to access this information.

  1. Joint Institute for Advancement of Flight Sciences

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Aeroacoustics Research Program is an integral part of the Joint Institute for Advancement of Flight Sciences at The George Washington University. It is affiliated with many civil, mechanical, and environmental engineering courses, particularly those that stress theory and numerical or other analytic methods in engineering. This report lists the courses presented, the names of graduate research assistants, and bibliographic information regarding publications and presentations. Three graduate degrees were awarded and the abstracts of each dissertation is included. The dissertations were as follows: "A Numerical Investigation of Thermoacoustic Oscillations", which discusses advances in the study of acoustic phenomena through the use of computational aeroacoustics. "Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder: Subcritical to Transcritical Reynolds Numbers", which discusses predicting tonal noise generated by vortex shedding from a circular cylinder. And finally, "The Radiated Field Generated by a Monopole Source in a Short, Rigid, Rectangular Duct", which develops a method for modeling the acoustic field generated by a monopole source placed in a moving rectangular duct.

  2. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  3. Helicopter simulation validation using flight data

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Hansen, R. S.; Cleveland, W. B.; Abbott, W. Y.

    1982-01-01

    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator.

  4. A Flight Simulator Program Takes Off

    ERIC Educational Resources Information Center

    McMahon, Don

    2003-01-01

    Aviation concepts, including forces acting on an airplane, navigation, correct aircraft terminology, and general aviation vocabulary, are often part of a comprehensive fifth-grade aviation curriculum. But in one school district, students also learned about flying planes and even trained in a flight simulator. This article describes how industry…

  5. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  6. Characteristics of flight simulator visual systems

    NASA Technical Reports Server (NTRS)

    Statler, I. C. (Editor)

    1981-01-01

    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.

  7. A Standard Kinematic Model for Flight Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1975-01-01

    A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.

  8. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  9. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is...

  10. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is...

  11. Simulation of Flight Conditions for Rocket Engine Qualification

    NASA Astrophysics Data System (ADS)

    Schaefer, K.; Zimmermann, H.

    2004-10-01

    With the development of ARIANE 5 the test bench P5 for the VULCAIN engine was erected in 1990. New developments like advanced nozzles, the reignition capability of rocket engines or unexpected events during flight drive again the question how to qualify rocket engines and propellant systems. It's getting more and more necessary to test rocket engines closer to original flight conditions. This is mainly the simulation of pressure and temperature conditions. For the main stage engines it's the transition from sea level up to altitude conditions and for upper stage engines and satellite propulsion it's the high altitude with low vacuum pressures. The stage feeding conditions or special simulations like booster separation influences the behaviour of the engine and has to be simulated too. What are the needed simulation conditions to qualify for the flight? The rocket engines of the ARIANE launcher are taken to demonstrate the principle conditions. In 1992 the P4.2 was adapted to the AESTUS altitude simulation. Actual activities are the preparation of the altitude simulation for VINCI on P4.1 and the load simulation device for VULCAIN II nozzle on P5.

  12. Advances in time-of-flight PET.

    PubMed

    Surti, Suleman; Karp, Joel S

    2016-01-01

    This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577

  13. Simulation Testing of Embedded Flight Software

    NASA Technical Reports Server (NTRS)

    Shahabuddin, Mohammad; Reinholtz, William

    2004-01-01

    Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating- system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.

  14. Real-time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time-of-flight mass spectrometry.

    PubMed

    Petersson, Fredrik; Sulzer, Philipp; Mayhew, Chris A; Watts, Peter; Jordan, Alfons; Märk, Lukas; Märk, Tilmann D

    2009-12-01

    This work demonstrates for the first time the potential of using recent developments in proton transfer reaction mass spectrometry for the rapid detection and identification of chemical warfare agents (CWAs) in real-time. A high-resolution (m/Deltam up to 8000) and high-sensitivity (approximately 50 cps/ppbv) proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000 from Ionicon Analytik GmBH) has been successfully used to detect a number of CWA simulants at room temperature; namely dimethyl methylphosphonate, diethyl methylphosphonate, diisopropyl methylphosphonate, dipropylene glycol monomethyl ether and 2-chloroethyl ethyl sulfide. Importantly, we demonstrate in this paper the potential to identify CWAs with a high level of confidence in complex chemical environments, where multiple threat agents and interferents could also be present in trace amounts, thereby reducing the risk of false positives. Instantaneous detection and identification of trace quantities of chemical threats using proton transfer reaction mass spectrometry could form the basis for a timely warning system capability with greater precision and accuracy than is currently provided by existing analytical technologies. PMID:19902419

  15. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  16. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  17. Flight test of the YF-23A Advanced Tactical Fighter

    SciTech Connect

    Metz, P. )

    1992-02-01

    The paper describes the approach used in flight tests of the YF-23A Advanced Tactical Fighter (ATF), the fighter which was conceived as a replacement for the F-1 Eagle and which combines stealth techologies with a supercruise capability while retaining the agility necessary in an air superiority fighter. Special attention is given to the flight test concept, flight test preparations, and test objectives. The test methods, the problems encountered, and the test results are described.

  18. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  19. Methods of sound simulation and applications in flight simulators

    NASA Technical Reports Server (NTRS)

    Gaertner, K. P.

    1980-01-01

    An overview of methods for electronically synthesizing sounds is presented. A given amount of hardware and computer capacity places an upper limit on the degree and fidelity of realism of sound simulation which is attainable. Good sound realism for aircraft simulators can be especially expensive because of the complexity of flight sounds and their changing patterns through time. Nevertheless, the flight simulator developed at the Research Institute for Human Engineering, West Germany, shows that it is possible to design an inexpensive sound simulator with the required acoustic properties using analog computer elements. The characteristics of the sub-sound elements produced by this sound simulator for take-off, cruise and approach are discussed.

  20. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Qualifications: Flight instructors (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight...

  1. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in...

  2. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  3. Orbital flight simulation utility software unit specifications

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1986-01-01

    The HP PASCAL source code contained in pages 6 through 104 was developed for the Mission Planning and Analysis Division (MPAD) and takes the place of detailed flow charts defining the specifications for a Utility Software Unit designed to support orbital flight simulators such as MANHANDLE and GREAS (General Research and Engineering Analysis Simulator). Besides providing basic input/output, mathematical, vector, matrix, quaternion, and statistical routines for such simulators, one of the primary functions of the Utility Software Unit is to isolate all system-dependent code in one well-defined compartment, thereby facilitating transportation of the simulations from one computer to another. Directives to the PASCAL compilers of the HP-9000 Series 200 PASCAL 3.0 operating system and the HP-9000 Series 500 HP-UX 5.0 operations systems are also provided.

  4. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  5. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  6. A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.

  7. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... devices. (a) Except as specified in paragraph (b) or (c) of this section, each flight simulator and flight... simulator or flight training device for specific purposes. ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification and approval of...

  8. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  9. Simulator Motion as a Factor in Flight Simulator Training Effectiveness.

    ERIC Educational Resources Information Center

    Jacobs, Robert S.

    The document reviews the literature concerning the training effectiveness of flight simulators and describes an experiment in progress at the University of Illinois' Institute of Aviation which is an initial attempt to develop systematically the relationship between motion cue fidelity and resultant training effectiveness. The literature review…

  10. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1994-01-01

    Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  11. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    NASA Astrophysics Data System (ADS)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  12. Flight Simulation for the Study of Skill Transfer.

    ERIC Educational Resources Information Center

    Lintern, Gavan

    1992-01-01

    Discusses skill transfer as a human performance issue based on experiences with computerized flight simulators. Highlights include the issue of similarity; simulation and the design of training devices; an information theory of transfer; invariants for flight control; and experiments involving the transfer of flight skills. (21 references) (LRW)

  13. Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Crier, tomyka

    2003-01-01

    With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.

  14. In-flight load testing of advanced shuttle thermal protection systems

    NASA Technical Reports Server (NTRS)

    Trujillo, B. M.; Meyer, R., Jr.; Sawko, P. M.

    1983-01-01

    NASA Ames Research Center has conducted in-flight airload testing of some advanced thermal protection systems (TPS) at the Dryden Flight Research Center. The two flexible TPS materials tested, felt reusable surface insulation (FRSI) and advanced flexible reusable surface insulation (AFRSI), are currently certified for use on the Shuttle orbiter. The objectives of the flight tests were to evaluate the performance of FRSI and AFRSI at simulated launch airloads and to provide a data base for future advanced TPS flight tests. Five TPS configurations were evaluated in a flow field which was representative of relatively flat areas without secondary flows. The TPS materials were placed on a fin, the Flight Test fixture (FTF), that is attached to the underside of the fuselage of an F-104 aircraft. This paper describes the test approach and techniques used and presents the results of the advanced TPS flight test. There were no failures noted during post-flight inspections of the TPS materials which were exposed to airloads 40 percent higher than the design launch airloads.

  15. Flight Simulation Model Exchange. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the appendices to the main report.

  16. Flight Simulation Model Exchange. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the results of the assessment.

  17. Sidelooking laser altimeter for a flight simulator

    NASA Technical Reports Server (NTRS)

    Webster, L. D. (Inventor)

    1983-01-01

    An improved laser altimeter for a flight simulator which allows measurement of the height of the simulator probe above the terrain directly below the probe tip is described. A laser beam is directed from the probe at an angle theta to the horizontal to produce a beam spot on the terrain. The angle theta that the laser beam makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line coaxial with the longitudinal axis of the probe. A television altimeter camera observes the beam spot and has a raster line aligned with the plumb line. Spot detector circuit coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line.

  18. JT15D simulated flight data evaluation

    NASA Technical Reports Server (NTRS)

    Holm, R. G.

    1984-01-01

    The noise characteristics of the JT15D turbofan engine was analyzed with the objectives of: (1) assessing the state-of-art ability to simulate flight acoustic data using test results acquired in wind tunnel and outdoor (turbulence controlled) environments; and (2) predicting the farfield noise directivity of the blade passage frequency (BPF) tonal components using results from rotor blade mounted dynamic pressure instrumentation. Engine rotor tip speeds at subsonic, transonic, and supersonic conditions were evaluated. The ability to simulate flight results was generally within 2-3 dB for both outdoor and wind tunnel acoustic results. Some differences did occur in the broadband noise level and in the multiple-pure-tone harmonics at supersonic tip speeds. The prediction of blade passage frequency tone directivity from dynamic pressure measurements was accomplished for the three tip speed conditions. Predictions were made of the random and periodic components of the tone directivity. The technique for estimating the random tone component used hot wire data to establish a correlation between dynamic pressure and turbulence intensity. This prediction overestimated the tone level by typically 10 dB with the greatest overestimates occurring at supersonic conditions.

  19. Flight Simulator and Training Human Factors Validation

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Leland, Richard

    2009-01-01

    Loss of control has been identified as the leading cause of aircraft accidents in recent years. Efforts have been made to better equip pilots to deal with these types of events, commonly referred to as upsets. A major challenge in these endeavors has been recreating the motion environments found in flight as the majority of upsets take place well beyond the normal operating envelope of large aircraft. The Environmental Tectonics Corporation has developed a simulator motion base, called GYROLAB, that is capable of recreating the sustained accelerations, or G-forces, and motions of flight. A two part research study was accomplished that coupled NASA's Generic Transport Model with a GYROLAB device. The goal of the study was to characterize physiological effects of the upset environment and to demonstrate that a sustained motion based simulator can be an effective means for upset recovery training. Two groups of 25 Air Transport Pilots participated in the study. The results showed reliable signs of pilot arousal at specific stages of similar upsets. Further validation also demonstrated that sustained motion technology was successful in improving pilot performance during recovery following an extensive training program using GYROLAB technology.

  20. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  1. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  2. Advanced flight computers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Stephenson, R. Rhoads

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  3. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  4. Advanced Video Data-Acquisition System For Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Geoffrey; Richwine, David M.; Hass, Neal E.

    1996-01-01

    Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.

  5. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  6. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to satisfy any requirement of 14 CFR chapter I. (b) The approval required by paragraph (a)(2) of this... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight...

  7. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  8. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  9. Array haptic actuator for flight simulator

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Kim, Hyun Chan; Kafy, Abdullahil; Kim, Sang Yeon; Kim, Jaehwan

    2015-04-01

    Array haptic actuator to realize texture of button for virtue flight simulator is fabricated by using cellulose acetate (CA) film. The haptic actuator has independent 3 × 3 cells for identical vibration. Each cell consists of topside CA layer and bottomside CA layer with two pillars. Two ends of topside CA layer are fixed on the pillars similar with fixed end beam. By an electrostatic force in the presence of electric field, the topside CA layer vibrates. Each cell shows its resonance frequency peak in the capable frequency range of vibrotactile feeling from 100 Hz to 500 Hz. The acceleration performance is shown to be higher than vibrotactile threshold on wide frequency band from 100 Hz to 400 Hz.

  10. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  11. Flight Control Study of an Virtual Insect by a Simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, Futoshi; Ohmi, Toshiatsu; Kuroda, Shigeaki; Hirasawa, Kazuhiro

    In this paper, we show an approach to elucidate the free flight of an insect using a simulation. We modeled a fly, Drosophila, by using aerodynamics, body dynamics, and control theory. The modeled virtual insect performs free flight in virtual space generated by a computer. We simulated the free flight of a virtual insect having two dimensions and two degrees of freedom. The flight pass and flight velocity of the virtual insect during a free flight were calculated by Newton’s equations of motion. The aerodynamic force generated by the flapping motion of the virtual insect was estimated by using the blade element theory. An optimal regulator theory was used as a control law. The flight pass from the initial position to the target position and the wing motion was obtained from the results of the free flight simulation of the virtual insect. We can presume the wing motion of an insect in free flight by using the flight simulation of a virtual insect. These results have suggested that the approach based on the simulation is effective in elucidating the free flight of an insect.

  12. Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Malsbury, T.; Atencio, A., Jr.

    1992-01-01

    A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.

  13. Development of Advanced Plant Habitat Flight Unit

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis J., Jr

    2013-01-01

    With NASA's current goals and resources moving forward to bring the idea of Manned Deep-Space missions from a long-thought concept to a reality, innovative research methods and expertise are being utilized for studies that integrate human needs with that of technology to make for the most efficient operations possible. Through the capability to supply food, provide oxygen from what was once carbon dioxide, and various others which help to make plant research one of the prime factors of future long-duration mission, the Advanced Plant Habitat will be the largest microgravity plant growth chamber on the International Space Station when it is launched in the near future (2014- 2015). Soon, the Advanced Plant Habitat unit will continue on and enrich the discoveries and studies on the long-term effects of microgravity on plants.

  14. Advanced Wellbore Thermal Simulator

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  15. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  16. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    SciTech Connect

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.; NUSSER,MICHAEL A.; HOLLINGSHEAD,JAMES RONALD

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  17. The modeling of miniature UAV flight visualization simulation platform

    NASA Astrophysics Data System (ADS)

    Li, Dong-hui; Li, Xin; Yang, Le-le; Li, Xiong

    2015-12-01

    This paper combines virtual technology with visualization visual simulation theory, construct the framework of visual simulation platform, apply open source software FlightGear simulator combined with GoogleEarth design a small UAV flight visual simulation platform. Using software AC3D to build 3D models of aircraft and complete the model loading based on XML configuration, the design and simulation of visualization modeling visual platform is presented. By using model-driven and data transforming in FlightGear , the design of data transmission module is realized based on Visual Studio 2010 development platform. Finally combined with GoogleEarth it can achieve the tracking and display.

  18. Simulation at Dryden Flight Research Facility from 1957 to 1982

    NASA Technical Reports Server (NTRS)

    Smith, John P.; Schilling, Lawrence J.; Wagner, Charles A.

    1989-01-01

    The Dryden Flight Research Facility has been a leader in developing simulation as an integral part of flight test research. The history of that effort is reviewed, starting in 1957 and continuing to the present time. The contributions of the major program activities conducted at Dryden during this 25-year period to the development of a simulation philosophy and capability is explained.

  19. Transport delays associated with NASA Langley Flight Simulation Facility

    NASA Technical Reports Server (NTRS)

    Smith, R. Marshall; Chung, Victoria I.; Martinez, Debbie

    1995-01-01

    This paper describes the transport delays associated with flight simulation programs currently operating at the NASA Langley Research Center (LaRC). Formulas are presented for calculating a rough estimate of the transport delay for a particular simulation. Various simulation programs that used the Flight Simulation Facility at LaRC, during the period of October 1993 to March 1994, were tested to determine the transport delays associated with the simulation program and any associated hardware. Several simulators were tested, including the Differential Maneuvering Simulator (DMS), the Visual Motion Simulator (VMS), and the Transport System Research Vehicle (TSRV).

  20. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  1. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  2. Weapon system simulation in flight (WaSiF)

    NASA Astrophysics Data System (ADS)

    Bartoldus, Klaus H.

    2005-05-01

    The research and technology demonstration program was co-funded by the Ministries of Defence of five European countries under the framework of the "EUropean Cooperation for the Long term in Defence" (EUCLID) MoU to include Germany, Italy, The Netherlands, Portugal and Turkey with considerable financial contribution from the industrial entities. EADS Military Aircraft Munich has led a team of seven industries and research centers, including Aermacchi of Italy, DutchSpace and NLR of The Netherlands, OGMA and INETI of Portugal and Marmara Research Center of Turkey. The purpose of the project was the design, realization and demonstration of an embedded real time simulation system allowing the combat training of operational aircrew in a virtual air defence scenario and threat environment against computer generated forces in the air and on the ground while flying on a real aircraft. The simulated scenario is focused on air-to-air beyond visual range engagements of fighter aircraft. WaSiF represents one of the first demonstrations of an advanced embedded real time training system onboard a fighter/training aircraft. The system is integrated onboard the MB339CX aircraft. The overall flight test activity covered a wide variety of test conditions for a total of 21 test flights; the operational airborne time of the WaSiF amounted to nearly 18 hours. The demonstration and evaluation were quite positive; the five-nation aircrew was very fond of their first encounter with the virtual world in the military flight training. A common view and approach towards Network Centric Warfare is but emerging. WaSiF in a future networked configuration holds lots of promise to serve the needs of Integrated Air Defence: Common training in a virtual environment.

  3. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  4. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  5. Improving Aviation Safety with information Visualization: A Flight Simulation Study

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Hearst, Marti

    2005-01-01

    Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.

  6. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Qualifications: Flight instructors (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS...

  7. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Approval of flight simulators and flight training devices. 125.297 Section 125.297 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND...

  8. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Qualifications: Flight instructors (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS...

  9. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Qualifications: Flight instructors (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.338 Qualifications:...

  10. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight simulators, flight training devices, and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements §...

  11. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight simulators, flight training devices, and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements §...

  12. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight simulators, flight training devices, and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements §...

  13. Astronaut Virgil Grissom during pre-flight checks prior to flight simulation

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Virgil I. Grissom, command pilot for the Gemini-Titan 3 flight, reclines on a couch in the Pad 16 ready room during preflight checks prior to going to Pad 19 for flight simulations in the Gemini 3 spacecraft. Joe Schmitt, suit technician from the Manned Spacecraft Center's Crew Systems Division, stands by to assist Grissom.

  14. The Utilization of Flight Simulation for Research and Development

    NASA Technical Reports Server (NTRS)

    Totah, Joseph J.; Snyder, C. Thomas (Technical Monitor)

    1994-01-01

    The objective of this paper is to review the conventional uses of flight simulation at NASA Ames Research Center for research and development, and to also consider the many new areas that have embraced flight simulation as an effective and economic research tool. Flight simulators have always been a very useful and economic research tool. Component technologies have evolved considerably to meet demands imposed by the aerospace community. In fact, the utilization of flight simulators for research and development has become so widely accepted that non-traditional uses have evolved. Whereas flight dynamics and control, guidance and navigation, vehicle design, mission assessment, and training have been, and perhaps always will be, the most popular research areas associated with simulation, many new areas under the broad categories of human factors and information science have realized significant benefits from the use of flight simulators for research and development. This paper will survey the simulation facilities at NASA Ames Research Center, and discuss selected topics associated with research programs, simulation experiments, and related technology development activities for the purpose of highlighting the expanding role of simulation in aerospace research and development. The information in this paper will in no way provide foreign companies with a competitive advantage over U. S. industry.

  15. High-speed civil transport - Advanced flight deck challenges

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    This paper presents the results of a nine month study of the HSCT flight deck challenges and assessment of its benefits. Operational requirements are discussed and the most significant findings for specified advanced concepts are highlighted. These concepts are a no nose-droop configuration, a far forward cockpit location and advanced crew monitoring and control of complex systems. Results indicate that the no nose-droop configuration is critically dependent on the design and development of a safe, reliable and certifiable synthetic vision system (SVS). This configuration would cause significant weight, performance and cost penalties. A far forward cockpit configuration with a tandem seating arrangement allows either an increase in additional payload or potential downsizing of the vehicle leading to increased performance efficiency and reductions in emissions. The technologies enabling such capabilities, which provide for Category III all-weather opreations on every flight represent a benefit multiplier in a 20005 ATM network in terms of enhanced economic viability and environmental acceptability.

  16. A formal structure for advanced automatic flight-control systems

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L. S.

    1975-01-01

    Techniques were developed for the unified design of multimode, variable authority automatic flight-control systems for powered-lift STOL and VTOL aircraft. A structure for such systems is developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with advanced air traffic control, and to admit a variety of active control tasks. The aircraft being considered is the augmentor wing jet STOL research aircraft.

  17. Secondary metabolism in simulated microgravity and space flight.

    PubMed

    Gao, Hong; Liu, Zhiheng; Zhang, Lixin

    2011-11-01

    Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both significant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism. PMID:22180084

  18. A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms

    NASA Technical Reports Server (NTRS)

    Mason, M. G.

    1975-01-01

    A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

  19. [Review of visual display system in flight simulator].

    PubMed

    Xie, Guang-hui; Wei, Shao-ning

    2003-06-01

    Visual display system is the key part and plays a very important role in flight simulators and flight training devices. The developing history of visual display system is recalled and the principle and characters of some visual display systems including collimated display systems and back-projected collimated display systems are described. The future directions of visual display systems are analyzed. PMID:12934618

  20. Development and application of an atmospheric turbulence model for use in flight simulators in flight simulators

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Joshi, D. S.

    1976-01-01

    The influence of simulated turbulence on aircraft handling qualities was investigated. Pilot opinion of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which appear to be more similar to real turbulence than the frequently-used Gaussian turbulence model. In addition, the proposed turbulence models can flexibly accommodate changes in atmospheric conditions and be easily implemented in flight simulator studies. Six turbulence time histories, including the conventional Gaussian model, were used in an IFR-tracking task. The realism of each of the turbulence models and the handling qualities of the simulated airplane were evaluated. Analysis of pilot opinions shows that at approximately the same rms intensities of turbulence, the handling quality ratings transit from the satisfactory level, for the simple Gaussian model, to an unacceptable level for more realistic and compositely structured turbulence models.

  1. Spatial orientation and dynamics in virtual reality systems - Lessons from flight simulation

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Sharkey, Thomas J.

    1991-01-01

    Artificial representations of virtual worlds are becoming more common due to advances in the technology of image generation and display systems. Application areas include flight simulation, mission rehearsal, teleoperator systems, and virtual reality systems. System developers should be forewarned that some proportion of users will experience perceptual anomalies and symptoms of motion sickness as a result of travel through virtual space.

  2. Results of a Flight Simulation Software Methods Survey

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.

  3. A psychophysiological assessment of operator workload during simulated flight missions

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf

    1987-01-01

    The applicability of the dual-task event-related (brain) potential (ERP) paradigm to the assessment of an operator's mental workload and residual capacity in a complex situation of a flight mission was demonstrated using ERP measurements and subjective workload ratings of student pilots flying a fixed-based single-engine simulator. Data were collected during two separate 45-min flights differing in difficulty; flight demands were examined by dividing each flight into four segments: takeoff, straight and level flight, holding patterns, and landings. The P300 ERP component in particular was found to discriminate among the levels of task difficulty in a systematic manner, decreasing in amplitude with an increase in task demands. The P300 amplitude is shown to be negatively correlated with deviations from command headings across the four flight segments.

  4. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  5. The Effects of Advanced 'Glass Cockpit' Displayed Flight Instrumentation on In-flight Pilot Decision Making

    NASA Astrophysics Data System (ADS)

    Steigerwald, John

    The Cognitive Continuum Theory (CCT) was first proposed 25 years ago to explain the relationship between intuition and analytical decision making processes. In order for aircraft pilots to make these analytical and intuitive decisions, they obtain information from various instruments within the cockpit of the aircraft. Advanced instrumentation is used to provide a broad array of information about the aircraft condition and flight situation to aid the flight crew in making effective decisions. The problem addressed is that advanced instrumentation has not improved the pilot decision making in modern aircraft. Because making a decision is dependent upon the information available, this experimental quantitative study sought to determine how well pilots organize and interpret information obtained from various cockpit instrumentation displays when under time pressure. The population for this study was the students, flight instructors, and aviation faculty at the Middle Georgia State College School of Aviation campus in Eastman, Georgia. The sample was comprised of two groups of 90 individuals (45 in each group) in various stages of pilot licensure from student pilot to airline transport pilot (ATP). The ages ranged from 18 to 55 years old. There was a statistically significant relationship at the p < .05 level in the ability of the participants to organize and interpret information between the advanced glass cockpit instrumentation and the traditional cockpit instrumentation. It is recommended that the industry explore technological solutions toward creating cockpit instrumentation that could match the type of information display to the type of decision making scenario in order to aid pilots in making decisions that will result in better organization of information. Understanding the relationship between the intuitive and analytical decisions that pilots make and the information source they use to make those decisions will aid engineers in the design of instrumentation

  6. Simulation Model Development for Icing Effects Flight Training

    NASA Technical Reports Server (NTRS)

    Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.

    2003-01-01

    A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.

  7. Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce

    1990-01-01

    An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.

  8. Advanced simulation of digital filters

    NASA Astrophysics Data System (ADS)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  9. Voice measures of workload in the advanced flight deck

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray; Odonnell, Richard

    1989-01-01

    Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.

  10. Air resonance of an advanced bearingless rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Jang, Jinseok; Chopra, Inderjit

    1988-01-01

    The air resonance of an advanced bearingless rotor in forward flight is investigated using a finite element formulation in space and time. The flexbeam, the torque tube, and the outboard blade are modeled as individual elastic beams, and the formulation includes five rigid body degrees of motion. It is shown that a large increase in stability is achieved by increased negative pitch-lag coupling arising from the vertical offset of the cuff restraint pin. It is also shown that body inertia has a significant effect on stability.

  11. In-flight performance of the Japanese Advanced Meteorological Imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffrey J.; Osgood, Roderic; Auchter, Joseph; Hurt, W. Todd; Hitomi, Miyamoto; Sasaki, Masayuki; Tahara, Yoshihiko; Tadros, Alfred; Faller, Ken; Mclaren, Mark; Sheffield, Jonathan; Gaiser, John; Kamel, Ahmed; Gunshor, Mathew

    2006-08-01

    The Japanese Advanced Meteorological Imager (JAMI) was developed by Raytheon and delivered to Space Systems/Loral as the Imager Subsystem for Japan's MTSAT-1R satellite. MTSAT-1R was launched from the Tanegashima Space Center on 2005 February 26 and became formally operational on 2005 June 28. This paper compares in-flight performance of JAMI with predictions made before launch. The performance areas discussed include radiometric sensitivity (NEDT and SNR) versus spectral channel, calibration accuracy versus spectral channel derived from comparisons of JAMI and AIRS measurements and image navigation and registration.

  12. Computers for real time flight simulation: A market survey

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.; Karplus, W. J.

    1977-01-01

    An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them.

  13. Simulations on time-of-flight ERDA spectrometer performance.

    PubMed

    Julin, Jaakko; Arstila, Kai; Sajavaara, Timo

    2016-08-01

    The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight-energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight-energy histograms. Corresponding measurements were made and simulated results are compared with data collected using the digitizing setup. PMID:27587115

  14. Advanced photovoltaic experiment, S0014: Preliminary flight results and post-flight findings

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1992-01-01

    The Advanced Photovoltaic Experiment is a Long Duration Exposure Facility (LDEF) experiment originally designed to provide reference solar cell standards for laboratory measurements as well as to investigate the solar spectrum and the effects of long term exposure of space solar cells to the low earth orbit (LEO) environment. The experiment functioned on-orbit as designed, successfully measuring and recording cell performance and solar insolation data over the first 325 days. The objectives and design of the experiment are presented as well as the preliminary flight results and postflight findings.

  15. Flight Hour Reductions in Fleet Replacement Pilot Training through Simulation.

    ERIC Educational Resources Information Center

    Smode, Alfred F.

    A project was undertaken to integrate the 2F87F operational flight trainer into the program for training replacement patrol plane pilots. The objectives were to determine the potential of the simulator as a substitute environment for learning aircraft tasks and to effectively utilize the simulator in pilot training. The students involved in the…

  16. MADYMO crash victim simulations: A flight safety application

    NASA Astrophysics Data System (ADS)

    Wismans, J.; Griffioen, J. A.

    1988-12-01

    MADYMO is a computer program for two- or three-dimensional simulation of human body gross motions. The program was designed particularly for crash analyses. In the past years the program was applied and validated extensively for vehicle safety research. An application is described in the field of flight safety: the simulation of a space shuttle crew escape system.

  17. Development of a Free-Flight Simulation Infrastructure

    NASA Technical Reports Server (NTRS)

    Miles, Eric S.; Wing, David J.; Davis, Paul C.

    1999-01-01

    In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.

  18. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... military department or defense agency acquiring a military flight simulator, the contracting officer shall... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition...

  19. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  20. Advances in atomic oxygen simulation

    NASA Technical Reports Server (NTRS)

    Froechtenigt, Joseph F.; Bareiss, Lyle E.

    1990-01-01

    Atomic oxygen (AO) present in the atmosphere at orbital altitudes of 200 to 700 km has been shown to degrade various exposed materials on Shuttle flights. The relative velocity of the AO with the spacecraft, together with the AO density, combine to yield an environment consisting of a 5 eV beam energy with a flux of 10(exp 14) to 10(exp 15) oxygen atoms/sq cm/s. An AO ion beam apparatus that produces flux levels and energy similar to that encountered by spacecraft in low Earth orbit (LEO) has been in existence since 1987. Test data was obtained from the interaction of the AO ion beam with materials used in space applications (carbon, silver, kapton) and with several special coatings of interest deposited on various surfaces. The ultimate design goal of the AO beam simulation device is to produce neutral AO at sufficient flux levels to replicate on-orbit conditions. A newly acquired mass spectrometer with energy discrimination has allowed 5 eV neutral oxygen atoms to be separated and detected from the background of thermal oxygen atoms of approx 0.2 eV. Neutralization of the AO ion beam at 5 eV was shown at the Martin Marietta AO facility.

  1. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  2. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  3. Survey of missile simulation and flight mechanics facilities in NATO

    NASA Astrophysics Data System (ADS)

    Holmes, W. M.

    1983-05-01

    This report presents the results of a Flight Mechanics Panel (FMP) sponsored survey of twenty-four (24) simulation and flight mechanics facilities in six NATO community nations: France, the Federal Republic of Germany, Italy, the Netherlands, the United Kingdom and the United States. The survey included government and contractor facilities and was obtained by a combination of a questionnaire mailed to each facility and a follow-up on-site visit and interview with facility managers and operational personnel.

  4. A methodology for the assessment of manned flight simulator fidelity

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Malsbury, Terry N.

    1989-01-01

    A relatively simple analytical methodology for assessing the fidelity of manned flight simulators for specific vehicles and tasks is offered. The methodology is based upon an application of a structural model of the human pilot, including motion cue effects. In particular, predicted pilot/vehicle dynamic characteristics are obtained with and without simulator limitations. A procedure for selecting model parameters can be implemented, given a probable pilot control strategy. In analyzing a pair of piloting tasks for which flight and simulation data are available, the methodology correctly predicted the existence of simulator fidelity problems. The methodology permitted the analytical evaluation of a change in simulator characteristics and indicated that a major source of the fidelity problems was a visual time delay in the simulation.

  5. Data Comm Flight Deck Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Martin, Lynne Hazel; Sharma, Shivanjli; Kaneshige, John T.; Dulchinos, Victoria

    2012-01-01

    This presentation discusses an upcoming simulation for data comm in the terminal area. The purpose of the presentation is to provide the REDAC committee with a summary of some of the work in Data Comm that is being sponsored by the FAA. The focus of the simulation is upon flight crew human performance variables, such as crew procedures, timing and errors. The simulation is scheduled to be conducted in Sept 2012.

  6. Flight Simulator Visual-Display Delay Compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis

    1981-01-01

    A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.

  7. Atmospheric turbulence simulation techniques with application to flight analysis

    NASA Technical Reports Server (NTRS)

    Wang, S. T.; Frost, W.

    1980-01-01

    Statistical modeling of atmospheric turbulence is discussed. The statistical properties of atmospheric turbulence, in particular the probability distribution, the spectra, and the coherence are reviewed. Different atmospheric turbulence simulation models are investigated, and appropriate statistical analyses are carried out to verify their validity. The models for simulation are incorporated into a computer model of aircraft flight dynamics. Statistical results of computer simulated landings for an aircraft having characteristics of a DC-8 are reported for the different turbulence simulation techniques. The significance of various degrees of sophistication in the turbulence simulation techniques on the landing performance of the aircraft is discussed.

  8. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    NASA Technical Reports Server (NTRS)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  9. Development of a Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.

    1996-01-01

    Today's moderm flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format . Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper traces the design, development and implementation of the SimGraph program, and is intended to be a programmer's reference guide.

  10. Pilot/Vehicle display development from simulation to flight

    NASA Technical Reports Server (NTRS)

    Dare, Alan R.; Burley, James R., II

    1992-01-01

    The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.

  11. Aeroelastic-Acoustics Simulation of Flight Systems

    NASA Technical Reports Server (NTRS)

    Gupta, kajal K.; Choi, S.; Ibrahim, A.

    2009-01-01

    This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.

  12. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this section, if an airplane is not used during the practical test for a type rating for a turbo... in a Level C or higher flight simulator and the applicant must— (1) Hold a type rating in a turbo... two different turbo-propeller airplanes of the same class of airplane for which the type rating...

  13. Economical graphics display system for flight simulation avionics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.

  14. Predicting Fruit Fly's Sensing Rate From Insect Flight Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Jane; Chang, Song

    2013-11-01

    Without sensory feedbacks, flies cannot fly. Exactly how sensory feedback controls work in flying insects is a complex puzzle to solve. What do insects measure in order to stabilize their flight? What kinds of neural computations and muscle activities are involved in order to correct their flight course or to turn? How often and how fast do animals adjust their wings to remain stable? To understand the algorithms used by insects to control their dynamic instability, we have developed a simulation tool to study flapping flight, where motions of the insect body and wings are coupled instantaneously. To stabilize the flight in the simulation, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds both on the sensing rate and the delay time between sensing and actuation. Interpreting these findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we give a sharper bound on the sensing rate and further reason that fruit flies sense their kinematic states every wing-beat in order to stabilize their flight.

  15. Simulation Method for Wind Tunnel Based Virtual Flight Testing

    NASA Astrophysics Data System (ADS)

    Li, Hao; Zhao, Zhong-Liang; Fan, Zhao-Lin

    The Wind Tunnel Based Virtual Flight Testing (WTBVFT) could replicate the actual free flight and explore the aerodynamics/flight dynamics nonlinear coupling mechanism during the maneuver in the wind tunnel. The basic WTBVFT concept is to mount the test model on a specialized support system which allows for the model freely rotational motion, and the aerodynamic loading and motion parameters are measured simultaneously during the model motion. The simulations of the 3-DOF pitching motion of a typical missile in the vertical plane are performed with the openloop and closed-loop control methods. The objective is to analyze the effect of the main differences between the WTBVFT and the actual free flight, and study the simulation method for the WTBVFT. Preliminary simulation analyses have been conducted with positive results. These results indicate that the WTBVFT that uses closed-loop autopilot control method with the pitch angular rate feedback signal is able to replicate the actual free flight behavior within acceptable differences.

  16. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  17. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  18. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David

    2009-01-01

    NASA Dryden started working towards a single vehicle enhanced flight termination system (EFTS) in January 2008. NASA and AFFTC combined their efforts to work towards final operating capability for multiple vehicle and multiple missions simultaneously, to be completed by the end of 2011. Initially, the system was developed to support one vehicle and one frequency per mission for unmanned aerial vehicles (UAVs) at NASA Dryden. By May 2008 95% of design and hardware builds were completed, however, NASA Dryden's change of software safety scope and requirements caused delays after May 2008. This presentation reviews the initial and final operating capabilities for the Advanced Command Destruct System (ACDS), including command controller and configuration software development. A requirements summary is also provided.

  19. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  20. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  1. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  2. Investigation of the flight mechanics simulation of a hovering helicopter

    NASA Technical Reports Server (NTRS)

    Chaimovich, M.; Rosen, A.; Rand, O.; Mansur, M. H.; Tischler, M. B.

    1992-01-01

    The flight mechanics simulation of a hovering helicopter is investigated by comparing the results of two different numerical models with flight test data for a hovering AH-64 Apache. The two models are the U.S. Army BEMAP and the Technion model. These nonlinear models are linearized by applying a numerical linearization procedure. The results of the linear models are compared with identification results in terms of eigenvalues, stability and control derivatives, and frequency responses. Detailed time histories of the responses of the complete nonlinear models, as a result of various pilots' inputs, are compared with flight test results. In addition the sensitivity of the models to various effects are also investigated. The results are discussed and problematic aspects of the simulation are identified.

  3. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  4. Vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  5. 19. Interior view showing flight simulator partition and rear overhead ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Interior view showing flight simulator partition and rear overhead door, dock no. 493. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  6. Computers with Wings: Flight Simulation and Personalized Landscapes

    ERIC Educational Resources Information Center

    Oss, Stefano

    2005-01-01

    We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of…

  7. Computers With Wings: Flight Simulation and Personalized Landscapes

    NASA Astrophysics Data System (ADS)

    Oss, Stefano

    2005-03-01

    We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of various nature, from history to geography, computer science, and much more.

  8. Helmet-Mounted Visual Display For Flight Simulation

    NASA Technical Reports Server (NTRS)

    Cook, Anthony M.

    1990-01-01

    Helmet-mounted visual display system provides pilot with broad range of visual information for flight simulation. Offers nearly unlimited field of regard. Optical fibers transmit wide-angle images in response to motions of head. Two "pancake" lenses mounted on lightweight helmet. Cable of optical fibers carries images to each lens. "Light-valve" projectors deliver computer-generated binocular images to cables.

  9. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  10. User's Guide for Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.

    1996-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format. Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. This document is intended as an end user's guide.

  11. A program for assessing pilot mental state in flight simulators

    NASA Technical Reports Server (NTRS)

    Pope, A. T.; Bowles, R. L.

    1982-01-01

    A program to apply proposed measures of pilot mental state in the simulator flight deck environment has been undertaken at NASA Langley Research Center. Literature survey identified a promising subset of methods for assessing workload, attention and vigilance, and task-related stress, and revealed a need for improved analytical techniques in the physiological area. An effort to apply functional modelling techniques has been initiated. A psychophysiological laboratory has been designed for simulator application. The program is designed to develop improved techniques for evaluating simulator cue fidelity and for imposing realistic workload and attentional demands on the simulator pilot.

  12. Effects of alcohol on pilot performance in simulated flight

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Demosthenes, T.; White, T. R.; O'Hara, D. B.

    1991-01-01

    Ethyl alcohol's known ability to produce reliable decrements in pilot performance was used in a study designed to evaluate objective methods for assessing pilot performance. Four air carrier pilot volunteers were studied during eight simulated flights in a B727 simulator. Total errors increased linearly and significantly with increasing blood alcohol. Planning and performance errors, procedural errors and failures of vigilance each increased significantly in one or more pilots and in the group as a whole.

  13. A flight investigation of simulated data link communications during single-pilot IFR flight

    NASA Astrophysics Data System (ADS)

    Parker, J. F.; Duffy, J. W.; Christensen, D. G.

    1983-10-01

    A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty.

  14. Predicting fruit fly's sensing rate with insect flight simulations.

    PubMed

    Chang, Song; Wang, Z Jane

    2014-08-01

    Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. PMID:25049376

  15. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  16. Wind Tunnel to Flight: Numerical Simulations of Hypersonic Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Iaccarino, Gianluca

    2009-11-01

    Uncertainties in the flight conditions and limitations of ground based facilities create inherent difficulties in assessing the performance of hypersonic propulsion systems. We use numerical simulations to investigate the correlation of wind-tunnel measurements (Steelant et al., 2006) and flight data (Hass et al., 2005) for the HyShot vehicle; the objective is to identify potential engine unstart events occurring under different combustion regimes. As a first step we perform simulations corresponding to both reacting and non-reacting conditions in the ground-based facility to validate the numerical tools. Next, we focus on reproducing the flight conditions; a fundamental difficulty is the lack of precise information about the vehicle trajectory. A Bayesian inversion strategy is used to infer the altitude, angle of attack and Mach number from the noisy pressure measurements collected during the flight. The estimated conditions, together with the scatter due to the measurement uncertainty, are then used to study the flow and thermal fields in the combustor. The details of the methods used to characterize the uncertainty in the flow simulations and to perform the Bayesian inversion will also be discussed.

  17. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... simulator. However, the Secretary of Defense may waive this prohibition with respect to a contract, if...

  18. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  19. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David K.

    2011-01-01

    This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.

  20. Study of Flapping Flight Using Discrete Vortex Method Based Simulations

    NASA Astrophysics Data System (ADS)

    Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.

    2013-12-01

    In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.

  1. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  2. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    NASA Technical Reports Server (NTRS)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements

  3. Simulated high speed flight effects on supersonic jet noise

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Brown, Martha C.

    1993-01-01

    A free jet is utilized to investigate the changes in the noise received from supersonic jets in high speed subsonic flight. Flight Mach numbers to 0.9 are simulated for supersonic jets with fully expanded Mach numbers between 1 and 2. Plume pressure measurements show only minor changes in the shock structure of off-design jets up to a Mach number of 0.6. Correspondingly, far-field noise measurements indicate little change to the broadband shock noise emitted at right angles to the jet. However, measurements within the free jet show that convection effects on the noise are substantial, and that the point source convective amplification that is proportional to the fourth power of the Doppler factor may apply for broadband shock noise in flight. Measurements of jet mixing noise for an on-design supersonic jet show that the current predictions of mixing noise in flight can be extended to flight Mach numbers of at least 0.5.

  4. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs

    PubMed Central

    Liu, Shiqiu; Smith, Adam S.; Gu, Yuting; Tan, Jie; Liu, C. Karen; Turk, Greg

    2015-01-01

    Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability. PMID:26683221

  5. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs.

    PubMed

    Liu, Shiqiu; Smith, Adam S; Gu, Yuting; Tan, Jie; Liu, C Karen; Turk, Greg

    2015-12-01

    Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability. PMID:26683221

  6. [Evaluation of +Gz tolerance following simulation of 8-hr flight].

    PubMed

    Khomenko, M N; Bukhtiiarov, I V; Malashchuk, L S

    2005-01-01

    Tolerance of +Gz (head-pelvis) centrifugation of pilots was evaluated following simulation of a long flight on single-seat fighter. The experiment involved 5 test-subjects who were exposed to +Gz before and after simulated 8-hr flight with a growth gradient of 0.1 u/s without anti-g suits and muscles relaxed; in addition, limiting tolerance of intricate profile +Gz loads of 2.0 to 9.0 units with a growth gradient of 1.0 u/s of test-subjects in anti-g suits (AGS) with a change-over pressure valve in the peak mode using muscle straining and breathing maneuvers. To counteract the negative effects of extended flight, various seat configurations: with a back inclination at 30 degrees to the +Gz vector and changeable geometry with a back inclination at 55 degrees to the vector. The other counter-measures applied were cool air shower, suit ventilation, physical exercises, lower body massage with AGS, electrostimulation of the back and lumber region, profiling of the supporting and soft parts of the seat, and 30-s exposure to +5 Gz. Hemodynamic and respiration parameters as well as body temperature were measured in the course of 8 hrs of flight and during and shortly after centrifugation. According to the results of the investigation, seat inclination at 55 degrees to the +Gz vector and tested system of countermeasures prevent degradation of tolerance of large (9 u.) loads following 8-hr flight simulation with the use of the modern anti-g gear, PMID:16353624

  7. Age and Expertise Effects in Aviation Decision Making and Flight Control in a Flight Simulator

    PubMed Central

    Kennedy, Quinn; Taylor, Joy L.; Reade, Gordon; Yesavage, Jerome A.

    2010-01-01

    Introduction Age (due to declines in cognitive abilities necessary for navigation) and level of aviation expertise are two factors that may affect aviation performance and decision making under adverse weather conditions. We examined the roles of age, expertise, and their relationship on aviation decision making and flight control performance during a flight simulator task. Methods Seventy-two IFR-rated general aviators, aged 19–79 yr, made multiple approach, holding pattern entry, and landing decisions while navigating under Instrument Flight Rules weather conditions. Over three trials in which the fog level varied, subjects decided whether or not to land the aircraft. They also completed two holding pattern entries. Subjects’ flight control during approaches and holding patterns was measured. Results Older pilots (41+ yr) were more likely than younger pilots to land when visibility was inadequate (older pilots’ mean false alarm rate: 0.44 vs 0.25). They also showed less precise flight control for components of the approach, performing 0.16 SD below mean approach scores. Expertise attenuated an age-related decline in flight control during holding patterns: older IFR/CFI performed 0.73 SD below mean score; younger IFR/CFI, younger CFII/ATP, older CFII/ATP: 0.32, 0.26, 0.03 SD above mean score. Additionally, pilots with faster processing speed (by median split) had a higher mean landing decision false alarm rate (0.42 vs 0.28), yet performed 0.14 SD above the mean approach control score. Conclusions Results have implications regarding specialized training for older pilots and for understanding processes involved in older adults’ real world decision making and performance. PMID:20464816

  8. E-2D Advanced Hawkeye: primary flight display

    NASA Astrophysics Data System (ADS)

    Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy

    2006-05-01

    This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.

  9. Real-time generation of reality scene in flight simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Zhang, Linlin

    2004-03-01

    Reality scene is one of the most basic and important technologies in visual system of flight simulators. It includes real terrain, terrain object and physiognomy. Nowadays, it is usually constructed with digital elevation model (DEM) and remote sensing satellite data. In spite of the fast development of computer hardware, it is very difficult to generate large area reality scenes in real-time. Therefore, model simplification, multi-resolution rendering and level of detail (LOD) become the hotspot of recent research. Multi-resolution rendering is the development and extension of the LOD, model simplification is the key in generating a lower resolution model from a complex higher one. Based on the manufacturing practice of some flight simulators, this paper discusses ways of reality scenes' generating and simplification, and dynamic data partition and schedule based on viewpoint.

  10. Flight Simulator Evaluation of Synthetic Vision Display Concepts to Prevent Controlled Flight Into Terrain (CFIT)

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.

    2004-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.

  11. Spacelab flight simulated by two monkeys at CERMA

    NASA Technical Reports Server (NTRS)

    Langereux, P.

    1980-01-01

    A semiautomatic module for two monkeys was designed. The module shelters two Rhesus monkeys seated side by side in a compartment, reducing the emotional stresses caused by isolation. Food pellets, water, and air are supplied and body wastes are automatically removed. Physiological and environmental parameters are continually monitored, making possible the performance of experiments concerning the pathophysiological mechanisms of the disorders of weightlessness. A ten day flight of the module in Spacelab was simulated.

  12. Aeronautical facilities catalogue. Volume 2: Airbreathing propulsion and flight simulators

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E.; Freda, M. S.

    1985-01-01

    Volume two of the facilities catalogue deals with Airbreathing Propulsion and Flight Simulation Facilities. Data pertinent to managers and engineers are presented. Each facility is described on a data sheet that shows the facility's technical parameters on a chart and more detailed information in narratives. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  13. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  14. A flight simulator control system using electric torque motors

    NASA Technical Reports Server (NTRS)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  15. Design tradeoffs in the development of the advanced multispectral simulation test acceptance resource (AMSTAR) HWIL facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Almendinger, Frank J.

    2007-04-01

    The Army's Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of missile Hardware-In-the-Loop (HWIL) simulation / test capabilities designed to support testing from concept through production. This paper presents the design tradeoffs that were conducted in the development of the AMSTAR sensor stimulators and the flight motion simulators. The AMSTAR facility design includes systems to stimulate each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) sensors. The flight motion simulator (FMS) performance was key to the success of the simulation but required many concessions to accommodate the design considerations for the tri-mode stimulation systems.

  16. Flight Controllability Limits and Related Human Transfer Functions as Determined from Simulator and Flight Tests

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Day, Richard E.

    1961-01-01

    A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.

  17. DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL

    EPA Science Inventory

    The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...

  18. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation...

  19. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation...

  20. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation...

  1. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation...

  2. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation...

  3. Aviation instruction through flight simulation and related learning

    NASA Astrophysics Data System (ADS)

    Green, Mavis Frankel

    The use of simulation in General Aviation flight training is an emergent practice and promises to increase substantially. Training through simulation is not addressed in the primary publication used to train flight instructors, however. In effect, training devices have been added into the curriculum by those using the technology as a cross between flight and ground instruction. The significance of how one learns in a training device is the potential effect on both in-flight learning and normal practices. A review of the literature, document review, interviews with flight instructors and students, and observations of instructional sessions in training devices, provided data to answer the prime research question: (a) What type(s) of learning best explain how learners are socialized to aviation through the use of simulation technology? One segment of the general aviation population, college and university flight programs, was sampled. Four types of learning provided a conceptual framework: reception; autonomous; guided inquiry; and social cognitive operationalized as cognitive apprenticeship. A central dilemma was identified from the data collected. This dilemma is the extent to which aviation and aviation instruction in training devices is perceived by instructors as being either safe or risky. Two sub-dilemmas of the central dilemma are also identified: (1) whether the perception of aviation on the part of instructors is one of control or autonomy and (2) whether aviators use and should be taught routines or innovation;. Three ways of viewing the aviation environment were identified from the combination of these sub-dilemmas by instructors: (1) aviation as safe; (2) aviation as somewhat safe; and (3) aviation as risky. Resolution of the fundamental dilemma results in an emergent view of aviation as risky and the implications of this view are discussed. Social cognitive learning operationalized as cognitive apprenticeship as an appropriate type of learning for high

  4. Correlating Computed and Flight Instructor Assessments of Straight-In Landing Approaches by Novice Pilots on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Khan, M. Javed; Rossi, Marcia; Ali, Syed Firasat

    2005-01-01

    The rising cost of flight training and the low cost of powerful computers have resulted in increasing use of PC-based flight simulators. This has prompted FAA standards regulating such use and allowing aspects of training on simulators meeting these standards to be substituted for flight time. However, the FAA regulations require an authorized flight instructor as part of the training environment. Thus, while costs associated with flight time have been reduced, the cost associated with the need for a flight instructor still remains. The obvious area of research, therefore, has been to develop intelligent simulators. However, the two main challenges of such attempts have been training strategies and assessment. The research reported in this paper was conducted to evaluate various performance metrics of a straight-in landing approach by 33 novice pilots flying a light single engine aircraft simulation. These metrics were compared to assessments of these flights by two flight instructors to establish a correlation between the two techniques in an attempt to determine a composite performance metric for this flight maneuver.

  5. Pattern Recognition for a Flight Dynamics Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; Hurtado, John E.

    2011-01-01

    The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.

  6. Flight Simulation of ARES in the Mars Environment

    NASA Technical Reports Server (NTRS)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  7. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  8. An advanced dispatch simulator with advanced dispatch algorithm

    SciTech Connect

    Kafka, R.J. ); Fink, L.H. ); Balu, N.J. ); Crim, H.G. )

    1989-01-01

    This paper reports on an interactive automatic generation control (AGC) simulator. Improved and timely information regarding fossil fired plant performance is potentially useful in the economic dispatch of system generating units. Commonly used economic dispatch algorithms are not able to take full advantage of this information. The dispatch simulator was developed to test and compare economic dispatch algorithms which might be able to show improvement over standard economic dispatch algorithms if accurate unit information were available. This dispatch simulator offers substantial improvements over previously available simulators. In addition, it contains an advanced dispatch algorithm which shows control and performance advantages over traditional dispatch algorithms for both plants and electric systems.

  9. Comparison of Fluka-2006 Monte Carlo Simulation and Flight Data for the ATIC Detector

    NASA Technical Reports Server (NTRS)

    Gunasingha, R.M.; Fazely, A.R.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G.L.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T.G.; Isbert, J.; Kim, K.C.; Kouznetsov, E.N.; Panasyuk, M.I.; Panov, A.D.; Schmidt, W.K.H.; Seo, E.S.; Sokolskaya, N.V.; Watts, John W.; Wefel, J.P.; Wu, J.C.; Zatsepin, V.I.

    2007-01-01

    We have performed a detailed Monte Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2006 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate(BGO) calorimeter. It is equipped with a large mosaic of.silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of x-y scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2006 MC calculations with GEANT calculations and with the ATIC CERN data and ATIC flight data.

  10. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  11. Iron Cross Reaction Control Flight Simulator - test in hangar

    NASA Technical Reports Server (NTRS)

    1956-01-01

    In the mid-1950s -- after the X-1 had exceeded the speed of sound, the D-558-II had doubled that speed, and the X-2 had flown to a speed of Mach 3.2 (3.2 times the speed of sound) -- the problem of maintaining control of a vehicle at the low dynamic pressures found at high altitudes became real. As the development of larger rocket engines than those used in the X-1, X-2, and D-558-II became a virtual certainty, travel to near-orbital and orbital velocities lay on the horizon. It became natural to investigate alternative means to control an aircraft for low dynamic pressures where aerodynamic controls would be inadequate (even absent for orbital flight outside the atmosphere). Consequently, the High-Speed Flight Station (HSFS--predecessor of the NASA Dryden Flight Research Center) began pioneering work on simulating and then flying with reaction controls in the last years of the National Advisory Committee for Aeronautics (NACA) and the first years of its successor, the National Aeronautics and Space Administration (NASA). The HSFS began a two-phase study. One phase involved a fixed-base effort with an analog computer to solve the equations of motion needed for simulation; the other used a mechanical simulator in which the 'pilot' actually experienced the motions produced by the reaction-control jets. The 'pilot' operated the simulator through a single control stick that -- unusually for the time -- controlled three axes with one device. The stick controlled pitch by fore and aft movements, roll by lateral movements, and yaw through thumb movements. The simulator, shown in the video clip, was known as the 'Iron Cross.' It simulated the X-1B, which was equipped with reaction controls. Although the X-1B flew three missions with reaction controls, it developed fatigue cracks in a propellant tank and had to be retired from flight status. Subsequently, an F-104 equipped with reaction controls flew at relatively low dynamic pressures. Between the simulation studies with

  12. Anticipation of the landing shock phenomenon in flight simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard E.

    1987-01-01

    An aircraft landing may be described as a controlled crash because a runway surface is intercepted. In a simulation model the transition from aerodynamic flight to weight on wheels involves a single computational cycle during which stiff differential equations are activated; with a significant probability these initial conditions are unrealistic. This occurs because of the finite cycle time, during which large restorative forces will accompany unrealistic initial oleo compressions. This problem was recognized a few years ago at Ames Research Center during simulation studies of a supersonic transport. The mathematical model of this vehicle severely taxed computational resources, and required a large cycle time. The ground strike problem was solved by a described technique called anticipation equations. This extensively used technique has not been previously reported. The technique of anticipating a significant event is a useful tool in the general field of discrete flight simulation. For the differential equations representing a landing gear model stiffness, rate of interception and cycle time may combine to produce an unrealistic simulation of the continuum.

  13. Advancing the LSST Operations Simulator

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Ridgway, S. T.; Cook, K. H.; Delgado, F.; Chandrasekharan, S.; Petry, C. E.; Operations Simulator Group

    2013-01-01

    The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions (including weather and seeing), as well as additional scheduled and unscheduled downtime. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history database are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. This poster reports recent work which has focussed on an architectural restructuring of the code that will allow us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator will be used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities, and assist with performance margin investigations of the LSST system.

  14. Numerical Simulations of the Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.

    2010-01-01

    Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.

  15. Multi-Agent Flight Simulation with Robust Situation Generation

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.; Hansman, R. John, Jr.

    1994-01-01

    A robust situation generation architecture has been developed that generates multi-agent situations for human subjects. An implementation of this architecture was developed to support flight simulation tests of air transport cockpit systems. This system maneuvers pseudo-aircraft relative to the human subject's aircraft, generating specific situations for the subject to respond to. These pseudo-aircraft maneuver within reasonable performance constraints, interact in a realistic manner, and make pre-recorded voice radio communications. Use of this system minimizes the need for human experimenters to control the pseudo-agents and provides consistent interactions between the subject and the pseudo-agents. The achieved robustness of this system to typical variations in the subject's flight path was explored. It was found to successfully generate specific situations within the performance limitations of the subject-aircraft, pseudo-aircraft, and the script used.

  16. Simulating flight boundary conditions for orbiter payload modal survey

    NASA Technical Reports Server (NTRS)

    Chung, Y. T.; Sernaker, M. L.; Peebles, J. H.

    1993-01-01

    An approach to simulate the characteristics of the payload/orbiter interfaces for the payload modal survey was developed. The flexure designed for this approach is required to provide adequate stiffness separation in the free and constrained interface degrees of freedom to closely resemble the flight boundary condition. Payloads will behave linearly and demonstrate similar modal effective mass distribution and load path as the flight if the flexure fixture is used for the payload modal survey. The potential non-linearities caused by the trunnion slippage during the conventional fixed base modal survey may be eliminated. Consequently, the effort to correlate the test and analysis models can be significantly reduced. An example is given to illustrate the selection and the sensitivity of the flexure stiffness. The advantages of using flexure fixtures for the modal survey and for the analytical model verification are also demonstrated.

  17. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  18. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  19. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  20. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  1. Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv

    2001-01-01

    Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.

  2. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  3. Performance parameters in the design of flight motion simulators

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert W.

    2012-06-01

    The desired test performance parameters influence the design of a Flight Motion Simulator (FMS) and affect its size, weight, power, electro-magnetic interference, noise, and vibration. A common desire is to specify requirements beyond the immediate need for future test programs. This may directly affect cost and schedule. Critical parameters that affect the FMS design are larger payload sizes, higher accuracies, and higher dynamic requirements. This paper provides a checklist of parameters and specification tradeoffs to be considered for the overall system performance requirements.

  4. A General Simulation Method for Multiple Bodies in Proximate Flight

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    2003-01-01

    Methods of unsteady aerodynamic simulation for an arbitrary number of independent bodies flying in close proximity are considered. A novel method to efficiently detect collision contact points is described. A method to compute body trajectories in response to aerodynamic loads, applied loads, and inter-body collisions is also given. The physical correctness of the methods are verified by comparison to a set of analytic solutions. The methods, combined with a Navier-Stokes solver, are used to demonstrate the possibility of predicting the unsteady aerodynamics and flight trajectories of moving bodies that involve rigid-body collisions.

  5. Human habitat positioning system for NASA's space flight environmental simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, W. F.; Tucker, J.; Keas, P.

    1998-01-01

    Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.

  6. The Immersed Interface Method for Insect Flight Simulation

    NASA Astrophysics Data System (ADS)

    Xu, Sheng

    2008-11-01

    The effect of a fluid-solid interface can be represented as a singular force in the Navier-Stokes equations. Two problems arise from this representation. One is how to calculate the force density, and the other is how to treat the force singularity. In the immersed interface method, the latter is solved with second-order accuracy and the sharp fluid-solid interface by incorporating singularity-induced flow jump conditions into discretization schemes. This talk focues on the former problem. In particular, I will present approaches to calculating the force density for both flexible and rigid solids. Results from insect flight simulation will be shown to demonstrate the approaches.

  7. Using a Low Cost Flight Simulation Environment for Interdisciplinary Education

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; ALi, Syed F.

    2004-01-01

    A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.

  8. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  9. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  10. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  11. Apollo experience report: Simulation of manned space flight for crew training

    NASA Technical Reports Server (NTRS)

    Woodling, C. H.; Faber, S.; Vanbockel, J. J.; Olasky, C. C.; Williams, W. K.; Mire, J. L. C.; Homer, J. R.

    1973-01-01

    Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs.

  12. Three-dimensional simulation for fast forward flight of a calliope hummingbird.

    PubMed

    Song, Jialei; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Luo, Haoxiang

    2016-06-01

    We present a computational study of flapping-wing aerodynamics of a calliope hummingbird (Selasphorus calliope) during fast forward flight. Three-dimensional wing kinematics were incorporated into the model by extracting time-dependent wing position from high-speed videos of the bird flying in a wind tunnel at 8.3 m s(-1). The advance ratio, i.e. the ratio between flight speed and average wingtip speed, is around one. An immersed-boundary method was used to simulate flow around the wings and bird body. The result shows that both downstroke and upstroke in a wingbeat cycle produce significant thrust for the bird to overcome drag on the body, and such thrust production comes at price of negative lift induced during upstroke. This feature might be shared with bats, while being distinct from insects and other birds, including closely related swifts. PMID:27429779

  13. Three-dimensional simulation for fast forward flight of a calliope hummingbird

    PubMed Central

    Song, Jialei; Powers, Donald R.; Hedrick, Tyson L.; Luo, Haoxiang

    2016-01-01

    We present a computational study of flapping-wing aerodynamics of a calliope hummingbird (Selasphorus calliope) during fast forward flight. Three-dimensional wing kinematics were incorporated into the model by extracting time-dependent wing position from high-speed videos of the bird flying in a wind tunnel at 8.3 m s−1. The advance ratio, i.e. the ratio between flight speed and average wingtip speed, is around one. An immersed-boundary method was used to simulate flow around the wings and bird body. The result shows that both downstroke and upstroke in a wingbeat cycle produce significant thrust for the bird to overcome drag on the body, and such thrust production comes at price of negative lift induced during upstroke. This feature might be shared with bats, while being distinct from insects and other birds, including closely related swifts. PMID:27429779

  14. Observing system simulation experiments at NASA. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Kalnay, E.; Baker, W. E.; Susskind, J.; Reuter, D.; Halem, M.

    1985-01-01

    A series of realistic simulation studies is being conducted as a cooperative effort between the European Centre for Medium Range Weather Forecasts (ECMWF), the National Meteorological Center (NMC), and the Goddard Laboratory for Atmospheres (GLA), to provide a quantitative assessment of the potential impact of future observing systems on large scale numerical weather prediction. A special objective is to avoid the unrealistic character of earlier simulation studies. Following a brief review of previous simulation studies and real data impact tests, the methodology for the current simulation system will be described. Results from an assessment of the realism of the simulation system and of the potential impact of advanced observing systems on numerical weather prediction and preliminary results utilizing this system will be presented at the conference.

  15. Advanced Vadose Zone Simulations Using TOUGH

    SciTech Connect

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  16. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  17. Advanced Stirling Convertor (ASC)--From Technology Development to Future Flight Product

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed by Sunpower Inc. under contract to NASA s Glenn Research Center (GRC) with critical technology support tasks led by GRC. The ASC development, funded by NASA s Science Mission Directorate, started in 2003 as one of 10 competitively awarded contracts that were intended to address the power conversion needs of future Radioisotope Power Systems (RPS). The ASC technology has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency (38 percent), low mass (1.3 kg), hermetic sealing, launch vibration simulation, EMI characterization, and is undergoing extended operation. The GRC and Sunpower team recently delivered two ASC-E convertors to the Department of Energy (DOE) and Lockheed Martin Space Systems Company for integration onto the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG EU) plus one spare. The design of the next build, called the ASC-E2, has recently been initiated and is based on the heritage ASC-E with design refinements to increase reliability margin and offer higher temperature operation and improve performance. The ASC enables RPS system specific power of about 7 to 8 W/kg. This paper provides a chronology of ASC development to date and summarizes technical achievements including advancements toward flight implementation of the technology on ASRG by as early as 2013.

  18. Preliminary flight assessment of the X-29A advanced technology demonstrator

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Matheny, Neil W.

    1987-01-01

    Several new technologies integrated on the X-29A advanced technology demonstrator are being evaluated for the next generation of fighter aircraft. Some of the most noteworthy ones are the forward-swept wing, digital fly-by-wire flight control system, close-coupled wing-canard configuration, aeroelastically tailored composite wing skins, three-surface pitch control configuration, and a highly unstable airframe. The expansion of the aircraft 1-g and maneuver flight envelopes was recently completed over a two-year period in 84 flights. Overall flight results confirmed the viability of the aircraft design, and good agreement with preflight predictions was obtained. The individual technologies' operational workability and performance were confirmed. This paper deals with the flight test results and the preliminary evaluation of the X-29A design and technologies. A summary of the primary technical findings in structural static loads, structural dynamic characteristics, flight control system characteristics, aerodynamic stability and control, and aerodynamic performance is presented.

  19. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  20. A study of workstation computational performance for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Cleveland, Jeff I., II

    1995-01-01

    With recent advances in microprocessor technology, some have suggested that modern workstations provide enough computational power to properly operate a real-time simulation. This paper presents the results of a computational benchmark, based on actual real-time flight simulation code used at Langley Research Center, which was executed on various workstation-class machines. The benchmark was executed on different machines from several companies including: CONVEX Computer Corporation, Cray Research, Digital Equipment Corporation, Hewlett-Packard, Intel, International Business Machines, Silicon Graphics, and Sun Microsystems. The machines are compared by their execution speed, computational accuracy, and porting effort. The results of this study show that the raw computational power needed for real-time simulation is now offered by workstations.

  1. STOL Simulation Requirements for Development of Integrated Flight/propulsion Control Systems

    NASA Technical Reports Server (NTRS)

    Sanders, K. E.; Anderson, D. C.; Watson, J. H.

    1984-01-01

    The role and use of simulation as a design tool in developing integrated systems where design criteria is largely unavailable is well known. This paper addresses additional simulation needs for the development of Integrated Flight/Propulsion Control Systems (IFPCS) which will improve the probability of properly interpreting simulation results. These needs are based on recent experience with power approach flying qualities evaluations of an advanced fighter configuration which incorporated Short Takeoff and Landing (STOL) technologies and earlier experiences with power approach flying qualities evaluations on the AFTI/F-16 program. The use of motion base platforms with axial and normal degrees of freedom will help in evaluating pilot coupling and workload in the presence of high frequency low amplitude axial accelerations produced by high bandwidth airspeed controllers in a gusty environment.

  2. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery

  3. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Boyd, Iain; Haas, Brian L.

    1994-01-01

    Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.

  4. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Boyd, Iain; Haas, Brian L.

    1994-01-01

    Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration - dissociation - recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.

  5. Orbital flight simulation utility software unit specifications, revision 1

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1986-01-01

    The HP PASCAL source code defines the specifications for a Utility Software Unit (USU) designed to support orbital flight simulators such as MANHANDLE and GREAS (General Research and Engineering Analysis Simulator). Besides providing basic input/output, mathematical, matrix, quaternion, and statistical routines for such simulators, one of the primary functions of the USU is to isolate all system-dependent codes in one well-defined compartment, thereby facilitating transportation of the simulations from one computer to another. Directives are given for the PASCAL compilers of the HP-9000 Series 200 Pascal 3.0 and the HP-9000 Series 500 HP-UX 5.0 operating systems that produce a single file of relocatable code from four separate files of source code. Three of the source code files are common to both operating systems. The fourth source code file (utilspif.I) contains all of the system-dependent PASCAL code for the USU. A fifth file of source code written in C is required to interface utilspif.I with the HP-UX I/O package. The Pascal 3.0 compiler directives and the driver source code for a unit rest program and counterparts for the HP-UX 5.0 operating system are given. The major portion of the unit test program source code is common to both operating systems. Unit test results from the Pascal 3.0 operating system and results from the HP-UX operating system are given.

  6. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  7. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2013-05-28

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  8. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  9. Relationship Between Optimal Gain and Coherence Zone in Flight Simulation

    NASA Technical Reports Server (NTRS)

    Gracio, Bruno Jorge Correia; Pais, Ana Rita Valente; vanPaassen, M. M.; Mulder, Max; Kely, Lon C.; Houck, Jacob A.

    2011-01-01

    In motion simulation the inertial information generated by the motion platform is most of the times different from the visual information in the simulator displays. This occurs due to the physical limits of the motion platform. However, for small motions that are within the physical limits of the motion platform, one-to-one motion, i.e. visual information equal to inertial information, is possible. It has been shown in previous studies that one-to-one motion is often judged as too strong, causing researchers to lower the inertial amplitude. When trying to measure the optimal inertial gain for a visual amplitude, we found a zone of optimal gains instead of a single value. Such result seems related with the coherence zones that have been measured in flight simulation studies. However, the optimal gain results were never directly related with the coherence zones. In this study we investigated whether the optimal gain measurements are the same as the coherence zone measurements. We also try to infer if the results obtained from the two measurements can be used to differentiate between simulators with different configurations. An experiment was conducted at the NASA Langley Research Center which used both the Cockpit Motion Facility and the Visual Motion Simulator. The results show that the inertial gains obtained with the optimal gain are different than the ones obtained with the coherence zone measurements. The optimal gain is within the coherence zone.The point of mean optimal gain was lower and further away from the one-to-one line than the point of mean coherence. The zone width obtained for the coherence zone measurements was dependent on the visual amplitude and frequency. For the optimal gain, the zone width remained constant when the visual amplitude and frequency were varied. We found no effect of the simulator configuration in both the coherence zone and optimal gain measurements.

  10. Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.

  11. Aerodynamics of ski jumping flight and its control: II. Simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jungil; Lee, Hansol; Kim, Woojin; Choi, Haecheon

    2015-11-01

    In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we conduct a large eddy simulation (LES) of turbulent flow past a model ski jumper which is obtained by 3D scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). The angle of attack of the jump ski is 30° and the Reynolds number based on the length of the jump ski is 540,000. The flow statistics including the drag and lift coefficients in flight are in good agreements with our own experimental data. We investigate the flow characteristics such as the flow separation and three-dimensional vortical structures and their effects on the drag and lift. In addition to LES, we construct a simple geometric model of a ski jumper where each part of the ski jumper is modeled as a canonical bluff body such as the sphere, cylinder and flat plate, to find its optimal posture. The results from this approach will be compared with those by LES and discussed. Supported by NRF program (2014M3C1B1033848, 2014R1A1A1002671).

  12. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane for... hours of flight time in the same type of airplane for which the type rating is sought; or (5) Have logged at least 2,000 hours of flight time, of which 500 hours were in turbine-powered airplanes of...

  13. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two different... time in the same type of airplane; or (v) Have logged at least 2,000 hours of flight time, of which 500... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two...

  14. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two different... time in the same type of airplane; or (v) Have logged at least 2,000 hours of flight time, of which 500... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two...

  15. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane for... hours of flight time in the same type of airplane for which the type rating is sought; or (5) Have logged at least 2,000 hours of flight time, of which 500 hours were in turbine-powered airplanes of...

  16. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  17. Transition Flight Simulation of Flapping-Wing Micro-Aerial Vehicle Using Aerodynamic Database

    NASA Astrophysics Data System (ADS)

    Isogai, Koji; Kawabe, Hiroyasu

    The paper describes how to simulate the flight of a flapping-wing micro-aerial vehicle (MAV). It uses an aerodynamic database generated using three-dimensional Navier-Stokes code. The database is composed of the time mean aerodynamic forces and moments generated at various flapping wing motions in various flight modes. Flight is simulated utilizing the database by interpolation. The procedure is applied to transition flight of a dragonfly-type MAV with two-pairs of resonance-type flapping wings. The present MAV attains the mission of hovering, transition and cruising flights successfully with stable attitude.

  18. Analysis and Monte Carlo simulation of near-terminal aircraft flight paths

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Matthews, C. G.

    1982-01-01

    The flight paths of arriving and departing aircraft at an airport are stochastically represented. Radar data of the aircraft movements are used to decompose the flight paths into linear and curvilinear segments. Variables which describe the segments are derived, and the best fitting probability distributions of the variables, based on a sample of flight paths, are found. Conversely, given information on the probability distribution of the variables, generation of a random sample of flight paths in a Monte Carlo simulation is discussed. Actual flight paths at Dulles International Airport are analyzed and simulated.

  19. Flight simulators. Part 1: Present situation and trends. Part 2: Implications for training

    NASA Technical Reports Server (NTRS)

    Hass, D.; Volk, W.

    1977-01-01

    The present situation and developments in the technology of flight simulators based on digital computers are evaluated from the standpoint of training airline flight crews. Areas covered are minicomputers and their advantages in terms of cost, space and time savings, software data packets, motion simulation, visual simulation and instructor aids. The division of training time between aircraft and simulator training and the possible advantages from increased use of simulators are evaluated.

  20. Implementation of a Helicopter Flight Simulator with Individual Blade Control

    NASA Astrophysics Data System (ADS)

    Zinchiak, Andrew G.

    2011-12-01

    Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually

  1. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations. PMID:17937364

  2. Improving target orientation discrimination performance in air-to-air flight simulation

    NASA Astrophysics Data System (ADS)

    Serfoss, Gary Lee

    Despite significant advances, state-of-the-art image projectors still lack the ability to display object detail equivalent to a 20/20 visual acuity capability. Unfortunately, for proper close-in air combat training in a flight simulator, this level of detail is necessary if a pilot is to accurately determine the orientation of another aircraft at realistic ranges. This investigation evaluates a possible interim solution to this problem that could be implemented until projectors are developed that can provide adequate resolution. The research methodology involves enlarging the "enemy" aircraft by various amounts as a function of distance-resulting in an aircraft that still always gets smaller as it moves farther away, but just not as quickly as a "non-enlarged" target. The results from 20 male F-16 pilots provided the distances where the orientation of aircraft in the simulator could be determined as well as similar aircraft under "real-world" conditions. By using these distances, it was possible to determine the amount of magnification needed to identify necessary details of the simulated aircraft at the same distances as they are under "real-world" conditions. The final product is a magnification curve that can be used to modify how the simulated target changes in size as a function of distance. Results seem to indicate that performance in the simulator might be enhanced to match real flying conditions without unacceptably (or perhaps even noticeably) altering the size of the target. These results should be applicable (with minor modification) to many other aircraft and perhaps ground targets as well. Furthermore, it is anticipated that application can be made beyond flight simulation to other types of simulation where performance is also currently inhibited due to lack of display resolution.

  3. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  4. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is

  5. Comparison of Pilots' Situational Awareness While Monitoring Autoland Approaches Using Conventional and Advanced Flight Display Formats

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Busquets, Anthony M.

    2000-01-01

    A simulation experiment was performed to assess situation awareness (SA) and workload of pilots while monitoring simulated autoland operations in Instrument Meteorological Conditions with three advanced display concepts: two enhanced electronic flight information system (EFIS)-type display concepts and one totally synthetic, integrated pictorial display concept. Each concept incorporated sensor-derived wireframe runway and iconic depictions of sensor-detected traffic in different locations on the display media. Various scenarios, involving conflicting traffic situation assessments, main display failures, and navigation/autopilot system errors, were used to assess the pilots' SA and workload during autoland approaches with the display concepts. From the results, for each scenario, the integrated pictorial display concept provided the pilots with statistically equivalent or substantially improved SA over the other display concepts. In addition to increased SA, subjective rankings indicated that the pictorial concept offered reductions in overall pilot workload (in both mean ranking and spread) over the two enhanced EFIS-type display concepts. Out of the display concepts flown, the pilots ranked the pictorial concept as the display that was easiest to use to maintain situational awareness, to monitor an autoland approach, to interpret information from the runway and obstacle detecting sensor systems, and to make the decision to go around.

  6. Flight simulator for hypersonic vehicle and a study of NASP handling qualities

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.

    1992-01-01

    The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.

  7. Recent Advances in Simulation of Dendritic Polymers

    SciTech Connect

    Cagin, Tahir; Miklis, Paul J.; Wang, Guofeng; Zamanakos, Georgios; Martin, Ryan; Li, Hao; Mainz, Daniel T.; Nagarajan, V.; Goddard, William A.

    1999-05-11

    Dendrimers and hyperbranched polymers represent a revolution in methodology for directed synthesis of monodisperse polymers with enormous possibility of novel architectures. They demonstrate the ability to attain micelle-like structures with distinct internal and external character. Furthermore, the polyfunctional character of dendrimers allows varied response to environment and promise as selective sensors, carrier for drugs, encapsulation of toxic chemicals and metals. One of the key problems is the characterization of the structures. Theory and simulation can be essential to provide and predict structure and properties. We present some recent advances in theory, modeling and simulation of dendritic polymers.

  8. Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne

    2015-01-01

    The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.

  9. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  10. Evolution and advanced technology. [of Flight Telerobotic Servicer

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford; Pennington, Jack E.; Hansen, Bert, III

    1990-01-01

    The NASREM architecture with its standard interfaces permits development and evolution of the Flight Telerobotic Servicer to greater autonomy. Technologies in control strategies for an arm with seven DOF, including a safety system containing skin sensors for obstacle avoidance, are being developed. Planning and robotic execution software includes symbolic task planning, world model data bases, and path planning algorithms. Research over the last five years has led to the development of laser scanning and ranging systems, which use coherent semiconductor laser diodes for short range sensing. The possibility of using a robot to autonomously assemble space structures is being investigated. A control framework compatible with NASREM is being developed that allows direct global control of the manipulator. Researchers are developing systems that permit an operator to quickly reconfigure the telerobot to do new tasks safely.

  11. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  12. Advanced application flight experiment breadboard pulse compression radar altimeter program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.

  13. Hydrogen Vent Ground Umbilical Quick Disconnect - Flight Seal Advanced Development

    NASA Technical Reports Server (NTRS)

    Girard, Doug; Jankowski, Fred; Minich, Mark C.; Yu, Weiping

    2012-01-01

    This project is a team effort between NASA Engineering (NE) and Team QNA Engineering personnel to provide support for the Umbilical Systems Development project which is funded by Advanced Exploration Systems (AES) and 21st Century Launch Complex. Specifically, this project seeks to develop a new interface between the PPBE baselined Legacy SSP LH2 Vent Arm QD probe and SLS vent seal.

  14. Results of NASA/FAA ground and flight simulation experiments concerning helicopter IFR airworthiness criteria

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. V.; Chen, R. T. N.; Gerdes, R. M.; Weber, J. M.; Forrest, R. D.

    1982-01-01

    A sequence of ground and flight simulation experiments was conducted to investigate helicopter instrument-flight-rules airworthiness criteria. The first six of these experiments and major results are summarized. Five of the experiments were conducted on large-amplitude motion base simulators. The NASA-Army V/STOLAND UH-1H variable-stability helicopter was used in the flight experiment. Artificial stability and control augmentation, longitudinal and lateral control, and in pitch and roll attitude augmentation were investigated.

  15. 14 CFR 121.408 - Training equipment other than flight simulation training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training equipment other than flight simulation training devices. 121.408 Section 121.408 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.408 Training equipment other than flight simulation training devices. (a) The Administrator...

  16. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  17. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  18. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G. PMID:25430242

  19. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Fan, T. S.; Chen, J. X.; Li, X. Q.; Zhang, G. H.

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  20. Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    NASA Technical Reports Server (NTRS)

    Alderete, Thomas S.; Ascencio-Lee, Carmen E.; Bray, Richard; Carlton, John; Dohme, Jack; Eshow, Michelle M.; Francis, Stephen; Lee, Owen M.; Lintern, Gavan; Lombardo, David A.

    1994-01-01

    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators.

  1. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  2. Development of Advanced Hydrocarbon Fuels at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bai, S. D.; Dumbacher, P.; Cole, J. W.

    2002-01-01

    This was a small-scale, hot-fire test series to make initial measurements of performance differences of five new liquid fuels relative to rocket propellant-1 (RP-1). The program was part of a high-energy-density materials development at Marshall Space Flight Center (MSFC), and the fuels tested were quadricyclane, 1-7 octodiyne, AFRL-1, biclopropylidene, and competitive impulse noncarcinogenic hypergol (CINCH) (di-methyl-aminoethyl-azide). All tests were conducted at MSFC. The first four fuels were provided by the U.S. Air Force Research Laboratory (AFRL), Edwards Air Force Base, CA. The U.S. Army, Redstone Arsenal, Huntsville, AL, provided the CINCH. The data recorded in all hot-fire tests were used to calculate specific impulse and characteristic exhaust velocity for each fuel, then compared to RP-1 at the same conditions. This was not an exhaustive study, comparing each fuel to RP-1 at an array of mixture ratios, nor did it include important fuel parameters, such as fuel handling or long-term storage. The test hardware was designed for liquid oxygen (lox)/RP-1, then modified for gaseous oxygen/RP-1 to avoid two-phase lox at very small flow rates. All fuels were tested using the same thruster/injector combination designed for RP-1. The results of this test will be used to determine which fuels will be tested in future test programs.

  3. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  4. F-15B in flight with test panels covered with advanced spray-on foam insulation material for the Spa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.

  5. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  6. The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)

    2002-01-01

    NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.

  7. Analysis and simulation of the MAST (COFS-1 flight hardware)

    NASA Astrophysics Data System (ADS)

    Horta, Lucas G.; Walsh, Joanne L.; Horner, Garnett C.; Bailey, James P.

    1986-11-01

    In-house analysis work in support of the Control of Flexible Structures (COFS) program is being performed at the NASA Langley Research Center. The work involves evaluation of the proposed design configuration, controller design as well as actuator dynamic modeling, and MAST/actuator dynamic simulation of excitation and damping. A complete finite element model of the MAST has been developed. This finite element model has been incorporated into an optimization procedure which minimizes total mass while maintaining modal coupling. Results show an increase in the total mass due to additional constraints (namely, the diagonal frequency constraint) imposed on the baseline design. A valid actuator dynamic model is presented and a complete test sequence of the proposed flight experiment is demonstrated. The actuator dynamic model is successfully used for damping and the stroke limitations for first mode excitation are demonstrated. Plans are to incorporate additional design variables and constraints into the optimization procedure (such as actuator location) and explore alternative formulations of the objective function. A different actuator dynamic model to include hardware limitations will be investigated.

  8. Analysis and simulation of the MAST (COFS-1 flight hardware)

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Walsh, Joanne L.; Horner, Garnett C.; Bailey, James P.

    1986-01-01

    In-house analysis work in support of the Control of Flexible Structures (COFS) program is being performed at the NASA Langley Research Center. The work involves evaluation of the proposed design configuration, controller design as well as actuator dynamic modeling, and MAST/actuator dynamic simulation of excitation and damping. A complete finite element model of the MAST has been developed. This finite element model has been incorporated into an optimization procedure which minimizes total mass while maintaining modal coupling. Results show an increase in the total mass due to additional constraints (namely, the diagonal frequency constraint) imposed on the baseline design. A valid actuator dynamic model is presented and a complete test sequence of the proposed flight experiment is demonstrated. The actuator dynamic model is successfully used for damping and the stroke limitations for first mode excitation are demonstrated. Plans are to incorporate additional design variables and constraints into the optimization procedure (such as actuator location) and explore alternative formulations of the objective function. A different actuator dynamic model to include hardware limitations will be investigated.

  9. Formal representation of the requirements for an Advanced Subsonic Civil Transport (ASCT) flight control system

    NASA Technical Reports Server (NTRS)

    Frincke, Deborah; Wolber, Dave; Fisher, Gene; Cohen, Gerald C.; Mclees, R. E.

    1992-01-01

    A partial requirement specification for an Advanced Subsonic Civil Transport (ASCT) Flight Control System is described. The example was adopted from requirements given in a NASA Contractor report. The language used to describe the requirements, Requirements Specification Language (RSL), is described in a companion document.

  10. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.

    1993-01-01

    parametric study was performed and reported in AIAA Paper No. 93-2806 (Appendix C) which assessed the accuracy penalties associated with simulations of varying grid resolution and flow domain size. The paper was also presented at the Thermophysics Conference and will be submitted to the journal shortly. Finally, the DSMC code was employed to assess the pitch, yaw, and roll aerodynamics of the Magellan spacecraft during entry into the Venus atmosphere at off-design attitudes. This work was in support of the Magellan aerobraking maneuver of May 25-Aug. 3, 1993. Furthermore, analysis of the roll characteristics of the configuration with canted solar panels was performed in support of the proposed 'Windmill' experiment. Results were reported in AIAA Paper No. 93-3676 (Appendix D) presented at the Atmospheric Flight Mechanics Conference in August 1993, and were submitted to Journal of Spacecraft and Rockets.

  11. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  12. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  13. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  14. Coupled Simulations, Ground-Based Experiments and Flight Experiments for Astrodynamics Research

    NASA Astrophysics Data System (ADS)

    Boyce, R.; Brown, M.; Lorrain, P.; Capon, C.; Lambert, A.; Benson, C.; Tuttle, S.; Griffin, D.

    Near-Earth satellites undergo complex and poorly understood interactions with their environment, leading to large uncertainties in predicting orbits and an associated risk of collision with other satellites and with space debris. The nature, evolution and behaviour of the growing cloud of space debris in that environment is even less well understood. Significant effort and expenditure is currently being made by governments in Australia, UK, USA, Europe and elsewhere in space surveillance and tracking, in order to mitigate the risk. However, a major gap exists with respect to the science of in-orbit behaviour. Research is underway in Australia to enable the prediction of the orbits of near-Earth space objects with order(s) of magnitude greater fidelity than currently possible. This is being achieved by coupling together the necessary parts of the puzzle - the physics of rarefied space object “aerodynamics” and the space physics and space weather that affects it - and employing our capabilities in ground-based and in-orbit experiments, ground-based observations and high performance computing to do so. As part of the effort, UNSW Canberra is investing $10M to develop a sustainable university-led program to develop and fly affordable in-orbit missions for space research. In the coming 6 years, we will fly a minimum of four cubesat missions, some in partnership with DSTO, which will include flight experiments for validating Space Situational Awareness astrodynamics simulation and observation capabilities. The flights are underpinned by ground-based experimental research employing space test chambers, advanced diagnostics, and supercomputer simulations that couple DSMC and Particle-in-Cell methods for modelling space object interactions with the ionosphere. This paper will describe the research both underway and planned, with particular emphasis on the coupled numerical/experimental/flight approach.

  15. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to satisfy any requirement of 14 CFR chapter I. (b) The approval required by paragraph (a)(2) of this... shall not be restricted to specific— (1) Route segments during line-oriented flight training...

  16. Flight dynamics analysis and simulation of heavy lift airships. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Tischler, M. B.; Jex, H. R.; Emmen, R. D.; Ashkenas, I. L.

    1982-01-01

    A generic, yet comprehensive mathematical model and computer simulation of the HLA flight dynamics over its entire flight envelope was developed. Implicit in this simulation development are the data reviews and analyses which support the equations of motion and the calculation of forces and moments acting on the vehicle. The simulation, HYBRDS, is addressed to the broad requirements and is intended for use as a synthesis and analysis tool for the evaluation of competing HLA design concepts.

  17. Use of a hybrid computer for the flight simulation of a bomb/parachute system

    SciTech Connect

    Cole, J.K.

    1981-01-01

    The Flight Simulation Laboratory at Sandia National Laboratories, Albuquerque, is used primarily to study the dynamics of unguided bombs, rockets, shells, and reentry vehicles and to develop and evaluate guidance and control systems for guided vehicle concepts. This report describes the use of this laboratory for a 12 degree-of-freedom simulation of a bomb/parachute system. The simulation results are compared with data from flight tests.

  18. Some vortical-flow flight experiments on slender aircraft that impacted the advancement of aeronautics

    NASA Astrophysics Data System (ADS)

    Lamar, John E.

    2009-08-01

    This paper highlights the three aerodynamic pillars of aeronautics; namely, theory/CFD, wind-tunnel experiments and flight tests, and notes that at any given time these three are not necessarily at the same level of maturity. After an initial history of these three pillars, the focus narrows to a brief history of some vortical-flow flight experiments on slender aircraft that have impacted the advancement of aeronautics in recent decades. They include the F-106, Concorde, SR-71, light-weight fighters (F-16, F/A-18), and F-16XL. These aircraft share in common the utilization of vortical flow and have flown at transonic speeds during a part of the flight envelope. Due to the vast amount of information from flight and CFD that has recently become available for the F-16XL, this aircraft is highlighted and its results detailed. Lastly, it is interesting to note that, though complicated, vortical flows over the F-16XL aircraft at subsonic speeds can be reliably and generally well-predicted with the current CFD flow solvers. However, these solvers still have some problems in matching flight pressure data at transonic speeds. That this problem has been highlighted is both an advancement in aeronautics and a tempting prize to those who would seek its solution.

  19. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  20. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  1. Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, Roberto

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is

  2. Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, R.

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  3. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  4. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  5. Design, development, and flight test of a demonstration advanced avionics system

    NASA Technical Reports Server (NTRS)

    Denergy, D. G.; Callas, G. P.; Hardy, G. H.; Nedell, W.

    1983-01-01

    Ames Research Center initiated a program in 1975 to provide the critical information required for the design of integrated avionics suitable for general aviation. The program emphasized the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. Design considerations included cost, reliability, maintainability, and modularity. As a final step, a demonstration advanced avionics system (DAAS) was designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. A functional description of the DAAS, including a description of the system architecture, is presented and the program and flight test results are briefly reviewed.

  6. Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.

    PubMed

    Di Stasi, Leandro L; McCamy, Michael B; Martinez-Conde, Susana; Gayles, Ellis; Hoare, Chad; Foster, Michael; Catena, Andrés; Macknik, Stephen L

    2016-01-01

    Aircrew fatigue is a major contributor to operational errors in civil and military aviation. Objective detection of pilot fatigue is thus critical to prevent aviation catastrophes. Previous work has linked fatigue to changes in oculomotor dynamics, but few studies have studied this relationship in critical safety environments. Here we measured the eye movements of US Marine Corps combat helicopter pilots before and after simulated flight missions of different durations.We found a decrease in saccadic velocities after long simulated flights compared to short simulated flights. These results suggest that saccadic velocity could serve as a biomarker of aviator fatigue. PMID:26597121

  7. Theoretical and experimental investigation of the aeroelastic stability of an advanced bearingless rotor in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Chopra, Inderjit; Samak, D. K.; Green, Michael; Graham, Todd

    1989-01-01

    The aeroelastic stability of a shaft-fixed, 1/8th Froude scaled bearingless rotor was investigated in a series of wind tunnel experiments simulating a wide range of operating conditions. A finite element formulation was used to perform a parallel theoretical analysis, with the goal of determining whether a bearingless rotor system could be made aeroelastically stable without the incorporation of auxilliary dampers. A quick estimate of lag mode damping was provided by a refined moving-block analysis implemented in real time which predicted similar damping values. Model rotor and blade properties were also determined, and these properties were used as inputs for a newly refined bearingless rotor analysis. Predicted results were compared with experimental results in hover and forward flight. Results indicated that soft pitch link stiffness increases pitch-lag coupling and stabilizes lag mode stability in hover and at low advance ratios, but destabilizes at higher advance ratios.

  8. LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses

    NASA Technical Reports Server (NTRS)

    Bowes, Angela L.; Davis, Jody L.; Dutta, Soumyo; Striepe, Scott A.; Ivanov, Mark C.; Powell, Richard W.; White, Joseph

    2015-01-01

    The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery.

  9. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices...

  10. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices...

  11. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices...

  12. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... General Note 6, HTSUS, as a civil aircraft, aircraft engine, or ground flight simulator, or their parts... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components,...

  13. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components,...

  14. Caloric balance during simulated and actual space flight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Heidelbaugh, N. D.; Smith, M. C., Jr.; Reid, J. M.

    1973-01-01

    The in-flight caloric intakes of all Apollo astronauts are examined and shown to average about 25 kcal per kg per day. Measurement of weight changes following recovery indicates that about 0.15 kg of fat was lost per man per day in-flight for an average deficit of about 19 kcal per kg per day. Measurement of the caloric intake of astronauts under ground-based conditions and during hypobaric exposure indicated a caloric requirement which was not significantly different from the in-flight requirement adjusted for weight loss. Partial metabolic balance data and measurements of bone loss and body volume revealed that protein and mineral losses also occurred to an extent which would reduce the size of estimated in-flight caloric deficits.

  15. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  16. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  17. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  18. Outside, a World Goes By...Applying Mathematics with Flight Simulators.

    ERIC Educational Resources Information Center

    van den Brink, Jan

    1994-01-01

    Describes the use of the "Microsoft Flight Simulator" with Dutch students 12- to 16-years-old to apply mathematical knowledge to real-life situations. The use of an overhead projector for class flights is described; and student activities, including converting metric units and drawing maps of the landscape, are explained. (LRW)

  19. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    PubMed Central

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  20. The Role of Visual Occlusion in Altitude Maintenance during Simulated Flight

    ERIC Educational Resources Information Center

    Gray, R.; Geri, G. A.; Akhtar, S. C.; Covas, C. M.

    2008-01-01

    The use of visual occlusion as a cue to altitude maintenance in low-altitude flight (LAF) was investigated. The extent to which the ground surface is occluded by 3-D objects varies with altitude and depends on the height, radius, and density of the objects. Participants attempted to maintain a constant altitude during simulated flight over an…

  1. Software Framework for Advanced Power Plant Simulations

    SciTech Connect

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  2. Development and Assessment of a Novel Training Package for Basic Maneuvering Tasks on a Flight Simulator Using Self Instruction Methods and Above Real Time Training (ARTT)

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed

  3. In-flight quality and accuracy of attitude measurements from the CHAMP advanced stellar compass

    NASA Astrophysics Data System (ADS)

    Jørgensen, Peter S.; Jørgensen, John L.; Denver, Troelz; Betto, Maurizio

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute attitude with accuracy in the arc second range. In order to investigate the in-flight accuracy of the ASC, the terminology to characterize noise and biases is introduced. Relative instrument accuracy (RIA) and absolute instrument accuracy (AIA) can in principle be determined in-flight. However problems with modeling external noise sources often arise. The special CHAMP configuration with two star tracker cameras mounted fixed together provides an excellent opportunity to determine the AIA in-flight using the inter boresight angle.

  4. Optimization and simulation of flight control laws under parameter uncertainty and external disturbances

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Several tasks pertinent to flight control in parameter uncertainty and wind-gust loading were successfully completed. Identification algorithms for extracting stability and control derivatives from flight data taking gust loading into account were developed. They were verified by simulation and evaluated throughly on actual flight data taken on a Lockheed Jet Star flying in turbulence. In particular the need for automatically generated dither-like inputs was studied. Criteria for performance evaluation using stochastic models were developed for gust alleviation as well as handling quantities. Algorithms for assessing degradation in performance due to parameter uncertainty were developed and evaluated using flight test data.

  5. Utilization of hybrid computational equipment for the simulation of parachute system flight

    SciTech Connect

    Curry, W.H.; Schatzle, P.R.

    1981-01-01

    Hybrid (analog/digital) computational equipment has been satisfactorily utilized for flight simulation of parachute retarded configurations. Implementation of specific mathematical models on a hybrid computer is described, and example results are presented.

  6. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  7. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  8. Flight test evaluation of advanced symbology for general aviation approach to landing displays

    NASA Technical Reports Server (NTRS)

    Downing, D. R.; Bryant, W. H.; Yenni, K. R.

    1981-01-01

    This paper describes a set of flight test experiments which were designed to evaluate the relative utility of candidate displays with advanced symbology for General Aviation IFR operations in the terminal area. This symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track-angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a CRT display along with the roll attitude, pitch attitude, localizer-deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an ILS capture and tracking task.

  9. Step 1: Human System Integration Simulation and Flight Test Progress Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration

  10. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  11. Measurement of exhaust emissions from two J-58 engines at simulated supersonic cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16 to 23 km. For each flight condition, exhaust measurements were made for four or five power levels from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen (NOX) emissions decreased with increasing altitude, and increased with increasing flight speed. NOX emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude, and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  12. Measurement of exhaust emissions from two J-58 engines at simulated supersonic cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16 to 23 km. For each flight condition, exhaust measurements were made for four or five power levels from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. NO(x) emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  13. Integrated Clinical Training for Space Flight Using a High-Fidelity Patient Simulator in a Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott

    2007-01-01

    This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.

  14. Exhaust emission survey of an F100 afterburning turbofan engine at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E.; Cullom, R. R.

    1981-01-01

    Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.

  15. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    NASA Technical Reports Server (NTRS)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  16. Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.

    2015-01-01

    The rise of innovative unmanned aeronautical systems and the emergence of commercial space activities have resulted in a number of relatively new aerospace organizations that are designing innovative systems and solutions. These organizations use a variety of commercial off-the-shelf and in-house-developed simulation and analysis tools including 6-degree-of-freedom (6-DOF) flight simulation tools. The increased affordability of computing capability has made highfidelity flight simulation practical for all participants. Verification of the tools' equations-of-motion and environment models (e.g., atmosphere, gravitation, and geodesy) is desirable to assure accuracy of results. However, aside from simple textbook examples, minimal verification data exists in open literature for 6-DOF flight simulation problems. This assessment compared multiple solution trajectories to a set of verification check-cases that covered atmospheric and exo-atmospheric (i.e., orbital) flight. Each scenario consisted of predefined flight vehicles, initial conditions, and maneuvers. These scenarios were implemented and executed in a variety of analytical and real-time simulation tools. This tool-set included simulation tools in a variety of programming languages based on modified flat-Earth, round- Earth, and rotating oblate spheroidal Earth geodesy and gravitation models, and independently derived equations-of-motion and propagation techniques. The resulting simulated parameter trajectories were compared by over-plotting and difference-plotting to yield a family of solutions. In total, seven simulation tools were exercised.

  17. Wind Shear/Turbulence Inputs to Flight Simulation and Systems Certification

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to provide a forum for industry, universities, and government to assess current status and likely future requirements for application of flight simulators to aviation safety concerns and system certification issues associated with wind shear and atmospheric turbulence. Research findings presented included characterization of wind shear and turbulence hazards based on modeling efforts and quantitative results obtained from field measurement programs. Future research thrusts needed to maximally exploit flight simulators for aviation safety application involving wind shear and turbulence were identified. The conference contained sessions on: Existing wind shear data and simulator implementation initiatives; Invited papers regarding wind shear and turbulence simulation requirements; and Committee working session reports.

  18. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  19. A conceptual framework for using Doppler radar acquired atmospheric data for flight simulation

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1983-01-01

    A concept is presented which can permit turbulence simulation in the vicinity of microbursts. The method involves a large data base, but should be fast enough for use with flight simulators. The model permits any pilot to simulate any flight maneuver in any aircraft. The model simulates a wind field with three-component mean winds and three-component turbulent gusts, and gust variation over the body of an aircraft so that all aerodynamic loads and moments can be calculated. The time and space variation of mean winds and turbulent intensities associated with a particular atmospheric phenomenon such as a microburst is used in the model. In fact, Doppler radar data such as provided by JAWS is uniquely suited for use with the proposed model. The concept is completely general and is not restricted to microburst studies. Reentry and flight in terrestrial or planetary atmospheres could be realistically simulated if supporting data of sufficient resolution were available.

  20. An analysis of airline landing flare data based on flight and training simulator measurements

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Schulman, T. M.; Clement, T. M.

    1982-01-01

    Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft.

  1. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  2. To Fly or Not to Fly: Teaching Advanced Secondary School Students about Principles of Flight in Biological Systems

    ERIC Educational Resources Information Center

    Pietsch, Renée B.; Bohland, Cynthia L.; Schmale, David G., III.

    2015-01-01

    Biological flight mechanics is typically taught in graduate level college classes rather than in secondary school classes. We developed an interdisciplinary unit for advanced upper-level secondary school students (ages 15-18) to teach the principles of flight and applications to biological systems. This unit capitalised on the tremendous…

  3. Development of a Model Following Control Law for Inflight Simulation and Flight Controls Research

    NASA Technical Reports Server (NTRS)

    Takahashi, Mark; Fletcher, Jay; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    The U.S. Army and NASA are currently developing the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) at the Ames Research Center. RASCAL, shown in Figure 1, is a UH-60, which is being modified in a phased development program to have a research fly-by-wire flight control system, and an advanced navigation research platform. An important part of the flight controls and handling qualities research on RASCAL will be an FCS design for the aircraft to achieve high bandwidth control responses and disturbance rejection characteristics. Initially, body states will be used as feedbacks, but research into the use of rotor states will also be considered in later stages to maximize agility and maneuverability. In addition to supporting flight controls research, this FCS design will serve as the inflight simulation control law to support basic handling qualities, guidance, and displays research. Research in high bandwidth controls laws is motivated by the desire to improve the handling qualities in aggressive maneuvering and in severely degraded weather conditions. Naturally, these advantages will also improve the quality of the model following, thereby improving the inflight simulation capabilities of the research vehicle. High bandwidth in the control laws provides tighter tracking allowing for higher response bandwidths which can meet handling qualities requirements for aggressive maneuvering. System sensitivity is also reduced preventing variations in the response from the vehicle due to changing flight conditions. In addition, improved gust rejection will result from this reduced sensitivity. The gust rejection coupled with a highly stable system will make more precise maneuvering and pointing possible in severely degraded weather conditions. The difficulty in achieving higher bandwidths from the control laws in the feedback and in the responses arises from the complexity of the models that are needed to produce a satisfactory design. In this case, high

  4. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  5. An Evaluation of Training Interventions and Computed Scoring Techniques for Grading a Level Turn Task and a Straight In Landing Approach on a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot perfolmance similar to that of a CFI. The 'intelligent' flight sinlulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the sinlulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reposts on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight sinlulator and the robustness and accuracy of calculated perfornlance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was

  6. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  7. Guidance simulation and test support for differential GPS flight experiment

    NASA Technical Reports Server (NTRS)

    Geier, G. J.; Loomis, P. V. W.; Cabak, A.

    1987-01-01

    Three separate tasks which supported the test preparation, test operations, and post test analysis of the NASA Ames flight test evaluation of the differential Global Positioning System (GPS) are presented. Task 1 consisted of a navigation filter design, coding, and testing to optimally make use of GPS in a differential mode. The filter can be configured to accept inputs from external censors such as an accelerometer and a barometric or radar altimeter. The filter runs in real time onboard a NASA helicopter. It processes raw pseudo and delta range measurements from a single channel sequential GPS receiver. The Kalman filter software interfaces are described in detail, followed by a description of the filter algorithm, including the basic propagation and measurement update equations. The performance during flight tests is reviewed and discussed. Task 2 describes a refinement performed on the lateral and vertical steering algorithms developed on a previous contract. The refinements include modification of the internal logic to allow more diverse inflight initialization procedures, further data smoothing and compensation for system induced time delays. Task 3 describes the TAU Corp participation in the analysis of the real time Kalman navigation filter. The performance was compared to that of the Z-set filter in flight and to the laser tracker position data during post test analysis. This analysis allowed a more optimum selection of the parameters of the filter.

  8. The story of 520 days on a simulated flight to Mars

    NASA Astrophysics Data System (ADS)

    Poláčková Šolcová, Iva; Šolcová, Iva; Stuchlíková, Iva; Mazehóová, Yvona

    2016-09-01

    The project Mars-500 was the first long-term simulation of a manned flight to Mars. We examined the ways crew members described their experiences and their life during simulation, what they saw as key episodes and key topics in simulation, as well as key problems and key benefits. The aim of this paper is to present the Mars-500 simulation in its complexity, from beginning to end, as a one narrative story.

  9. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    NASA Astrophysics Data System (ADS)

    Howard, Richard T.; Bryan, Thomas C.

    2009-03-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998.

  10. Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    NASA Technical Reports Server (NTRS)

    Brand, S. N.

    1985-01-01

    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.

  11. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  12. Further Development of Verification Check-Cases for Six- Degree-of-Freedom Flight Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Madden, Michael M.; Shelton, Robert; Jackson, A. A.; Castro, Manuel P.; Noble, Deleena M.; Zimmerman, Curtis J.; Shidner, Jeremy D.; White, Joseph P.; Dutta, Doumyo; Queen, Eric M.; Powell, Richard W.; Sellers, WIlliam A.; Striepe, Scott A.

    2015-01-01

    This follow-on paper describes the principal methods of implementing, and documents the results of exercising, a set of six-degree-of-freedom rigid-body equations of motion and planetary geodetic, gravitation and atmospheric models for simple vehicles in a variety of endo- and exo-atmospheric conditions with various NASA, and one popular open-source, engineering simulation tools. This effort is intended to provide an additional means of verification of flight simulations. The models used in this comparison, as well as the resulting time-history trajectory data, are available electronically for persons and organizations wishing to compare their flight simulation implementations of the same models.

  13. Postflight simulation of parachute deployment dynamics of Viking qualification flight tests

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Poole, L. R.; Talay, T. A.

    1973-01-01

    Simulation calculations of the Viking qualification flight tests are conducted by use of analytical models of the parachute deployment dynamics process. Results from the study indicate that good simulations of event times and trajectory are obtained. If the full-scale parachute drag coefficient is used, a good simulation of first opening load is obtained and the overall nature of the load history is calculated. For longitudinal motions, the two-degree-of-freedom models give good agreement with a six-degree-of-freedom model. It is believed that the analytical models used are tools which will aid in the analysis of future flight systems.

  14. The Virtual Flier: The Link Trainer, Flight Simulation, and Pilot Identity.

    PubMed

    Jeon, Chihyung

    2015-01-01

    The Link Trainer is often described as the first successful attempt at what we now recognize as flight simulation and even virtual reality. Instead of asking how well the device simulated flight conditions, this article shows that what the Link Trainer simulated was not the conditions of the air, but rather the conditions of the cockpit that was gradually filled with flight instruments. The article also considers the Link Trainer as a cultural space in which shifting ideas about what it meant to be a pilot were manifested. A pilot in the Link Trainer was trained into a new category of flier-the virtual flier-who was an avid reader of instruments and an attentive listener to signals. This article suggests that, by situating the pilot within new spaces, protocols, and relationships, technologies of simulation have constituted the identity of the modern pilot and other operators of machines. PMID:26334696

  15. Ride qualities criteria validation/pilot performance study: Flight simulator results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Borland, C. J.; Lefritz, N. M.

    1976-01-01

    Pilot performance was studied during simulated manual terrain following flight for ride quality criteria validation. An existing B-1 simulation program provided the data for these investigations. The B-1 simulation program included terrain following flights under varying controlled conditions of turbulence, terrain, mission length, and system dynamics. The flight simulator consisted of a moving base cockpit which reproduced motions due to turbulence and control inputs. The B-1 aircraft dynamics were programmed with six-degrees-of-freedom equations of motion with three symmetric and two antisymmetric structural degrees of freedom. The results provided preliminary validation of existing ride quality criteria and identified several ride quality/handling quality parameters which may be of value in future ride quality/criteria development.

  16. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  17. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  18. Integration of visual and motion cues for flight simulator requirements and ride quality investigation

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1976-01-01

    Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.

  19. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  20. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  1. A review of recent programs and future plans for rotorcraft in-flight simulation at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Aiken, Edwin W.; Hindson, William S.; Lebacqz, J. V.; Denery, Dallas G.

    1991-01-01

    A new flight research vehicle, the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at Ames Research Center. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the CH-47B research helicopter that was operated as an in-flight simulator at Ames during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at Ames are reviewed. Another U.S. Army helicopter, a UH-60A Black Hawk, has been selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described.

  2. Degradation of learned skills. Effectiveness of practice methods on simulated space flight skill retention

    NASA Technical Reports Server (NTRS)

    Sitterley, T. E.; Berge, W. A.

    1972-01-01

    Manual flight control and emergency procedure task skill degradation was evaluated after time intervals of from 1 to 6 months. The tasks were associated with a simulated launch through the orbit insertion flight phase of a space vehicle. The results showed that acceptable flight control performance was retained for 2 months, rapidly deteriorating thereafter by a factor of 1.7 to 3.1 depending on the performance measure used. Procedural task performance showed unacceptable degradation after only 1 month, and exceeded an order of magnitude after 4 months. The effectiveness of static rehearsal (checklists and briefings) and dynamic warmup (simulator practice) retraining methods were compared for the two tasks. Static rehearsal effectively countered procedural skill degradation, while some combination of dynamic warmup appeared necessary for flight control skill retention. It was apparent that these differences between methods were not solely a function of task type or retraining method, but were a function of the performance measures used for each task.

  3. Effects of simulated forward flight on jet noise, shock noise and internal noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tanna, H. K.; Tester, B. J.

    1979-01-01

    Inflight simulation experiments are conducted in an anechoic free-jet facility to examine the flight effects on various combinations of jet noise, shock noise and internal noise. The jet mixing noise component reduces with forward velocity at all angles and frequencies. When jet mixing noise is contaminated with internal noise, forward motion provides a noise reduction in the rear arc and a noise increase in the forward arc, with little change at 90 deg. The results are similar for shock-containing jets. It is found that the existing anomalies between full-scale flight data and model-scale flight simulation data could well be due to the contamination of the flight data by internal noise.

  4. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  5. Advancing Circadian Rhythms Before Eastward Flight: A Strategy to Prevent or Reduce Jet Lag

    PubMed Central

    Eastman, Charmane I.; Gazda, Clifford J; Burgess, Helen J.; Crowley, Stephanie J.; Fogg, Louis F.

    2005-01-01

    Study Objectives To develop a practical pre-eastward flight treatment to advance circadian rhythms as much as possible but not misalign them with sleep. Design One group had their sleep schedule advanced by 1 hour per day and another by 2 hours per day. Setting Baseline at home, treatment in lab. Participants Young healthy adults (11 men, 15 women) between the ages of 22 and 36 years. Interventions Three days of a gradually advancing sleep schedule (1 or 2 hours per day) plus intermittent morning bright light (one-half hour ~5000 lux, one-half hour of < 60 lux) for 3.5 hours. Measurements and Results The dim light melatonin onset was assessed before and after the 3-day treatment. Subjects completed daily sleep logs and symptom questionnaires and wore wrist activity monitors. The dim light melatonin onset advanced more in the 2-hours-per-day group than in the 1-hour-per-day group (median phase advances of 1.9 and 1.4 hours), but the difference between the means (1.8 and 1.5 hours) was not statistically significant. By the third treatment day, circadian rhythms were misaligned relative to the sleep schedule, and subjects had difficulty falling asleep in the 2-hours-per-day group, but this was not the case in the 1-hour-per-day group. Nevertheless, the 2-hours-per-day group did slightly better on the symptom questionnaires. In general, sleep disturbance and other side effects were small. Conclusions A gradually advancing sleep schedule with intermittent morning bright light can be used to advance circadian rhythms before eastward flight and, thus, theoretically, prevent or reduce subsequent jet lag. Given the morning light treatment used here, advancing the sleep schedule 2 hours per day is not better than advancing it 1 hour per day because it was too fast for the advance in circadian rhythms. A diagram is provided to help the traveler plan a preflight schedule. PMID:15700719

  6. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA s need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  7. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  8. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  9. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  10. The results of cosmic radiation in-flight TEPC measurements during the CAATER flight campaign and comparison with simulation.

    PubMed

    Latocha, M; Autischer, M; Beck, P; Bottolier-Depois, J F; Rollet, S; Trompier, F

    2007-01-01

    The European-Commission-supported project DOSMAX (Dosimetry of Aircrew Exposure to Radiation During Solar Maximum) was aimed at measuring aircrew exposure to cosmic radiation on-board the aircraft during solar maximum. During a dedicated international comparison mission (Co-ordinated Access to Aircraft for Transnational Environmental Research; CAATER) different measurement techniques have been compared by six European institutes (Results of the CAATER Mission, DOSMAX Meeting, Dublin, June 2004). In this paper, we present the tissue-equivalent proportional counter (TEPC) measurements carried out by ARC Seibersdorf research (ARCS), Austria, and Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France, together with a comparison with simulation results under the same conditions. The whole flight campaign consists of four different in-flight investigations performed at two different geographical positions at 12.2 km (FL 400) and 9.8 km (FL 320). One location was chosen above Rome (42 degrees North, 12 degrees East), Italy, for high cut-off rigidity (6.4 GV) and the second above Aalborg (57 degrees North, 10 degrees East), Denmark, for low cut-off rigidity (1.8 GV). The TEPC measurements are presented in terms of absorbed dose and ambient dose equivalent as well as microdosimetric spectra as a function of lineal energy. For the same conditions of the CAATER flights the response of the TEPC has also been simulated by using the Monte Carlo Transport Code FLUKA (version 2003). The results from simulations are compared with measurements and they show a reasonable agreement. PMID:17043055

  11. Gaseous exhaust emissions from a J-58 engine at simulated supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1974-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.

  12. Emission calibration of a J-58 afterburning turbojet engine at simulated supersonic stratospheric flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1974-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.

  13. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 1: Experimental design and initial test

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.; Christensen, D. G.

    1981-01-01

    A Flight Data Console simulation of a digital communication link to replace the current voice communication system used in air traffic control (ATC) was developed. The study determined how a digital communications system reduces cockpit workload, improve, flight proficiency, and is acceptable to general aviation pilots. It is shown that instrument flight, including approach and landing, can be accomplished by using a digital data link system for ATC communication.

  14. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  15. Statistical Trajectory Estimation Program (STEP) implementation for BLDT post flight trajectory simulation

    NASA Technical Reports Server (NTRS)

    Shields, W. E.

    1973-01-01

    Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.

  16. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  17. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  18. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  19. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  20. Plant Closings and Capital Flight: A Computer-Assisted Simulation.

    ERIC Educational Resources Information Center

    Warner, Stanley; Breitbart, Myrna M.

    1989-01-01

    A course at Hampshire College was designed to simulate the decision-making environment in which constituencies in a medium-sized city would respond to the closing and relocation of a major corporate plant. The project, constructed as a role simulation with a computer component, is described. (MLW)

  1. Analytical design and simulation evaluation of an approach flight director system for a jet STOL aircraft

    NASA Technical Reports Server (NTRS)

    Klein, R. H.; Hofmann, L. G.; Mcruer, D. T.

    1974-01-01

    A program was undertaken to develop design criteria and operational procedures for STOL transport aircraft. As part of that program, a series of flight tests shall be performed in an Augmentor Wing Jet STOL Aircraft. In preparation for the flight test programs, an analytical study was conducted to gain an understanding of the characteristics of the vehicle for manual control, to assess the relative merits of the variety of manual control techniques available with attitude and thrust vector controllers, and to determine what improvements can be made over manual control of the bare airframe by providing the pilot with suitable command guidance information and by augmentation of the bare airframe dynamics. The objective of the study is to apply closed-loop pilot/vehicle analysis techniques to the analysis of manual flight control of powered-lift STOL aircraft in the landing approach and to the design and experimental verification of an advanced flight director display.

  2. Shuttle flight test of an advanced gamma-ray detection system

    NASA Astrophysics Data System (ADS)

    Rester, Alfred C., Jr.

    1988-06-01

    The Gamma-Ray Advanced Detector (GRAD) is a gamma-ray detector system consisting of a large-volume, n-type germanium detector with active shielding of bismuth germanate and plastic scintillators. It was diverted from the AFP-675 program to a balloon flight over Antarctica following the Challenger Disaster and the discovery the following year of the supernova 1987A. The present report outlines activities leading to and following the decision to go to Antarctica and summarizes the basic technological results from the project.

  3. A landmark recognition and tracking experiment for flight on the Shuttle/Advanced Technology Laboratory (ATL)

    NASA Technical Reports Server (NTRS)

    Welch, J. D.

    1975-01-01

    The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.

  4. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  5. Comparisons of pilot performance in simulated and actual flight. [effects of ingested barbiturates

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Gerke, R. J.; Wick, R. L., Jr.

    1975-01-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight.

  6. Impact of subject related factors and position of flight control stick on acquisition of simulated flying skills using a flight simulator

    NASA Astrophysics Data System (ADS)

    Cho, Bo-Keun

    Increasing demand on aviation industry calls for more pilots. Thus, pilot training systems and pilot-candidate screening systems are essential for civil and military flying training institutes. Before actual flight training, it is not easy to determine whether a flight trainee will be successful in the training. Due to the high cost of actual flight training, it would be better if there were low cost methods for screening and training candidates prior to the actual flight training. This study intended to determine if subject related factors and flight control stick position have an impact on acquisition of simulated flying skills using a PC-based flight simulator. The experimental model was a factorial design with repeated measures. Sixty-four subjects participated in the experiment and were divided into 8 groups. Experiment consisted of 8 sessions in which performance data, such as heading, altitude and airspeed were collected every 15 seconds. Collected data were analyzed using SAS statistical program. Result of multivariate analysis of variance indicated that the three independent variables: nationality, computer game experience, and flight stick position have significant impact on acquiring simulated flying skill. For nationality, Americans recorded higher scores in general (mean: 81.7) than Koreans (mean: 78.9). The difference in mean scores between Americans and Koreans was 2.8 percent. Regarding computer game experience, the difference between high experience group (82.3) and low experience group (78.3) is significant. For high experience group, American side-stick group recorded the highest (mean: 85.6), and Korean side-stick group (mean: 77.2) scored the lowest. For the low experience group, American center-stick group scored the highest (80.6), and the Korean side-stick group (74.2) scored the lowest points. Therefore, there is a significant difference between high experience group and low experience group. The results also reveal that the center

  7. A single axis study of flight simulator kinematics by difference techniques

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1976-01-01

    The kinematic parameters of position, velocity, and acceleration of a flight simulator may be calculated by knowing the distance between two or more points on an axis and the time the simulator takes to traverse the space between each set of points. These parameters are calculated through the use of difference techniques. Given the true kinematic response of the simulator to computer generated commands, the entire motion system loop may be calibrated, and system operability verified.

  8. Rotorcraft brownout mitigation through flight path optimization using a high fidelity rotorcraft simulation model

    NASA Astrophysics Data System (ADS)

    Alfred, Jillian Samantha

    Brownout conditions often occur during approach, landing, and take off in a desert environment and involve the entrainment and mobilization of loose sediment and dust into the rotor flow field. For this research, a high fidelity flight dynamics model is used to perform a study on brownout mitigation through operational means of flight path. In order for the high fidelity simulation to model an approach profile, a method for following specific profiles was developed. An optimization study was then performed using this flight dynamics model in a comprehensive brownout simulation. The optimization found a local shallow optimum approach and a global steep optimum approach minimized the intensity of the resulting brownout clouds. These results were consistent previous mitigation studies and operational methods. The results also demonstrated that the addition of a full rotorcraft model into the brownout simulation changed the characteristics of the velocity flow field, and hence changing the character of the brownout cloud that was produced.

  9. Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification

    NASA Technical Reports Server (NTRS)

    Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand; Pachol, Matthew; Dawson, Jeremy; Korakakis, Dimitris; Bishop, Robert

    2016-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  10. Modeling methods for high-fidelity rotorcraft flight mechanics simulation

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Tischler, Mark B.; Chaimovich, Menahem; Rosen, Aviv; Rand, Omri

    1992-01-01

    The cooperative effort being carried out under the agreements of the United States-Israel Memorandum of Understanding is discussed. Two different models of the AH-64 Apache Helicopter, which may differ in their approach to modeling the main rotor, are presented. The first model, the Blade Element Model for the Apache (BEMAP), was developed at Ames Research Center, and is the only model of the Apache to employ a direct blade element approach to calculating the coupled flap-lag motion of the blades and the rotor force and moment. The second model was developed at the Technion-Israel Institute of Technology and uses an harmonic approach to analyze the rotor. The approach allows two different levels of approximation, ranging from the 'first harmonic' (similar to a tip-path-plane model) to 'complete high harmonics' (comparable to a blade element approach). The development of the two models is outlined and the two are compared using available flight test data.

  11. Flight evaluation of advanced control systems and displays on a general aviation airplane

    NASA Technical Reports Server (NTRS)

    Loschke, P. C.; Barber, M. R.; Enevoldson, E. K.; Mcmurtry, T. C.

    1974-01-01

    A flight-test program was conducted to determine the effect of advanced flight control systems and displays on the handling qualities of a light twin-engined airplane. A flight-director display and an attitude-command control system, used separately and in combination, transformed a vehicle with poor handling qualities during ILS approaches in turbulent air into a vehicle with good handling qualities. The attitude-command control system also improved the ride qualities of the airplane. A rate-command control system made only small improvements to the airplane's ILS handling qualities in turbulence. Both the rate- and the attitude-command control systems reduced stall warning in the test airplane, increasing the likelihood of inadvertent stalls. The final approach to the point of flare was improved by both the rate- and the attitude-command control systems. However, the small control wheel deflections necessary to flare were unnatural and tended to cause overcontrolling during flare. Airplane handling qualities are summarized for each control-system and display configuration.

  12. Advanced flight hardware for organic separations using aqueous two-phase partitioning

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1996-03-01

    Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  13. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  14. Advanced Simulation in Undergraduate Pilot Training (ASUPT) Facility Utilization Plan.

    ERIC Educational Resources Information Center

    Hagin, William V.; Smith, James F.

    The capabilities of a flight simulation research facility located at Williams AFB, Arizona are described. Research philosophy to be applied is discussed. Long range and short range objectives are identified. A time phased plan for long range research accomplishment is described. In addition, some examples of near term research efforts which will…

  15. A flight test evaluation of the pilot interface with a digital advanced avionics system

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1984-01-01

    A flight study was conducted to study pilot workload and the pilot interface with high levels of avionics capability and automation. The study was done in the context of general aviation, single-pilot IFR operations and utilized an experimental, digital, integrated avionics system. Results indicate that such advanced systems can provide improved information to the pilot and increased functional capability. The results also indicate that additional research is needed to increase the knowledge base required to design the pilot interfaces with highly capable systems. A CRT-based moving map display format tested provided excellent navigational situational awareness but was inferior to an HSI for manual path tracking. The complexity of navigation data management, autopilot management, and maintaining awareness of system status contributed to pilot workload and errors. Suggested guidelines for the design of the pilot/avionics interface for advanced avionics systems are given.

  16. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  17. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Trujillo, Anna; Pritchett, Amy R.

    2000-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plug-in' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  18. Development of a VOR/DME model for an advanced concepts simulator

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  19. Adaptive sliding mode control on inner axis for high precision flight motion simulator

    NASA Astrophysics Data System (ADS)

    Fu, Yongling; Niu, Jianjun; Wang, Yan

    2008-10-01

    Discrete adaptive sliding mode control (ASMC) with exponential reaching law is proposed to alleviate the influence of the factors such as the periodical fluctuation torque of motor, nonlinear friction, and other disturbance which will deteriorate the tracking performance of a DC torque motor driven inner axis for a high precision flight motion simulator, considering the limited compensating ability of the ASMC for these uncertainty, an equivalent friction advance compensator based on Stribeck model is also presented for extra-low speed servo of the system. Firstly, the way direct using the available parts of the inner axis itself to ascertain the parameters for Stribeck model is listed. Secondly, adaptive approach is used to overcome the difficulty of choice the key parameter for exponential reaching law, and the stability of the algorithm is analyzed. Lastly, comparable experiments are carried out to verify the valid of the combined approach. The experiments results show with a stable 0.00006°/s speed response, 95% of time the tracking error is within 0.0002°, other servos such as sine wave tracking are also with high precision.

  20. STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.

  1. Three axis electronic flight motion simulator real time control system design and implementation

    SciTech Connect

    Gao, Zhiyuan; Miao, Zhonghua Wang, Xiaohua; Wang, Xuyong

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  2. A method for three-dimensional modeling of wind-shear environments for flight simulator applications

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1984-01-01

    A computational method for modeling severe wind shears of the type that have been documented during severe convective atmospheric conditions is offered for use in research and training flight simulation. The procedure was developed with the objectives of operational flexibility and minimum computer load. From one to five, simple down burst wind models can be configured and located to produce the wind field desired for specific simulated flight scenarios. A definition of related turbulence parameters is offered as an additional product of the computations. The use of the method to model several documented examples of severe wind shear is demonstrated.

  3. Three axis electronic flight motion simulator real time control system design and implementation

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  4. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  5. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  6. Voice measures of workload in the advanced flight deck: Additional studies

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray

    1989-01-01

    These studies investigated acoustical analysis of the voice as a measure of workload in individual operators. In the first study, voice samples were recorded from a single operator during high, medium, and low workload conditions. Mean amplitude, frequency, syllable duration, and emphasis all tended to increase as workload increased. In the second study, NASA test pilots performed a laboratory task, and used a flight simulator under differing work conditions. For two of the pilots, high workload in the simulator brought about greater amplitude, peak duration, and stress. In both the laboratory and simulator tasks, high workload tended to be associated with more statistically significant drop-offs in the acoustical measures than were lower workload levels. There was a great deal of intra-subject variability in the acoustical measures. The results suggested that in individual operators, increased workload might be revealed by high initial amplitude and frequency, followed by rapid drop-offs over time.

  7. Advanced in turbulence physics and modeling by direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C.

    1987-01-01

    The advent of direct numerical simulations of turbulence has opened avenues for research on turbulence physics and turbulence modeling. Direct numerical simulation provides values for anything that the scientist or modeler would like to know about the flow. An overview of some recent advances in the physical understanding of turbulence and in turbulence modeling obtained through such simulations is presented.

  8. An optimal control approach to the design of moving flight simulators

    NASA Technical Reports Server (NTRS)

    Sivan, R.; Ish-Shalom, J.; Huang, J.-K.

    1982-01-01

    An abstract flight simulator design problem is formulated in the form of an optimal control problem, which is solved for the linear-quadratic-Gaussian special case using a mathematical model of the vestibular organs. The optimization criterion used is the mean-square difference between the physiological outputs of the vestibular organs of the pilot in the aircraft and the pilot in the simulator. The dynamical equations are linearized, and the output signal is modeled as a random process with rational power spectral density. The method described yields the optimal structure of the simulator's motion generator, or 'washout filter'. A two-degree-of-freedom flight simulator design, including single output simulations, is presented.

  9. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included. Previously announced in STAR as N84-10042

  10. Simulation Training Versus Real Time Console Training for New Flight Controllers

    NASA Technical Reports Server (NTRS)

    Heaton, Amanda

    2010-01-01

    For new flight controllers, the two main learning tools are simulations and real time console performance training. These benefit the new flight controllers in different ways and could possibly be improved. Simulations: a) Allow for mistakes without serious consequences. b) Lets new flight controllers learn the working style of other new flight controllers. c) Lets new flight controllers eventually begin to feel like they have mastered the sim world, so therefore they must be competent in the real time world too. Real time: a) Shows new flight controllers some of the unique problems that develop and have to be accounted for when dealing with certain payloads or systems. b) Lets new flight controllers experience handovers - gathering information from the previous shift on what the room needs to be aware of and what still needs to be done. c) Gives new flight controllers confidence that they can succeed in the position they are training for when they can solve real anomalies. How Sims could be improved and more like real-time ops for the ISS Operations Controller position: a) Operations Change Requests to review. b) Fewer anomalies (but still more than real time for practice). c) Payload Planning Manager Handover sheet for the E-1 and E-3 reviews. d) Flight note in system with at least one comment to verify for the E-1 and E-3 reviews How the real time console performance training could be improved for the ISS Operations Controller position: a) Schedule the new flight controller to be on console for four days but with a different certified person each day. This will force them to be the source of knowledge about every OCR in progress, everything that has happened in those few days, and every activity on the timeline. Constellation program flight controllers will have to learn entirely from simulations, thereby losing some of the elements that they will need to have experience with for real time ops. It may help them to practice real time console performance training

  11. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  12. Shock structure and noise of supersonic jets in simulated flight to Mach 0.4

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Shearin, John G.

    1988-01-01

    Measured jet plume static pressure distributions and far-field acoustic spectra are presented for underexpanded jets in simulated flight up to a Mach number of 0.4. A gradual stretching of the downstream shock cells is found as the Mach number increases, with no perceptible change in the shock strength. There appears to be little effect of flight on the broadband shock noise amplitudes, and the small changes in its peak frequency for the same emission angle are correlated with the slightly longer shock cells in flight. The larger changes in the broadband peak frequency found at the same angle in wind tunnel coordinates are attributable to convection. Jet mixing noise production decreases significantly with increasing flight speed.

  13. An Integrated Approach for Entry Mission Design and Flight Simulations

    NASA Technical Reports Server (NTRS)

    Lu, Ping; Rao, Prabhakara

    2004-01-01

    An integrated approach for entry trajectory design, guidance, and simulation is proposed. The key ingredients for this approach are an on-line 3 degree-of-freedom entry trajectory planning algorithm and the entry guidance algorithm that generates the guidance gains automatically. When fully developed, such a tool could enable end-bend entry mission design and simulations in 3DOF and 6DOF mode from de-orbit burn to the TAEM interface and beyond, all in one key stroke. Some preliminary examples of such a capability are presented in this paper that demonstrate the potential of this type of integrated environment.

  14. Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Alonso, Roberto

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the STR2760 GPS satellite 40-channel attitude simulator and an STR4760 12-channel navigation simulator. The facility also contains a few other Goddard resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability of high dynamics GPS simulations for space flight that is unique within the aerospace community. The GPS facility gives a significant advantage in the development and support of GPS based technologies for position, attitude and precise time determination on-board a spacecraft, sounding rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS applications' component development as well as for spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been already utilized by a few successful flight projects carrying GPS experiments, such as USA Seastar satellite and the first Argentine satellite SAC-A. The experience in the SAC-A pre-flight testing using the STR2760 simulator is summarized as well as the comparison with preliminary analysis of the GPS data from SAC-A telemetry.

  15. Development and Utility of a Piloted Flight Simulator for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Ranaudo, Richard J.; Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.

    2003-01-01

    A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.

  16. Development of a simulator to investigate pilot decision making in free flight

    NASA Astrophysics Data System (ADS)

    Scallen, Stephen F.; Smith, Kip; Hancock, Peter A.

    1996-06-01

    In response to the deterioration of ATC technology, the Federal Aviation Administration (FAA) has initiated a program of study to determine the implications of a distributed control structure, 'free-flight', in which pilots would be given authority for navigation and routing decisions. This paper discusses a simulator developed to define constraints on safe and effective pilot decision-making in the proposed 'free-flight' structure. The simulator's design goals were the detailed reproduction of cockpit navigation displays, real-time updating of airspace information, and the flexibility to support dynamic manipulations of the environment. The simulator is housed in the fuselage of a single engine aircraft and supports modern glass-cockpit instrumentation including a primary flight display, a navigation display with proximity warning system, a flight management system display with keyboard input device, and numerous control switches. Unique software abilities includes data collection, data analysis, and data playback. A console control workstation also allows the dynamic manipulation of drone aircraft in simulated air traffic scenarios. At runtime the simulator captures pilot control actions and the location of all traffic.

  17. Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions

    NASA Technical Reports Server (NTRS)

    Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo

    2009-01-01

    Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.

  18. Simulation and flight test evaluation of head-up-display guidance for Harrier approach transitions

    NASA Technical Reports Server (NTRS)

    Dorr, D. W.; Moralez, E., III; Merrick, V. K.

    1992-01-01

    Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, while the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was Level-3, averaged Cooper-Harper handling qualities ratings given during simulation were Level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to Level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.

  19. Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions

    NASA Technical Reports Server (NTRS)

    Dorr, D. W.; Moralez, E., III; Merrick, V. K.

    1994-01-01

    Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.

  20. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  1. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    NASA Technical Reports Server (NTRS)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  2. State-dependent sensorimotor processing: gaze and posture stability during simulated flight in birds

    PubMed Central

    McArthur, Kimberly L.

    2011-01-01

    Vestibular responses play an important role in maintaining gaze and posture stability during rotational motion. Previous studies suggest that these responses are state dependent, their expression varying with the environmental and locomotor conditions of the animal. In this study, we simulated an ethologically relevant state in the laboratory to study state-dependent vestibular responses in birds. We used frontal airflow to simulate gliding flight and measured pigeons′ eye, head, and tail responses to rotational motion in darkness, under both head-fixed and head-free conditions. We show that both eye and head response gains are significantly higher during flight, thus enhancing gaze and head-in-space stability. We also characterize state-specific tail responses to pitch and roll rotation that would help to maintain body-in-space orientation during flight. These results demonstrate that vestibular sensorimotor processing is not fixed but depends instead on the animal's behavioral state. PMID:21307332

  3. Visual cues in flight simulation - An evaluation of stereo effectiveness

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Andre, Anthony D.; Kruk, Ronald V.

    1992-01-01

    The purpose of the present study was to quantify the effects of visual scene information on precision hovering tasks under biocular and stereo viewing conditions in a rotorcraft helmet-mounted display simulator. Four NASA test pilots performed a series of precision hover maneuvers in the context of three different scene contents, two ground textures, and three levels of control configuration difficulty. The results revealed that vertical position variability was greatest when vertical cues were absent, and that patterned ground texture aided hover stability only when other position-reference cues were absent from the scene. The stereo viewing condition showed no uniform advantages over the biocular condition. The results are discussed in terms of their implications for simulator design and qualification.

  4. Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.

    2012-01-01

    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.

  5. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA have undertaken the systematic validation of a ground-based piloted simulator for the UH-60A helicopter. The results of previous handling quality and task performance flight tests for this helicopter have been used as a data base for evaluating the fidelity of the present simulation, which is being conducted at the NASA Ames Research Center's Vertical Motion Simulator. Such nap-of-the-earth piloting tasks as pop-up, hover turn, dash/quick stop, sidestep, dolphin, and slalom, have been investigated. It is noted that pilot simulator performance is significantly and quantifiable degraded by comparison with flight test results for the same tasks.

  6. Comparisons of simulator and flight results on augmentor-wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Innis, R. C.; Anderson, S. B.

    1972-01-01

    The considerations involved in making a piloted simulator an effective research tool in the design and development of new aircraft are discussed. An assessment of the limitations of the simulator in depicting real flight as well as the problem of recognizing erroneous results when the simulator is supplied with incorrect input data is made. Examples of the ways in which the simulator is used to design and develop the augmentor-wing aircraft are presented. Four areas of investigation are: (1) to design the lateral control system for proper feel and response, (2) determine the effect of engine failure during approach, (3) develop the best technique for controlling flight path during approach, and (4) the significance of lift loss in ground effect and how to compensate for such loss.

  7. Flight Simulator: Use of SpaceGraph Display in an Instructor/Operator Station. Final Report.

    ERIC Educational Resources Information Center

    Sher, Lawrence D.

    This report describes SpaceGraph, a new computer-driven display technology capable of showing space-filling images, i.e., true three dimensional displays, and discusses the advantages of this technology over flat displays for use with the instructor/operator station (IOS) of a flight simulator. Ideas resulting from 17 brainstorming sessions with…

  8. Orbiter/shuttle carrier aircraft separation: Wind tunnel, simulation, and flight test overview and results

    NASA Technical Reports Server (NTRS)

    Homan, D. J.; Denison, D. E.; Elchert, K. C.

    1980-01-01

    A summary of the approach and landing test phase of the space shuttle program is given from the orbiter/shuttle carrier aircraft separation point of view. The data and analyses used during the wind tunnel testing, simulation, and flight test phases in preparation for the orbiter approach and landing tests are reported.

  9. Advanced photovoltaic system simulator to demonstrate the performance of advanced photovoltaic cells and devices

    SciTech Connect

    Mrig, L.; DeBlasio, R.; O'Sullivan, G.A.; Tomko, R.P.

    1983-05-01

    This paper describes a photovoltaic system simulator for characterizing and evaluating the performance of advanced photovoltaic cells, modules, and arrays as well as for simulating the operation of advanced conceptual photovoltaic systems. The system simulator is capable of extrapolating the performance from a single laboratory cell, or of a module to power levels up to 10 kW. The major subsystems comprising the system simulator are (1) Solar Array Simulator, (2) Power Conditioning Unit, (3) Load Controller and Resistive Load Unit, (4) Data Acquisition and Control Unit, and (5) Cell Test Bed.

  10. SiSAR: advanced SAR simulation

    NASA Astrophysics Data System (ADS)

    Klaus, Ferdinand

    1995-11-01

    SiSAR was planned as a realistic as possible, modular, user-friendly and fast SAR raw data simulator running on ordinary workstations. Interest in (interferometric) SAR products is growing on an international scale. There is a concentration of manpower and financial resources. Dead ends, respectively failures, have to be avoided during design and mission of every SAR project by simulating the system thoroughly before the experiment. Another reason to make use of extensive reproducible simulations during design and development is the reduction of time and manpower costs. As it comes down to verifying and comparing different processing algorithms we see that (interferometric) SAR simulation is an indispensable tool for testing individual processing steps. SiSAR is a modular SAR raw data simulator for realistic description of the functions of a SAR-system. It contains an implementation of diverse models to characterize radar targets, various approaches to describe the trajectory and the motion of the footprint on the target surface and different raw data formation algorithms. Beyond there is a wide supply of tools for manipulation, analysis and user-friendly simulation handling. Results obtained by SiSAR and some first simulated interferometric SAR raw data are shown in the paper.

  11. Chromatically corrected virtual image visual display. [reducing eye strain in flight simulators

    NASA Technical Reports Server (NTRS)

    Kahlbaum, W. M., Jr. (Inventor)

    1980-01-01

    An in-line, three element, large diameter, optical display lens is disclosed which has a front convex-convex element, a central convex-concave element, and a rear convex-convex element. The lens, used in flight simulators, magnifies an image presented on a television monitor and, by causing light rays leaving the lens to be in essentially parallel paths, reduces eye strain of the simulator operator.

  12. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    NASA Technical Reports Server (NTRS)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  13. Simulator evaluation of a flight-path-angle control system for a transport airplane with direct lift control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    A piloted simulator was used to evaluate the flight path angle control capabilities of a system that employs spoiler direct lift control. The system was designated the velocity vector control system and was compared with a baseline flight path angle control system which used elevator for control. The simulated airplane was a medium jet transport. Research pilots flew a manual instrument landing system glide slope tracking task and a variable flight path angle task in the landing configuration to obtain comparative performance data.

  14. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  15. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... airmen used in appendix H training and checking are highly qualified to provide the training required...

  16. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  17. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  18. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  19. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  20. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  1. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  2. Evaluation of a strapless heart rate monitor during simulated flight tasks.

    PubMed

    Wang, Zhen; Fu, Shan

    2016-01-01

    Pilots are under high task demands during flight. Monitoring pilot's physiological status is very important in the evaluation of pilot's workload and flight safety. Recently, physiological status monitor (PSM) has been embedded into a watch that can be used without a conventional chest strap. This makes it possible to unobtrusively monitor, log and transmit pilot's physiological measurements such as heart rate (HR) during flight tasks. The purpose of this study is to validate HR recorded by a strapless heart rate watch against criterion ECG-derived HR. Ten commercial pilots (mean ± SD : age: 39.1 ± 7.8 years; total flight hours 7173.2 ± 5270.9 hr) performed three routinely trained flight tasks in a full flight simulator: wind shear go-around (WG), takeoff and climb (TC), and hydraulic failure (HF). For all tasks combined (overall) and for each task, differences between the heart rate watch measurements and the criterion data were small (mean difference [95% CI]: overall: -0.71 beats/min [-0.85, -0.57]; WG: -0.90 beats/min [-1.15, -0.65]; TC: -0.69 beats/min [-0.98, -0.40]; HF: -0.61 beats/min [-0.80, -0.42]). There were high correlations between the heart rate watch measurements and the ECG-derived HR for all tasks (r ≥ 0.97, SEE < 3). Bland-Altman plots also show high agreements between the watch measurements and the criterion HR. These results suggest that the strapless heart rate watch provides valid measurements of HR during simulated flight tasks and could be a useful tool for pilot workload evaluation. PMID:26554432

  3. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  4. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  5. Multiple-Instruction, Multiple-Data Path Computers: Parallel Processing Impact on Flight Simulation Software. Final Report.

    ERIC Educational Resources Information Center

    Lord, Robert E.; And Others

    The purpose of this study was to evaluate the parallel processing impact of multiple-instruction multiple-data path (MIMD) computers on flight simulation software. Basic mathematical functions and arithmetic expressions from typical flight simulation software were selected and run on an MIMD computer to evaluate the improvement in execution time…

  6. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  7. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  8. Validation test of 125 Ah advanced design IPV nickel-hydrogen flight cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1993-01-01

    An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel Ni-H cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous O and H flow within the cell, while maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack to accommodate Ni electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of Ni electrode expansion. Six 125 Ah flight cells based on this design were fabricated; the catalyzed wall wick cells have been cycled for over 19,000 cycles with no cell failures in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13,900).

  9. Flight tests of advanced 3D-PFD with commercial flat-panel avionics displays and EGPWS system

    NASA Astrophysics Data System (ADS)

    He, Gang; Feyereisen, Thea; Gannon, Aaron; Wilson, Blake; Schmitt, John; Wyatt, Sandy; Engels, Jary

    2005-05-01

    This paper describes flight trials of Honeywell Advanced 3D Primary Flight Display System. The system employs a large-format flat-panel avionics display presently used in Honeywell PRIMUS EPIC flight-deck products and is coupled to an on-board EGPWS system. The heads-down primary flight display consists of dynamic primary-flight attitude information, flight-path and approach symbology similar to Honeywell HUD2020 heads-up displays, and a synthetic 3D perspective-view terrain environment generated with Honeywell"s EGPWS terrain data. Numerous flights are conducted on-board Honeywell Citation V aircraft and significant amount of pilot feedback are collected with portion of the data summarized in this paper. The system development is aimed at leveraging several well-established avionics components (HUD, EGPWS, large-format displays) in order to produce an integrated system that significantly reduces pilot workload, increases overall situation awareness, and is more beneficial to flight operations than achievable with separated systems.

  10. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  11. Developing of MERTIS as an advanced process from the study up to the flight model

    NASA Astrophysics Data System (ADS)

    Peter, G.; Helbert, J.; Hiesinger, H.; Weber, Iris; Walter, I.; Arnold, G.; Säuberlich, T.

    2013-09-01

    ESA's mission BepiColombo will be launched in 2016. MERTIS (Mercury Radiometer and Thermal imaging Spectrometer) is one of the key instruments. MERTIS is an imaging infrared spectrometer and radiometer using an uncooled detector technology with very small resources in terms of mass and power. The incentive of the MERTIS development is scientific requirements to study the surface composition and temperatures of Mercury under the extreme environmental condition at Mercury. Therefore, the state-of-the-art optical performance of MERTIS is unique. Components based on innovative technologies have been developed and qualified to realize the project. This approach required an advanced model philosophy and development process from the study up to the flight model completed in 2013. This paper describes the development process as well as challenges from the management and system engineering point of view up to a lessons learnt that lead to important conclusions.

  12. SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission

    NASA Astrophysics Data System (ADS)

    Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve

    2006-06-01

    This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.

  13. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  14. Free Flight Simulation: An Initial Examination of Air-Ground Integration Issues

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; McGann, Alison; Cashion, Patricia; Dunbar, Melisa; Mackintosh, Margaret; Dulchinos, Victoria; Jordan, Kevin; Remington, Roger (Technical Monitor)

    2000-01-01

    The concept of "free flight" is intended to emphasize more flexibility for operators in the National Airspace System (RTCA, 1995). This may include the potential for aircraft self-separation. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in an integrated air-ground environment. Participants were 10 commercial U.S. flight crews who flew the B747-400 simulator and 10 Denver ARTCC controllers who monitored traffic in an ATC simulation. A prototypic airborne alerting logic and flight deck display features were designed to allow for increased traffic and maneuvering information. Eight different scenarios representing different conflict types were developed. The effects of traffic density (high and low) and different traffic convergence angles (obtuse, acute, and right) were assessed. Conflict detection times were found to be lower for the flight crews in low density compared to high density scenarios. For the controllers, an interaction between density and convergence angle was revealed. Analyses on the controller detection times found longer detection times in the obtuse high density compared to obtuse low density, as well as the shortest detection times in the high density acute angle condition. Maneuvering and communication events are summarized, and a discussion of future research issues is provided.

  15. Research and implementation of a shaking seat system for flight simulator

    NASA Astrophysics Data System (ADS)

    Shi, Xiaolin; Yu, Youzhi; Shen, Weiqun; Song, Zishan

    2006-11-01

    To a helicopter the shaking seat system can simulate the vibration caused by the main rotor, tail rotor, engine, weapon firing, landing, etc. This paper focuses on the research and analysis of the shaking system of a helicopter flight simulator. The vibration model of the seat is built and the system is also developed. According to different flight states of the helicopter the vibration states of the seat are classified based on real measurement data, and the spectra of the vibration are interpolated to model the vibration of the seat. An electro-hydraulic servo system is used to drive the seat to shake along the direction that is parallel to the vertical body axis. The seat is shaken under the instructions at reference height with position close-loop control method, and the control law is PID algorithm. Running parameters of the system are configured by the software. The motional states of the shaking seat are displayed to the user through the visualization software. The main parts of the system and some key technologies of the implementation are also presented in the paper. The system can generate the special vibration environment in the helicopter flight process, and is successfully applied to the flight simulator. So the pilots' immersion feelings are increased.

  16. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    NASA Technical Reports Server (NTRS)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  17. Predicting fruit fly’s sensing rate with insect flight simulations

    PubMed Central

    Chang, Song; Wang, Z. Jane

    2014-01-01

    Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. PMID:25049376

  18. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.

  19. Effectiveness of Circadian countermeasures in simulated transmeridian flight schedules

    NASA Technical Reports Server (NTRS)

    Moline, Margaret L.; Monk, Timothy H.

    1989-01-01

    The symptoms of jet-lag commonly afflict travelers who cross time zones. Insomnia during the new night, daytime fatigue, malaise, sleepiness, and gastrointestinal disturbances can occur for as long as 3 weeks after jet travel across even a few time zones. These symptoms are largely due to the slow rate of adjustment of the internal circadian timing system to the new time zone. Since business (or pleasure) can be seriously interrupted by such symptoms, it is important to determine ways to speed up the adjustment process to ameliorate the symptoms. Airline pilots have reported that they frequently nap to counter jet lag symptoms, and that they view this as a useful technique. Napping as a countermeasure would be attractive since it is practical and would take advantage of a naturally occurring phase of sleepiness after lunch. Napping also makes sense since insomnia is a common jet lag symptom. Thus, a laboratory simulation of jet lag was designed to test the ability of napping to increase the rate of adjustment following a time zone shift in a population of middle-aged men.

  20. Simulation and flight evaluation of a head-up landing aid for general aviation

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Goode, M. W.; Yenni, K. R.

    1978-01-01

    A head-up general aviation landing aid called a landing site indicator (LASI) was tested in a fixed-base, visual simulator and in an airplane to determine the effectiveness of the LASI. The display, which had a simplified format and method of implementation, presented to the pilot in his line of sight through the windshield a graphic representation of the airplane's velocity vector. In each testing model (simulation of flight), each of 4 pilots made 20 landing approaches with the LASI and 20 approaches without it. The standard deviations of approach and touchdown parameters were considered an indication of pilot consistency. Use of the LASI improved consistency and also reduced elevator, aileron, and rudder control activity. Pilots' comments indicated that the LASI reduced work load. An appendix is included with a discussion of the simulator effectiveness for visual flight tasks.

  1. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  2. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  3. Advanced Simulation and Computing Business Plan

    SciTech Connect

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  4. Qualification of the flight-critical AFTI/F-16 digital flight control system. [Advanced Fighter Technology Integration

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Ishmael, S. D.; Regenie, V. A.

    1983-01-01

    Qualification considerations for assuring the safety of a life-critical digital flight control system include four major areas: systems interactions, verification, validation, and configuration control. The AFTI/F-16 design, development, and qualification illustrate these considerations. In this paper, qualification concepts, procedures, and methodologies are discussed and illustrated through specific examples.

  5. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  6. Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Maliska, Heather

    2006-01-01

    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.

  7. Simulation evaluation of a low-altitude helicopter flight guidance system adapted for a helmet-mounted display

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.

    1992-01-01

    A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  8. Validation test of 125 Ah advanced design IPV nickel-hydrogen flight cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1993-01-01

    An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, Low-Earth-Orbit (LEO) spacecraft missions. The new features of this design, which are not incorporated in state-of-the-art design cells, are: (1) use of 26 percent rather than 31 percent potassium hydroxide (KOH) electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. Six 125 Ah flight cells based on this design were fabricated by Eagle-Picher. Three of the cells contain all of the advanced features (test cells) and three are the same as the test cells except they do not have catalyst on the wall wick (control cells). All six cells are in the process of being evaluated in a LEO cycle life test at the Naval Weapons Support Center, Crane, IN, under a NASA Lewis Research Center contract. The catalyzed wall wick cells have been cycled for over 19000 cycles with no cell failures in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13,900).

  9. Influence of nicotine on simulator flight performance in non-smokers.

    PubMed

    Mumenthaler, M S; Taylor, J L; O'Hara, R; Yesavage, J A

    1998-11-01

    In a placebo-controlled study, we investigated the influence of nicotine on late-day aviation performance in 15 non-smoking subjects. In a within-subjects design, subjects were tested on 2 days, each lasting 8 h and consisting of three 75-min simulator flights (late-afternoon practice, evening test, night test). Prior to each test, subjects received either nicotine polacrilex 2 mg or placebo gum. As expected, overall performance was significantly better after nicotine, compared to placebo (P < 0.01). Post-hoc analysis of individual flight tasks showed that nicotine improved scores on approach to landing, a task which appears to require sustained attention. We conclude that nicotine may improve late-day flight performance in non-smoking aviators. PMID:9862400

  10. Pitch Controllability Based on Airplane Model without Short-Period Approximation—Flight Simulator Experiment—

    NASA Astrophysics Data System (ADS)

    Sato, Osamu; Kobayashi, Osamu

    Pitch controllability of an airplane is very important for longitudinal flying qualities, therefore, much research has been conducted. However, it has not been clarified why pitch handling qualities degrades in the low speed, e.g. take-off and landing flight phases. On this topic, this paper investigates the effect of several parameters of the short-period mode and phugoid mode using a flight simulator. The results show the following conclusions: The difference between the initial phase angles in two modal components in the pitch attitude response to elevator step input plays the most important role in the pitch handling qualities among modal parameters; and the difference of the two modal natural frequencies has small effect on the pitch controllability even when flight speed decreases.

  11. Real-gas simulation for the Shuttle Orbiter and planetary entry configurations including flight results

    NASA Technical Reports Server (NTRS)

    Calloway, R. L.

    1984-01-01

    By testing configurations in a gas (like CF4) which can produce high normal-shock density ratios, such as those encountered during hypersonic entry, certain aspects of real-gas effects can be simulated. Results from force-moment, shock-shape and oil flow visualization tests are presented for both the Shuttle Orbiter and a 45 deg sphere-cone in CF4 and air at M = 6, and comparisons are made with flight results. Pitching-moment coefficients measured on a Shuttle Orbiter model in CF4 showed a nose-up increment, compared with air results, that was almost identical to the difference between preflight predictions and flight in the high hypersonic regime. The drag coefficient measured in CF4 on the 45 deg sphere-cone, which is the same configuration used on the forebody of the Pioneer Venus entry vehicles, showed excellent agreement with flight data at M = 6.

  12. A mathematical force and moment model of a UH-1H helicopter for flight dynamics simulations

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Corliss, L. D.

    1977-01-01

    A model of a UH-1H helicopter was developed to support flight simulations and for developmental work on an avionics system known as V/STOLAND system. Equations and numerical values of constants used to represent the helicopter are presented. Responses to stop inputs of the cyclic and collective controls are shown and compared with flight test data for a UH-1H. The model coefficients were adjusted in an attempt to get a consistant match with the flight time histories at hover and 60 knots. Response matching was obtained at 60 knots, but the matching at hover was not as successful. Pilot evaluations of the model, both fixed and moving base, were made.

  13. Pyroshock Simulation Systems: Are We Correctly Qualifying Flight Hardware for Pyroshock Environments?

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Nayeri, Reza; Kern, Dennis L.

    2009-01-01

    There are several methods of shock testing that are commonly used by the aerospace industry to qualify flight hardware to pyroshock environments. In some cases the shock results and in particular the shock response spectra computed from these tests were interpreted in such a way as to satisfy the testing requirements and were often considered successful for flight hardware qualification. However, close scrutiny of these acquired shock data suggest gross violation of the pyroshock qualification requirements. There are several issues, both in terms of the shock generation mechanisms and the shock signature acquisition and analysis that have led to improper qualification of flight hardware. In this paper some factors contributing to the misinterpretation of the shock data are reviewed. First, issues with the hardware fixturing and instrumentation that may lead to incorrect shock testing are discussed. Second, issues facing the shock simulation systems and pyrotechnic testing are reviewed. Finally, issues pertaining to the data acquisition and analysis are briefly discussed.

  14. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  15. New Predictive Filters for Compensating the Transport Delay on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Houck, Jacob A.; Kelly, Lon C.; Wolters, Thomas E.

    2004-01-01

    The problems of transport delay in a flight simulator, such as its sources and effects, are reviewed. Then their effects on a pilot-in-the-loop control system are investigated with simulations. Three current prominent delay compensators the lead/lag filter, McFarland filter, and the Sobiski/Cardullo filter were analyzed and compared. This paper introduces two novel delay compensation techniques an adaptive predictor using the Kalman estimator and a state space predictive filter using a reference aerodynamic model. Applications of these two new compensators on recorded data from the NASA Langley Research Center Visual Motion Simulator show that they achieve better compensation over the current ones.

  16. Advances in NLTE modeling for integrated simulations

    NASA Astrophysics Data System (ADS)

    Scott, H. A.; Hansen, S. B.

    2010-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different atomic species for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly-excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with sufficient accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δ n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short time steps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  17. Understanding Crew Decision-Making in the Presence of Complexity: A Flight Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Daniels, Taumi S.; Evans, Emory; deHaag, Maarten Uijt; Duan, Pengfei

    2013-01-01

    Crew decision making and response have long been leading causal and contributing factors associated with aircraft accidents. Further, it is anticipated that future aircraft and operational environments will increase exposure to risks related to these factors if proactive steps are not taken to account for ever-increasing complexity. A flight simulation study was designed to collect data to help in understanding how complexity can, or may, be manifest. More specifically, an experimental apparatus was constructed that allowed for manipulation of information complexity and uncertainty, while also manipulating operational complexity and uncertainty. Through these manipulations, and the aid of experienced airline pilots, several issues have been discovered, related most prominently to the influence of information content, quality, and management. Flight crews were immersed in an environment that included new operational complexities suggested for the future air transportation system as well as new technological complexities (e.g. electronic flight bags, expanded data link services, synthetic and enhanced vision systems, and interval management automation). In addition, a set of off-nominal situations were emulated. These included, for example, adverse weather conditions, traffic deviations, equipment failures, poor data quality, communication errors, and unexpected clearances, or changes to flight plans. Each situation was based on one or more reference events from past accidents or incidents, or on a similar case that had been used in previous developmental tests or studies. Over the course of the study, 10 twopilot airline crews participated, completing over 230 flights. Each flight consisted of an approach beginning at 10,000 ft. Based on the recorded data and pilot and research observations, preliminary results are presented regarding decision-making issues in the presence of the operational and technological complexities encountered during the flights.

  18. Simulation of automatic rotorcraft nap-of-the-earth flight in graphics workstation environment

    NASA Technical Reports Server (NTRS)

    Lam, T.; Cheng, Victor H. L.

    1992-01-01

    This paper describes a three-dimensional (3D) helicopter flight simulation system. The simulation is designed to be a readily available tool for concept verification and tuning of automatic obstacle-avoidance guidance algorithms. The system has been implemented on networked workstations capable of interactive 3D graphics simulation. The simulation uses realistic terrain and obstacle models. The dynamics of the rotorcraft and the functional capabilities of the range sensors are simulated to provide all the components required to evaluate the guidance function. Standard graphics hardware available on the workstation is utilized to accelerate the range-data calculations for sensor simulation at the guidance rate. An example is given to demonstrate the performance of the obstacle-avoidance capability.

  19. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2007-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  20. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.