Science.gov

Sample records for advanced fluid bed

  1. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  2. 10,000 hours commercial operating experience with advanced-design, reflux circulating fluid bed scrubbing employing slaked lime reagent

    SciTech Connect

    Graf, R.E.; Huckriede, B.W.

    1995-06-01

    Details are presented of design, operating and maintenance experience with a commercial installation in Germany of a circulating fluid bed scrubber of advanced design (Reflux Circulating Fluid Bed Scrubber utilizing slaked lime slurry) retrofitted to a pulverized coal fired, 220 t/h, steam generating boiler, including problems encountered, corrections made and resulting technical improvements achieved. This state-of-the-art process design technology is described to highlight newly demonstrated innovative features that include cost effective means for minimizing amount of purchase of hydrated lime, at the same time substantially decreasing reagent cost. Other key details included are system effectiveness in achieving very high lime-utilization (free lime concentration in the residue below 1 %); means for by-product (residue) utilization; very high operational availability since initial startup in May 1993; SO{sub 2} removal efficiency up to 97 %; and optimization of process economics through efforts for simplification of system operation and maintenance; and attractiveness in cost-effectively meeting diverse environmental pollution control objectives in varied, worldwide, FGD applications.

  3. Alumina calcination with the advanced circulating fluid bed technology: A design with increased efficiency combined with operating flexibility

    SciTech Connect

    Schmidt, H.W.; Stockhausen, W.; Silberberg, A.N.

    1996-10-01

    The Circulating Fluid Bed (CFB) technology has now been applied to alumina calcination for a quarter of a century. The combined capacity of the 32 units installed is greater than 10 million metric tons per year. The paper highlights the consistency of the product quality which is based upon the operating experience of the last decade and improvements to the calcination system which also provides lower heat consumption. The principal modifications are incorporated in the preheating and cooling sections of the plant. These design modifications have also reduced capital cost. Overall the plant retains its proven features of high flexibility, unique temperature control, high availability, reliable performance, and low maintenance cost. The design is applicable to single train units up to a capacity of 3,000 MTPD (alumina).

  4. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  5. Burning coal refuse in fluid beds

    SciTech Connect

    Kleinau, J.H.; Sneyd, R.J.; Lombardi, C.E.

    1985-01-01

    This paper deals with the application of fluid bed combustion technology to the burning of coal-mining waste. The designs of two stage fluid bed combustors/dryers are demonstrated as useful in the drying of coal, slag and coke, using coal and coal refuse (gob) as fuel. Anthracite mining refuse (culm) is more than abundant in Northeastern Pennsylvania. After demonstration at Shamokin, Pennsylvania, a full commercial-sized fluid bed boiler using culm is used for district heating in Wilkes-Barre, Pennsylvania. Limited research work has shown the utility of using fine coal as filter aid in sludge incineration. With the rising avenues of the suitability of coal as auxiliary fuel in fluid bed sludge incineration, an expansion of these concepts combines the use of coal or coal refuse as filter aid and auxiliary fuel. Limestone addition controls SO/sub 2/ emission.

  6. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  7. The Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1990-01-01

    The principal goals and design concepts of the Advanced Expander Test Bed (AETB) program are briefly reviewed. The AETB is planned as the focal point for the development and demonstration of high-performance oxygen/hydrogen engine technology and advanced component technology for the next space engine. The engine will operate at pressures up to 1200 psia over a wide range of conditions, easily accommodating mission-focused components. The discussion covers design requirements, design approach, conceptual design, the AETB cycle, and the AETB control system.

  8. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    SciTech Connect

    Rehmat, A.; Khinkis, M.

    1991-01-01

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated with ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.

  9. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  10. Dry coating in a rotary fluid bed.

    PubMed

    Kablitz, Caroline Désirée; Harder, Kim; Urbanetz, Nora Anne

    2006-02-01

    A highly efficient dry coating process was developed to obtain an enteric film avoiding completely the use of organic solvents and water. Using hydroxypropyl methylcellulose acetate succinate (HPMCAS) an enteric coat should be obtained without adding talc as anti-tacking agent because of problems arising from microbiological contamination. Further on, a method was developed preparing isolated films in order to determine the glass transition temperature (T(g)) and the required process temperature. The process was conducted in the rotary fluid bed with a gravimetric powder feeder achieving an exact dosage in contrast to volumetric powder feeder. A three way nozzle was aligned tangential to the pellet bed movement feeding simultaneously powder and plasticizer into the rotary fluid bed. The determined coating efficiency of the talc-free formulation was high with 94% and storage stability regarding tacking could be achieved using colloidal silicium dioxide as top powder. The T(g) of the enteric coat could be determined analyzing the T(g) of isolated films obtained by coating celluloid spheres instead of pellets using the dry coating process in rotary fluid bed. The dry coating process has been demonstrated to be a serious alternative to conventional solvent or water based coating processes. PMID:16290285

  11. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  12. Study of ebullated bed fluid dynamics

    NASA Astrophysics Data System (ADS)

    Schaefer, R. J.; Rundell, D. N.; Shou, J. K.

    1983-07-01

    The fluid dynamics occurring in a coal liquefaction reactor is measured and compared with cold flow fluidization results. Catalyst bed expansions and gas holdups are higher in the Process Development Unit (PDU) than those observed in the cold flow tests for slurries having the same nominal viscosity. Comparison of PDU results with cold flow results shows that the bulk of the operating reactor gas flow lies in the ideal bubbly regime. Existence of churn turbulent behavior during these two experiments is consistent with trends observed in earlier cold flow experiments. Two and three phase fluidization experiments are carried out. Bed expansion is primarily a function of slurry velocity, with gas velocity having only a weak effect. A viscometer is adapted for measurement of the viscosity of coal slurries at high temperature and pressure. A significant degree of backmixing occurs in the H-Coal system.

  13. Fluid bed solids heater. Final technical report

    SciTech Connect

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  14. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    SciTech Connect

    Not Available

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  15. Design of an Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Mitchell, John C.; Tabata, William K.

    1993-01-01

    The final design of the Advanced Expander Test Bed (AETB) is discussed. The AETB is a cryogenic rocket ground test unit being designed and built for NASA to enable validation of mission-focused technologies for advanced space engines. Based on the split expander cycle, it will operate at a nominal thrust of 20,000 lbf, a chamber pressure of 1200 psia, and may be operated off-design over a wide range of throttling conditions and mixture ratios. The design approach and configuration of the major components are described.

  16. INVESTIGATION OF FLUID BED COMBUSTION OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    An experimental study was undertaken to burn processed municipal solid waste in a fluid-bed combustor containing water-cooled tubes in the bed. The 300-hour test was performed without incident and terminated on schedule. The combustor and ducting were clean on inspection after th...

  17. Fluid-bed air-supply system

    DOEpatents

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  18. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  19. Shielded fluid stream injector for particle bed reactor

    DOEpatents

    Notestein, John E.

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  20. Shielded fluid stream injector for particle bed reactor

    SciTech Connect

    Notestein, J.E.

    1991-12-31

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an inline reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  1. Fluid bed technology in materials processing

    SciTech Connect

    Gupta, C.K.; Sathiyamoorthy, D.

    1999-01-01

    The author explores the various aspects of fluidization engineering and examines its applications in a multitude of materials processing techniques. Topics include process metallurgy, fluidization in nuclear engineering, and the pros and cons of various fluidization equipment. Gupta emphasizes fluidization engineering in high temperature processing, and high temperature fluidized bed furnaces.

  2. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure

    SciTech Connect

    Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue

    2009-05-15

    The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

  3. EVALUATION AND DEMONSTRATION OF THE CHEMICALLY ACTIVE FLUID BED

    EPA Science Inventory

    The report gives results of the operation of a 17-MW Chemically Active Fluid Bed (CAFB) demonstration unit, retrofitted to a natural gas boiler. The CAFB process gasifies high-sulfur, high-metals-content liquid and solid fuels. Residual oil, lignite, and bituminous coal were gasi...

  4. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  5. Coal fired fluid bed module for a single elevation style fluid bed power plant

    DOEpatents

    Waryasz, Richard E.

    1979-01-01

    A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.

  6. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  7. METC Fluid-bed Test Rigs/Test Program

    SciTech Connect

    Walczak, S.C.; Rockey, J.M.; Rutten, J.

    1993-09-01

    Since its last runs in December 1989, the 6-inch gasifier has been modified to enlarge the reactor inside diameter to 10 inches. Recent runs have shown stable operation and increased carbon conversion with the new gasifier size. As a 10-inch reactor, the METC FBG has logged over 150 hours online with Montana Rosebud coal. Table 2 shows typical solids analyses for an April 1993 run. A series of hot gas desulfurization tests using a batch-mode, fluidized bed to contact the coal gas with sulfur capturing sorbent marked the last integrated runs with the 6-inch, fluid-bed gasifier [2]. Table 3 shows typical coal gas composition before and after the fluid-bed, hot gas desulfurization reactor. Shakedown tests of the MGCR were performed in April and May 1993. These tests were performed primarily to obtain the characteristics of a candle filter created by the Shell Development Company as part of a Cooperative Research and Development Agreement (CRADA). The April run was a 4-day test using a 30-lb batch of zinc ferrite desulfurization sorbent. A plot of the sulfur removal in this run compared with one in 1989 [3] is shown in Figure 5. It is obvious from this figure that the MGCR has performed consistently despite a 4-year hiatus.

  8. Bed-rest studies: Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from the extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested.

  9. Bed-rest studies - Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested. Previously announced in STAR as N83-24160

  10. Granular bed emission control of a fluid-bed bark combustor

    SciTech Connect

    Tollett, R.M.; Turchina, A.V.; Ostendorf, R.G.; Navratil, L.G.

    1985-01-01

    Various additive mixtures were evaluated for effects on modifying resistivity of aspen bark ash. This had a direct effect on the efficiency of the Electroscrubber Filter (ESF) which is an electrically enhanced granular bed filter. Increased efficiencies were demonstrated in full scale testing at the Procter and Gamble plant in Green Bay, Wisconsin. Since July, 1984, emission tests have shown results below 0.04 number/MM BTU. The ESF was installed in 1983 on an EPI fluid-bed combuster burning aspen bark. In the first year of operation the ESF had trouble maintaining grid voltage. As with electrostatic precipitators, Electroscrubbers are sensitive to the resistivity of the ash collected but in an opposite way. Low resistivity is good for an electrostatic precipitator (ESP), but bad for an Electroscrubber. This paper discusses the importance of resistivity and the theoretical aspects of an Electroscrubber type of device.

  11. The design of circulating fluid bed boilers for utility power generation

    SciTech Connect

    Maitland, J.; Skowyra, R.

    1997-12-31

    Fluid bed combustion technology has been utilized in a broad range of industries to produce steam and electricity. The advantages of circulating fluid bed technology, including the ability to use both conventional and waste fuels in an environmentally sound combustion process, have been the driving forces for the selection of CFB by numerous companies. An important trend in the market development for CFB has been increased interest in the scale-up of units to larger, utility size applications. The environmental and fuel flexibility features are also of strong interest for companies looking for 150--400 MW output. The worldwide private power industry has utilized fluidized bed combustion as one of its options for power development. ABB Combustion Engineering has been a leader in the design of these larger units. This paper will provide specific details on the design and operation of large scale fluidized bed for power generation, along with a review of the impact of different fuels on unit design. The authors will include their perspective on the future for advanced CFB designs also.

  12. Relationship between fluid bed aerosol generator operation and the aerosol produced

    SciTech Connect

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriation constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.

  13. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect

    M.A. Alvin

    2004-01-02

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  14. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect

    Rong Fan

    2006-08-09

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  15. System design study to reduce capital and operating costs and bench-scale testing of a circulating-bed AFB [atmospheric pressure fluidized bed] advanced concept: Phase 1, Design, cost estimate, and cost comparison for MWK circulating fluid bed combustor and oil-fired boilers: Final report

    SciTech Connect

    Sadhukhan, P.; Lin, Y.Y.; Hsiao, K.H.; Richards, S.R.; Wagner, C.; Settle, W.H.; Bryant, J.; Gorman, W.A.; Newlin, T.; Shires, P.J.; James, J.L.

    1986-06-01

    The Department of Energy (DOE) issued an RFP for a "System Design Study to Reduce Capital and Operating Cost and Bench Scale Testing of a Circulating-Bed AFB Advanced Concept." The design and cost study of a 150,000 pounds per hour steam boiler comprised Phase-I of the RFP. The objective was to produce a design with improved performance and reduced capital and operating costs compared with conventional atmospheric pressure fluidized bed (AFB) boilers. The final result was a significant reduction of capital cost - 36% below the lowest AFB plant cost. The steam cost was 24% below the corresponding cost for the AFB process. In June 1985, DOE issued a Change Order (C001) to the Phase-I study in order for MWK to design and estimate the cost for a scaled-down coal-fired (Illinois No. 6, 3% S) CFBC plant producing low pressure and low temperature steam (75,000lbs/hr, 200 psig, 387{degree}F), and to compare the costs -capital and steam costs -with those for a packaged high sulfur (3%) fuel oil-fired boiler, which is of the same capacity and requires SO{sub 2} removal. An additional objective was to estimate the cost for a No. 2 fuel oil-fired boiler that does not need any SO{sub 2} scrubber. An evaluation of the sensitivity of the steam cost to the oil-fired boiler capital cost and to fuel prices was also to be undertaken. The cost of steam produced by the No. 6 fuel oil boiler is 52% higher than the cost for CFBC, and the corresponding cost for the No. 2 fuel oil plant is 43% higher. Again, a large advantage for the CFBC comes from the low price of coal relative to that of oil. The large cost advantage of steam calculated for the MWK CFBC using coal as a fuel over the oil-fired boilers would remain even in the worst case scenario of a declining oil price accompanied by a steady coal price. 7 refs., 25 figs., 34 tabs.

  16. Factorial tests on process operating conditions and bed fines on the circulating fluid bed performance

    SciTech Connect

    Shadle, L.J.; Spenik, James; Sarra, Angela; Ontko, J.S.

    2004-07-21

    A cold-flow circulating fluid bed (CFB) was operated using coke breeze with a packed-bed standpipe over a range of riser and standpipe air flows. The bed materials were selected to simulate solids flow in a CFB gasifier (carbonizer) but are generally relevant to most CFB processes. CFB tests were conducted primarily in the transport mode with sufficient gas velocity to achieve a uniform axial riser pressure profiles over most of the riser height. The independent variables tested included the riser gas velocity, aeration at the base of the standpipe, and concentration of fines (average particle size). The solids inventory and riser outlet pressure were maintained constant. Factorial tests were conducted in randomized order and in duplicate to provide and an unbiased estimate of the error. Fines were tested as a blocked variable. The gas velocity, standpipe aeration, and relative amount of fine particles were all found to be significant factors affecting both the riser solids holdup and solids flux. The riser pressure drop and mass circulation increased at the higher level of fines contrary to some earlier reports in the literature. The riser pressure drop was fitted using the general linear model (GLM), which explained more than 98% of the variation within the data, while a GLM for the mass circulation rate explained over 90%. The uncertainty of process operating variables was characterized independently through a series of duplicated flow proving experiments.

  17. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  18. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li

    2008-05-15

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  19. Computational fluid dynamics analysis of aerosol deposition in pebble beds

    NASA Astrophysics Data System (ADS)

    Mkhosi, Margaret Msongi

    2007-12-01

    The Pebble Bed Modular Reactor is a high temperature gas cooled reactor which uses helium gas as a coolant. The reactor uses spherical graphite pebbles as fuel. The fuel design is inherently resistant to the release of the radioactive material up to high temperatures; therefore, the plant can withstand a broad spectrum of accidents with limited release of radionuclides to the environment. Despite safety features of the concepts, these reactors still contain large inventories of radioactive materials. The transport of most of the radioactive materials in an accident occurs in the form of aerosol particles. In this dissertation, the limits of applicability of existing computational fluid dynamics code FLUENT to the prediction of aerosol transport have been explored. The code was run using the Reynolds Averaged Navier-Stokes turbulence models to determine the effects of different turbulence models on the prediction of aerosol particle deposition. Analyses were performed for up to three unit cells in the orthorhombic configuration. For low flow conditions representing natural circulation driven flow, the laminar flow model was used and the results were compared with existing experimental data for packed beds. The results compares well with experimental data in the low flow regime. For conditions corresponding to normal operating of the reactor, analyses were performed using the standard k-ɛ turbulence model. From the inertial deposition results, a correlation that can be used to estimate the deposition of aerosol particles within pebble beds given inlet flow conditions has been developed. These results were converted into a dimensionless form as a function of a modified Stokes number. Based on results obtained in the laminar regime and for individual pebbles, the correlation developed for the inertial impaction component of deposition is believed to be credible. The form of the correlation developed also allows these results to be applied to pebble beds of different

  20. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  1. Applications of moving granular-bed filters to advanced systems

    SciTech Connect

    Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

    1993-09-01

    The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

  2. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  3. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  4. Use of a polishing scrubber with a fluid bed boiler

    SciTech Connect

    Toher, J.G.

    1996-12-31

    Once viewed as {open_quotes}competitive{close_quotes} technologies, the circulating dry scrubber (CDS){reg_sign} and circulating fluid bed (CFB) boiler are being used together to achieve enhanced performance with lower overall costs. The need to understand the synergy between these two technologies is driven by deregulation of the power industry and the 1990 Clean Air Act Amendments. Deregulation of power production in the US has spurred the growth of Independent Power Producers (IPP) who are responding to Industry`s demand for lower cost fuels, and close attention to annual operating costs. Utilities have to provide {open_quotes}open{close_quotes} access to their transmission lines allowing various IPP`s to connect with the end user. Industrial users can now choose from one of several sources of electricity with prices per kilowatt hour that are much lower than what they are currently being charged. The race is on to reduce power production costs and fuel can be the key in many cases. IPP`s and industry are banding together in very logical ways that can benefit both. Industry`s byproducts with heating value can be sold {open_quotes}over the fence{close_quotes} to an IPP who provides the industry with low cost steam and or electricity in return. However, many alternative lower cost fuels also have a higher emissions potential for criteria pollutants such a SO{sub 2}, NO{sub X}, particulate, or other emissions such as VOC`s and mercury which are more recently receiving attention. Cost effective management of these environmental issues must be an integral part of the project planning process. Three such cases are examined that involve the use of CFB`s with the CDS{reg_sign} as a polishing scrubber for SO{sub 2}. The first two cases involve repowering of existing facilities with petroleum coke as the fuel. The last case involves a new facility powered with low sulfur coal.

  5. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  6. Fluid-bed fluoride volatility process recovers uranium from spent uranium alloy fuels

    NASA Technical Reports Server (NTRS)

    Barghusen, J. J.; Chilenskas, A. A.; Gunderson, G. E.; Holmes, J. T.; Jonke, A. A.; Kincinas, J. E.; Levitz, N. M.; Potts, G. L.; Ramaswami, D.; Stethers, H.; Turner, K. S.

    1967-01-01

    Fluid-bed fluoride volatility process recovers uranium from uranium fuels containing either zirconium or aluminum. The uranium is recovered as uranium hexafluoride. The process requires few operations in simple, compact equipment, and eliminates aqueous radioactive wastes.

  7. Effluent characterization from a conical pressurized fluid bed

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.

    1977-01-01

    To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.

  8. CHEMICALLY ACTIVE FLUID BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF CARBONACEOUS FUELS

    EPA Science Inventory

    The report covers the final 3 years of a 9-year program to evaluate the Chemically Active Fluid Bed (CAFB) process for gasification and desulfurization of liquid and solid fuels in a fluidized bed of hot lime. A range of alternative fuels, including three coals and a lignite, wer...

  9. Armoring, stability, and transport driven by fluid flow over a granular bed

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2015-03-01

    We discuss experiments investigating the evolution of a granular bed by a fluid flow as a function of shear rate at the fluid-bed interface. This is a model system to investigate a variety of physical examples including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches, flows in slurry pipelines, and sand proppants in hydraulic fracturing. In order to examine the onset and entrainment of the granular bed under steady state conditions, we have constructed a novel conical rheometer system which allows a variable amount of shear to be applied to the granular bed. The grain-fluid system is index matched so that we can visualize the grains away from the sides as well as visualize the fluid flow above and below the interface by using fluorescent tracer particles. We demonstrate that the onset of erosion arises as particles rotate out of their stable position highlighting the importance of torque balance to onset. We find significant armoring of the bed, as the bed is sheared by the fluid flow. Above onset, at least three distinct regions of bed mobility can be found. We will discuss the measured integrated granular flux as a function of shear rate and compare them with empirical laws found in the geophysical literature. Supported by NSF Grant Number CBET 1335928.

  10. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  11. Use fluid bed reactor for maleic anhydride from butane

    SciTech Connect

    Arnold, S.C.; Neri, A.; Suciu, G.D.; Verde, L.

    1985-09-01

    A new process is described that incorporates three major improvements over the conventional air oxidation of benzene in a fixed-bed reactor system. The new ALMA Process was developed jointly by Alusuisse Italia and Lummus Crest. It includes the following process improvements: n-Butane feedstock, fluidized-bed reactor system, and a continuous maleic anhydride recovery system using an organic solvent. A summary of the process is given, as well as the steps in its development and its economic advantages.

  12. Fluid and electrolyte shifts during bed rest with isometric and isotonic exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Young, H. L.; Morse, J. T.; Juhos, L. T.; Van Beaumont, W.; Staley, R. W.

    1977-01-01

    It is difficult to separate the effects of reduction in hydrostatic pressure from that of reduced energy expenditure when investigating the confinement deconditioning problem. Experiments were conducted on seven healthy young men aged 19-21 yr with the purpose of separating these two factors by using isotonic physical exercise during bed rest to provide a daily energy expenditure greater than normal ambulatory levels. Fluid and electrolyte shifts were measured during three two-week bed rest periods, each of which being separated by a three-week ambulatory recovery period. During two of the three bed rest periods they performed isometric and isotonic exercises to compare their effects on fluid and electrolyte shifts during bed rest. It is shown that during bed rest, preservation of the extracellular volume takes precedence over maintenance of the plasma volume and that this mechanism is independent of the effects of isometric or isotonic exercise.

  13. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  14. Fluid bed porosity mathematical model for an inverse fluidized bed bioreactor with particles growing biofilm.

    PubMed

    Campos-Díaz, K E; Bandala-González, E R; Limas-Ballesteros, R

    2012-08-15

    A new mathematic model to estimate bed porosity as a function of Reynolds and Archimedes numbers was developed based in experimental data. Experiments were performed using an inverse fluidized bed bioreactor filled with polypropylene particles, Lactobacillus acidophillus as the immobilized strain and fluidized with a Man-Rogosa-Sharpe culture medium under controlled temperature and pH conditions. Bed porosity was measured at different flow rates, starting from 0.95 to 9.5 LPM. The new model has several advantages when compared with previously reported. Among them, advantages such as standard deviation values ≤ 1% between experimental and calculated bed porosity, its applicability in traditional and inverse fluidization, wall effects do not take account, it gives excellent agreement with spherical particles with or without biofilm, and inertial drag coefficient allow extend the new model a non-spherical particles. PMID:22484706

  15. Changes in body fluid compartments during a 28-day bed rest

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Hyatt, Kenneth H.; Davis, John E.; Vogel, John M.

    1991-01-01

    Serial isotope measurements were used to obtain measurements of the body fluid responses of 10 22-29-year-old men during 28 d of simulated microgravity (bed rest). The subjects were maintained on a controlled metabolic diet for 7 d before the study, during 14 d of ambulatory control, 28 d of horizontal bed rest, and 14 d of ambulant recovery. Fluid compartments were measured on control days 1 and 9, bed rest days 2, 14, and 28, and recovery days 7 and 14. By day 2 of bed rest, plasma volume and extracellular volume (ECV) decreased significantly by an average 209 and 533 ml, respectively. Red cell volume and total body water (TBW) decreased more slowly, with average losses of 128 and 1316 ml, respectively, after 28 d of bed rest. Early in the bed rest, TBW loss was mostly from the ECV. Thereafter, the TBW deficit was derived from the intracellular compartment, which decreased an average of 838 ml after 28 d. These results suggest losses from all fluid compartments during bed rest, with no evidence of restoration of ECV after 1-2 weeks.

  16. Investigation of Heat Transfer and Combustion in the Advanced Fluidized Bed Combustion.

    SciTech Connect

    Lee, S.W.

    1997-10-01

    This technical report summarizes the research conducted and progress achieved during the period from July 1, 1997 to September 30, 1997. In order to conduct the numerical modeling/simulation on the advanced swirling fluidized bed combustor (hot model), the basic governing equations are formulated based upon the continuity and momentum equations, and energy equations in the cylindrical coordinates. The chemical reaction and radiation heat transfer were considered in this modeling/simulation work. The chemical reaction and the diffusion due to concentration gradients and thermal effects are also included in the modeling for simulation. The flow system was configured in 3-D cylindrical coordinates with the uniform mesh grids. The calculation grid was set of orthogonal lines arranged in the cylindrical coordinates which includes three different directions: tangential direction (I), radial direction (i), and vertical direction (k). There are a total of 24192 grids in the system configuration including 14 slices of the tangential direction (I), 24 slices of the radial direction (j), and 72 slices of the vertical direction. Numerical simulation on the advanced swirling fluidized bed combustor is being conducted using computational fluid dynamics (CFD) code, Fluent. This code is loaded onto the supercomputer, CRAY J916 system of Morgan State University. Numerical modeling/simulation will be continued to determine the hot flow patterns, velocity profiles, static pressure profiles, and temperature profiles in the advanced swirling fluidized combustor.

  17. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect

    AYALA, R E; VENKATARAMANI, V S

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  18. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment

  19. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  20. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  1. Synchronous droplets as a test bed for pulsatory active fluids

    NASA Astrophysics Data System (ADS)

    Katsikis, Georgios; Prakash, Manu

    2014-11-01

    Collective behavior in many-body systems has been studied extensively focusing on a wide range of interacting entities including: flocking animals, sedimenting particles and microfluidic droplets among others. Here, we propose an experimental platform to explore an oscillatory active fluid with synchronous ferrofluid droplets immersed in an immiscible carrier fluid in a Hele-Shaw configuration. The droplets are organized and actuated on a 2-D uniform grid through application of a precessive magnetic field. The state of our system is dependent on three parameters: the grid occupancy with fluid droplets, the grid geometry and the magnetic field. We study the long range orientational order of our system over a range of those parameters by tracking the motion of the droplets and analyzing the PIV data of the carrier fluid flow. Numerical simulations are juxtaposed with experimental data for prediction of the system's behavior.

  2. Physiological responses to prolonged bed rest and fluid immersion in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1984-01-01

    For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.

  3. Velocity profiles and rheology of a granular bed sheared by a fluid flow

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    We discuss an experimental investigation of motion of a granular bed driven by a laminar fluid flow as a function of applied shear rate. This is a model system to investigate a variety of examples where such a situation arises including wind blowing over sand, sediment transport in rivers, slurries, and turbidity currents. We have developed an experimental apparatus which allows examination of the fluid as well as the grain dynamics both at the surface as well as deep into the bed under steady state conditions with refractive index matching technique. This allows us to obtain both the applied local shear stress by the fluid as well as the local strain rate inside the bed. We find that that the granular flux as a function of depth decays exponentially into the bed. Further, the velocity profile is observed to exhibit a crossover from a regime where particles are fully suspended to where there is bed load transport. We will discuss the observed velocity and density profiles in light of various models of granular suspensions. Supported by NSF CBET - 1335928.

  4. The pilot scale testing of a circulating fluid bed fine particulate and mercury control device

    SciTech Connect

    Helfritch, D.J.; Feldman, P.L.

    1998-07-01

    US utilities are faced with new economic challenges to remain competitive in light of deregulation initiatives and increased competition. In addition, environmental pressures are forcing many of these utilities to be prepared to reduce the air emissions such as NO{sub x}, SO{sub x}, fine particulates and mercury from coal-burning plants. The proposed PM{sub 2.5} regulations will demand improved fine particle control from existing equipment, and potential mercury vapor regulations would impose the installation of new control equipment. The device described here employs a circulating fluid bed in order to achieve a high particle density, which promotes the agglomeration of particles. The fine particles entering the system are formed into larger agglomerates, which are then more readily captured by a conventional electrostatic precipitator. Activated carbon cab be injected into the circulating bed for the adsorption of mercury vapor. High residence time, due to the recirculation, allows very effective utilization of the carbon. The fluid bed device was operated for a three-month period on a slipstream of gas exiting a coal-fired boiler at PSE and G's Mercer Generating Station. The results showed that fine particles and mercury vapor can be significantly reduced by passage through a fluidized bed of fly ash and activated carbon. The addition of lime to the fluid bed resulted in effective capture of SO{sub 2} and HCI. These results and the effects of various parameters on capture efficiencies are presented.

  5. Onset and cessation of grain motion in fluid-sheared beds

    NASA Astrophysics Data System (ADS)

    Clark, Abe; Salevan, Julia; Shattuck, Mark; Ouellette, Nick; O'Hern, Corey

    2015-11-01

    We performed molecular dynamics simulations of granular beds driven by a model hydrodynamic shear flow to elucidate general grain-scale mechanisms that determine the onset and cessation of sediment transport. By varying the Shields number (the nondimensional shear stress at the top of the bed) and particle Reynolds number (the ratio of particle inertia to viscous damping), we explore how variations of the fluid flow rate, particle inertia, and fluid viscosity affect the onset and cessation of bed motion. For low to moderate particle Reynolds numbers, a critical boundary separates mobile and static states. Transition times between these states diverge as this boundary is approached both from above and below. At high particle Reynolds number, inertial effects become dominant, and particle motion can be sustained well below flow rates at which mobilization of a static bed occurs. We also find that the onset of bed motion (for both low and high particle Reynolds numbers) is described by Weibullian weakest-link statistics, and thus is crucially dependent on the packing structure of the granular bed, even deep beneath the surface. This work was supported by the US Army Research Office under Grant No. W911NF-14-1-0005.

  6. Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995

    SciTech Connect

    1995-06-01

    This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.

  7. Turbulent flow over a channel with fluid-saturated porous bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The characteristics of fully developed turbulent flow in a hybrid domain channel, which consists of a clear fluid region and a porous bed, are examined numerically using a model based on the macroscopic Reynolds-averaged Navier–Stokes equations. By adopting the classical continuity interface conditi...

  8. IMPROVING DESIGN AND OPERATION OF MULTIPLE-HEARTH AND FLUID BED SLUDGE INCINERATORS

    EPA Science Inventory

    The purpose of the investigation is to document improvements in design, operation, and maintenance of multiple-hearth and fluid bed furnace incineration for combustion of sludge in municipal wastewater treatment plants. The information contained in the report is intended to suppl...

  9. The Hydrodynamic Stability of a Fluid-Particle Flow: Instabilities in Gas-Fluidized Beds

    ERIC Educational Resources Information Center

    Liu, Xue; Howley, Maureen A.; Johri, Jayati; Glasser, Benjamin J.

    2008-01-01

    A simplified model of an industrially relevant fluid-particle flow system is analyzed using linear stability theory. Instabilities of the uniform state of a fluidized bed are investigated in response to small flow perturbations. Students are expected to perform each step of the computational analysis, and physical insight into key mechanistic…

  10. The development of a microwave fluid-bed processor. I. Construction and qualification of a prototype laboratory unit.

    PubMed

    Doelling, M K; Jones, D M; Smith, R A; Nash, R A

    1992-11-01

    The static bed- and planetary-type microwave dryers currently available to process pharmaceutical materials are not designed to use hot-air fluidization for the purpose of maximizing microwave energy inputs and particle drying. To take advantage of the benefits offered by fluidization, a 1-kg Uni-Gatt laboratory fluid bed processor was modified to support microwave-assisted fluid bed drying of several representative pharmaceutical granulations. The construction, design features, and validation of this new microwave fluid bed processor are presented. PMID:1475238

  11. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-ninth quarterly status report, October--December 1994

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.

    1996-02-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

  12. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-seventh quarterly status report, April--June 1994

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1994-10-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

  13. AFDM: An Advanced Fluid-Dynamics Model

    SciTech Connect

    Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. ); Goutagny, L. . Inst. de Protection et de Surete Nucleaire); Ninokata,

    1990-09-01

    AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.

  14. Centaur Test Bed (CTB) for Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Sakla, Steven; Kutter, Bernard; Wall, John

    2006-01-01

    Future missions such as NASA s space exploration vision and DOD satellite servicing will require significant increases in the understanding and knowledge of space based cryogenic fluid management (CFM), including the transfer and storage of cryogenic fluids. Existing CFM capabilities are based on flight of upper stage cryogenic vehicles, scientific dewars, a few dedicated flight demonstrations and ground testing. This current capability is inadequate to support development of the CEV cryogenic propulsion system, other aspects of robust space exploration or the refueling of satellite cryo propulsion systems with reasonable risk. In addition, these technologies can provide significant performance increases for missions beyond low-earth orbit to enable manned missions to the Moon and beyond. The Centaur upper-stage vehicle can provide a low cost test platform for performing numerous flight demonstrations of the full breadth of required CFM technologies to support CEV development. These flight demonstrations can be performed as secondary mission objectives using excess LH2 and/or LO2 from the main vehicle propellant tanks following primary spacecraft separation at minimal cost and risk.

  15. Assessment of the energy dissipation parameters inside the draft tube of a liquid spout-fluid bed.

    PubMed

    Erbíl, Ayşe Ceçen; Turan, Mustafa

    2005-04-15

    Spouted beds are fluid-particle contactors in which the fluid is introduced centrally through a nozzle instead of a distributor plate, resulting in a regular particle circulation pattern. To assess the suitability of such sytems to environmental engineering applications such as filter backwashing and biofilm systems, a priori knowledge of the energy dissipation parameters is essential. A new model is developed for evaluating the energy dissipation parameters inside the draft tube of spout-fluid beds. The shear stress, velocity gradient, and turbulence fluctuation parameters in the draft tube of a liquid spout-fluid bed are calculated with the help of an energy equation for flows carrying suspensions and the experimentally determined pressure losses inside the draft tube and compared with results for particulately fluidized beds. A spout-fluid bed with a draft tube provides higher shear stress inside the draft tube than a fluidized bed. The mean velocity gradient in the draft tube is comparable to and higher than in a fluidized bed and increases with solids fraction. The turbulence dissipation coefficient decreases very slightlywith increasing solids fraction for both systems. Consequently, according to the model calculations, a spout-fluid bed with a draft tube can be an alternative to the classical fluidized bed filter backwashing system. PMID:15884391

  16. Advanced Multigrid Solvers for Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1999-01-01

    The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.

  17. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  18. Analysis and control of the METC fluid bed gasifier. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    1995-12-31

    In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data; (2) review of the literature on fluid bed gasifier operation and control; and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) observation of the FBG during the week of July 17 to July 21; (2) suggested improvements to the control of FBG backpressure and MGCR pressure; and (3) data collection from FBG run No. 11 and transfer of data to USC.

  19. Analysis and control of the METC fluid bed gasifier. Quarterly progress report, January--March 1995

    SciTech Connect

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 3/31/95. In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Below we summarize work accomplished to data in each of these areas.

  20. Design of an oxygen turbopump for use in an Advanced Expander Test Bed engine

    NASA Technical Reports Server (NTRS)

    Pattison, William W.; Cooley, Christine B.; Carek, Jerry

    1993-01-01

    A liquid oxygen (LOX) turbopump with a gaseous hydrogen turbine drive was designed for the Advanced Expander Test Bed (AETB), which is a technology test bed to develop future space engines. This turbopump features a single stage, full admission, high reaction turbine: a three-bladed axial flow inducer, a high efficiency single stage centrifugal pump with an integrally shrouded impeller; an interpropellant seal package with an oxygen vaporizer; and a subcritical rotor with two ball bearings for axial loads and one roller bearing for turbine radial loads. Material selections were based on compatibility with operating fluids and temperatures. The pump was designed to operate over a 20:1 power range with a maximum performance point of 283.0 GPM of liquid oxygen at a pump discharge pressure of 2198 psia, and a shaft speed of 47,914 rpm. The split expander cycle engine and the performance it requires of the LOX turbopump is discussed as well as the design of the turbopump components.

  1. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    USGS Publications Warehouse

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F., Jr.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  2. Technical advances and new opportunities for fluidized bed combustion

    SciTech Connect

    Alliston, M.G.; Kokko, A.; Martin, B.G.; Olofsson, J.

    1997-12-31

    This paper outlines opportunities for new circulating fluidized bed (CFB) boilers, technical considerations in selecting a fluidized bed boiler, and CFB boiler configuration types and sizes. New opportunities for CFBs include fuel opportunities from coke, mine mouth coals, and waste products, and boiler application opportunities in industrial cogeneration, repowering, and developing nations. Technical considerations discussed for boiler selection are fuel flexibility and environmental aspects. Three boiler configurations are briefly described: (1) water-cooled cyclone with water-cooled loopseal, (2) integral cylindrical cyclone and loopseal, and (3) Cylindrical multi-inlet cyclone. CFB scale-up is also briefly discussed. 3 refs., 3 figs.

  3. Advances in fluid resuscitation of hemorrhagic shock

    PubMed Central

    Tremblay, Lorraine N.; Rizoli, Sandro B.; Brenneman, Frederick D.

    2001-01-01

    The optimal fluid for resuscitation in hemorrhagic shock would combine the volume expansion and oxygen-carrying capacity of blood without the need for cross-matching or the risk of disease transmission. Although the ideal fluid has yet to be discovered, current options are discussed in this review, including crystalloids, colloids, blood and blood substitutes. The future role of blood substitutes is not yet defined, but the potential advantages in trauma or elective surgery may prove to be enormous. PMID:11407826

  4. Effect of cohesion on granular-fluid flows in spouted beds: PIV measurement and DEM simulations

    NASA Astrophysics Data System (ADS)

    Zhu, Runru; LI, Shuiqing; Yao, Qiang

    2013-06-01

    In contrast to wet granular flows, the effect of cohesion on complex granular-fluid flows is intriguing but much challenging. The liquid bridges, forming between binary particles with the addition of a small amount of liquids, might significantly change the granular-fluid system due to both cohesion and lubrication effects. In this paper, a spouted bed, among various fluidization technologies, is particularly selected as a prototypical system for studying granular-fluid flows, since it can provide a quasi-steady flow pattern of granular particles, i.e., a core of upward granular-fluid flow called the "spout" and a surrounding region of downward quasi-static granular flow called the "annulus". Firstly, using self-developed particle image velocimetery (PIV) technique, the effects of cohesion on the spout-annulus interface (namely the spout width) and on the particle velocity profiles in distinct zones are examined. Further, the discrete element method (DEM), by incorporating liquid bridge adhesion into soft-sphere model, is established and used to predict the microdynamic behavior of particles in spouted beds. Finally, based on both experiments and DEM validation, the effects on the granular patterns in these two zones are comparatively discussed.

  5. Fluid-particle interaction and generation of coherent structures over permeable beds: an experimental analysis

    NASA Astrophysics Data System (ADS)

    Corvaro, Sara; Miozzi, Massimo; Postacchini, Matteo; Mancinelli, Alessandro; Brocchini, Maurizio

    2014-10-01

    process, while the former occurs before flow inversion and close to the porous bed. This result reveals that nearbed small-scale phenomena are weakly influenced by the wave mean flow. A detailed description of fluid suction and injection is proposed in terms of the mean flow dynamics (at wave scale), while the actual inflow/outflow of particles at the bed is seen to depend on local, small-scale flow properties. Suction and injection are generated during positive and negative water surface elevations and either squeeze or expand the flow downward/upward. The suction/injection perturbations contribute to the triggering of sweep and ejection events. Suction is mainly concentrated very close to the bed, injection is rapidly transported above the BBL, but the highest turbulence occurs in correspondence of suction events.

  6. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  7. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor

    NASA Astrophysics Data System (ADS)

    Van Laer, Koen; Bogaerts, Annemie

    2016-02-01

    A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.

  8. Advanced designs for fluid flow visualization

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research was carried out on existing and new designs for minimally intrusive measurement of flow fields in the Geophysical Fluid Flow Cell and the proposed Atmospheric General Circulation Experiment. The following topics are discussed: (1) identification and removal of foreign particles, (2) search for higher dielectric photochromic solutions, (3) selection of uv light source, (4) analysis of refractive techniques and (5) examination of fresnel lens applicability.

  9. Effect of dietary sodium on fluid/electrolyte regulation during bed rest

    NASA Technical Reports Server (NTRS)

    Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.

    2003-01-01

    BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p < 0.05) decreased while plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p < 0.05) compared with CONT. In LS, plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  10. CFD study on local fluid-to-wall heat transfer in packed beds and field synergy analysis

    NASA Astrophysics Data System (ADS)

    Peng, Wenping; Xu, Min; Huai, Xiulan; Liu, Zhigang

    2016-04-01

    To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio ( D/d p<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid- to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics (CFD) at different Reynolds number for D/d p=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.

  11. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  12. Study of ebullated bed fluid dynamics. Final progress report, September 1980-July 1983

    SciTech Connect

    Schaefer, R.J.; Rundell, D.N.; Shou, J.K.

    1983-07-01

    The fluid dynamics occurring in HRI's H-coal process development unit coal liquefaction reactor during Run PDU-10 were measured and compared with Amoco Oil cold-flow fluidization results. It was found that catalyst bed expansions and gas holdups are higher in the PDU than those observed in the cold-flow tests for slurries having the same nominal viscosity. Comparison of PDU results with cold-flow results shows that the bulk of the operating reactor gas flow lies in the ideal bubbly regime. It also appears that the gas bubbles in these PDU tests are rising quite slowly. Only two of the operating points in our test program on the PDU were found to lie in the churn turbulent regime. Existence of churn turbulent behavior during these two experiments is consistent with trends observed in earlier cold-flow experiments. Two- and three-phase fluidization experiments were carried out in Amoco's cold-flow fluid dynamics unit. The data base now includes fluidization results for coal char/kerosene slurry concentrations of 4.0, 9.8, and 20.7 vol% in addition to the 15.5 and 17.8 vol% data from our earlier work. Both HDS-2A and Amocat-1A catalysts were used in the tests. Bed expansion is primarily a function of slurry velocity, with gas velocity having only a weak effect. Bed contractions have been observed in some cases at sufficiently high gas velocity. Gas and liquid holdups were found to be uniform across the cross-section of the Amoco cold-flow fluid dynamics pilot plant. A viscometer was adapted for measurement of the viscosity of coal slurries at high temperature and pressure. Based on experiments carried out in the Amoco cold-flow unit, a significant degree of backmixing was found to occur in the H-Coal system. 70 references, 93 figures, 32 tables.

  13. Advances in the microrheology of complex fluids

    NASA Astrophysics Data System (ADS)

    Waigh, Thomas Andrew

    2016-07-01

    New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.

  14. Advances in the microrheology of complex fluids.

    PubMed

    Waigh, Thomas Andrew

    2016-07-01

    New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed. PMID:27245584

  15. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    SciTech Connect

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  16. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect

    Serrato, M. G.

    2013-09-27

    located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  17. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products. PMID:26927234

  18. Fluid bed drying of guarana (Paullinia cupana HBK) extract: effect of process factors on caffeine content.

    PubMed

    Pagliarussi, Renata S; Bastos, Jairo K; Freitas, Luis A P

    2006-01-01

    The aim of this study was to study the convective drying of the hydroalcoholic extracts obtained from powdered guarana seeds in a spouted bed dryer. The influence of process variables, such as the convective airflow rate, extract feed rate, and air inlet temperature, on the quality of the dry extract was determined using the caffeine and moisture content for the process evaluation. The caffeine content in the alcoholic and dried extracts was determined by capillary gas chromatography. The experiments were performed following a 3(3) factorial design and the data analyzed by response surface. The analysis of dry extract showed that the air and extract feed rates did not significantly affect (25% level) the caffeine content, but that drying temperature is a major factor to consider when the extract is submitted to fluid bed drying. Caffeine losses were significant (1% level) for drying temperatures above 120 degrees C, while moisture content was lower than 3% for temperatures above 120 degrees C. The data showed that there is an optimum temperature for the drying of guarana extracts in spouted beds, and under the conditions used in this study it was 120 degrees C. PMID:16796371

  19. Effects of Daily Centrifugation on Segmental Fluid Distribution in Bed-rested Subjects

    NASA Technical Reports Server (NTRS)

    Diedrich, Andre; Moore, S. T.; Stenger, M.; Arya, T. M.; Newby, N.; Tucker, J. M.; Milstead, L.; Acock, K.; Knapp, C.; Jevans, J.; Paloski, W.

    2007-01-01

    The effect of daily centrifugation on segmental fluid distribution have been studied during 21 days of 6 degree head down bedrest. One group (N=7) underwent no countermeasure while the other (N=8) received a daily, one hour, dose (2.5 gz at the foot, decreasing to 1.0 gz at the heart) of artificial gravity (AG) training on the Johnson Space Center short radius centrifuge. Fluid shifts of thoracic(VTO), abdominal (VAB), thigh (VTH), and calf (VCA) regions were measured by the tetrapolar segmental body impedance technique. Untrained subjects reduced their total volume from 18.9 plus or minus 0.5L to 17.9 plus or minus 0.9L (MN plus or minus SE, P less than 0.05) while trained subjects maintained their total volume. In untrained, control, subjects after bed rest, there was a trend toward reduced volume in all segments, with significant reductions in thigh and calf (fig, P less than 0.05). Trained subjects maintained volume in all segments. Our data indicate that artificial gravity treatment counteracts bed rest-induced hypovolemia.

  20. Development and optimization of a solid dispersion hot-melt fluid bed coating method.

    PubMed

    Kennedy, J P; Niebergall, P J

    1996-04-01

    A new hot-melt fluid bed coating process has been developed, characterized, and optimized. Polyethylene glycol served as the model coating agent and was charged with substrate into the fluid bed chamber in the solid state. The processing stages included: (A) warm-up, (B) preheating, (C) melting-spreading, and (D) cooling-congealing. A central composite design was utilized to characterize and optimize the process. Substrate porosity and density evaluations were conducted by mercury intrusion. The method proved capable of coating nonpareils from 10 to 35 mesh (0.500 to 2.00 mm) and tablets up to 1 g. The nonpareils were coated as individual particles, while particle sizes significantly smaller than 40 mesh (0.420 mm) tended to agglomerate. The porosity and density values of dissimilar nonpareil batches showed a large degree of variation, affecting the method's reproducibility. Additive coatings were achieved by sequential runs using coating agents of diminishing melting points. The method is a viable alternative to hot-melt spray-coating processes. Organic solvents, spraying equipment, steam jackets, and/or heating tape are eliminated from the process. PMID:9552331

  1. Rapid formulation screening with a Multipart Microscale Fluid bed Powder processor.

    PubMed

    Kivikero, Niina; Murtomaa, Matti; Antikainen, Osmo; Hatara, Juha; Juppo, Anne-Mari; Sandler, Niklas

    2011-08-01

    The aim of this study was to investigate early formulation screening in small scale with a miniaturized fluid bed device. Altogether eight different batches were granulated in a Multipart Microscale Fluid bed Powder processor (MMFP) with constant process conditions using electrostatic atomization. Atomization voltage and granulation liquid flow rate were kept constant. Acid acetylsalicylic was used as model active pharmaceutical ingredient (API), lactose monohydrate, microcrystalline cellulose and polyvinylpyrrolidone were used as excipients. Granule size distributions were measured with spatial filtering technique. Friability test was performed by spinning granules in the mixer with glass beads. Compressibility of the granules was evaluated by tableting and the breaking force of the tablets was measured. Multivariate analysis, namely partial least squares regression and multilinear regression were applied to the data. It was possible to generate granules of different compositions rapidly employing MMFP with electrostatic atomization fast and acquire reliable and logical results with only small amount of material. However, a major challenge was to find suitable analytical methods for such small batches. PMID:20387990

  2. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2015-12-30

    Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. PMID:26541302

  3. Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture

    PubMed Central

    Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172

  4. Cerebrospinal Fluid Flow Studies and Recent Advancements.

    PubMed

    Kelly, Erin J; Yamada, Shinya

    2016-04-01

    This article provides an overview of magnetic resonance imaging (MRI) techniques used to assess cerebrospinal fluid (CSF) movement in the central nervous system (CNS), including Phase-Contrast (PC), Time-Spatial Labeling Inversion Pulse, and simultaneous multi slice echo planar phase contrast imaging. These techniques have been used to assess CSF movement in the CNS under normal and pathophysiological situations. PC can quantitatively measure stroke volume in selected regions, particularly the aqueduct of Sylvius, as synchronized to the heartbeat. The PC is frequently used to investigate those patients with suspected normal pressure hydrocephalus and a Chiari I malformation. Time-Spatial Labeling Inversion Pulse, with high signal-to-noise ratio, captures motion of CSF anywhere in the CNS over a time period of up to 5 seconds. Variations of PC-MRI improved temporal resolution and included contributions from respiration. With non-invasive imaging such as these, more can be understood about CSF dynamics, especially with respect to the relative effects of cardiac and respiratory changes on CSF movement. PMID:27063659

  5. Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Jeffrey, Robert G.

    2012-12-01

    In bedded sedimentary rocks, the energy for spontaneous growth of multiple vertical fractures from a bedding plane may be provided by an overpressurized sublayer fracture that connects a fluid source to the bedding plane. In this paper, using our coupled deformation and flow model, we study the processes and mechanisms involved in the formation and interaction of closely space fractures from preexisting flaws or starter fractures located along the bedding plane. Fracture growth from multiple flaws can be convergent, parallel or divergent, depending on the factors like contrasts in moduli and far-field stresses, flaw sizes and locations, and initial bed conductivity, fluid viscosity, and injection rate, as well as time. The results presented here have been obtained for conditions where fluid viscous dissipation is dominant, in contrast to other results available in literature based on uniform pressure assumption equivalent to use of an inviscid fluid. It is demonstrated that the earlier a hydraulic fracture starts to extend, the more likely it is to become the primary fracture in a system of closely spaced fractures. The fracture closest to the fluid source typically grows faster as a result of a higher pressure level because viscous dissipation results in a decrease in pressure with distance from the fluid source. But its development does not completely inhibit the growth of other hydraulic fractures. Simultaneous growth of closely spaced fractures is supported by the local stress and energetic analyses, and the fracture distance can be very small. Their length to spacing ratio is accordingly much larger than that predicted previously. Under certain circumstances, a longer and more permeable fracture may grow to a greater extent than a shorter fracture closer to the fluid source, which may grow toward and merge with the longer fracture to create fracture clusters adjacent to a bedding plane.

  6. Comparison between finite volume and lattice-Boltzmann method simulations of gas-fluidised beds: bed expansion and particle-fluid interaction force

    NASA Astrophysics Data System (ADS)

    Third, J. R.; Chen, Y.; Müller, C. R.

    2016-07-01

    Lattice-Boltzmann method (LBM) simulations of a gas-fluidised bed have been performed. In contrast to the current state-of-the-art coupled computational fluid dynamics-discrete element method (CFD-DEM) simulations, the LBM does not require a closure relationship for the particle-fluid interaction force. Instead, the particle-fluid interaction can be calculated directly from the detailed flow profile around the particles. Here a comparison is performed between CFD-DEM and LBM simulations of a small fluidised bed. Simulations are performed for two different values of the superficial gas velocity and it is found that the LBM predicts a larger bed expansion for both flowrates. Furthermore the particle-fluid interaction force obtained for LBM simulations is compared to the force which would be predicted by a CFD-DEM model under the same conditions. On average the force predicted by the CFD-DEM closure relationship is found to be significantly smaller than the force obtained from the LBM.

  7. Advanced orbiting systems test-bedding and protocol verification

    NASA Technical Reports Server (NTRS)

    Noles, James; De Gree, Melvin

    1989-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.

  8. Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Haigang; Yang, Wuqiang

    2011-10-01

    The aim of this research is to apply electrical capacitance tomography (ECT) in pharmaceutical fluidized beds and scale up the application of ECT from a lab-scale fluidized bed to a production-scale fluidized bed. The objective is to optimize the design of the production-scale fluidized bed and to improve the operation efficiency of the fluidization processes. This is the first time that ECT has been scaled up to a production-scale fluidized bed of 1.0 m diameter and batch process capacity of 100 kg in a real industrial environment. With a large-scale fluidized bed in a real industrial environment, some key issues on the ECT sensor design must be addressed. To validate ECT measurement results, a two-phase flow model has been used to simulate the process in a lab-scale and pilot-scale fluidized bed. The key process parameters include solid concentration, average concentration profiles, the frequency spectrum of signal fluctuation obtained by the fast Fourier transfer (FFT) and multi-level wavelet decomposition in the time domain. The results show different hydrodynamic behaviour of fluidized beds of different scales. The time-averaged parameters from ECT and computational fluid dynamics are compared. Future work on the ECT sensor design for large-scale fluidized beds are given in the end of the paper.

  9. Body fluid alterations during head-down bed rest in men at moderate altitude

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Luft, F. C.; Luft, U. C.

    1993-01-01

    To determine the effects of hypoxia on fluid balance responses to simulated zero-gravity, measurements were made in six subjects before and during -5 deg continuous head-down bed rest (HDBR) over 8 d at 10,678 ft. The same subjects were studied again at this altitude without HDBR as a control (CON) using a cross-over design. During this time, they maintained normal upright day-time activities, sleeping in the horizontal position at night. Fluid balance changes during HDBR in hypoxia were more pronounced than similar measurements previously reported from HDBR studies at sea level. Plasma volume loss was slightly greater and the diuresis and natriuresis were doubled in magnitude as compared to previous studies in normoxia and sustained for 4 d during hypoxia. These changes were associated with an immediate but transient rise in plasma atrial natriuretic peptide (ANP) to day 4 of 140 percent in HDBR and 41 percent in CON (p less than 0.005), followed by a decline towards baseline. Differences were less striking between HDBR and CON for plasma antidiuretic hormone and aldosterone, which were transiently reduced by HDBR. Plasma catecholamines showed a similar pattern to ANP in both HDBR and CON, suggesting that elevated ANP and catecholamines together accounted for the enhanced fluid shifts with HDBR during hypoxia.

  10. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  11. High temperature fluid-bed heat recovery for aluminum melting furnace

    SciTech Connect

    1982-12-01

    The objective of the study was to establish whether technical problems would be encountered in increasing the inlet temperature of the fluid bed heat exchanger unit at Alcoa above the 1100/sup 0/F target of the current contract. Specifically, the temperature range of up to, and potentially above, 1600/sup 0/F were investigated to establish the benefits of higher temperature, trade offs required, and plans to achieve that technology goal. The benefits are tabulated and are very significant, particularly at the temperature range of 1600 to 1800/sup 0/F. Relative to 1100/sup 0/F the heat recovery is increased by 24 to 29% at 1600 and 1800/sup 0/F respectively.

  12. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish; Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  13. Integrated low emissions cleanup system for direct coal fueled turbines: (moving bed, fluid bed contactor/ceramic filter). Thirtieth quarterly report for the period January--March 1995

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1995-10-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These UEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the thirtieth quarter to develop this ILEC technology. During this Quarter of the program, the Phase In bench-scale, high-temperature, high-pressure (HTHP) testing of PFBC fly ashes was continued. Tests have been completed to characterize the filter cake pulse cleaning, as a function of temperature. The behavior trends are consistent with field unit observations. Sulfur removal tests, looking at the influence of SO{sub 2} on filter cake permeability, as well as the ability to remove sulfur by injecting dolomite into the filter, have been completed. Alkali removal tests were initiated this quarter injecting emathlite into the filter. A complete summary of the test procedures; tests completed and test results is presented in Appendices A, B and C. Preparation has been made to prepare the Phase III final report.

  14. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  15. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    PubMed

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. PMID:26050934

  16. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  17. Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor.

    PubMed

    Qu, Xianfeng; Zheng, Jingtang; Zhang, Yanzong

    2007-05-15

    The effect of activated carbon fiber (ACF) on the ozonation of phenol in water in a fluid bed reactor was investigated. It was observed that this combined process could increase the yield of the oxidation process significantly for phenol and COD (chemical oxygen demand) removal, especially for the phenol removal. The efficiency of ozonation increased with an increase in the dose of ACF. Higher initial phenol concentration only caused a slight decrease of phenol and COD removal. The results of repeated use found that ozonation could efficiently regenerate ACF in situ in the reactor, which was considered easy to handle without the costly ex situ regeneration of the industrial treatment process. The Boehm titrations and FTIR studies indicate that the ozonation process in water can significantly change the composition of acidic surface oxygen-containing groups of ACF, leading to the increase of carboxylic, hydroxylic, and carbonylic groups and the slight decrease of the lactonic groups. Furthermore, this process can also increase the surface area and total pore volume of ACF. Due to the new micropore formation and some pore enlargement, the micropores became smaller, and the mesopores and macropores got bigger. PMID:17336995

  18. Fluid-particle interaction in turbulent open channel flow with fully-resolved mobile beds

    NASA Astrophysics Data System (ADS)

    Vowinckel, Bernhard; Kempe, Tobias; Fröhlich, Jochen

    2014-10-01

    The paper presents Direct Numerical Simulations of an open channel flow laden with spherical particles at a bulk Reynolds number of 2941. The transport of thousands of mobile particles is simulated propagating over a rough bed which consists of immobile particles of the same size in hexagonal ordering. An Immersed Boundary Method is used for the numerical representation of the particles. With 22 points per diameter even the viscous scales of the flow are resolved at this Reynolds number. The reference run contains just as many fixed as mobile particles with a relative density slightly above the nominal threshold of incipient motion. Further runs were conducted with decreased mass loading and decreased Shields number together with a simulation containing only immobile particles. The variation of the parameters defining the mobile sediment yields a strong modification of particle-fluid as well as particle-particle interactions yielding different structures in space and time. This is assessed by means of appropriate statistical quantities addressing the continuous and the disperse phase. The results are in qualitative agreement with experimental observations at higher Reynolds number.

  19. Taste masking of naproxen sodium granules by fluid-bed coating.

    PubMed

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2014-03-01

    The taste of oral dosage forms is an important argument regarding patient's compliance and acceptability. For this reason, it is often necessary to mask an undesirable and unpleasant taste of an active pharmaceutical ingredient. The purpose of this study was to mask the taste of naproxen sodium by a new fluid-bed coating approach. Different compositions of coating suspensions were used to coat naproxen sodium granules. It was found that products with the addition of a plasticizer were not stable at 40 °C and tended to agglomerate. Subsequently, formulations without plasticizer were used and the ratio between water and Eudragit® E was varied. Increasing the fraction of water in the suspension from 3% to 14% reduced the effective release of naproxen sodium. An optimum ratio between naproxen sodium granules and Eudragit® E was found to be 1:1.576, where less naproxen sodium was released than the threshold bitter value and an appropriate taste masking for more than 5 min was guaranteed. Investigation of the particle size distribution revealed a d(10) of 138.35 ± 21.52 µm, a d(50 )= 256.40 ± 11.27 µm and a d(90 )= 500.85 ± 69.08 µm, which guarantees an acceptable mouthfeel for patients. PMID:23324020

  20. Optimization and scale-up of a fluid bed tangential spray rotogranulation process.

    PubMed

    Bouffard, J; Dumont, H; Bertrand, F; Legros, R

    2007-04-20

    The production of pellets in the pharmaceutical industry generally involves multi-step processing: (1) mixing, (2) wet granulation, (3) spheronization and (4) drying. While extrusion-spheronization processes have been popular because of their simplicity, fluid-bed rotogranulation (FBRG) is now being considered as an alternative, since it offers the advantages of combining the different steps into one processing unit, thus reducing processing time and material handling. This work aimed at the development of a FBRG process for the production of pellets in a 4.5-l Glatt GCPG1 tangential spray rotoprocessor and its optimization using factorial design. The factors considered were: (1) rotor disc velocity, (2) gap air pressure, (3) air flow rate, (4) binder spray rate and (5) atomization pressure. The pellets were characterized for their physical properties by measuring size distribution, roundness and flow properties. The results indicated that: pellet mean particle size is negatively affected by air flow rate and rotor plate speed, while binder spray rate has a positive effect on size; pellet flow properties are enhanced by operating with increased air flow rate and worsened with increased binder spray rate. Multiple regression analysis enabled the identification of an optimal operating window for production of acceptable pellets. Scale-up of these operating conditions was tested in a 30-l Glatt GPCG15 FBRG. PMID:17166677

  1. Development of a fluid bed granulation design space using critical quality attribute weighted tolerance intervals.

    PubMed

    Zacour, Brian M; Drennen, James K; Anderson, Carl A

    2012-08-01

    The fluid bed granulation and drying unit operation were used as a case study for control systems implementation. This single processor was used to blend, granulate, dry, and cool the materials. The current study demonstrated control of each of the phases using a fully automated, hybrid control system that incorporated first-principle modeling, empirical design of experiments (DOE), and process analytical technology to assure the production of constant product quality. The system allowed data to be collected efficiently for the development of a rigorous design space that combined formulation factors, process factors, and their interactions to define a tolerance surface where risk of future product failure was significantly reduced. The DOE incorporated microcrystalline cellulose and lactose monohydrate, excipients with substantially different wetting properties, to elucidate the relationship between the critical process parameters of the unit operation and the material properties of the formulation components. The extended analysis of covariance model enabled these factors and their interaction terms to be described in a single model. The results indicate that the development of a tolerance interval-based weighted design space can enhance product understanding and thereby help to assure future product quality. PMID:22570275

  2. Development and evaluation of diltiazem hydrochloride controlled-release pellets by fluid bed coating process

    PubMed Central

    Prasad, Mikkilineni Bhanu; Vidyadhara, Suryadevara; Sasidhar, Reddyvalam Lankapalli C.; Balakrishna, Talamanchi; Trilochani, Pavuluri

    2013-01-01

    The aim of the present study was to develop controlled-release pellets of diltiazem HCl with ethyl cellulose and hydroxylpropyl methylcellulose phthalate as the release rate retarding polymers by fluid bed coating technique. The prepared pellets were evaluated for drug content, particle size, subjected to Scanning Electron Microscopy (SEM) and Differential Scanning Calori metry (DSC), and evaluated for in vitro release. Stability studies were carried out on the optimized formulations for a period of 3 months. The drug content was in the range of 97%-101%. The mean particle size of the drug-loaded pellets was in the range 700-785 μm. The drug release rate decreased as the concentration of ethyl cellulose increased in the pellet formulations. Among the prepared formulations, FDL10 and FDL11 showed 80% drug release in 16 h, matching with USP dissolution test 6 for diltiazem HCl extended-release capsules. SEM photographs confirmed that the prepared formulations were spherical in nature with a smooth surface. The compatibility between drug and polymers in the drug-loaded pellets was confirmed by DSC studies. Stability studies indicated that the pellets were stable. PMID:23833750

  3. Cardiovascular and Body Fluid Adjustments During Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Although a few scientific bed rest (BR) studies were conducted soon after World War II, advent of the space program provided impetus for utilizing prolonged (days-months) BR, which employed the horizontal or 6 degree head-down tilt (HDT) body positions, to simulate responses of healthy people to microgravity. Shorter (hours) HDT protocols were used to study initial mechanisms of the acclimation-deconditioning (reduction of physical fitness) syndromes. Of the major physiological factors modified during BR, reduced force on bones, ligaments, and muscles, and greatly reduced hydrostatic pressure within the cardiovascular system, the latter: which involves shifts of blood from the lower extremities into the upper body, increase in central venous pressure, and diuresis, appears to be the initial stimulus for acclimation. Increase in central venous pressure occurs in subjects during weightless parabolic flight, but not in astronauts early during orbital flight. But significant reduction in total body water (hypohydration) and plasma volume (hypovolemia) occurs in subjects during both BR and microgravity. Response of interstitial fluid volume is not as clear, It has been reported to increase during BR, and it may have increased in Skylab II and IV astronauts. Reduction of total body water, and greater proportional reduction of extracellular volume, indicates increased cellular volume which may contribute to inflight cephalic edema. Cerebral pressure abates after a few days of HDT, but not during flight. accompanied by normal (eugravity) blood constituent concentrations suggesting some degree of acclimation had occurred. But during reentry, with moderately increased +Gz (head-to-foot) acceleration and gravitational force, the microgravity "euhydration" becomes functional progressive dehydration contributing to the general reentry syndrome (GRS) which, upon landing the Shuttle, can and often results in gastrointestinal distress, disorientation, vertigo, fatigue, and

  4. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  5. The effect of powder type, free moisture and deformation behaviour of granules on the kinetics of fluid-bed granulation.

    PubMed

    Abberger, T

    2001-11-01

    The effects of two types of powder, lactose and corn starch, and of free moisture on the kinetics of fluid-bed granulation have been investigated using population balance modelling. A coalescence kernel that considered the deformation behaviour of the granules was used. The best fit of the experimental data was obtained for both materials by assuming that the granules underwent plastic deformation. The predicted cumulative number fractions were in very good agreement with the experimental data. The effect of free moisture (in the range of 5-10%) was investigated with lactose. The process was independent of the statistical distribution in free moisture within the approximate range 5-10%. The results suggest a local plasticity in fluid-bed spray granulation caused by the deposition of spray droplets onto the granules, with their subsequent absorption into the voids leading to regions of saturated voids. PMID:11677075

  6. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-10-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degree]F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  7. Integrated low emissions cleanup system for direct coal fueled turbines (Moving bed, fluid bed contactor/ceramic filter)

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-01-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the seventeenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  8. Study of ebullated bed fluid dynamics for H-Coal. Quarterly progress report No. 1, July 1-September 30, 1980

    SciTech Connect

    Schaefer, R. J.; Rundell, D. N.

    1980-12-01

    Cold flow experiments were completed with kerosene, nitrogen, and HDS-2A (3/16'' length) catalyst. Percent bed expansion, gas/liquid/catalyst holdups, and drift fluxes were determined for each test. Fluid dynamics data were obtained at HRI during Run PDU-10 (Wyodak coal and Amocat-1A catalyst). Reactor liquid samples were taken for later viscosity determination. A 6'' diameter test stand for bubble coalescence experiments was constructed and delivered to Northwestern University. A search was initiated to select suitable model fluids.

  9. Formulation and stability evaluation of ketoprofen sustained-release tablets prepared by fluid bed granulation with Carbopol 971P solution.

    PubMed

    Vaithiyalingam, S R; Tuliani, P; Wilber, W; Reddy, I K; Khan, M A

    2002-11-01

    The objectives of the present study were: (1) to investigate the possibility of using a Carbopol polymeric solution as granulating agent by the fluid bed granulating process; (2) to select a suitable method of tabletting for sustaining the release of ketoprofen for 12 hr; (3) to perform stability studies according to International Committee on Harmonization (ICH) guidelines and photostability on ketoprofen SR tablets; (4) to study the influence of the storage conditions on release kinetics and melting endotherm of ketoprofen; and (5) to predict the shelf-life of the ketoprofen SR tablets. Tabletting ingredients were ketoprofen, anhydrous dicalcium phosphate, Carbopol 971P, talc, and magnesium stearate. Carbopol 971P solution (0.8% w/v) was used as a granulating solution in the fluid bed granulator. For comparative evaluation, tablets were also prepared by direct compression and wet granulation, and subjected to dissolution. Tablets prepared by fluid bed granulation technique were stored in incubators maintained at 37, 40, 50, and 60 degrees C, 40 degrees C/75% RH, 30 degrees C/60% RH, and 25 degrees C/60% RH, and in a light chamber with light intensity of 600 ft candle at 25 degrees C. Melting endotherms were obtained for the drug as well as the tablets during stability studies by differential scanning calorimetry. Tablets prepared by fluid bed granulation technique prolonged the release of ketoprofen better than tablets obtained by direct compression and wet granulation. Further, it complied with the requirements of ICH guidelines for stability testing. Higher temperature and humidity (40 +/- 2 degrees C/75% RH, 40 degrees C, 50 degrees C, and 60 degrees C) adversely affected the rate and extent of the dissolution. Ketoprofen SR tablets stored in amber-colored bottles demonstrated a good photostability for 6 months at 600 ft candle. The shelf-life of the formulation was predicted as 32 months. PMID:12476869

  10. Improving design and operation of multiple-hearth and fluid bed sludge incinerators. Final report, June 1984-September 1985

    SciTech Connect

    Not Available

    1986-07-01

    The purpose of the investigation is to document improvements in design, operation, and maintenance of multiple-hearth and fluid-bed furnace incineration for combustion of sludge in municipal wastewater-treatment plants. The information contained in the report is intended to supplement and qualify information available from incinerator manufacturers and published literature. The report addresses incinerator and support systems design deficiencies and solutions, operation and maintenance problems and solutions, fuel efficient operation, upgrading of existing incinerators, administration, and personnel training.

  11. Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences

    SciTech Connect

    Mutanen, K.I.

    1995-11-01

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

  12. Drug loaded and ethylcellulose coated mesoporous silica for controlled drug release prepared using a pilot scale fluid bed system.

    PubMed

    Hacene, Youcef Chakib; Singh, Abhishek; Van den Mooter, Guy

    2016-06-15

    The goal of this study was to test the feasibility to load non-ordered, non-spherical mesoporous silica with the model drug paracetamol, and subsequently coat the loaded particles using one single pilot scale fluid bed system equipped with a Wurster insert. Mesoporous silica particles (Davisil(®)) with a size ranging from 310 to 500μm and an average pore diameter of 15nm were loaded with paracetamol to 18.8% drug content. Subsequently, loaded cores were coated with ethylcellulose to obtain controlled drug release. Coating processing variables were varied following a full factorial design and their effect on drug release was assessed. Increasing coating solution feed rate and decreasing fluidizing air temperature were found to increase drug release rates. Increasing pore former level and decreasing coating level were found to increase drug release rates. The release medium's osmolality was varied using different sodium chloride concentrations, which was found to affect drug release rates. The results of this study clearly indicate the potential of non-ordered, non-spherical mesoporous silica as a reservoir carrier for the controlled release of drugs. Although non-spherical, we were able to reproducibly coat this carrier using a bottom spray fluid bed system. However, a major hurdle that needs to be tackled is the attrition the material suffers from during fluid bed processing. PMID:27107901

  13. In-line monitoring of particle size in a fluid bed granulator: investigations concerning positioning and configuration of the sensor.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2014-05-15

    According to the ICH Q8 guideline, analytic technologies (PAT) are important tools for characterization and optimization of pharmaceutical manufacturing processes. Particle size as a critical quality attribute for granules is therefore an important parameter that should be monitored during the fluid bed granulation process. This work focusses on optimizing position and configuration of an SFT-sensor for the in-line measurement of particle size distribution in a Glatt GPCG 3 fluid bed granulator. As model-substances, different grades of microcrystalline cellulose were used. The in-line measured particle size and particle rate in the sensor were evaluated. A sensor position in the deceleration zone of the granulator was found to be promising for in-line particle size measurement. Most reliable data were generated in this position when the probe was placed in a distance of 11cm from the chamber wall to avoid bias by the inlet air stream. No major influence of rotation angle of the probe was found in this position. Furthermore, an entire fluid bed granulation process was successfully monitored with the sensor installed in the optimized setting. PMID:24589125

  14. Microencapsulation of fish oil by spray granulation and fluid bed film coating.

    PubMed

    Anwar, Sri Haryani; Weissbrodt, Jenny; Kunz, Benno

    2010-08-01

    The stability of microencapsulated fish oil prepared with 2 production processes, spray granulation (SG) and SG followed by film coating (SG-FC) using a fluid bed equipment, was investigated. In the 1st process, 3 types of fish oil used were based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (10/50, 33/22, and 18/12). Each type was emulsified with soluble soybean polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. In the 2nd process, 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) was applied to the granules from the 1st process. The powder stability against oxidation was examined by measurement of peroxide values (PV) and headspace propanal after storage at room temperature and at 3 to 4 degrees C for 6 wk. Uncoated powder containing the lowest concentration of PUFA (18/12) was found to be stable during storage at room temperature with maximum PV of 3.98 +/- 0.001 meq/kg oil. The PV increased sharply for uncoated powder with higher concentration of omega-3 (in 33/22 and 10/50 fish oils) after 3 wk storage. The PVs were in agreement with the concentration of propanal, and these 2 parameters remained constant for most of the uncoated powders stored at low temperature. Unexpectedly, the outcomes showed that the coated powders had lower stability than uncoated powders as indicated by higher initial PVs; more hydroperoxides were detected as well as increasing propanal concentration. The investigation suggests that the film-coating by HPBCD ineffectively protected fish oil as the coating process might have induced further oxidation; however, SG is a good method for producing fish oil powder and to protect it from oxidation because of the "onion skin" structure of granules produced in this process. PMID:20722921

  15. Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect

    Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr.; Zaharchuk, R.

    1995-04-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach is the atmospheric fluidized bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts.

  16. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-04-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degrees]F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  17. Design of an Advanced Expander Test Bed. [for future space engines

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is the key element for development of technology for future space engines. The AETB will be used to validate the high pressure expander cycle concept, investigate system interactions and conduct investigations of advanced mission focused components and new health monitoring techniques. The AETB will use oxygen/hydrogen propellants and a split expander cycle with nominal operation at a combustion chamber pressure of 1200 psia, a mixture ratio of 6.0, and an equivalent vacuum thrust of 20,000 lbf. It will function over a wide range of conditions including throttling to 5 percent thrust, operation at a mixture ratio of 12.0, and operation in tank head idle and pumped idle modes.

  18. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  19. Advanced numerics for multi-dimensional fluid flow calculations

    NASA Technical Reports Server (NTRS)

    Vanka, S. P.

    1984-01-01

    In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.

  20. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  1. Factorial design in the spheronization of ibuprofen microparticulates using the rotor disk fluid-bed technology.

    PubMed

    Chukwumezie, Beatrice Nkem; Wojcik, Mark; Malak, Paul; Damico, Frank; Adeyeye, Moji Christianah

    2004-01-01

    The aim of this study was to statistically evaluate the effects of some formulation and process variables in the spheronization of microparticulates of ibuprofen using the rotor disk fluid-bed technology and water as binder. Preliminary studies revealed that presence of surfactant, plate material type, and nature and content of binder influenced the process and quality of the spheronized material. A 2 x 2 x 3 full factorial randomized experiment was designed, demonstrating the influence of these factors on properties such as percent yield, particle size distribution, densities, ibuprofen release, moisture content, etc., as well as their interactions in the experimental response. A response known as the usable fraction was created representing microparticulates of 250 to 850 microm sizes (mesh size 20-60). The reproducibility of the spheronization process was assessed by blocking the experiments with the experiments within the blocks randomly replicated. The main effects included two binder levels (X1), two surfactant levels (X2), and a three-level plate type (X3) in which 2 two-level factors were collapsed into a single three-level factor. The results from the statistical analysis (general linear model, JMP 4) showed that the variables studied had a significant influence on most of the response variables evaluated (p < 0.05), with the binder level proving to be the most significant of the three. There was also significant interaction (p<0.05) between binder level and plate type with the drug content, friability, sphericity, loss on drying (LOD), and usable fraction response variables, and between the binder and the surfactant levels with the drug content, Q20, true density, geometric mean diameter, LOD, and usable fraction responses. High levels of surfactant and binder increased the sphere size, while low levels decreased it. Significant (p < 0.05) interaction was also observed between the plate type and surfactant level with the drug content, geometric mean

  2. CHEMICALLY ACTIVE FLUID BED FOR SOX CONTROL. VOLUME I. PROCESS EVALUATION STUDIES

    EPA Science Inventory

    The report describes selected process evaluation studies supporting the development of an atmospheric-pressure, fluidized-bed, chemically active gasification process, using a regenerative limestone sulfur sorbent to produce low- to intermediate-Btu fuel gas. Limestone sorbent sel...

  3. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. PMID:25190594

  4. Solid self-nanoemulsifying cyclosporin A pellets prepared by fluid-bed coating: preparation, characterization and in vitro redispersibility

    PubMed Central

    Lei, Yang; Lu, Yi; Qi, Jianping; Nie, Sufang; Hu, Fuqiang; Pan, Weisan; Wu, Wei

    2011-01-01

    Background: The objective of this study was to evaluate fluid-bed coating as a new technique to prepare a pellet-based solid self-nanoemulsifying drug delivery system (SNEDDS) using cyclosporin A as a model of a poorly water-soluble drug. Methods: The rationale of this technique was to entrap a Liquid SNEDDS in the matrix of the coating material, polyvinylpyrrolidone K30, by fluid-bed coating. Pseudoternary phase diagrams were used to screen the liquid SNEDDS formulations. The optimal formulation was composed of Labrafil M® 1944 CS, Transcutol P®, and Cremophor® EL in a ratio of 9:14:7. To prepare solid SNEDDS pellets, liquid SNEDDS was first dispersed in an aqueous solution of polyvinylpyrrolidone and then sprayed onto the surface of non-pareil pellets. Upon evaporation of water, polyvinylpyrrolidone precipitated and formed tight films to entrap the liquid SNEDDS. Visual observation and scanning electron microscopic analysis confirmed good appearance of the solid SNEDDS pellets. Results: Our results indicated that up to 40% of the liquid SNEDDS could be entrapped in the coating layer. Powder x-ray diffraction analysis confirmed nonexistence of crystalline cyclosporin A in the formulation. Solid SNEDDS pellets showed a slower redispersion rate than the liquid SNEDDS. An increase in the total liquid SNEDDS loading led to faster redispersion, whereas increased coating weight (up to 400%) significantly decreased the redispersion rate. Both cyclosporin A loading and protective coating with 5% polyvinylpyrrolidone K30 did not significantly affect the redispersion rate. Conclusion: It is concluded that fluid-bed coating is a new technique with considerable potential for preparation of pellet-based solid SNEDDS formulations. PMID:21589647

  5. Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.

    PubMed

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-01

    Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. PMID:24176239

  6. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    PubMed

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. PMID:25181553

  7. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.

    PubMed

    Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G

    2013-03-15

    The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. PMID:23410804

  8. Performance improvement of a converted fluid bed boiler (from traveling grate type) for agro waste combustion -- A case study

    SciTech Connect

    Sethumadhavan, R.; Karthikeyan, G.; Raviprakash, A.V.; Vasudevan, R.

    1997-12-31

    This paper investigates the operational difficulty encountered while operating a fluid bed boiler--which was earlier serving with a traveling grate for agrowaste combustion. This boiler, although operating on fluid bed technology principle, could not produce required combustion efficiency while burning any of the agrowastes such as rice husk, de-oiled bran, ground nut shell, etc. While carrying out the performance assessment study, it was found that, this inefficient combustion was mainly due to the improper operating parameters and partly due to incorrect furnace configuration. The drawbacks of the system have been attended to and set right incurring a very minor expenditure. This has led to an annual fuel saving of approximately US $40,000. The major results achieved are: (1) boiler thermal efficiency increased from 66--73%; (2) boiler was loaded uniformly and on-time operation has increased to 100% from earlier 60%; (3) boiler shut down time due to operational problems has come down from 35 hours per month to 15 hours per month; (4) very effective dust collection system was achieved resulting in reduced ID fan erosion; and (5) an annual saving of US $100,000 (both direct and indirect) was achieved.

  9. High-temperature air/steam-blown gasification of coal in a pressurized spout-fluid bed

    SciTech Connect

    Rui Xiao; Mingyao Zhang; Baosheng Jin; Yaji Huang; Hongcang Zhou

    2006-03-15

    The concept of high-temperature air/steam-blown gasification technology for converting coal into low-caloric-value gas for power generation is proposed and evaluated experimentally. Preliminary experiments are performed in a 0.1 MW thermal input pressurized spout-fluid bed gasifier. The influences of the gasifying agent preheat temperature, the gasification temperature and pressure, the equivalence ratio, the ratio of steam-to-coal on gas composition, gas higher heating value, carbon conversion, and cold gas efficiency are examined. The experimental results prove the feasibility of high-temperature air/steam-blown gasification process. The gas heating value is increased by 23%, when the gasifying agent temperature is increased from 300 to 700 C. For the operation conditions studied, the results show that gasification temperature is the most important factor influencing coal gasification in the spout-fluid bed. The gasifier performance is improved at elevated pressure mainly due to the better fluidization in the reactor. The operating parameters of the equivalence ratio and the ratio of steam-to-coal exist at optimum operating range for a certain coal gasification process. 21 refs., 10 figs., 4 tabs.

  10. Advanced atmospheric fluidized-bed combustion design: internally circulating AFBC. Final report

    SciTech Connect

    Keairns, D.L.; Altiner, H.K.; Hamm, J.R.; Ahmed, M.M.; Weeks, K.D.; Bachovchin, D.M.; Kececioglu, I.; Ulerich, N.H.; Yang, W.C.

    1983-01-01

    This report defines and characterizes an advanced, industrial, fluidized-bed combustion concept - the internally circulating AFBC - having superior performance and cost characteristics. The internally circulating AFBC incorporates four major innovative features (single fuel feed; jet-attrition-controlled sulfur removal; multiple air staging; and high-velocity, single vessel integral design using draft tube circulation) to achieve: high boiler thermal efficiency (approaching 90% through integral design, high combustion efficiency, and low sorbent consumption); fuel flexibility (single coal feed point, coal size up to nominal 2 in, flexible air distribution, capability of feeding and combusting gaseous and liquid fuels); high reliability (simplified fuel feed and solids handling); turndown flexibility (degree and ease of turndown achieved by integral segmented bed, staged air distribution); low sorbent requirements for high SO/sub 2/ control (Ca/S <2 for greater than 90% removal using jet-attrition-controlled sulfur removal); low NO/sub x/ emissions (0.1 lb/10/sup 6/ Btu through multiple stages of air injection and capability of maintaining high carbon content); compact design (single, shop-fabricated, rail-shippable units with capacity up to 150 x 10/sup 6/ Btu/hr for high-velocity operation); and low cost (simplified, integral function design with high efficiency). Westinghouse concludes that the internally circulating AFBC concept has great potential for industrial market acceptance because of its effective performance and high reliability at low steam generation costs. The concept merits further development to evolve its innovative features further and to determine its commercial design configuration and operating conditions.

  11. Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect

    Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr.; Zaharchuk, R.

    1995-07-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  12. Advanced tomographic flow diagnostics for opaque multiphase fluids

    SciTech Connect

    Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

    1997-05-01

    This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

  13. Spatiotemporal Structure and Covariance of Bedload Motion and Near-Bed Fluid Velocity over Bedforms: Laboratory and Numerical Experiments Downstream of a Backward-Facing Step

    NASA Astrophysics Data System (ADS)

    Leary, K. P.; Schmeeckle, M. W.

    2014-12-01

    Despite numerous experimental and numerical studies investigating transport over ripples and dunes in rivers, the spatiotemporal details of the pattern of transport over bedforms remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bedload motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Details are compared to a coupled large eddy simulation and distinct element simulation (LES-DEM) of the same geometry. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward-facing step. Particle imaging velocimetry algorithms were applied to the laser sheet images to obtain two-dimensional field of two-dimensional vectors while manual particle tracking techniques were applied to the video images of the bed. As expected, there is a strong positive correlation between sediment flux and near-bed fluid velocity. Sediment flux was determined by manually tracking grains that passed over a 6 cm long line in the middle of the field of view on the bedload images. Sediment flux increased monotonically downstream of flow reattachment. Localized, intermittent, high-magnitude transport events were more apparent near flow reattachment than further downstream. Often, these high-magnitude events were seen to have significant cross-stream particle velocities. These events are consistent with permeable "splat events" visualized in the LES-DEM numerical simulations, wherein a volume of fluid moves toward and impinges on the bed. Fluid impingement and penetration of the bed results in outward flow and sediment motion from the center of the splat. Work is ongoing to quantify spatial and temporal autocorrelations and covariances of the fluid velocity and sediment motions.

  14. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  15. Feasibility studies in spheronization and scale-up of ibuprofen microparticulates using the rotor disk fluid-bed technology.

    PubMed

    Chukwumezie, Beatrice Nkem; Wojcik, Mark; Malak, Paul; Adeyeye, Moji Christianah

    2002-01-01

    The aim of this study was to develop spheronized microparticulates as a drug delivery system using the 1-step closed rotor disk fluid-bed technology, and to scale up the batch spheronization process. Ibuprofen was used as the model drug and microcrystalline cellulose/sodium carboxymethyl cellulose hydrocolloid (Avicel(R) RC-581 or CL-611) was present as the diluent/binder. The mixture, in 1:1 ratio, was blended with and without 1% sodium lauryl sulfate (SLS) and spheronized with the rotor disk insert, using either water or hydroxypropylmethyl cellulose (HPMC) as binder. Fluid-bed machines (Vector/Freund Flo-Coater model) FLM-1 (with 9-inch rotor insert for 0.75 kg) and FLM-15 (with a 12-inch and 19-inch rotor inserts for 1 kg and 5, 10 kg, respectively) were used. The critical process parameters included inlet air temperature, rotor disk speed and configuration, air flow, and rate of binder application. The 1 kg batch containing SLS that was made with 12-inch smooth stainless steel or waffle teflon plates rotating at 500 rpm had desirable characteristics. The sphericity values were 0.88 and 0.91, with percent yield of 85.4 and 91.2 and drug content values of 94.47% and 91.44%, respectively. The spheroids showed good flow properties with respective rapid drug release (Q20 = 83.27 and 91.75). No difference was seen in the Avicel RC-581 and CL-611. Based on the 1 kg data, Avicel RC-581 and smooth stainless steel and waffle teflon plates (12 inch and 19 inch), the batch was scaled up to 5 and 10 kg. The scale-up parameters included rotor speed (124 -300 rpm) and spray rate (90-140 g/min). The scale-up batches had similar flow characteristics, release rate, and size distribution. The geometric mean diameter increased as batch size increased, and slightly bigger spheroids were obtained using the waffle teflon plate. Ibuprofen spheres with very good physical characteristics were developed using the rotor disk fluid-bed technology, a 1-step closed process that did not

  16. Operation and maintenance experience of the Shamokin and Wilkes-Barre fluid bed boilers

    SciTech Connect

    Bersani, A.A.; Laukaitis, J.F.

    1986-01-01

    During the past 150 years, the anthracite coal industry of Northeastern Pennsylvania has deposited, above ground, approximately 1 billion tons of refuse, disfiguring the landscape and generally polluting the environment. Anthracite refuse is made up of breaker refuse or culm, silt, mine refuse and tunnel rock. Culm, containing appreciable amounts of carbon, is essentially a low quality, low cost, alternate energy source. This fuel with its high ash content, low heating value and generally high moisture content is considered to be a feasible fuel for a fluidized bed boiler.

  17. Simulation for supporting scale-up of a fluidized bed reactor for advanced water oxidation.

    PubMed

    Tisa, Farhana; Raman, Abdul Aziz Abdul; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  18. The MELISSA pilot plant facility as as integration test-bed for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, Ch

    2004-01-01

    The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  20. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    PubMed

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  1. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    NASA Technical Reports Server (NTRS)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  2. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  3. Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Stinnett, H. O.; Davis, G. L.; Kollias, J.; Bernauer, E. M.

    1977-01-01

    Experiments were conducted on twelve women aged 23-34 yr - a bed rest (BR) group of eight subjects and an ambulatory (AMB) group of four subjects - to determine the effect of bed rest on shifts in plasma volume, electrolytes, and erythrocyte volume during +Gz acceleration on a centrifuge. The BR group underwent the +Gz acceleration during a two-week ambulatory control period, after 15 days of a 17-day BR period, and on the third day of ambulatory recovery. The AMB group underwent the same experimental procedures, but continued their normal daily routine during the BR period without additional prescribed physical exercise. Major conclusions are that (1) the higher the mean control tolerance, the greater the tolerance decline after BR; (2) relative confinement and reduced activity contribute as much to reduction in tolerance as does the horizontal body position during BR; (3) BR deconditioning has no effect on the erythrocyte volume during +3.0 Gz; and (4) about one-half the loss in tolerance after BR can be attributed to plasma volume and electrolyte shifts.

  4. Combine waste-to-energy, recycling with fluid-bed boiler

    SciTech Connect

    Murphy, M.L.

    1995-04-01

    This article describes a plant that will be the first to incorporate a fluidized-bed boiler to burn refuse-derived fuel exclusively. An effective long-term solid-waste management program will soon be a reality for Bladen, Cumberland, and Hoke counties, North Carolina. The key element of the program is a 600-ton/day waste-to-energy (WTE) facility, scheduled to begin commercial operation later this year. The BCH Energy project, which gets its name from the initials of the three counties it serves, will become the first fluidized-bed boiler in the US designed to be fueled solely by refuse-derived fuel (RDF). As such, it provides an innovative and efficient approach to solid-waste management in several ways: (1) Maximizes community participation in a recovery and recycling effort. (2) Maximizes additional waste handling and hauling efforts. (3) Significantly reducing waste flow into landfill. (4) Eliminating use of fossil fuel for a nearby chemical plant`s energy load. (5) Substantially improves air quality through use of the latest combustion and emissions control technology.

  5. Determination of kinetic law for toxic metals release during thermal treatment of model waste in a fluid-bed reactor.

    PubMed

    Liu, Jing; Abanades, S; Gauthier, D; Flamant, G; Zheng, Chuguang; Lu, Jidong

    2005-12-01

    Accumulation of toxic metals generated by thermal treatment of municipal solid waste presents a serious threat to the environment. A study was carried out to investigate the kinetic law of toxic metal release from municipal solid waste during their thermal treatment. Both direct and inverse models were developed in transient conditions. The direct mathematical model of the fluid-bed reactor is based on Kunii and Levenspiel's two-phase flow model for Geldart Group B particles. The inverse model intends to predict the metal's rate of vaporization from its concentration in the outlet gas. The derived models were found to predict reasonably well the experimental observations. A method to derive the kinetic law of toxic metals release during fluidized bed thermal treatment of model waste from the global model and the experimental measurements is derived and illustrated. A first-order law was fitted for the mineral matrix, and a second-order law (simplified) was fitted for the realistic model waste. The kinetic law obtained in this way could be integrated in a global model of combustion of municipal solid waste in order to simulate the effects of operating parameters on the metal's behavior. PMID:16382960

  6. Two-fluid cleaning technology for advanced photomask

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsutomu; Kobayashi, Nobuo; Kurokawa, Yoshiaki; Hirose, Harumichi; Nonaka, Mikio

    2009-04-01

    Along with the increased miniaturization of electronic devices, two-fluid cleaning technology is garnering the spotlight as a solution for the manufacturing process of Photomask. This is because it is now known that implementing energy control of the particles that are sprayed on the substrate allows cleaning of miniature patterns. However, it is not yet clear just how miniature of a pattern is cleanable with two-fluid cleaning technology. This study discusses mechanisms to miniaturize the droplets created by a two-fluid nozzle. In addition, this study also considers the impact of droplet size on pattern damage to the Photomask and speaks on the potential for applying two-fluid cleaning technology in the future.

  7. Combine waste-to-energy, recycling with fluid-bed boiler

    SciTech Connect

    Murphy, M.L.

    1995-09-01

    An effective long-term solid-waste management program will soon be a reality for Bladen, Cumberland, and Hoke counties, North Carolina. The key element of the program is a 600-ton/day waste-to-energy (WTE) facility, scheduled to begin commercial operation later this year. The BCH Energy project, which gets its name from the initials of the three counties it serves, will become the first fluidized-bed boiler in the US designed to be fueled solely by refuse-derived fuel (RDF). As such, it provides an innovative and efficient approach to solid-waste management in several ways: (1) maximimizes community participation in a recovery and recycling effort; (2) maximizes additional waste handling and hauling efforts; (3) significantly reducing waste flow into landfill; (4) eliminating use of fossil fuel for a nearby chemical plant`s energy load; and (5) substantially improves air quality through use of the latest combustoin and emissions control technology.

  8. Analysis and control of the METC fluid-bed gasifier. Quarterly report, October 1994--January 1995

    SciTech Connect

    Farell, A.E.; Reddy, S.

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 2/1/95. The initial phase of the work focuses on developing a simple transfer function model of the Fluidized Bed Gasifier (FBG). This transfer function model will be developed based purely on the gasifier responses to step changes in gasifier inputs (including reactor air, convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model will represent a linear, dynamic model that is valid near the operating point at which the data was taken. In addition, a similar transfer function model will be developed using MGAS in order to assess MGAS for use as a model of the FBG for control systems analysis.

  9. Granular spirals on erodible sand bed submitted to a circular fluid motion.

    PubMed

    Caps, H; Vandewalle, N

    2003-09-01

    An experimental study of a granular surface submitted to a circular fluid motion is presented. The appearance of an instability along the sand-water interface is observed beyond a critical radius r(c). This creates ripples with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as a function of the rotation speed omega of the flow and as a function of the height of water h above the surface. The study of r(c) as a function of h, omega, and r parameters is reported. Thereafter, r(c) is shown to depend on the rotation speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases and is proportional to the radial distance r. The azimuthal angle epsilon of the spiral arms is studied. It is found that epsilon scales with homegar. This lead to the conclusion that epsilon depends on the fluid momentum. Comparison with experiments performed with fluids allows us to state that the spiral patterns are not the signature of an instability of the boundary layer. PMID:14524759

  10. Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report

    SciTech Connect

    Govind, R.

    1993-03-20

    It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

  11. Laboratory-Scale Dam-Break Study of Gravity Currents with Basal Entrainment: PIV Measurements of a Viscous Newtonian Fluid over a Horizontal Bed of the same fluid showing Erosion and Deposition

    NASA Astrophysics Data System (ADS)

    Bates, B.; Ancey, C.; Busson, J.

    2012-12-01

    Geophysical gravity flows such as avalanches and debris flows belong to a special class of hazardous environmental event, in which a mixture of solids and fluids (e.g. debris and mud, snow and air) flow as a liquid and may run out much further than expected over a slope less steep than the critical angle of repose. Exchange of material between the overriding flow and a loose bed layer underneath is known to affect the characteristics of such a flow however it is not well understood how this plays a part, nor the mechanism of such an exchange, due to the difficulties of seeing inside a flowing mass in the field and experiments. Research has been carried out on an entraining viscous gravity current in an laboratory flume using Particle Image Velocimetry. The aim was to investigate the flow properties in a vertical slice of fluid in the downstream direction, far from the side-walls, when a flowing layer overrides a basal layer of the same material. The parameter varied here is the volume of fluid released from the reservoir, which affects the height and velocity of the encroaching fluid current. An interface was identified between the overriding fluid and the initially stationary bed fluid. PIV was used to show the evolution of the velocity and shear fields throughout the system compared to the location of this interface and how this changes with the volume of fluid released. The overriding fluid displaces the bed fluid, either by plunging or spilling into the erodible layer depending on the initial volume, thus inciting the stationary material downstream and below to move. Initially, a large amount of bed material is suddenly mobilized by the front of overriding fluid and little deposition occurs. Shortly after this we see the clear development of a depositional region (with low velocities, predominantly in the downwards direction) and an eroding region (with high, almost uniformly horizontal velocities) within the front of material that enters the bed, separated by

  12. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    PubMed

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  13. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well

    PubMed Central

    Robbins, Steven J.; Evans, Paul N.; Parks, Donovan H.; Golding, Suzanne D.; Tyson, Gene W.

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  14. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    SciTech Connect

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.

  15. Advances in modelling of biomimetic fluid flow at different scales

    PubMed Central

    2011-01-01

    The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847

  16. High-performance effluent-free pickling plants with fluid bed hydrochloric acid regeneration

    SciTech Connect

    Rituper, R.

    1995-11-01

    There is perpetual need to increase the performance of production facilities in the steel industry. Cost and product quality advantages, increased productivity and environmental acceptable processing of steel are the most important considerations in today`s highly competitive market. The newly developed Keramchemie strip pickle line, the Vario process, consists of a high-velocity pickling cell comprising a shallow, horizontal channel section that results in a turbulent flow behavior in the pickling section. Optimization of the pickling process is achieved by automatic setting of the pickling parameters such as acid flow and pressure via process control. Spent pickle liquor is completely regenerated in a recovery system using the fluidized bed process. The pickle liquor recycled between the pickling tanks and regeneration unit, results in a nearly zero consumption apart from small evaporation losses. The rinse water is completely reused. This makes an effluent-free operation of the pickling plant possible. No environmental pollution is caused by the pickling process. Some effluent-free strip pickling plants are already in operation in Europe with HCl consumption of less than 0.2 kg/tonne of pickled material.

  17. Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas

    SciTech Connect

    Knauth, L.P.; Beeunas, M.A.

    1985-07-01

    Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The /sup 18/O//sup 16/O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines.

  18. New ZnO-Based Regenerable Sulfur Sorbents for Fluid-Bed/Transport Reactor Applications

    SciTech Connect

    Slimane, R.B.; Lau, F.S.; Abbasian, J.; Ho, K.H.

    2002-09-19

    The overall objective of the ongoing sorbent development work at GTI is the advancement to the demonstration stage of a promising ZnO-TiO2 sulfur sorbent that has been developed under DCCA/ICCI and DOE/NETL sponsorship. This regenerable sorbent has been shown to possess an exceptional combination of excellent chemical reactivity, high effective capacity for sulfur absorption, high resistance to attrition, and regenerability at temperatures lower than required by typical zinc titanates.

  19. Stable isotope composition of fluid inclusions preserved in halite derived from Wieliczka and Bochnia Salt Beds (Southern Poland)

    NASA Astrophysics Data System (ADS)

    Dulinski, Marek; Rozanski, Kazimierz; Bukowski, Krzysztof

    2010-05-01

    Halite deposits located in the southern Poland, near Krakow, are famous mostly due to the medieval salt mine located in Wieliczka. Contrary to most salt deposits in Europe forming large domes, the halite deposits near Krakow form distinct beds, extending from west to east on the area of ca. 10 km2, with several types of salt identified. The deposits were formed in shallow environment, ca. 15 mln years ago and represent initial stages of Miocene sea water evaporation. Stable isotope composition of fluid inclusions trapped in the halite crystals originating from Wieliczka and Bochnia salt mines was investigated. Three distinct groups of samples were analysed: (i) samples derived from so-called 'green salt' beds forming extensive horizontal structures, (ii) samples derived from so-called zuber-type salt, and (iii) large monocrystals of halite collected in two crystal caves existing in the mine. The samples belonging to the first and second group were heated under vacuum to extract the fluid inclusions, according to the procedure used previously to extract inclusions from speleothem samples. The macro-inclusions present in some monocrystals of halite collected in crystal caves were removed for analysis without any thermal treatment. The concentration of bivalent cations (Ca2+, Mg2+) was measured in the bulk material (green salt). K+, Mg2+ and SO4-2 content was measured in the fluid inclusions derived from macro-crystals. The stable isotope data points form two clusters in the δ2H-δ18O space, representing crystal caves and green- and zuber-type salts, respectively. The cluster representing green- and zuber-type salt deposit is shifted to the right-hand side of the Local Meteoric Water Line (LMWL), towards more positive δ2H and δ18O values, pointing to evaporative conditions during formation of these deposits. Although the evaporation trajectories for the sea water in the δ2H - δ18O space suggest that fluid inclusions might represent remnants of the original

  20. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1992-04-07

    This patent describes a method of incinerating a fuel containing difficult to remove tramp comprising wire. It comprises placing of a fluid bed within a downwardly and inwardly tapered centrally hollow air distributor disposed within a lower portion of a vessel; introducing fuel comprising combustible material and tramp comprising wire into the fluid bed; incinerating the combustible material in the fluid bed accommodating downward migration within the fluid bed of the wire without a central obstruction to such migration; in the course of performing the incinerating step, fluidizing the bed solely by introducing inwardly at several tiered locations directed air into the bed only around the tapered periphery along the lower portion of the vessel from a plurality of inwardly and downwardly parallel sites as causing the bed material and tramp to migrate downwardly and inwardly without central bed obstruction toward a discharge site.

  1. Impact of advanced fluids on costs of district cooling systems

    SciTech Connect

    Choi, U.S. ); France, D.M.; Knodel, B.D. Illinois Univ., Chicago, IL . Dept. of Mechanical Engineering)

    1992-01-01

    Three alternate fluids, ice-water slurry, friction reduction additive and the combination of them, have been compared for use in District Cooling Systems (DCS). The effect of the fluids on cost and cooling capacities were considered for the two cases of new and existing DCS separately. Two criteria were used in comparisons among fluids in each case: constant pumping power which allows for the most benefit, and constant velocity which is more practical consideration. An economic assessment for a 500 ton system shows a potential cost difference in the total pipe cost for a new system of 70% when a 30% ice slurry is used in place of chilled water. The pipe diameter is reduced to 40% using the slurry. These results apply to the constant comparison and are independent of the use of additive. Friction reduction additives serve to reduce pumping power and pressure drop. The ice-water slurry also has a significant impact on existing district cooling systems. It can potentially expand the cooling capacity by 500% without new piping being installed while maintaining the same pumping power, velocity and pressure-drop as the chilled water system. Again, friction reduction additives serve to reduce pumping power and pressure-drop. They do not influence cooling capacity. The cost for expanding the piping to increase the cooling capacity by the same amount by the use of conventional district cooling technology has been shown to be extremely high compared to the ice-water slurry system.

  2. Impact of advanced fluids on costs of district cooling systems

    SciTech Connect

    Choi, U.S.; France, D.M.; Knodel, B.D. |

    1992-07-01

    Three alternate fluids, ice-water slurry, friction reduction additive and the combination of them, have been compared for use in District Cooling Systems (DCS). The effect of the fluids on cost and cooling capacities were considered for the two cases of new and existing DCS separately. Two criteria were used in comparisons among fluids in each case: constant pumping power which allows for the most benefit, and constant velocity which is more practical consideration. An economic assessment for a 500 ton system shows a potential cost difference in the total pipe cost for a new system of 70% when a 30% ice slurry is used in place of chilled water. The pipe diameter is reduced to 40% using the slurry. These results apply to the constant comparison and are independent of the use of additive. Friction reduction additives serve to reduce pumping power and pressure drop. The ice-water slurry also has a significant impact on existing district cooling systems. It can potentially expand the cooling capacity by 500% without new piping being installed while maintaining the same pumping power, velocity and pressure-drop as the chilled water system. Again, friction reduction additives serve to reduce pumping power and pressure-drop. They do not influence cooling capacity. The cost for expanding the piping to increase the cooling capacity by the same amount by the use of conventional district cooling technology has been shown to be extremely high compared to the ice-water slurry system.

  3. Slope effects on the fluid dynamics of a fire spreading across a fuel bed: PIV measurements and OH* chemiluminescence imaging

    NASA Astrophysics Data System (ADS)

    Morandini, F.; Silvani, X.; Honoré, D.; Boutin, G.; Susset, A.; Vernet, R.

    2014-08-01

    Slope is among the most influencing factor affecting the spread of wildfires. A contribution to the understanding of the fluid dynamics of a fire spreading in these terrain conditions is provided in the present paper. Coupled optical diagnostics are used to study the slope effects on the flow induced by a fire at laboratory scale. Optical diagnostics consist of particle image velocimetry, for investigating the 2D (vertical) velocity field of the reacting flow and chemiluminescence imaging, for visualizing the region of spontaneous emission of OH radical occurring during gaseous combustion processes. The coupling of these two techniques allows locating accurately the contour of the reaction zone within the computed velocity field. The series of experiments are performed across a bed of vegetative fuel, under both no-slope and 30° upslope conditions. The increase in the rate of fire spread with increasing slope is attributed to a significant change in fluid dynamics surrounding the flame. For horizontal fire spread, flame fronts exhibit quasi-vertical plume resulting in the buoyancy forces generated by the fire. These buoyancy effects induce an influx of ambient fresh air which is entrained laterally into the fire, equitably from both sides. For upward flame spread, the induced flow is strongly influenced by air entrainment on the burnt side of the fire and fire plume is tilted toward unburned vegetation. A particular attention is paid to the induced air flow ahead of the spreading flame. With increasing the slope angle beyond a threshold, highly dangerous conditions arise because this configuration induces wind blows away from the fire rather than toward it, suggesting the presence of convective heat transfers ahead of the fire front.

  4. Hydrodynamics and energy consumption studies in a three-phase liquid circulating three-phase fluid bed contactor

    SciTech Connect

    Rusumdar, Ahmad J; Abuthalib, A.; Mohan, Vaka Murali; Srinivasa Kumar, C.; Sujatha, V.; Rajendra Prasad, P.

    2009-07-15

    The hydrodynamics and energy consumption have been studied in a cold flow, bubbling and turbulent, pressurized gas-liquid-solid three-phase fluidized bed (0.15 m ID x 1 m height) with concurrent gas-liquid up flow is proposed with the intention of increasing the gas hold up. The hydrodynamic behaviour is described and characterised by some specific gas and liquid velocities. Particles are easily fluidized and can be uniformly distributed over the whole height of the column. The effect of parameters like liquid flow rate, gas flow rate, particle loading, particle size, and solid density on gas hold up and effect of gas flow rate, solid density and particle size on solid hold up, energy consumption and minimum fluidization velocity has been studied. At the elevated pressures a superior method for better prediction of minimum fluidization velocity and terminal settling velocities has been adopted. The results have been interpreted with Bernoulli's theorem and Richardson-Zaki equation. Based on the assumption of the gas and liquid as a pretend fluid, a simplification has been made to predict the particle terminal settling velocities. The Richardson-Zaki parameter n' was compared with Renzo's results. A correlation has been proposed with the experimental results for the three-phase fluidization. (author)

  5. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect

    Dr. Seong W. Lee

    1998-10-01

    The objective of this project is to predict the heat transfer and combustion performance in newly-designed fluidized bed combustor (FBC) and to provide the design guide lines and innovative concept for small-scale boiler and furnace. The major accomplishments are summarized.

  6. A review of design concepts for the Advanced Fluids Module (AFM) project

    NASA Technical Reports Server (NTRS)

    Hill, Myron E.; Tschen, Peter S.

    1993-01-01

    This paper reviews preliminary fluid module design concepts for the Advanced Fluids Module (AFM) project. The objective of this effort is to provide a facility that can handle a wide variety of fluids experiments. Sample science requirements were written and conceptual designs were subsequently generated during the last year. Experiments from the following fluid physics subject areas were used as conceptual design drivers: static and dynamic interfacial phenomena; bubble/droplet thermocapillary migration; surface tension convection and instabilities; thermal/solutal convection; pool boiling; and multiphase flow. After the conceptual designs were completed, the next phase attempted to combine experiments capabilities into a multipurpose, multiuser apparatus configured for the Space Station Freedom. It was found that all the fluid subject areas considered could be accommodated by three basic types of fluids modules. These modules are the Static Fluid Cell Module, the Dynamic Fluid Cell Module, and the Multiphase Flow Module. Descriptions of these preliminary modules designs and their particular sub-systems (e.g., fluid and thermal systems) are discussed. These designs will be refined as the nature of the flight program becomes clearer over the next six to twelve months.

  7. Advances in computational fluid dynamics solvers for modern computing environments

    NASA Astrophysics Data System (ADS)

    Hertenstein, Daniel; Humphrey, John R.; Paolini, Aaron L.; Kelmelis, Eric J.

    2013-05-01

    EM Photonics has been investigating the application of massively multicore processors to a key problem area: Computational Fluid Dynamics (CFD). While the capabilities of CFD solvers have continually increased and improved to support features such as moving bodies and adjoint-based mesh adaptation, the software architecture has often lagged behind. This has led to poor scaling as core counts reach the tens of thousands. In the modern High Performance Computing (HPC) world, clusters with hundreds of thousands of cores are becoming the standard. In addition, accelerator devices such as NVIDIA GPUs and Intel Xeon Phi are being installed in many new systems. It is important for CFD solvers to take advantage of the new hardware as the computations involved are well suited for the massively multicore architecture. In our work, we demonstrate that new features in NVIDIA GPUs are able to empower existing CFD solvers by example using AVUS, a CFD solver developed by the Air Force Research Labratory (AFRL) and the Volcanic Ash Advisory Center (VAAC). The effort has resulted in increased performance and scalability without sacrificing accuracy. There are many well-known codes in the CFD space that can benefit from this work, such as FUN3D, OVERFLOW, and TetrUSS. Such codes are widely used in the commercial, government, and defense sectors.

  8. Development of a topping combustor for advanced concept pressurized fluidized-bed combustion systems

    SciTech Connect

    Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

    1995-11-01

    A project team consisting of Foster Wheeler Development Corporation, Westinghouse Electric Corporation, Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate at a nominal 1600{degrees}F (870{degrees}C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350{degrees}F (1290{degrees}C), to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed. Westinghouse`s efforts are focused on the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor, which must use a low heating value syngas from the carbonizer at approximately 1600{degrees}F and 150 to 210 psi.

  9. Development of topping combustor for advanced concept pressurized fluidized-bed combustion

    SciTech Connect

    Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

    1994-10-01

    The objective of this program is to develop a topping combustor to operate in a Second-Generation Pressurized Fluidized Bed (PFBC) Combined Cycle power generation system. The combustor must be able to: lightoff with a high heating value fuel and compressor discharge air to heat the fluidized bed(s) and provide power for PFBC and carbonizer off-line; operate with 1,600 F oxygen depleted air from the PFBC and high heating value fuel to handle carbonizer off-line conditions; ramp up to 100% carbonizer syngas firing (normal operation) by firing a blend of decreasing high heating value fuel and increasing low heating value syngas; utilize the vitiated air, at temperatures up to 1,600 F for as much cooling of the metal combustor as possible, thus minimizing the compressor bypass air needed for combustor cooling; provide an acceptance exit temperature pattern at the desired burner outlet temperature (BOT); minimize the conversion of fuel bound nitrogen (FBN) present in the syngas to NO{sub x}; and have acceptably high combustion efficiency, and low emissions of carbon monoxide, UHC, etc. This paper reports the results of tests of a 14 inch diameter topping combustor with a modified fuel-rich zone conducted in June 1993, design of an 18 inch diameter topping combustor to be tested in June 1994 and afterwards, and results of a 50% scale cold flow model which has been built and tested.

  10. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  11. Advanced core design and fuel management for pebble-bed reactors

    NASA Astrophysics Data System (ADS)

    Gougar, Hans David

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well-defined parameters and expressed as a recirculation matrix. The implementation of a few heat-transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  12. Expansion of a test bed for advanced reactor monitoring and control

    SciTech Connect

    Edwards, R.M.

    2000-07-01

    In previously completed work, the Penn State TRIGA reactor was established as a test bed for monitoring and control research for nuclear reactors. The essential component of this research reactor application is a means for an experiment to change reactor power through an experimental changeable reactivity device (ECRD). An ECRD is implemented as a TRIGA reactor moveable experiment where an aluminum tube containing an absorber material is positioned within the central thimble of the reactor by an experimental setup. The test bed capabilities are now being expanded to enhance research for monitoring, operations, and control under a US Department of Energy Nuclear Engineering Education and Research (NEER) grant initiated in 1999. Areas in which the capabilities of the test bed are being expanded are (a) experimental computer hardware and software upgrades, (b) additional ECRDs, (c) power-reactor thermal-hydraulic simulation fidelity in a hybrid reactor simulator (HRS) application, and (d) incorporation of a thermal-hydraulic testloop in the HRS paradigm. This summary describes progress in (a) and (b).

  13. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  14. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand.

    PubMed

    Wannamaker, Philip E; Caldwell, T Grant; Jiracek, George R; Maris, Virginie; Hill, Graham J; Ogawa, Yasuo; Bibby, Hugh M; Bennie, Stewart L; Heise, Wiebke

    2009-08-01

    Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike-slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike-slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models. PMID:19661914

  15. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect

    Abbasian, J.

    1996-03-01

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite, sulfided in the fluidized-bed reactor during last quarter, were analyzed. The extent of sulfidation in these samples was in the range of 20 to 50%, which represent carbonizer discharge material at different operating conditions. The high pressure thermogravimetric analyzer (BPTGA) unit has been modified and a new pressure control system was installed to eliminate pressure fluctuation during the sulfation tests.

  16. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994

    SciTech Connect

    Abbasian, J.; Hill, A.; Wangerow, J.R.

    1994-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.

  17. Physiological responses to prolonged bed rest and fluid immersion in man: A compendium of research (1974 - 1980)

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Silverstein, L.; Bliss, J.; Langenheim, V.; Rosson, H.; Chao, C.

    1982-01-01

    Water immersion and prolonged bed rest reproduce nearly all the physiological responses observed in astronauts in the weightless state. Related to actual weightlessness, given responses tend to occur sooner in immersion and later in bed rest. Much research was conducted on humans using these two techniques, especially by Russian scientists. Abstracts and annotations of reports that appeared in the literature from January 1974 through December 1980 are compiled and discussed.

  18. Integrated Low Emissions Cleanup system for direct coal fueled turbines, (moving bed, fluid bed contactor/ceramic filter). Twenty-fourth quarterly status report, July--September 1993

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1993-12-31

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  19. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twentieth quarterly status report, July--September 1992

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-10-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  20. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-third quarterly status report, April--June 1993

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1993-07-19

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  1. Integrated low emissions cleanup system for direct coal fueled turbines (Moving bed, fluid bed contactor/ceramic filter). Seventeenth quarterly status report, October--December 1991

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-01-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the seventeenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  2. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  3. 76 FR 19926 - Portable Bed Rails: Withdrawal of Advance Notice of Proposed Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ..., 65 FR 58968. On August 14, 2008, the Consumer Product Safety Improvement Act of 2008 (``CPSIA'') was... October 3, 2000 (65 FR 58968), we published an advance notice of proposed rulemaking (``ANPR''), which... standards for durable infant or toddler products, which are to be ``substantially the same as''...

  4. Subretinal Fluid Drainage and Vitrectomy Are Helpful in Diagnosing and Treating Eyes with Advanced Coats' Disease.

    PubMed

    Imaizumi, Ayako; Kusaka, Shunji; Takaesu, Sugie; Sawaguchi, Shoichi; Shimomura, Yoshikazu

    2016-01-01

    Severe forms of Coats' disease are often associated with total retinal detachment, and a differential diagnosis from retinoblastoma is critically important. In such eyes, laser- and/or cryoablation is often ineffective or sometimes impossible to perform. We report a case of advanced Coats' disease in which a rapid pathological examination of subretinal fluid was effective for the diagnosis, and external subretinal drainage combined with vitrectomy was effective in preserving the eye. PMID:27462247

  5. Subretinal Fluid Drainage and Vitrectomy Are Helpful in Diagnosing and Treating Eyes with Advanced Coats' Disease

    PubMed Central

    Imaizumi, Ayako; Kusaka, Shunji; Takaesu, Sugie; Sawaguchi, Shoichi; Shimomura, Yoshikazu

    2016-01-01

    Severe forms of Coats' disease are often associated with total retinal detachment, and a differential diagnosis from retinoblastoma is critically important. In such eyes, laser- and/or cryoablation is often ineffective or sometimes impossible to perform. We report a case of advanced Coats' disease in which a rapid pathological examination of subretinal fluid was effective for the diagnosis, and external subretinal drainage combined with vitrectomy was effective in preserving the eye. PMID:27462247

  6. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  7. Analysis and control of the METC fluid bed gasifier. Final report (includes technical progress report for October 1994--January 1995), September 1994--September 1996

    SciTech Connect

    1996-09-01

    This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.

  8. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Eighteenth quarterly status report, January--March 1992

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-04-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  9. Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-fifth quarterly report, October--December 1993

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1993-12-31

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been reconfigured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the twenty-fifth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  10. Fluid mixing during deposition of bedded-replacement (BR) deposits in the Illinois-Kentucky fluorspar district

    SciTech Connect

    Spry, P.G.; Fuhrmann, G.D. . Dept. of Geological Atmospheric Sciences)

    1993-03-01

    The Illinois-Kentucky(IK) district is unusual by comparison to other Mississippi Valley-type (MVT) districts in the central US in that it contains fluorspar mineralization primarily, with subordinate quantities of base metals. This mineralization occurs as vein, BR, and breccia-hosted deposits. A clearly discernible paragenetic sequence of color banded fluorite sulfides, carbonates, and sulfates is present in BR deposits in three sub-districts: Cave-in-Rock, Harris Creek, and Carrsville. Homogenization temperatures (T[sub b]) and salinities of fluids in fluorite show that BR deposits formed from at least three fluids, a lower temperature-higher salinity connate fluid (F1) and a higher temperature-lower salinity connate fluid (F2) that mixed at the site of deposition. These fluids were followed by a lower temperature-lower salinity meteoric dominated fluid (F3). The involvement of two distinct regional fluids: a lower temperature, more-saline fluid, and a warmer, less-saline fluid, during mineralization of MVT deposits has previously been recognized for Pb-Zn deposits in southeast Missouri (Shelton et al., 1992), and east Tennessee (Zimmerman and Kesler, 1981; Taylor et al. 1983).

  11. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  12. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    SciTech Connect

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  13. Major advances in fresh milk and milk products: fluid milk products and frozen desserts.

    PubMed

    Goff, H D; Griffiths, M W

    2006-04-01

    Major technological advances in the fluid milk processing industry in the last 25 yr include significant improvements in all the unit operations of separation, standardization, pasteurization, homogenization, and packaging. Many advancements have been directed toward production capacity, automation, and hygienic operation. Extended shelf-life milks are produced by high heat treatment, sometimes coupled with microfiltration or centrifugation. Other nonthermal methods have also been investigated. Flavored milk beverages have increased in popularity, as have milk beverages packaged in single-service, closeable plastic containers. Likewise, the frozen dairy processing industry has seen the development of large-capacity, automated processing equipment for a wide range of products designed to gain market share. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. Incidents of foodborne disease associated with dairy products continue to occur, necessitating even greater diligence in the control of pathogen transmission. Analytical techniques for the rapid detection of specific types of microorganisms have been developed and greatly improved during this time. Despite tremendous technological advancements for processors and a greater diversity of products for consumers, per capita consumption of fluid milk has declined and consumption of frozen dairy desserts has been steady during this 25-yr period. PMID:16537949

  14. Advanced Ultrasonic Measurement Methodology for Non-Invasive Interrogation and Identification of Fluids in Sealed Containers

    SciTech Connect

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-16

    The Hazardous Materials Response Unit (HMRU) and the Counterterrorism and Forensic Science Research Unit (CTFSRU), Laboratory Division, Federal Bureau of Investigation (FBI) have been mandated to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a portable, hand-held, hazardous materials acoustic inspection device (HAZAID) that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The HAZAID prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the HAZAID prototype. High bandwidth ultrasonic transducers combined with the advanced pulse compression technique allowed researchers to 1) impart large amounts of energy, 2) obtain high signal-to-noise ratios, and 3) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of this feasibility study demonstrated that the HAZAID experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  15. Effect of bed permeability and hyporheic flow on turbulent flow over bed forms

    NASA Astrophysics Data System (ADS)

    Blois, Gianluca; Best, James L.; Sambrook Smith, Gregory H.; Hardy, Richard J.

    2014-09-01

    This paper uses particle imaging velocimetry to provide the first measurements detailing the flow field over a porous bed in the presence of bed forms. The results demonstrate that flow downstream of coarse-grained bed forms on permeable beds is fundamentally different to that over impermeable beds. Most significantly, the leeside flow separation cell is greatly modified by jets of fluid emerging from the subsurface, such that reattachment of the separated flow does not occur and the Reynolds stresses bounding the separation zone are substantially lessened. These results shed new light on the underlying flow physics and advance our understanding of both ecological and geomorphological processes associated with permeable bed forms. Water fluxes at the bed interface are critically important for biogeochemical cycling in all rivers, yet mass and momentum exchanges across the bed interface are not routinely incorporated into flow models. Our observations suggest that ignoring such exchange processes in coarse-grained rivers may overlook important implications. These new results also provide insight to explain the distinctive morphology of coarse-grained bed forms, the production of openwork textures in gravels, and the absence of ripples in coarse sands, all of which have implications for modeling and prediction of sediment entrainment and flow resistance.

  16. CHEMICALLY ACTIVE FLUID-BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF HEAVY FUEL OIL - FOURTH PHASE

    EPA Science Inventory

    The report gives results of Phase 4 of a study on the CAFB process for gasification/desulfurization of liquid and solid fuels in a bed of hot lime. A new pilot unit was designed and constructed, incorporating such novel features as: a new fluidizing air distributor, high-flow/low...

  17. CHEMICALLY ACTIVE FLUID-BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF HEAVY FUEL OIL - SECOND PHASE

    EPA Science Inventory

    The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...

  18. CHEMICALLY ACTIVE FLUID-BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF HEAVY FUEL OIL - THIRD PHASE

    EPA Science Inventory

    The report describes the third phase of studies on the CAFB process for desulfurization/gasification of heavy fuel oil in a bed of hot lime. Major conclusions relating to process performance and operability are: (1) water, either in the fuel or in the fluidizing air, has a strong...

  19. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    NASA Astrophysics Data System (ADS)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be

  20. The pathophysiological mechanism of fluid retention in advanced cancer patients treated with docetaxel, but not receiving corticosteroid comedication

    PubMed Central

    Béhar, A.; Pujade-Lauraine, E.; Maurel, A.; Brun, M. D.; Lagrue, G.; Feuilhade De Chauvin, F.; Oulid-Aissa, D.; Hille, D.

    1997-01-01

    Aims Fluid retention is a phenomenon associated with taxoids. The principal objective of this study was to investigate the pathophysiological mechanism of docetaxel-induced fluid retention in advanced cancer patients. Methods Docetaxel was administered as a 1 h intravenous infusion every 3 weeks, for at least 4–6 consecutive cycles, to patients with advanced breast (n=21) or ovarian (n=3) carcinoma, who had received previous chemotherapy, 21 for advanced disease. Phase II clinical trials have shown that 5 day corticosteroid comedication, starting 1 day before docetaxel infusion, significantly reduces the incidence and severity of fluid retention. This prophylactic corticosteroid regimen is currently recommended for patients receiving docetaxel but was not permitted in this study because of its possible interference with the underlying pathophysiology of the fluid retention. Results Fluid retention occurred in 21 of the 24 patients but was mainly mild to moderate, with only five patients experiencing severe fluid retention. Eighteen patients received symptomatic flavonoid treatment, commonly prescribed after the last cycle. Specific investigations for fluid retention confirmed a relationship between cumulative docetaxel dose and development of fluid retention. Capillary filtration test analysis showed a two-step process for fluid retention generation, with progressive congestion of the interstitial space by proteins and water starting between the second and the fourth cycle, followed by insufficient lymphatic drainage. Conclusions A vascular protector such as micronized diosmine hesperidine with recommended corticosteroid premedication and benzopyrones may be useful in preventing and treating docetaxel-induced fluid retention. PMID:9205828

  1. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  2. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE PAGESBeta

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  3. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    SciTech Connect

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome some of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.

  4. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  5. Enhanced dissolution, stability and physicochemical characterization of ATRA/2-hydroxypropyl-β-cyclodextrin inclusion complex pellets prepared by fluid-bed coating technique.

    PubMed

    Chen, Zhongjian; Lu, Yi; Qi, Jianping; Wu, Wei

    2013-02-01

    The aim of this work was to prepare stable all-trans-retinoic acid (ATRA)/2-hydroxypropyl-β-cyclodextrin (HPCD) inclusion complex pellets with industrial feasible technology, the fluid-bed coating technique, using PVP K30 simultaneously as binder and reprecipitation retarder. The coating process was fluent with high coating efficiency. In vitro dissolution of the inclusion complex pellets in 5% w/v Cremopher EL solution was dramatically enhanced with no reprecipitation observed, and significantly improved stability against humidity (92.5% and 75% RH) and illumination (4500 lx ± 500 lx) was achieved by HPCD inclusion. Differential scanning calorimetry and powder X-ray diffractometry confirmed the absence of crystallinity of ATRA. Fourier transform-infrared spectrometry revealed interaction between ATRA and HPCD adding evidence on inclusion of ATRA moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of ATRA through the polyene chain, which was the main reason for the enhanced photostability. It is concluded that the fluid-bed coating technique has the potential use in the industrial preparation of ATRA/HPCD inclusion complex pellets. PMID:22304703

  6. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion

    NASA Astrophysics Data System (ADS)

    Aitken, A. R. A.; Roberts, J. L.; Ommen, T. D. Van; Young, D. A.; Golledge, N. R.; Greenbaum, J. S.; Blankenship, D. D.; Siegert, M. J.

    2016-05-01

    Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion—enough to expose basement rocks—has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today’s grounding line; and deep within the Sabrina Subglacial Basin, 350–550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the ‘modern-scale’ ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200–250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat–advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration.

  7. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion.

    PubMed

    Aitken, A R A; Roberts, J L; van Ommen, T D; Young, D A; Golledge, N R; Greenbaum, J S; Blankenship, D D; Siegert, M J

    2016-05-19

    Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion-enough to expose basement rocks-has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today's grounding line; and deep within the Sabrina Subglacial Basin, 350-550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the 'modern-scale' ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200-250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat-advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration. PMID:27193684

  8. Biennial Fluid Dynamics Symposium on Advanced Problems and Methods in Fluid Mechanics, 19th, Kozubnik, Poland, Sept. 3-8, 1989, Selected Papers

    NASA Astrophysics Data System (ADS)

    Recent advances in experimental and computational fluid mechanics are discussed in a series of review essays. Topics addressed include transitions to complex flow in thermal convection, optimum hypersonic wings and wave riders, relativistic hydrodynamics, and wind-tunnel wall corrections for unsteady flow (steady wall adaptation and CFD techniques). Consideration is given to axisymmetric laminar interacting boundary layers, differential forms and fluid dynamics, breaking water waves, strong temperature gradients in turbulent wakes, and liquid-crystal 'blue' phases.

  9. The development of an integrated multistaged fluid bed retorting process. Technical report, October 1, 1992--December 31, 1992

    SciTech Connect

    Taulbee, D.; Fei, Y.; Carter, S.

    1993-01-01

    The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. Along with the major activity of assembling the components of the 50-lb/hr retort, work was also completed in other areas this quarter. Basic studies of the cracking and coking kinetics of model compounds in a fixed bed reactor were continued. Additionally, as part of the effort to investigate niche market applications for KENTORT II-derived products, a study of the synthesis of carbon fibers from the heavy fraction of KENTORT II shale oil was initiated.

  10. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  11. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    SciTech Connect

    Dale M. Meade

    2004-10-21

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

  12. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  13. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, March 1--May 31, 1995

    SciTech Connect

    Abbasian, J.

    1995-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors. In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen, calcium sulfide and calcium carbonate will be determined by conducting tests in a pressurized thermogravimetric analyzer unit. The sulfate tests conducted during this quarter, focused on the determination of the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen. The test parameters included CO{sub 2} and O{sub 2} concentrations, reaction temperature and pressure, as well as the sorbent particle size. The results obtained during this quarter suggest that the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen is very fast at temperatures above 850 C which rapidly increases with increasing temperature, achieving more than 85% conversion in less than a few minutes. The reaction appears to continue to completion, however, above 85% conversion, the rate of reaction appears to be low, requiring long residence time to reach complete conversion.

  14. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  15. Effect of Head-Down Bed Rest and Artificial Gravity Countermeasure on Cardiac Autonomic and Advanced Electrocardiographic Function

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Platts, S.; Stenger, M.; Ribeiro, C.; Natapoff, A.; Howarth, M.; Evans, J.

    2007-01-01

    To study the effects of 21 days of head-down bed rest (HDBR), with versus without an artificial gravity (AG) countermeasure, on cardiac autonomic and advanced electrocardiographic function. Fourteen healthy men participated in the study: seven experienced 21 days of HDBR alone ("HDBR controls") and seven the same degree and duration of HDBR but with approximately 1hr daily short-arm centrifugation as an AG countermeasure ("AG-treated"). Five minute supine high-fidelity 12-lead ECGs were obtained in all subjects: 1) 4 days before HDBR; 2) on the last day of HDBR; and 3) 7 days after HDBR. Besides conventional 12-lead ECG intervals and voltages, all of the following advanced ECG parameters were studied: 1) both stochastic (time and frequency domain) and deterministic heart rate variability (HRV); 2) beat-to-beat QT interval variability (QTV); 3) T-wave morphology, including signal-averaged T-wave residua (TWR) and principal component analysis ratios; 4) other SAECG-related parameters including high frequency QRS ECG and late potentials; and 5) several advanced ECG estimates of left ventricular (LV) mass. The most important results by repeated measures ANOVA were that: 1) Heart rates, Bazett-corrected QTc intervals, TWR, LF/HF power and the alpha 1 of HRV were significantly increased in both groups (i.e., by HDBR), but with no relevant HDBR*group differences; 2) All purely "vagally-mediated" parameters of HRV (e.g., RMSSD, HF power, Poincare SD1, etc.), PR intervals, and also several parameters of LV mass (Cornell and Sokolow-Lyon voltages, spatial ventricular activation times, ventricular gradients) were all significantly decreased in both groups (i.e., by HDBR), but again with no relevant HDBR*group differences); 3) All "generalized" or "vagal plus sympathetic" parameters of stochastic HRV (i.e., SDNN, total power, LF power) were significantly more decreased in the AG-treated group than in the HDBR-only group (i.e., here there was a relevant HDBR*group difference

  16. The development of an integrated multistaged fluid-bed retorting process. Final report, September 1990--August 1994

    SciTech Connect

    Carter, S.D.; Taulbee, D.N.; Stehn, J.L.; Vego, A.; Robl, T.L.

    1995-02-01

    This summarizes the development of the KENTORT II retorting process, which includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. Purpose was to design and test the process at the 50-lb/hr scale. The program included bench- scale studies of coking and cracking reactions of shale oil vapors over processed shale particles to address issues of scaleup associated with solid-recycle retorting. The bench-scale studies showed that higher amounts of carbon coverage reduce the rate of subsequent carbon deposition by shale oil vapors onto processed shale particles; however carbon-covered materials were also active in terms of cracking and coking. Main focus was the 50-lb/hr KENTORT II PDU. Cold-flow modeling and shakedown were done before the PDU was made ready for operation. Seven mass-balanced, steady-state runs were completed within the window of design operating conditions. Goals were achieved: shale feedrate, run duration (10 hr), shale recirculation rates (4:1 to pyrolyzer and 10:1 to combustor), bed temperatures (pyrolyzer 530{degree}C, gasifier 750{degree}C, combustor 830{degree}C), and general operating stability. Highest oil yields (up to 109% of Fischer assay) were achieved for runs lasting {ge} 10 hours. High C content of the solids used for heat transfer to the pyrolysis zone contributed to the enhanced oil yield achieved.

  17. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    SciTech Connect

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  18. Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier.

    PubMed

    Ye, Fen-xia; Chen, Ying-xu; Feng, Xiao-shan

    2005-01-01

    The start-up and performance of the anaerobic attached film expanded bed (AAFEB) reactor with pre-aeration of carrier were investigated. The carriers of the reactors had been aerated for 10 days before they were put into the AAFEB reactors. The results indicated that the reactors advance the start-up by 15 days, and maintain higher efficiency when they were subjected to organic and hydraulic loading shock, but during steady-state operation, the reactors did not show better performance than the control reactors without pre-aeration of carrier. The thicker biofilm and higher biomass concentration of the reactors with pre-aeration were observed during the start-up period, but the difference between two types of reactors tapered with the time course, and at the steady-state operation, the difference between two types of reactors on these two parameters was not obvious. Maximum specific methane or acids production rates, dehydrogenase activity and coenzyme F(420) content were continuously higher than those of the control reactors. After running 30 days, filamentous bacteria dominated in the reactors with pre-aeration, whereas the cocci were predominant species in the control reactors. It was suggested that the action of the biofilm is strongly dependent on the biofilm thickness or the biomass concentration in normal circumstances, but under adverse circumstances, such as organic or hydraulic loading shock, the characteristics and activity of the anaerobic granular sludge play key roles on the reactor performance. These results clearly indicated that pre-aeration of carrier favor to enhance the start-up and performance of AAFEB reactor. PMID:15364089

  19. An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds.

    PubMed

    Yun, Junxian; Jespersen, Gry Ravn; Kirsebom, Harald; Gustavsson, Per-Erik; Mattiasson, Bo; Galaev, Igor Yu

    2011-08-12

    A capillary-based model modified for characterization of monolithic cryogels is presented with key parameters like the pore size distribution, the tortuosity and the skeleton thickness employed for describing the porous structure characteristics of a cryogel matrix. Laminar flow, liquid dispersion and mass transfer in each capillary are considered and the model is solved numerically by the finite difference method. As examples, two poly(hydroxyethyl methacrylate) (pHEMA) based cryogel beds have been prepared by radical cryo-copolymerization of monomers and used to test the model. The axial dispersion behaviors, the pressure drop vs. flow rate performance as well as the non-adsorption breakthrough curves of different proteins, i.e., lysozyme, bovine serum albumin (BSA) and concanavalin A (Con A), at various flow velocities in the cryogel beds are measured experimentally. The lumped parameters in the model are determined by matching the model prediction with the experimental data. The results showed that for a given cryogel column, by using the model based on the physical properties of the cryogel (i.e., diameter, length, porosity, and permeability) together with the protein breakthrough curves one can obtain a reasonable estimate and detailed characterization of the porous structure properties of cryogel matrix, particularly regarding the number of capillaries, the capillary tortuousness, the pore size distribution and the skeleton thickness. The model is also effective with regards to predicting the flow performance and the non-adsorption breakthrough profiles of proteins at different flow velocities. It is thus expected to be applicable for characterizing the properties of cryogels and predicting the chromatographic performance under a given set of operating conditions. PMID:21742336

  20. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  1. Evaluating of scale-up methodologies of gas-solid spouted beds for coating TRISO nuclear fuel particles using advanced measurement techniques

    NASA Astrophysics Data System (ADS)

    Ali, Neven Y.

    The work focuses on implementing for the first time advanced non-invasive measurement techniques to evaluate the scale-up methodology of gas-solid spouted beds for hydrodynamics similarity that has been reported in the literature based on matching dimensionless groups and the new mechanistic scale up methodology that has been developed in our laboratory based on matching the radial profile of gas holdup since the gas dynamics dictate the hydrodynamics of the gas-solid spouted beds. These techniques are gamma-ray computed tomography (CT) to measure the cross-sectional distribution of the phases' holdups and their radial profiles along the bed height and radioactive particle tracking (RPT) to measure in three-dimension (3D) solids velocity and their turbulent parameters. The measured local parameters and the analysis of the results obtained in this work validate our new methodology of scale up of gas-solid spouted beds by comparing for the similarity the phases' holdups and the dimensionless solids velocities and their turbulent parameters that are non-dimensionalized using the minimum spouting superficial gas velocity. However, the scale-up methodology of gas-solid spouted beds that is based on matching dimensionless groups has not been validated for hydrodynamics similarity with respect to the local parameters such as phases' holdups and dimensionless solids velocities and their turbulent parameters. Unfortunately, this method was validated in the literature by only measuring the global parameters. Thus, this work confirms that validation of the scale-up methods of gas-solid spouted beds for hydrodynamics similarity should reside on measuring and analyzing the local hydrodynamics parameters.

  2. PREFACE: FLUIDOS 2010: XI Meeting on Recent Advances in the Physics of Fluids and their Applications

    NASA Astrophysics Data System (ADS)

    Bove, Italo; Cabeza, Cecilia; Martí, Arturo C.; Sarasúa, Gustavo

    2011-04-01

    The papers published in this volume of the Journal of Physics: Conference Series were selected from the manuscripts submitted to the XI Meeting on Recent Advances in the Physics of Fluids and their Applications (FLUIDOS2010), which was held in Colonia del Sacramento, Uruguay, 3-5 November 2010. FLUIDOS takes place every two years, usually in November, with the aim of gathering together researchers from all areas of the Physics of Fluids, to update themselves on the latest technical developments and applications, share knowledge and stimulate new ideas. This 11th meeting continues the successful experience of the previous ones which were held in different Argentinian cities. For the first time, the meeting was celebrated in Uruguay, more specifically, in the peaceful town of Colonia del Sacramento, designated a World Heritage Site by UNESCO. The conference presented an outstanding program of papers covering the most recent advances in Physics of Fluids in the following areas: General Fluid Dynamics General and non-Newtonian Flows Magnetohydrodynamics Electrohydrodynamics and Plasmas Hydraulics, Thermohydraulics and Multiple Phase Flows A website with full details of the conference program, abstracts and other information can be found at http://fluidos2010.fisica.edu.uy. We would like to thank all the participants, especially those who contributed with talks, posters and manuscripts, for making FLUDOS2010 such a successful conference. Our thanks also go to our colleagues for their support and encouragement, particularly in the refereeing of papers. We would like to acknowledge additional financial support from Comisión Sectorial de Investigación Científica (Universidad de la República, Uruguay), Programa de Desarrollo de las Ciencias Básicas (Uruguay) and the Centro Latinoamericano de Física (CLAF). Our thanks are extended to the local government of Colonia del Sacramento. The next FLUIDOS conference will be held in November 2013, in Buenos Aires, Argentina. We

  3. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect

    John L. Marion; Nsakala ya Nsakala

    2003-11-09

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  4. Computational structural mechanics and fluid dynamics: Advances and trends; Proceedings of the Symposium, Washington, DC, Oct. 17-19, 1988

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Editor); Dwoyer, Douglas L. (Editor)

    1988-01-01

    Recent advances in computational structural and fluid dynamics are discussed in reviews and reports. Topics addressed include fluid-structure interaction and aeroelasticity, CFD techniques for reacting flows, micromechanics, stability and eigenproblems, probabilistic methods and chaotic dynamics, and perturbation and spectral methods. Consideration is given to finite-element, finite-volume, and boundary-element methods; adaptive methods; parallel processing machines and applications; and visualization, mesh generation, and AI interfaces.

  5. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    PubMed

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  6. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  7. Pressure drop and heat transfer in turbulent non-Newtonian pipe flow of advanced energy transmission fluids

    NASA Astrophysics Data System (ADS)

    Choi, U. S.; Liu, K. V.; Kasza, K. E.

    1988-03-01

    Argonne National Laboratory (ANL), under sponsorship of the U.S. Department of Energy, is making significant progress on the development of advanced energy transmission fluids for thermal systems, in particular district heating and cooling systems. ANL has identified two concepts for developing advanced energy transmission fluids. Tests have been conducted at ANL to prove these concepts. This paper presents experimental results and discusses the degradation behavior of linear polymer additives and the flow and heat transfer characteristics of non-melting slurry flows. The experimental data obtained in this study provide support for the use of friction reducing additives and slurries in thermal system applications.

  8. APFBC repowering could help meet Kyoto Protocol CO{sub 2} reduction goals[Advanced Pressurized Fluidized Bed Combustion

    SciTech Connect

    Weinstein, R.E.; Tonnemacher, G.C.

    1999-07-01

    The Clinton Administration signed the 1997 Kyoto Protocol agreement that would limit US greenhouse gas emissions, of which carbon dioxide (CO{sub 2}) is the most significant. While the Kyoto Protocol has not yet been submitted to the Senate for ratification, in the past, there have been few proposed environmental actions that had continued and wide-spread attention of the press and environmental activists that did not eventually lead to regulation. Since the Kyoto Protocol might lead to future regulation, its implications need investigation by the power industry. Limiting CO{sub 2} emissions affects the ability of the US to generate reliable, low cost electricity, and has tremendous potential impact on electric generating companies with a significant investment in coal-fired generation, and on their customers. This paper explores the implications of reducing coal plant CO{sub 2} by various amounts. The amount of reduction for the US that is proposed in the Kyoto Protocol is huge. The Kyoto Protocol would commit the US to reduce its CO{sub 2} emissions to 7% below 1990 levels. Since 1990, there has been significant growth in US population and the US economy driving carbon emissions 34% higher by year 2010. That means CO{sub 2} would have to be reduced by 30.9%, which is extremely difficult to accomplish. The paper tells why. There are, however, coal-based technologies that should be available in time to make significant reductions in coal-plant CO{sub 2} emissions. Th paper focuses on one plant repowering method that can reduce CO{sub 2} per kWh by 25%, advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) technology, based on results from a recent APFBC repowering concept evaluation of the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. The replacement of the existing 50-year base of power generating units needed to meet proposed Kyoto Protocol CO{sub 2} reduction commitments would be a massive undertaking. It is

  9. Manipulating fluids: Advances in micro-fluidics, opto-fluidics and fluidic self assembly

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh

    This dissertation describes work in three inter-related areas---micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with the three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips. In opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots. Finally, within fluids, self assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena---the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes. In conclusion, advances in fludics, integrating

  10. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well

  11. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  12. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  13. Influence of binder properties, method of addition, powder type and operating conditions on fluid-bed melt granulation and resulting tablet properties.

    PubMed

    Abberger, T

    2001-12-01

    The aim of the study was to investigate melt granulation in a laboratory scale fluid-bed granulator with respect to granule growth, granule properties and resulting tablet properties. The parameters investigated were method of addition of PEG (spray-on or addition as flakes), binder concentration, PEG type (3000, 4000 and 6000, sprayed-on), size (PEG 4000, added as three different sized flakes), powder type (two different sized lactose types and corn starch) and operating conditions (volume air flow and heating temperature). Addition of binder as flakes led to layering as a growth mechanism when the size of the flakes was high. Coalescence occurred when the size was low. Coalescence also occurred when spraying was the method of addition. Due to the greater viscosity of the PEG 6000 melt it produced bigger granules than 3000 or 4000. The influence of volume air flow was moderate and the influence of heating temperature in the range of 70-90 degrees C was very low with both methods of addition. The disintegration time of tablets from granules where PEG was added as flakes was shorter than from granules where PEG was sprayed-on. The latter method of binder addition led to tablets which did not disintegrate but eroded. This was apparently caused by formation of a binder matrix, which could not be destroyed by the disintegrant. PMID:11802658

  14. Effectiveness of an anaerobic granular activated carbon fluidized-bed bioreactor to treat soil wash fluids: a proposed strategy for remediating PCP/PAH contaminated soils.

    PubMed

    Koran, K M; Suidan, M T; Khodadoust, A P; Sorial, G A; Brenner, R C

    2001-07-01

    An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil-solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of a granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic-waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood-preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates averaging 46.5%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86 and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the high-adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that the latter two compounds were biochemically transformed within the reactor. PMID:11394769

  15. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  16. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  17. AFDM: An advanced fluid-dynamics model. Volume 6: EOS-AFDM interface

    SciTech Connect

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices.

  18. Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids.

    PubMed

    MacAdam, Jitka; Ozgencil, Haci; Autin, Olivier; Pidou, Marc; Temple, Clive; Parsons, Simon; Jefferson, Bruce

    2012-12-01

    The treatment of spent metalworking fluids (MWFs) is difficult due to their complex and variable composition. Small businesses often struggle to meet increasingly stringent legislation and rising costs as they need to treat this wastewater on site annually over a short period. Larger businesses that treat their wastewater continuously can benefit from the use of biological processes, although new MWFs designed to resist biological activity represent a challenge. A three-stage treatment is generally applied, with the oil phase being removed first, followed by a reduction in COD loading and then polishing of the effluent's quality in the final stage. The performance of advanced oxidation processes (AOPs), which could be of benefit to both types of businesses was studied. After assessing the biodegradability of spent MFW, different AOPs were used (UV/H2O2, photo-Fenton and UV/TiO2) to establish the treatability of this wastewater by hydroxyl radicals (*OH). The interactions of both the chemical and biological treatments were also investigated. The wastewater was found to be readily biodegradable in the Zahn-Wellens test with 69% COD and 74% DOC removal. The UV/TiO2 reactor was found to be the cheapest option achieving a very good COD removal (82% at 20 min retention time and 10 L min(-1) aeration rate). The photo-Fenton process was found to be efficient in terms of degradation rate, achieving 84% COD removal (1 M Fe2+, 40 M H2O2, 20.7 J cm(-2), pH 3) and also improving the wastewater's biodegradability. The UV/H202 process was the most effective in removing recalcitrant COD in the post-biological treatment stage. PMID:23437675

  19. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  20. A review of recent advances in the assessment of bone porosity, permeability, and interstitial fluid flow

    PubMed Central

    Cardoso, Luis; Fritton, Susannah P.; Gailani, Gaffar; Benalla, Mohammed; Cowin, Stephen C.

    2012-01-01

    This contribution reviews recent research performed to assess the porosity and permeability of bone tissue with the objective of understanding interstitial fluid movement. Bone tissue mechanotransduction is considered to occur due to the passage of interstitial pore fluid adjacent to dendritic cell structures in the lacunar-canalicular porosity. The movement of interstitial fluid is also necessary for the nutrition of osteocytes. This review will focus on four topics related to improved assessment of bone interstitial fluid flow. First, the advantages and limitations of imaging technologies to visualize bone porosities and architecture at several length scales are summarized. Second, recent efforts to measure the vascular porosity and lacunar-canalicular microarchitecture are discussed. Third, studies associated with the measurement and estimation of the fluid pressure and permeability in the vascular and lacunar-canalicular domains are summarized. Fourth, the development of recent models to represent the interchange of fluids between the bone porosities is described. PMID:23174418

  1. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect

    DeLallo, M.R.; Zaharchuk, R.; Reuther, R.B.; Bonk, D.L.

    1996-09-01

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  2. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  3. Technology test bed review

    NASA Astrophysics Data System (ADS)

    McConnaughey, H. V.

    1992-07-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  4. Advanced modeling of nitrogen oxide emissions in circulating fluidized bed combustors: Parametric study of coal combustion and nitrogen compound chemistries

    SciTech Connect

    Kilpinen, P.; Kallio, S.; Hupa, M.

    1999-07-01

    This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region. The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is

  5. Bed bugs.

    PubMed

    Foulke, Galen T; Anderson, Bryan E

    2014-09-01

    The term bed bug is applied to 2 species of genus Cimex: lectularius describes the common or temperate bed bug, and hemipterus its tropical cousin. Cimex lectularius is aptly named; its genus and species derive from the Latin words for bug and bed, respectively. Though the tiny pest is receiving increased public attention and scrutiny, the bed bug is hardly a new problem. PMID:25577850

  6. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  7. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  8. Investigation of heat transfer and combustion in the advanced Fluidized Bed Combustor (FBC). Technical progress report No. 9 [October 1, 1995--December 31, 1995

    SciTech Connect

    Lee, Seong W.

    1996-01-01

    This technical report summarizes the research performed and progress achieved during the period of October 1, 1995 to December 31, 1995. The measurements of gas flow in the advanced FBC test chamber (10 in. I.D.) was continued to better understand and utilize the fluid dynamics of gas and particle flows in the advanced FBC. Measurements showed that the gas flow field in the test chamber is characterized by strongly swirling flow in tangential direction and developing flow in axial and radial directions. In addition, multiple secondary air injection caused significant effects on gas flow in the freeboard of the test chamber. Numerical simulation of typical gas flow patterns in the freeboard was conducted using a computational fluid dynamics (CFD) code, FLUENT. The axial velocities resulting from theoretical prediction were smaller than the tested results. However, the predicted radial velocities at the exit zone of the test chamber were greater than that of the tested results. The calculated results showed the non-isotropic structure with vigorous fluctuating in axial and radial directions. Generally speaking, the predictions of the theoretical calculation agreed with the experimental results. The measurements of gas and particle flows will be continued under different test conditions. In addition, the numerical simulation on gas and particle flows will be continued, which will be compared with the experimental results.

  9. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  10. Recent advances in quantitative analysis of fluid interfaces in multiphase fluid flow measured by synchrotron-based x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Schlueter, S.; Sheppard, A.; Wildenschild, D.

    2013-12-01

    Imaging of fluid interfaces in three-dimensional porous media via x-ray microtomography is an efficient means to test thermodynamically derived predictions on the relationship between capillary pressure, fluid saturation and specific interfacial area (Pc-Sw-Anw) in partially saturated porous media. Various experimental studies exist to date that validate the uniqueness of the Pc-Sw-Anw relationship under static conditions and with current technological progress direct imaging of moving interfaces under dynamic conditions is also becoming available. Image acquisition and subsequent image processing currently involves many steps each prone to operator bias, like merging different scans of the same sample obtained at different beam energies into a single image or the generation of isosurfaces from the segmented multiphase image on which the interface properties are usually calculated. We demonstrate that with recent advancements in (i) image enhancement methods, (ii) multiphase segmentation methods and (iii) methods of structural analysis we can considerably decrease the time and cost of image acquisition and the uncertainty associated with the measurement of interfacial properties. In particular, we highlight three notorious problems in multiphase image processing and provide efficient solutions for each: (i) Due to noise, partial volume effects, and imbalanced volume fractions, automated histogram-based threshold detection methods frequently fail. However, these impairments can be mitigated with modern denoising methods, special treatment of gray value edges and adaptive histogram equilization, such that most of the standard methods for threshold detection (Otsu, fuzzy c-means, minimum error, maximum entropy) coincide at the same set of values. (ii) Partial volume effects due to blur may produce apparent water films around solid surfaces that alter the specific fluid-fluid interfacial area (Anw) considerably. In a synthetic test image some local segmentation methods

  11. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

  12. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  13. Reverse buoyancy in a vibrated granular bed: Computer simulations.

    PubMed

    Idler, Vladimir; Sánchez, Iván; Paredes, Ricardo; Botet, Robert

    2012-10-01

    We have performed molecular dynamics simulations of an intruder in a vibrated granular bed including interstitial fluid effects to account for the phenomenon of reverse buoyancy. We show that our model is able to reproduce the overall behaviour observed by previous experimental works and is the first finite-elements simulation to show the sinking of intruders lighter than the granular bed. To further advance our comprehension of this phenomenon, we studied the motion of the intruders in a single vibration cycle with respect to the bottom of the granular column, finding a substantial qualitative difference for heavy and light intruders and we compare these results with experiments using fine-sized glass beads. We show that, though heavy intruders seem unaffected by the force due to the fluid, the effect on light intruders is remarkable. PMID:23096151

  14. Optimal composition of fluid-replacement beverages.

    PubMed

    Baker, Lindsay B; Jeukendrup, Asker E

    2014-04-01

    The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences. PMID:24715561

  15. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    SciTech Connect

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.; Backman, R.; Hupa, M.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral content can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.

  16. [Advances in Biomarkers of Mild Traumatic Brain Injury in Cerebrospinal Fluid and Blood].

    PubMed

    Huang, Wen; Li, Shang-xun; Li, Xue-jian; Xu, Hong-yun

    2015-12-01

    Mild traumatic brain injury (MTBI) is defined as a mild brain trauma resulting in a short loss of consciousness and alteration of mental status. It may also occasionally develop persistent and progressive symptoms. It has been confirmed that MTBI causes changes of anatomic structures in central nervous system and biomarkers in the body fluid. However, there is no sufficient research on relevance among threshold for the brain injury, individual vulnerability and duration of disturbance of consciousness. Furthermore, there are no reliable diagnostic methods to establish whether a blow to the head is sufficient to cause the brain injury. This review provides references for biomarkers in cerebrospinal fluid and blood associated with TBI. It also provides application status and potential prospects for further assessment and diagnosis of MTBI. PMID:27141807

  17. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  18. Development of advanced computational fluid dynamics tools and their application to simulation of internal turbulent flows

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. N.; Karpenko, A. G.; Volkov, K. N.

    2015-06-01

    Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of internal fluid flows are discussed. The finite volume method is applied to solve three-dimensional (3D) unsteady compressible Euler and Navier-Stokes equations on unstructured meshes. Compute Inified Device Architecture (CUDA) technology is used for programming implementation of parallel computational algorithms. Solution of some fluid dynamics problems on GPUs is presented and approaches to optimization of the CFD code related to the use of different types of memory are discussed. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. Performance measurements show that numerical schemes developed achieve 20 to 50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  19. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  20. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  1. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  2. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  3. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  5. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  6. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Third quarter progress report FY-1984, April 1-June 30, 1984

    SciTech Connect

    Not Available

    1986-01-31

    The overall objective of the KRW coal gasification program is to demonstrate the viability of the KRW pressurized, fluidized-bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) modifications to the PDU; (3) cold flow scaleup facility; (4) advanced process design and analysis; and (5) laboratory support studies. For laboratory support studies, coal and/or char fines from Wyoming Sub C, Western Kentucky, Republic of South Africa (RSA), and Pittsburgh seam coals processed in the PDU were characterized for reactivity on a thermogravimetric analyzer. The average relative reactivity of the fines (-120 x +140 mesh) was found to be nearly the same as that for larger size distribution (18 x 60 mesh, -1.0 + 0.25 mm). This is consistent with the observations of studies reported in literature on carbon gasification reactions.

  7. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    SciTech Connect

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14

    Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current

  8. Advances in Fluid Dynamics of Subsurface Flow of Groundwater, Hydrocarbons, and CO2

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2015-12-01

    In the past, the chemical methods of contaminant hydrogeology have dominated much of hydrogeological thinking. In their wake, understanding the physics of subsurface fluid flow and its application to practice and science seemingly has played a secondary role and it often has been replaced by numerical modelling only. Building an understanding of the actual physics of subsurface flow beyond numerical modelling, however, is a confusing experience exposing one to conflicting statements from the sides of engineers, hydrogeologists, and, for a decade or more, by the followers of free convection and density-driven flow. Within the physics of subsurface flow a number of questions arise, such as: Is water really incompressible as assumed in engineering hydraulics? How does buoyancy work? Are underground buoyancy forces generally directed vertically upwards or downwards? What is the consequential difference between hydrostatic and hydrodynamic conditions? What are the force fields causing subsurface flow for water, hydrocarbons and CO2? Is fluid flow really driven by pressure gradients as assumed in reservoir engineering? What is the effect of geothermal gradients on subsurface flow? Do convection cells and free convection exist on-shore? How does variable density flow work? Can today's numerical codes adequately determine variable density flow? Does saltwater really sink to the bottom of geologic systems due to its higher density? Aquitards create confining conditions and thereby confine fluid movements to aquifers? Does more water flow in aquifers than aquitards? The presentation will shed light on the maze of conflicting statements issued within engineering hydraulics and groundwater dynamics. It will also present a field case and its numerical modelling of variable density flow at a major industrial landfill site. The presentation will thereby foster the understanding of the correct physics involved and how this physics can be beneficially applied to practical cases

  9. Advanced feedback control of indoor air quality using real-time computational fluid dynamics

    SciTech Connect

    Ratnam, E.; Campbell, T.; Bradley, R.

    1998-10-01

    This paper describes the partial implementation of a novel method of controlling indoor air quality (IAQ) for critical applications. The proposed method uses a numerical modeling technique known as computational fluid dynamics (CFD) for modeling the effect of variable ventilation rates for intelligent and rapid control of air contamination in space. This paper describes how a CFD model is made to run in real time linked to a feedback control loop. The technique was simulated in a graphical programming language. The simulation results indicate that a quasi-transient potential flow CFD model is a viable technique for feedback control of IAQ, and it is currently being implemented in an experimental validation.

  10. Development of a filter regeneration system for advanced spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Descamp, V. A.

    1974-01-01

    The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.

  11. Rotational fluid flow experiment: WPI/MITRE advanced space design GASCAN 2

    NASA Technical Reports Server (NTRS)

    Daly, Walter F.; Harr, Lee; Paduano, Rocco; Yee, Tony; Eubbani, Eddy; Delprado, Jaime; Khanna, Ajay

    1991-01-01

    The design and implementation is examined of an electro-mechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned as necessary. Emphasis was placed on the documentation and integration of the mechanical and electrical subsystems. Project results include the reconfiguration and thorough testing of all the hardware subsystems, the implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment design operation.

  12. Recent advances in the development of implicit schemes for the equations of fluid dynamics

    NASA Technical Reports Server (NTRS)

    Warming, R. F.; Beam, R. M.

    1981-01-01

    Innovations and extensions of implicit schemes for equations of fluid dynamics are presented. The notation and theory for linear multistep methods are reviewed, and extensions of work by Beam and Warming (1979) include the implementation of one-leg methods, ADI methods for equations with mixed derivatives, flux vector splitting, the P-dimensional wave equation, and boundary conditions. Numerical experiments indicate that implicit treatment of the boundary conditions is necessary for unconditional stability, and the improvement and implementation of the boundary condition theory should improve the implicit algorithms for gas dynamic equations.

  13. Development of advanced low-temperature heat transfer fluids for district heating and cooling

    SciTech Connect

    Not Available

    1991-09-30

    The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

  14. An advanced combustion research facility for validating computational fluid dynamics codes

    NASA Astrophysics Data System (ADS)

    Bullard, J. B.; Hurley, C. D.; Eccles, N. C.

    1991-12-01

    The Sector Combustion Rig (SCR), built to obtain experimental data which could be used to verify computational fluid dynamic programs and to investigate the formation and consumption of combustion products through a combustor, is described. This rig was designed to accommodate sectors of full size engine combustion chambers and to test them at real or simulated engine operating conditions. Changes made to improve the operating, measurement, and data handling capabilities of the rig as a result of experience from several years of operations are described together with some of the features which contribute to the uniqueness of the SCR. The SCR gas analysis system and instrumentation are described. Extracts from some results obtained during a recent program of tests on a Rolls-Royce RB211 combustor are given.

  15. Computational Fluid Dynamic Analysis of the Posterior Airway Space After Maxillomandibular Advancement For Obstructive Sleep Apnea Syndrome

    PubMed Central

    Sittitavornwong, Somsak; Waite, Peter D.; Shih, Alan M.; Cheng, Gary C.; Koomullil, Roy; Ito, Yasushi; Cure, Joel K; Harding, Susan M.; Litaker, Mark

    2013-01-01

    Purpose Evaluate the soft tissue change of the upper airway after maxillomandibular advancement (MMA) by computational fluid dynamics (CFD). Materials and Methods Eight OSAS patients who required MMA were recruited into this study. All participants had pre- and post-operative computed tomography (CT) and underwent MMA by a single oral and maxillofacial surgeon. Upper airway CT data sets for these 8 participants were created with high-fidelity 3-D numerical models for computational fluid dynamics (CFD). The 3-D models were simulated and analyzed to study how changes in airway anatomy affects pressure effort required for normal breathing. Airway dimensions, skeletal changes, Apnea-Hypopnea Index (AHI), and pressure efforts of pre- and post-operative 3-D models were compared and correlations interpreted. Results After MMA, laminar and turbulent air flow was significantly decreased at every level of the airway. The cross-sectional areas at the soft palate and tongue base were significantly increased. Conclusions This study shows that MMA increases airway dimensions by the increasing the occipital base (Base) - pogonion (Pg) distance. An increase of the Base-Pg distance showed a significant correlation with an AHI improvement and a decreased pressure effort of the upper airway. Decreasing the pressure effort will decrease the breathing workload. This improves the condition of OSAS. PMID:23642544

  16. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  17. Plasma spouted/fluidized bed for materials processing

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, D.

    2010-02-01

    Plasma when coupled with spout/fluidized bed reactor for gas-solid reaction brings in several advantages such as high rate of heat and mass transfer, generation of high bulk temperature using a thin jet of plasma itself as a heat source. The science and technology of plasma and fluidization or spouted bed are well established except of these two put together for high temperature application. Plasma heating of fluid/ spouted bed can bring down the size of the equipment and increase the productivity. However the theory and practice of the hybrid technology has not been tested in a variety of applications that involves high temperature synthesis of materials, TRISO particle coating for nuclear fuel particle, thermal decomposition of refractory type ore, halogenations of minerals, particulate processes and synthesis of advanced materials. This paper gives an account of the use and exploitation of plasma coupled with spouted/ fluidized bed especially for material processing and also addresses the issues for adapting the same in the era of developing advanced high temperature materials.

  18. Supercritical fluid-mediated methods to encapsulate drugs: recent advances and new opportunities.

    PubMed

    Naylor, Andrew; Lewis, Andrew L; Ilium, Lisbeth

    2011-12-01

    With the advent of the development of novel pharmaceutical products and therapies, there is a need for effective delivery of these products to patients. Dependent on whether they are small-molecular weight drugs or biologics, many new compounds may suffer from poor solubility, poor stability or require frequent administration and therefore require optimized delivery. For example, the utilization of polymorphism and the enhanced solubility in the amorphous state is being exploited to improve the dissolution of small-molecular weight poorly soluble drugs. This can be achieved by the formation of solid dispersions in water-soluble matrices. In addition, encapsulation in biodegradable polymeric materials is one potential route to reduce the frequency of administration through the formation of sustained-release formulations. This is desirable for biologics, for example, which generally require administration once or twice daily. Supercritical fluid processing can achieve both of these outcomes, and this review focuses on the use of supercritical CO2 to encapsulate active pharmaceutical ingredients to enhance solubility or achieve sustained release. Using supercritical CO2-mediated processes provides a clean and potentially solvent-free route to prepare novel drug products and is therefore an attractive alternative to conventional manufacturing technologies. PMID:22833981

  19. Study of ebullated-bed fluid dynamics for h-coal. Quarterly progress report No. 2, October 1-December 31, 1980

    SciTech Connect

    Schaefer, R. J.; Rundell, D. N.

    1981-01-01

    Analysis of data from the fluid dynamics tests performed at Hydrocarbon Research, Inc., during Run PDU-10 was started. Data in the computer files were cross-checked with the original notebooks to verify accuracy. Gamma-ray mass absorption coefficients for material in the PDU reactor were calculated using characterization of selected oil and catalyst samples. Battelle Institute began viscosity measurement of PDU reactor liquid samples. Northwestern University began shakedown of the 6'' diameter test stand. Model fluids were selected and charged to the unit. Optical components were designed and assembly was started.

  20. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    NASA Astrophysics Data System (ADS)

    Archambault, Brian C.; Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R.; Taleyakhan, Rusi P.

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources (239Pu-Be and 252Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient 3He sensor replacement was performed utilizing MCNP-PoliMi simulations, the results of which

  1. Particle bed reactor central to SDI nuclear rocket project

    SciTech Connect

    Asker, J.R.

    1991-04-01

    A classified SDI project designated 'Timberwind' and funded with an estimated $7-8 billion over the project's life is charged with the development and flight testing of nuclear reactor-powered rockets. Timberwind's novel 'particle-bed reactor' technology will employ small pellets of reactor fuel to heat a low molecular weight working fluid, such as hydrogen. The fuel pellets would be 0.5 mm in diameter and may be composed of a kernel of fissionable U together with a carbon alloy, coated by layers of carbon and a sealant. A covering of zirconium carbide would prevent chemical degradation of the pellets by the hydrogen working fluid. Performace projection comparisons are conducted for Timberwind, an advanced Atlas-Centaur, and an advanced Titan launch vehicle.

  2. Oral fluid nanosensor test (OFNASET) with advanced electrochemical-based molecular analysis platform.

    PubMed

    Gau, Vincent; Wong, David

    2007-03-01

    High-impact diseases, including cancer, cardiovascular disease, and neurological disease, are challenging to diagnose without supplementing clinical evaluation with laboratory testing. Even with laboratory tools, definitive diagnosis often remains elusive. The lack of three crucial elements presents a road block to achieving the potential of clinical diagnostic tests: (1) definitive disease-associated protein and genetic markers, (2) easy and inexpensive sampling methods with minimal discomfort for the subject, and (3) an accurate and quantitative diagnostic platform. Our aim is to develop and validate a solution for requirement (3) and also to develop a portable system. Requirements (1) and (2) will be addressed through the utilization of novel and highly specific oral cancer saliva proteomic and genomic biomarkers and the use of saliva as the biofluid of choice, respectively. The Oral Fluid NanoSensor Test (OFNASET) technology platform combines cutting-edge technologies, such as self-assembled monolayers (SAM), bionanotechnology, cyclic enzymatic amplification, and microfluidics, with several well-established techniques including microinjection molding, hybridization-based detection, and molecular purification. The intended use of the OFNASET is for the point of care multiplex detection of salivary biomarkers for oral cancer. We have demonstrated that the combination of two salivary proteomic biomarkers (thioredoxin and IL-8) and four salivary mRNA biomarkers (SAT, ODZ, IL-8, and IL-1b) can detect oral cancer with high specificity and sensitivity. Our preliminary studies have shown compelling results. We sequentially delivered a serial dilution of IL-8 antigen, probe solution, wash, enzyme solution, wash, and mediator solution to sensor reaction chambers housed in a prototype cartridge and demonstrated strong signal separation at 50 pg/mL above a negative control. PMID:17435145

  3. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  4. Using the Advanced Progressive Matrices (Set I) to Assess Fluid Ability in a Short Time Frame: An Item Response Theory-Based Analysis

    ERIC Educational Resources Information Center

    Chiesi, Francesca; Ciancaleoni, Matteo; Galli, Silvia; Primi, Caterina

    2012-01-01

    This article is aimed at evaluating the possibility that Set I of the Advanced Progressive Matrices (APM-Set I) can be employed to assess fluid ability in a short time frame. The APM-Set I was administered to a sample of 1,389 primary and secondary school students. Confirmatory factor analysis attested to the unidimensionality of the scale. Item…

  5. Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid contactor/ceramic filter). Twenty-second quarterly status report, January--March 1993

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1993-10-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  6. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

  7. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  8. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  9. Levels of Soluble Receptor for Advanced Glycation End Products in Bronchoalveolar Lavage Fluid in Patients with Various Inflammatory Lung Diseases.

    PubMed

    Kamo, Tetsuro; Tasaka, Sadatomo; Tokuda, Yuriko; Suzuki, Shoji; Asakura, Takanori; Yagi, Kazuma; Namkoong, Ho; Ishii, Makoto; Hasegawa, Naoki; Betsuyaku, Tomoko

    2015-01-01

    Receptor for advanced glycation end products (RAGE) is a multiligand receptor of S100/calgranulins, high-mobility group box 1, and others, and it is associated with the pathogenesis of various inflammatory and circulatory diseases. The soluble form of RAGE (sRAGE) is a decoy receptor and competitively inhibits membrane-bound RAGE activation. In this study, we measured sRAGE levels in bronchoalveolar lavage fluid (BALF) of 78 patients, including 41 with interstitial pneumonia, 11 with sarcoidosis, 9 with respiratory infection, 7 with ARDS, 5 with lung cancer, and 5 with vasculitis. Among them, sRAGE was detectable in BALF of 73 patients (94%). In patients with ARDS and vasculitis, the sRAGE levels were significantly higher than in the control subjects and those with interstitial pneumonia. The sRAGE levels were positively correlated with total cell counts in BALF and serum levels of surfactant protein-D, lactate dehydrogenase, and C-reactive protein. There was an inverse correlation between PaO2/FIO2 ratio and sRAGE levels. These results indicate that sRAGE in BALF might be considered as a biomarker of lung inflammatory disorders, especially ARDS and vasculitis. PMID:27147899

  10. Levels of Soluble Receptor for Advanced Glycation End Products in Bronchoalveolar Lavage Fluid in Patients with Various Inflammatory Lung Diseases

    PubMed Central

    Kamo, Tetsuro; Tasaka, Sadatomo; Tokuda, Yuriko; Suzuki, Shoji; Asakura, Takanori; Yagi, Kazuma; Namkoong, Ho; Ishii, Makoto; Hasegawa, Naoki; Betsuyaku, Tomoko

    2015-01-01

    Receptor for advanced glycation end products (RAGE) is a multiligand receptor of S100/calgranulins, high-mobility group box 1, and others, and it is associated with the pathogenesis of various inflammatory and circulatory diseases. The soluble form of RAGE (sRAGE) is a decoy receptor and competitively inhibits membrane-bound RAGE activation. In this study, we measured sRAGE levels in bronchoalveolar lavage fluid (BALF) of 78 patients, including 41 with interstitial pneumonia, 11 with sarcoidosis, 9 with respiratory infection, 7 with ARDS, 5 with lung cancer, and 5 with vasculitis. Among them, sRAGE was detectable in BALF of 73 patients (94%). In patients with ARDS and vasculitis, the sRAGE levels were significantly higher than in the control subjects and those with interstitial pneumonia. The sRAGE levels were positively correlated with total cell counts in BALF and serum levels of surfactant protein-D, lactate dehydrogenase, and C-reactive protein. There was an inverse correlation between PaO2/FIO2 ratio and sRAGE levels. These results indicate that sRAGE in BALF might be considered as a biomarker of lung inflammatory disorders, especially ARDS and vasculitis. PMID:27147899

  11. Bed Bugs FAQs

    MedlinePlus

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Bed Bugs FAQs Recommend on Facebook Tweet Share Compartir On ... are bed bugs treated and prevented? What are bed bugs? Bed bugs ( Cimex lectularius ) are small, flat, parasitic ...

  12. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  13. Dynamic bed reactor

    SciTech Connect

    Stormo, K.E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix. 27 figs.

  14. Late Consequential Surgical Bed Soft Tissue Necrosis in Advanced Oropharyngeal Squamous Cell Carcinomas Treated With Transoral Robotic Surgery and Postoperative Radiation Therapy

    SciTech Connect

    Lukens, J. Nicholas; Lin, Alexander; Gamerman, Victoria; Mitra, Nandita; Grover, Surbhi; McMenamin, Erin M.; Weinstein, Gregory S.; O'Malley, Bert W.; Cohen, Roger B.; Orisamolu, Abimbola; Ahn, Peter H.; Quon, Harry

    2014-08-01

    Purpose: A subset of patients with oropharyngeal squamous cell carcinoma (OP-SCC) managed with transoral robotic surgery (TORS) and postoperative radiation therapy (PORT) developed soft tissue necrosis (STN) in the surgical bed months after completion of PORT. We investigated the frequency and risk factors. Materials and Methods: This retrospective analysis included 170 consecutive OP-SCC patients treated with TORS and PORT between 2006 and 2012, with >6 months' of follow-up. STN was defined as ulceration of the surgical bed >6 weeks after completion of PORT, requiring opioids, biopsy, or hyperbaric oxygen therapy. Results: A total of 47 of 170 patients (28%) had a diagnosis of STN. Tonsillar patients were more susceptible than base-of-tongue (BOT) patients, 39% (41 of 104) versus 9% (6 of 66), respectively. For patients with STN, median tumor size was 3.0 cm (range 1.0-5.6 cm), and depth of resection was 2.2 cm (range 1.0-5.1 cm). Median radiation dose and dose of fraction to the surgical bed were 6600 cGy and 220 cGy, respectively. Thirty-one patients (66%) received concurrent chemotherapy. Median time to STN was 2.5 months after PORT. All patients had resolution of STN after a median of 3.7 months. Multivariate analysis identified tonsillar primary (odds ratio [OR] 4.73, P=.01), depth of resection (OR 3.12, P=.001), total radiation dose to the resection bed (OR 1.51 per Gy, P<.01), and grade 3 acute mucositis (OR 3.47, P=.02) as risk factors for STN. Beginning May 2011, after implementing aggressive avoidance of delivering >2 Gy/day to the resection bed mucosa, only 8% (2 of 26 patients) experienced STN (all grade 2). Conclusions: A subset of OP-SCC patients treated with TORS and PORT are at risk for developing late consequential surgical bed STN. Risk factors include tonsillar location, depth of resection, radiation dose to the surgical bed, and severe mucositis. STN risk is significantly decreased with carefully avoiding a radiation dosage of >2 Gy/day to the

  15. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  16. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  17. Some connections between fluid mechanics and the solving of industrial and environmental fluid-flow problems

    NASA Astrophysics Data System (ADS)

    Hunt, J. C. R.

    1981-05-01

    The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.

  18. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  19. Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Bell, W. C.; Pandurangan, B.; Glomski, P. S.

    2011-08-01

    To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.

  20. Inter-bed fluid triggered slope failures of the Kaoping Canyon upstream area: Results from memorial R/V Ocean Researcher 5

    NASA Astrophysics Data System (ADS)

    Yeh, Yi-Ching; Shen, Tsung-Fu; Liu, Shao-Yung; Yu, Pai-Sen

    2015-04-01

    As a major pathway of the sediment transportation, the submarine canyons sculpture the seafloor then deposit sediments at the deep ocean. The submarine canyons could be classified to two categories: erosive or deposition based on geological environment or fluid flow down to the canyon. The erosive canyons often 'attack' the levee which may result in submarine landslides or mass transportations due to slope failure. Once slope failure occurs at geological weakness area such as gas hydrate dissociation zone, giant mass slumping will be triggered. These kinds of mass transportations will further develop turbidity current or hyperpycnal flow, which could damage the submarine cables or pipes. The giant mass transportation even triggers devastated tsunami. In this study, a latest swath bathymetric map was compiled by comprising seven cruises between December, 2012 and March 2013. The result shows that regressive erosion may take a place north of 500 meters contour (gas hydrate dissociation region), southwest off Taiwan. Moreover, high resolution seismic image (acquired by Edgetech SB-424 sub-bottom profiler) show that gas rich sediments co-exist with submarine landslide deposits in the edge of the upstream of Kaoping submarine canyon. It implies that slope failures in the study area might be caused by weaken sediment collapse.

  1. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  2. NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: Validation of quantifying abilities and uncertainty assessment.

    PubMed

    Fonteyne, Margot; Arruabarrena, Julen; de Beer, Jacques; Hellings, Mario; Van Den Kerkhof, Tom; Burggraeve, Anneleen; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-11-01

    This study focuses on the thorough validation of an in-line NIR based moisture quantification method in the six-segmented fluid bed dryer of a continuous from-powder-to-tablet manufacturing line (ConsiGma™ 25, GEA Pharma Systems nv, Wommelgem, Belgium). The moisture assessment ability of an FT-NIR spectrometer (Matrix™-F Duplex, Bruker Optics Ltd, UK) equipped with a fiber-optic Lighthouse Probe™ (LHP, GEA Pharma Systems nv, Wommelgem, Belgium) was investigated. Although NIR spectroscopy is a widely used technique for in-process moisture determination, a minority of NIR spectroscopy methods is thoroughly validated. A moisture quantification PLS model was developed. Twenty calibration experiments were conducted, during which spectra were collected at-line and then regressed versus the corresponding residual moisture values obtained via Karl Fischer measurements. The developed NIR moisture quantification model was then validated by calculating the accuracy profiles on the basis of the analysis results of independent in-line validation experiments. Furthermore, as the aim of the NIR method is to replace the destructive, time-consuming Karl Fischer titration, it was statistically demonstrated that the new NIR method performs at least as good as the Karl Fischer reference method. PMID:25124155

  3. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  4. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and

  5. Packed Bed Reactor Experiment

    NASA Video Gallery

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  6. Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures.

    PubMed

    Sikirzhytski, Vitali; Sikirzhytskaya, Aliaksandra; Lednev, Igor K

    2012-10-10

    Conventional confirmatory biochemical tests used in the forensic analysis of body fluid traces found at a crime scene are destructive and not universal. Recently, we reported on the application of near-infrared (NIR) Raman microspectroscopy for non-destructive confirmatory identification of pure blood, saliva, semen, vaginal fluid and sweat. Here we expand the method to include dry mixtures of semen and blood. A classification algorithm was developed for differentiating pure body fluids and their mixtures. The classification methodology is based on an effective combination of Support Vector Machine (SVM) regression (data selection) and SVM Discriminant Analysis of preprocessed experimental Raman spectra collected using an automatic mapping of the sample. This extensive cross-validation of the obtained results demonstrated that the detection limit of the minor contributor is as low as a few percent. The developed methodology can be further expanded to any binary mixture of complex solutions, including but not limited to mixtures of other body fluids. PMID:22824473

  7. Use of North Dakota lignite in advanced power systems

    SciTech Connect

    Willson, W.G.; Hurley, J.P.; Sharp, L.

    1992-12-01

    In order to develop critical data for Department of Energy (DOE) and private industry for advanced high-efficiency power systems using North Dakota lignite in pressurized gasification and combustion systems, tests were performed in bench-scale equipment at the Energy and Environmental Research Center (EERC). The primary objectives were to (1) determine the conversion levels for Center ND lignite under pressurized fluid-bed gasification conditions with sorbent addition as a function of temperature, (2) determine the sulfur capture using limestone or dolomite under gasification conditions giving 90% or higher carbon conversion, (3) evaluate char/coal conversion and sulfur capture in a pressurized fluid-bed combustor, (4) assess the potential for bed agglomeration under the preferred operating conditions for both systems.

  8. Patterning the Renal Vascular Bed

    PubMed Central

    Herzlinger, Doris; Hurtado, Romulo

    2015-01-01

    The renal vascular bed has a stereotypic architecture that is essential for the kidney’s role in excreting metabolic waste and regulating the volume and composition of body fluids. The kidney’s excretory functions are dependent on the delivery of the majority of renal blood flow to the glomerular capillaries, which filter plasma removing from it metabolic waste, as well as vast quantities of solutes and fluids. The renal tubules reabsorb from the glomerular filtrate solutes and fluids required for homeostasis, while the post-glomerular capillary beds return these essential substances back into the systemic circulation. Thus, the kidney’s regulatory functions are dependent on the close proximity or alignment of the post-glomerular capillary beds with the renal tubules. This review will focus on our current knowledge of the mechanisms controlling the embryonic development of the renal vasculature. An understanding of this process is critical for developing novel therapies to prevent vessel rarefaction and will be essential for engineering renal tissues suitable for restoring kidney function to the ever-increasing population of patients with end stage renal disease. PMID:25128732

  9. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC). Technical progress report No. 1, [October 1, 1993--December 31, 1993

    SciTech Connect

    Lee, S.W.

    1994-01-01

    This technical report summarizes the research work performed and progress achieved during the period of October 1, 1993 to December 31, 1993. The newly-concept of exploratory fluidized bed based on the integrating the advantages of fluidized bed combustion (FBC) and cyclonic combustor was designed to study the gas and particle flows and to develop control techniques for gas-particle flow in the FBC. The test chamber was made of transparent acrylic tube with 6in. I.D. to facilitate visual observation. Eight nozzles (s) were made at the freeboard in different levels to provide secondary air, which will generate strong swirling flow field. The progress of this project has been on schedule. Design and fabrication of the exploratory cold test model will be continued with an arrangement of the auxiliary system. After completion of the design/fabrication of the system, the system test will be conducted for the overall system. Instrumentations for the gas/particle flow will be arranged with the auxiliary system. The electrostatic impact probe and associated signal processing units will be designed and fabricated for measuring particle mass flux.

  10. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  11. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  12. Advances in three-dimensional coronary imaging and computational fluid dynamics: is virtual fractional flow reserve more than just a pretty picture?

    PubMed

    Poon, Eric K W; Hayat, Umair; Thondapu, Vikas; Ooi, Andrew S H; Ul Haq, Muhammad Asrar; Moore, Stephen; Foin, Nicolas; Tu, Shengxian; Chin, Cheng; Monty, Jason P; Marusic, Ivan; Barlis, Peter

    2015-08-01

    Percutaneous coronary intervention (PCI) has shown a high success rate in the treatment of coronary artery disease. The decision to perform PCI often relies on the cardiologist's visual interpretation of coronary lesions during angiography. This has inherent limitations, particularly due to the low resolution and two-dimensional nature of angiography. State-of-the-art modalities such as three-dimensional quantitative coronary angiography, optical coherence tomography and invasive fractional flow reserve (FFR) may improve clinicians' understanding of both the anatomical and physiological importance of coronary lesions. While invasive FFR is the gold standard technique for assessment of the haemodynamic significance of coronary lesions, recent studies have explored a surrogate for FFR derived solely from three-dimensional reconstruction of the invasive angiogram, and therefore eliminating need for a pressure wire. Utilizing advanced computational fluid dynamics research, this virtual fractional flow reserve (vFFR) has demonstrated reasonable correlation with invasive measurements and remains an intense area of ongoing study. However, at present, several limitations and computational fluid dynamic assumptions may preclude vFFR from widespread clinical use. This review demonstrates the tight integration of advanced three-dimensional imaging techniques and vFFR in assessing coronary artery disease, reviews the advantages and disadvantages of such techniques and attempts to provide a glimpse of how such advances may benefit future clinical decision-making during PCI. PMID:26247271

  13. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  14. 1997 to Present: Quality and Versatile Access to the Deep Biosphere with Coupled Advanced CORKs and Fluid Pumping Systems

    NASA Astrophysics Data System (ADS)

    Cowen, J. P.; Lin, H.; Jungbluth, S.; Hsieh, C.; Rappe, M.; Glazer, B. T.; Matzinger, M.; Becker, K.; Fisher, A. T.; Amend, J. P.; Johnson, H. P.

    2011-12-01

    In 1997, a simple 'BioColumn' sampler was coupled to the CORK observatory at borehole 1026B to sample fluid chemistry, biomass and microbial community diversity (16S rRNA). The results demonstrated that the 65oC fluids from the 3.5 My old sediment-buried ocean basement support a diverse Bacteria and Archaea community (Cowen et al. 2003, Science 299, 120-123). The large bore of the overpressured CORK body provided high unassisted flow rates through the BioColumn, but possessed the disadvantage of the unknown extent to which the basement fluids were altered by the chemically and biologically (e.g., biofilm community) reactive surface of CORK's steel pipe. Subsequently, new generations of CORKs have incorporated less reactive materials in the CORK body, the use of stainless steel or inert PVDF (Teflon-like) 0.5" ID fluid delivery lines (FDL) running continuously from basement depths to accessible ports at the seafloor, and multiple FDLs from distinct depth horizons within basement. Simultaneously, we have developed increasingly capable fluid sensor and sampling systems for both real-time (Mobile Pumping and Sampling System-MPSS) and long-term autonomous applications (GeoMICROBE sleds). Both incorporate strong efficient pumps to overcome the drag inherent in the 0.5" or smaller bore FDL, multiple sensors (e.g., flow rate, temperature, O2, pH and redox-voltametry chemistry), versatile multi-port large volume fluid collection and/or in situ filtration systems, integrating computer controller/software and non-contaminating (inert) plumbing. These combined developments now provide unparalleled opportunities for access to large volumes of pristine basement samples for geochemical and microbial ecology studies. The MPSS and GeoMICROBE will be described. The multi-year results of organic geochemical and microbial community studies from recent studies at CORK observatories (boreholes 1301A, 1362A 1362B) on the Juan de Fuca Ridge flank will be summarized.

  15. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Phase 2, Final report, May 1, 1983-July 31, 1984

    SciTech Connect

    1987-09-15

    KRW Energy Systems Inc. is engaged in the development of a pressurized, fluidized-bed, gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-Btu fuel gas from a variety of fossilized, carbonaceous feedstocks for electrical power generation, substitute natural gas, chemical feedstocks, and industrial fuels. This report covers Phase II of the contract period (May 1, 1983 to July 31, 1984) and is a continuation of the work performed in 1983 and reported in the Phase I final report, FE-19122-30. Included is work performed in fiscal 1983 to 1984 on PDU testing, process analysis, cold flow scaleup facility, process and component engineering and design, and laboratory support studies.

  16. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2015-02-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than farther downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  17. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2014-07-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency, positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than further downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  18. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    SciTech Connect

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  19. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  20. Electromagnetic self-consistent field initialization and fluid advance techniques for hybrid-kinetic PWFA code Architect

    NASA Astrophysics Data System (ADS)

    Massimo, F.; Marocchino, A.; Rossi, A. R.

    2016-09-01

    The realization of Plasma Wakefield Acceleration experiments with high quality of the accelerated bunches requires an increasing number of numerical simulations to perform first-order assessments for the experimental design and online-analysis of the experimental results. Particle in Cell codes are the state-of-the-art tools to study the beam-plasma interaction mechanism, but due to their requirements in terms of number of cores and computational time makes them unsuitable for quick parametric scans. Considerable interest has been shown thus in methods which reduce the computational time needed for the simulation of plasma acceleration. Such methods include the use of hybrid kinetic-fluid models, which treat the relativistic bunches as in a PIC code and the background plasma electrons as a fluid. A technique to properly initialize the bunch electromagnetic fields in the time explicit hybrid kinetic-fluid code Architect is presented, as well the implementation of the Flux Corrected Transport scheme for the fluid equations integrated in the code.

  1. Fluidized bed heat treating system

    SciTech Connect

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  2. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: III - Numerical Evaluation of Fluid Mixing Phenomena using Advanced Interface-Tracking Method -

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Nagayoshi, Takuji; Takase, Kazuyuki; Akimoto, Hajime

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed by correlations with empirical results of actual-size tests. However, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. Development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. We tried to verify the TPFIT code by comparing it with the 2-channel air-water and steam-water mixing experimental results. The predicted result agrees well the observed results and bubble dynamics through the gap and cross flow behavior could be effectively predicted by the TPFIT code, and pressure difference between fluid channels is responsible for the fluid mixing.

  3. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  4. Receptor for advanced glycation end-products regulates lung fluid balance via protein kinase C-gp91(phox) signaling to epithelial sodium channels.

    PubMed

    Downs, Charles A; Kreiner, Lisa H; Johnson, Nicholle M; Brown, Lou Ann; Helms, My N

    2015-01-01

    The receptor for advanced glycation end-products (RAGE), a multiligand member of the Ig family, may play a crucial role in the regulation of lung fluid balance. We quantified soluble RAGE (sRAGE), a decoy isoform, and advanced glycation end-products (AGEs) from the bronchoalveolar lavage fluid of smokers and nonsmokers, and tested the hypothesis that AGEs regulate lung fluid balance through protein kinase C (PKC)-gp91(phox) signaling to the epithelial sodium channel (ENaC). Human bronchoalveolar lavage samples from smokers showed increased AGEs (9.02 ± 3.03 μg versus 2.48 ± 0.53 μg), lower sRAGE (1,205 ± 292 pg/ml versus 1,910 ± 263 pg/ml), and lower volume(s) of epithelial lining fluid (97 ± 14 ml versus 133 ± 17 ml). sRAGE levels did not predict ELF volumes in nonsmokers; however, in smokers, higher volumes of ELF were predicted with higher levels of sRAGE. Single-channel patch clamp analysis of rat alveolar epithelial type 1 cells showed that AGEs increased ENaC activity measured as the product of the number of channels (N) and the open probability (Po) (NPo) from 0.19 ± 0.08 to 0.83 ± 0.22 (P = 0.017) and the subsequent addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.15 ± 0.07 (P = 0.01). In type 2 cells, human AGEs increased ENaC NPo from 0.12 ± 0.05 to 0.53 ± 0.16 (P = 0.025) and the addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.10 ± 0.03 (P = 0.013). Using molecular and biochemical techniques, we observed that inhibition of RAGE and PKC activity attenuated AGE-induced activation of ENaC. AGEs induced phosphorylation of p47(phox) and increased gp91(phox)-dependent reactive oxygen species production, a response that was abrogated with RAGE or PKC inhibition. Finally, tracheal instillation of AGEs promoted clearance of lung fluid, whereas concomitant inhibition of RAGE, PKC, and gp91(phox) abrogated the response. PMID:24978055

  5. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  6. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  7. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  8. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  9. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  10. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  11. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  12. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect

    1982-10-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  13. Fluidized-Bed Reactor and Hot Gas Cleanup Facility

    SciTech Connect

    Rockey, J.M.

    1996-12-31

    As part of the Morgantown Energy Technology Center`s (METC) Advanced Gasification and Hot Gas Cleanup Facility, a 907 kg (1 ton) coal-per-day (10-inch inside diameter) jetting fluidized-bed gasifier provides realistic fuel gas for testing and developing high-temperature, high-pressure components and processes in a reducing (gasification) and oxidizing (combustion) environment. Operated mainly as a gasifier, the 0.25-m (10-inch) diameter reactor produces up to 227 kg/hr (500 lb/hr) of coal gas at 866 K (1,100{degrees}F) and 30 atmospheres (425 psig) for downstream testing. The raw coal gas is sampled for major and trace species and sent to a filter vessel capable of operating at 894 K (1,150{degrees}F) and 20 atmospheres (290 psig) of pressure. After particulate removal, the gas can be independently controlled to up to five sampling or reaction vessels including fluid-bed desulfurization, transport desulfurization, chloride, alkali, or other contaminant removal or recovery processes. The fluid-bed desulfurizer is capable of being isolated, purged, and exposed to an oxidizing environment for sorbent regeneration or other oxidation reaction. Isokinetic hazardous air pollutant (HAPS) monitoring is provided at the upstream and downstream of particulate removal. Over the post three years, 1,200 hours of operation have been completed in support of six separate Cooperative Research and Development Agreements (CRADAs). These research agreements have been in the areas of candle filters and materials testing, direct sulfur recovery from sorbent regeneration tail gases, and gasifier development.

  14. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  15. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  16. Risk of Subclinical Micrometastatic Disease in the Supraclavicular Nodal Bed According to the Anatomic Distribution in Patients With Advanced Breast Cancer

    SciTech Connect

    Reed, Valerie K.; Cavalcanti, Jose L.; Strom, Eric A.; Perkins, George H.; Oh, Julia L.; Tereffe, Welela; Yu, T.-K.; Yeung, Henry; Whitman, Gary J.; Bedrosian, Isabelle; Macapinlac, Homer A.; Buchholz, Thomas A.; Woodward, Wendy A.

    2008-06-01

    Purpose: To determine the anatomic distribution of gross supraclavicular nodes within the supraclavicular fossa using 2-deoxy-2-[F-18] fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT) scans, and to evaluate likely coverage of specific regions of the supraclavicular fossa using standard radiation fields. Methods and Materials: We identified 33 patients with advanced or metastatic breast cancer who had a PET/CT scan demonstrating hypermetabolic supraclavicular lymph nodes in 2005. The locations of the involved lymph nodes were mapped onto a single CT set of images of the supraclavicular fossa. These lymph nodes were also mapped onto the treatment-planning CT dataset of 4 patients treated in our institution (2 patients with biopsy-proven supraclavicular nodes and 2 patients with clinically negative supraclavicular nodes). Results: We were able to determine the distribution of 52 supraclavicular lymph nodes in 32 patients. Of 32 patients, 28 (87%) had a history of metastatic disease, and 2 patients had isolated nodal recurrences. Five patients had supraclavicular nodes posterior to the vertebral body transverse process, and several lymph nodes were in close proximity to the medial field border, raising the possibility of geographic miss in these areas. Conclusions: In patients with locally advanced disease, increased coverage of the supraclavicular fossa medially and posteriorly may be warranted.

  17. A fluidized-bed reactor for silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, S.

    1984-01-01

    The silane decomposition in a fluidized bed reactor was studied. The process feasibility and operating windows were determined. Long duration tests were conducted and silicon purity was demonstrated. A high purity linear was installed in the fluid bed reactor; the FBR product was melted and single crystallized. Product purity improvements are noted.

  18. Practice Hospital Bed Safety

    MedlinePlus

    ... Bed? Todd says that there is no standard definition for hospital beds, a fact that consumers shopping ... in retail stores that don’t meet the definition of medical devices under the law, but which ...

  19. Enuresis (Bed-Wetting)

    MedlinePlus

    ... their development. Bed-wetting is more common among boys than girls. What causes bed-wetting? A number of things ... valves in boys or in the ureter in girls or boys Abnormalities in the spinal cord A small bladder ...

  20. Effects Of Exercise During Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Arnaud, S.; Berry, P; Cohen, M.; Danelis, J.; Deroshia, C.; Greenleaf, J.; Harris, B.; Keil, L.; Bernauer, E.; Bond, M.; Ellis, S.; Lee, P.; Selzer, R.; Wade, C.

    1992-01-01

    Report describes experiment to investigate effects of isotonic and isokinetic leg exercises in counteracting effects of bed rest upon physical and mental conditions of subjects. Data taken on capacity for work, endurance and strength, tolerance to sitting up, equilibrium, posture, gait, atrophy, mineralization and density of bones, endocrine analyses concerning vasoactivity and fluid and electrolyte balances, intermediary metabolism of muscles, mood, and performance.

  1. Pleural fluid culture

    MedlinePlus

    A procedure called thoracentesis is used to get a sample of pleural fluid. The sample is sent to a laboratory and examined under ... For thoracentesis, you sit on the edge of a chair or bed with your head and arms resting on ...

  2. Time for Bed Game

    MedlinePlus

    ... a Friend Who Cuts? Babysitting: Time for Bed Game KidsHealth > For Teens > Babysitting: Time for Bed Game Print A A A Text Size What Kids ... kids to bed can be tough sometimes! This game introduces children to the concept of getting enough ...

  3. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  4. Fluidized bed quenching technology

    SciTech Connect

    Reynoldson, R.

    1996-12-31

    The use of fluidized beds for quenching ferrous materials is outlined and compared with the more traditional techniques commonly used in the heat treatment industry. The use of fluidized bed quenching to control distortion of metal parts is also discussed. A case study is provided to illustrate a practical application of fluidized bed quenching.

  5. Advanced airbreathing engine lubricants study with a tetraester fluid and a synthetic paraffinic oil at 492 K (425 F)

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Bamberger, E. N.

    1972-01-01

    Groups of 120-mm-bore angular-contact ball bearings made from AISI M-50 steel were fatigue tested with a tetraester and a synthetic paraffinic oil at a bearing temperature of 492 K (425 F) in an air environment. Bearing life exceeded AFBMA-predicted (catalog) life by factors in excess of 4 and 10 for the tetraester and synthetic paraffinic fluids, respectively. The final viscosities after 500 hours of operation were 14 and 6 times the initial values, respectively. During the same time period, when the test oil is replaced at a rate approximating the replenishment rate in actual commerical engine usage, no significant increase in lubricant viscosity with time was observed.

  6. Instrumental aspects of Simulated Moving Bed chromatography.

    PubMed

    Faria, Rui P V; Rodrigues, Alírio E

    2015-11-20

    The Simulated Moving Bed (SMB) is one of the greatest illustrations of the potential of continuous multicolumn counter-current chromatographic processes. Although it was initially developed for the purification of petrochemicals, the advances that this technology has experienced during more than 50 years of existence were at the basis of its successful expansion into the food and pharmaceuticals industries. In this context, the present work provides an overview of the evolution of SMB focused on the most relevant instrumental aspects related with this technology. For that purpose, the details of the design and construction of this equipment will be reviewed, with special attention to the valves design. Due to its increasing interest, the technical requirements imposed by unconventional operating modes will be addressed together with the design adaptations that allow the operation of SMB units with compressible fluids and the implementation of Hybrid-SMB processes. Finally, as SMB technology has been unable to meet all the process specifications within the growing biopharmaceuticals industry, the development of alternative multicolumn counter-current units has intensified over the last few years. Hence, examples of the design and application of these new units will be provided. PMID:26341597

  7. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  8. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  9. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  10. Getting Rid of Bed Bugs

    MedlinePlus

    ... Bed Bugs — Do-it-yourself Bed Bug Control — Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ... Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems ...

  11. Wanapum Dam Advanced Hydro Turbine Upgrade Project: Part 2 - Evaluation of Fish Passage Test Results Using Computational Fluid Dynamics

    SciTech Connect

    Dresser, Thomas J.; Dotson, Curtis L.; Fisher, Richard K.; Graf, Michael J.; Richmond, Marshall C.; Rakowski, Cynthia L.; Carlson, Thomas J.; Mathur, Dilip; Heisey, Paul G.

    2007-10-10

    This paper, the second part of a 2 part paper, discusses the use of Computational Fluid Dynamics (CFD) to gain further insight into the results of fish release testing conducted to evaluate the modifications made to upgrade Unit 8 at Wanapum Dam. Part 1 discusses the testing procedures and fish passage survival. Grant PUD is working with Voith Siemens Hydro (VSH) and the Pacific Northwest National Laboratory (PNNL) of DOE and Normandeau Associates in this evaluation. VSH has prepared the geometry for the CFD analysis corresponding to the four operating conditions tested with Unit 9, and the 5 operating conditions tested with Unit 8. Both VSH and PNNL have conducting CFD simulations of the turbine intakes, stay vanes, wicket gates, turbine blades and draft tube of the units. Primary objectives of the analyses were: • determine estimates of where the inserted fish passed the turbine components • determine the characteristics of the flow field along the paths calculated for pressure, velocity gradients and acceleration associated with fish sized bodies • determine the velocity gradients at the structures where fish to structure interaction is predicted. • correlate the estimated fish location of passage with observed injuries • correlate the calculated pressure and acceleration with the information recorded with the sensor fish • utilize the results of the analysis to further interpret the results of the testing. This paper discusses the results of the CFD analyses made to assist the interpretation of the fish test results.

  12. The NASA Bed Rest Project

    NASA Technical Reports Server (NTRS)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  13. Start Up Research Effort in Fluid Mechanics. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzle

    NASA Technical Reports Server (NTRS)

    White, Samuel G.; Gilinsky, Mikhail M.

    1997-01-01

    In accordance with the project plan for the report period in the proposal titled above, HU and FML teams investigated two sets of concepts for reduction of noise and improvement in efficiency for jet exhaust nozzles of aircraft engines and screws for mixers, fans, propellers and boats. The main achievements in the report period are: (a) Publication of the paper in the AIAA Journal, which described our concepts and some results. (b) The Award in the Civil Research and Development Foundation (CRDF) competition. This 2 year grant for Hampton University (HU) and Central AeroHydrodynamic Institute (TSAGI, Moscow, Russia) supports the research implementation under the current NASA FAR grant. (c) Selection for funding by NASA HQ review panel of the Partnership Awards Concept Paper. This two year grant also will support our current FAR grant. (d) Publication of a Mobius Strip concept in NASA Technical Briefs, June, 1996, and a great interest of many industrial companies in this invention. Successful experimental results with the Mobius shaped screw for mixers, which save more than 30% of the electric power by comparison with the standard screws. Creation of the scientific-popular video-film which can be used for commercial and educational purposes. (e) Organization work, joint meetings and discussions of the NASA LARC JNL Team and HU professors and administration for the solution of actual problems and effective work of the Fluid Mechanics Laboratory at Hampton University. In this report the main designs are enumerated. It also contains for both concept sets: (1) the statement of the problem for each design, some results, publications, inventions, patents, our vision for continuation of this research, and (2) present and expected problems in the future.

  14. Physiology of prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1988-01-01

    Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.

  15. Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.

  16. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  17. Study report on modification of the long term circulatory model for the simulation of bed rest

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Grounds, D. J.

    1977-01-01

    Modifications were made of the circulatory, fluid, and electrolyte control model which was based on the model of Guyton. The modifications included separate leg compartments and the addition of gravity dependency. It was found that these modifications allowed for more accurate bed rest simulation by simulating changes in the orthostatic gradient and simulating the response to the fluid shifts associated with bed rest.

  18. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  19. High-Flux, High Performance H2O2 Catalyst Bed for ISTAR

    NASA Technical Reports Server (NTRS)

    Ponzo, J.

    2005-01-01

    On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.

  20. Development and testing of a fluidized bed solar thermal receiver

    SciTech Connect

    Bachovchin, D.M.; Archer, D.H.; Neale, D.H.; Brown, C.T.; Lefferdo, J.M.

    1981-01-01

    Requirements for effective solar thermal receivers are compared with the characteristics of fluidized beds to demonstrate the compatibility of the two technologies. The Westinghouse design and construction of a solar thermal fluidized bed air heater for industrial process heat is described. Tests of the unit with concentrated solar radiation at the Georgia Tech Advanced Components Test Facility are outlined and receiver performance is evaluated.

  1. Turbulent flow and sand transport over a cobble bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The turbulence structure of flow over rough beds and its interaction with fine sediments in the bed are important for efforts to predict sediment transport downstream of dams. The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored...

  2. IOERT as anticipated tumor bed boost during breast-conserving surgery after neoadjuvant chemotherapy in locally advanced breast cancer--results of a case series after 5-year follow-up.

    PubMed

    Fastner, Gerd; Reitsamer, Roland; Ziegler, Ingrid; Zehentmayr, Franz; Fussl, Christoph; Kopp, Peter; Peintinger, Florentia; Greil, Richard; Fischer, Thorsten; Deutschmann, Heinrich; Sedlmayer, Felix

    2015-03-01

    To evaluate retrospectively rates of local (LCR) and locoregional tumor control (LRCR) in patients with locally advanced breast cancer (LABC) who were treated with preoperative chemotherapy (primary systemic treatment, PST) followed by breast-conserving surgery (BCS) and either intraoperative radiotherapy with electrons (IOERT) preceding whole-breast irradiation (WBI) (Group 1) or with WBI followed by an external tumor bed boost (electrons or photons) instead of IOERT (Group 2). From 2002 to 2007, 83 patients with clinical Stage II or III breast cancer were enrolled in Group 1 and 26 in Group 2. All patients received PST followed by BCS and axillary lymph node dissection. IOERT boosts were applied by single doses of 9 Gy (90% reference isodose) versus external boosts of 12 Gy (median dose range, 6-16) in 2 Gy/fraction (ICRU). WBI in both groups was performed up to total doses of 51-57 Gy (1.7-1.8 Gy/fraction). The respective median follow-up times for Groups 1 and 2 amount 59 months (range, 3-115) and 67.5 months (range, 13-120). Corresponding 6-year rates for LCR, LRCR, metastasis-free survival, disease-specific survival and overall survival were 98.5, 97.2, 84.7, 89.2 and 86.4% for Group 1 and 88.1, 88.1, 74, 92 and 92% for Group 2, respectively, without any statistical significances. IOERT as boost modality during BCS in LABC after PST shows a trend to be superior in terms of LCR and LRCR in comparison with conventional boosts. PMID:24995409

  3. Moving granular-bed filter development program. Topical report

    SciTech Connect

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1994-04-01

    Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

  4. Long-duration bed rest as an analog to microgravity.

    PubMed

    Hargens, Alan R; Vico, Laurence

    2016-04-15

    Long-duration bed rest is widely employed to simulate the effects of microgravity on various physiological systems, especially for studies of bone, muscle, and the cardiovascular system. This microgravity analog is also extensively used to develop and test countermeasures to microgravity-altered adaptations to Earth gravity. Initial investigations of bone loss used horizontal bed rest with the view that this model represented the closest approximation to inactivity and minimization of hydrostatic effects, but all Earth-based analogs must contend with the constant force of gravity by adjustment of the G vector. Later concerns about the lack of similarity between headward fluid shifts in space and those with horizontal bed rest encouraged the use of 6 degree head-down tilt (HDT) bed rest as pioneered by Russian investigators. Headward fluid shifts in space may redistribute bone from the legs to the head. At present, HDT bed rest with normal volunteers is the most common analog for microgravity simulation and to test countermeasures for bone loss, muscle and cardiac atrophy, orthostatic intolerance, and reduced muscle strength/exercise capacity. Also, current physiologic countermeasures are focused on long-duration missions such as Mars, so in this review we emphasize HDT bed rest studies with durations of 30 days and longer. However, recent results suggest that the HDT bed rest analog is less representative as an analog for other important physiological problems of long-duration space flight such as fluid shifts, spinal dysfunction and radiation hazards. PMID:26893033

  5. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  6. Volunteer Shelter Bed Programs.

    ERIC Educational Resources Information Center

    Little (Arthur D.), Inc., Washington, DC.

    The volunteer shelter bed program development guidelines in this booklet are offered as a community-based alternative to the institutionalization of status offenders. The volunteer shelter bed program is described as a nonsecure residential alternative for status offenders, which can be implemented without the creation of new facilities or the…

  7. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1982-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  8. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1981-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600 900 C. Conditions favorable for heterogenous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mole, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  9. In-bed tube bank for a fluidized-bed combustor

    DOEpatents

    Hemenway, Jr., Lloyd F.

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  10. Particle fuel bed tests

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H/sub 2/ for 12 hours with no visible reaction or weight loss.

  11. Bed rest during pregnancy

    MedlinePlus

    ... provider before you start any activity: Squeezing stress balls Pressing your hands and feet against the bed ... limit yourself from doing any of these: Cooking Light chores Walking Bathing or showering Driving Having sex ...

  12. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  13. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  14. Incipient fluidization condition for a centrifugal fluidized bed

    SciTech Connect

    Fan, L.T.; Chang, C.C.; Takahashi, T.; Tanaka, Z.; Yu, Y.S.

    1985-06-01

    A model has been proposed for the condition of incipient fluidization in a centrifugal fluidized bed. The model is based on the balance between the overall forces, including the centrifugal and fluid frictional forces, exerted on the fluidized particles and the overall effective weight of the particles. Equations have been derived from the model for predicting the critical fluidizing velocity and the maximum pressure differential (or pressure drop) through the centrifugal bed. A series of experiments was carried out with different solid particles, bed rotational speeds, and bed heights. The resultant data for the critical fluidizing velocity and the maximum pressure drop of the bed indicate that the proposed model is valid and the derived equations are of practical use.

  15. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  16. FPGA Based Reconfigurable ATM Switch Test Bed

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Jones, Robert E.

    1998-01-01

    Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.

  17. Wound bed preparation: TIME for an update.

    PubMed

    Harries, Rhiannon L; Bosanquet, David C; Harding, Keith G

    2016-09-01

    While the overwhelming majority of wounds heal rapidly, a significant proportion fail to progress through the wound-healing process. These resultant chronic wounds cause considerable morbidity and are costly to treat. Wound bed preparation, summarised by the TIME (Tissue, Inflammation/infection, Moisture imbalance, Epithelial edge advancement) concept, is a systematic approach for assessing chronic wounds. Each of these components needs to be addressed and optimised to improve the chances of successful wound closure. We present an up-to-date literature review of the most important recent aspects of wound bed preparation. While there are many novel therapies that are available to the treating clinician, often, there are limited data on which to assess their clinical value, and a lack of appreciation for adequate wound bed preparation needed before expensive therapy is used to heal a wound. PMID:27547958

  18. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

    1993-10-19

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

  19. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.

    1993-01-01

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

  20. Simulation of Anomalous Oil Filtration in a Porous Bed

    NASA Astrophysics Data System (ADS)

    Kelbaliev, G. I.; Rzaev, Ab. G.; Rasulov, S. R.; Guseinova, L. V.

    2015-03-01

    The problems of modeling the processes of filtration of anomalous structurized oils with coagulation structures present in a porous bed are considered. An equation for the filtration of Bingham fluids in a carrier bed that accounts for the dependence of the filtration rate on the pressure gradient and shear stress has been derived. Models for calculating the effective viscosity and mobility of oil depending on the change of the pressure gradient in the bed and of the concentration of particles in it have been developed. A comparison of these models with the experimental data available in the literature for various wells yielded satisfactory results.

  1. Space station common module thermal management: Design and construction of a test bed

    NASA Technical Reports Server (NTRS)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  2. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  3. Role of near-bed turbulence in bedload transport

    USGS Publications Warehouse

    Nelson, Jonathan M.; Shreve, Ronald L.; McLean, Stephen R.

    1995-01-01

    Bedload transport by a turbulent fluid moving over an erodible sediment bed results from complex interactions between flow field of the overlying fluid and the grains making up the bed. To develop a better view of these interactions, a method that combines high-speed photography with laser-Doppler velocimetry was devised. The methodology permits correlation of bedload transport with local turbulence structure at a frequency resolution of 10 hz. By making a suite of measurements at varying distances from a backward step, data were obtained for a variety of flows with different turbulence characteristics ranging from steady, uniform boundary layers to highly intermittent, nonuniform wake-like flows.

  4. Exercise countermeasures for bed-rest deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  5. CERTS Microgrid Laboratory Test Bed

    SciTech Connect

    ETO, J.; LASSETER, R.; SCHENKMAN, B.; STEVENS, J.; KLAPP, D.; VOLKOMMER, H.; LINTON, E.; HURTADO, H.; ROY, J.

    2010-06-08

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1 a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2 an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3 a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources.

  6. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  7. Amniotic fluid

    MedlinePlus

    Amniotic fluid is a clear, slightly yellowish liquid that surrounds the unborn baby (fetus) during pregnancy. It is ... in the womb, the baby floats in the amniotic fluid. The amount of amniotic fluid is greatest at ...

  8. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  9. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  10. Rancho flotation bed.

    PubMed

    Reswick, J B; Nickel, V L; Simoes, N

    1977-04-01

    The Rancho Flotation Bed provides hydrostatic support with maximum pressures over bony prominences of 15 to 25 mm Hg (measured with a pneumatic pressure transducer). This is generally below the levels normally quoted as conducive to the development of ischaemia. Clinical experience has shown the bed to be a successful aid to nursing by eliminating the need to turn the patients for pressure reasons, allowing patients with pressure sores to remain in a position which is more comfortable and more suitable for other nursing care. It also makes it easier for nurses to handle patients in order to care for the pressure sores. PMID:615987

  11. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  12. Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity

    NASA Technical Reports Server (NTRS)

    Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.

    2001-01-01

    Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.

  13. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  14. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  15. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  16. Onset and cessation of motion in hydrodynamically sheared granular beds

    NASA Astrophysics Data System (ADS)

    Clark, Abram H.; Shattuck, Mark D.; Ouellette, Nicholas T.; O'Hern, Corey S.

    2015-10-01

    We performed molecular dynamics simulations of granular beds driven by a model hydrodynamic shear flow to elucidate general grain-scale mechanisms that determine the onset and cessation of sediment transport. By varying the Shields number (the nondimensional shear stress at the top of the bed) and particle Reynolds number (the ratio of particle inertia to viscous damping), we explore how variations of the fluid flow rate, particle inertia, and fluid viscosity affect the onset and cessation of bed motion. For low to moderate particle Reynolds numbers, a critical boundary separates mobile and static states. Transition times between these states diverge as this boundary is approached both from above and below. At high particle Reynolds number, inertial effects become dominant, and particle motion can be sustained well below flow rates at which mobilization of a static bed occurs. We also find that the onset of bed motion (for both low and high particle Reynolds numbers) is described by Weibullian weakest-link statistics and thus is crucially dependent on the packing structure of the granular bed, even deep beneath the surface.

  17. Bed rest during pregnancy

    MedlinePlus

    ... groups, bulletin boards, and chat rooms online for moms-to-be who are also on bed rest. Expect emotional ups and downs. Share your hopes and worries with your partner. Let each other vent if needed. If sex is not allowed, look for other ways to ...

  18. EXPANDED BED BIOLOGICAL TREATMENT

    EPA Science Inventory

    A three-year pilot-scale research investigation at the EPA Lebanon Pilot Plant was conducted to evaluate the feasibility of a unique biological secondary treatment process, designated the Expanded Bed Biological Treatment Process (EBBT). The EBBT process is a three-phase (oxygen/...

  19. Fluid blade disablement tool

    DOEpatents

    Jakaboski, Juan-Carlos; Hughs, Chance G.; Todd, Steven N.

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  20. Fluid sampling tool

    DOEpatents

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  1. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  2. Combustion model for staged circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Fang, Jianhua; Lu, Qinggang; Wang, Bo; Pan, Zhonggang; Wang, Dasan

    1997-03-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion, which takes fluid dynamics, combustion, heat transfer, pollutants formation and retention, into account was developed in the Institute of Engineering Thermophysics (IET) recently. The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure. The chemical species CO, CO2, H2, H2O, CH4, O2 and N2 were considered in the reaction process. The mathematical model consisted of sub-models of fluid namics, coal heterogeneous and gas homogeneous chemical reactions, heat transfer, particle fragmentation and attrition, mass and energy balance etc. The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data. The main submodels and simulation results are given in this paper.

  3. Particle pressures in fluidized beds. Annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.

    1994-03-01

    Campbell and Wang (1991) showed that the particle pressures in gas-fluidized beds were largely generated by the passage of bubbles. In particular, they showed that the average particle pressure exerted on the side walls scaled with the average size of the bubble. This immediately brings to mind two questions: (1) what is it about bubbles that leads to particle pressure generation and (2) would there be measurable particle pressures in liquid-fluidized beds which, while unstable, do not bubble? This project is largely aimed at answering these two questions. To attack the first problem, the authors have built a two-dimensional gas-fluidized bed into which bubbles may be injected and the distribution of particle-pressure measured. For the latter, other experiments are being performed in liquid fluidized beds. However, it soon became apparent that the particle pressures generated in the liquid beds are extremely small. This has pointed that phase of the research in two directions. The first is the design and construction of a third, and more sensitive, from of the particle pressure transducer. The second approach arose from reflection on what ultimately was the utility of the current research. This led to the development of a generic stability model, in which all modeled terms are left unspecified. From analyzing this model, they have developed an experimental plan that, by measuring the characteristics of voidage disturbances and comparing with the theory, will allow them to back out appropriate values for the modeled terms. The results will not only yield insight into the particle pressure, but also of the fluid drag. The latter results may be used to evaluate common models for these terms.

  4. Wound bed preparation from a clinical perspective

    PubMed Central

    Halim, A. S.; Khoo, T. L.; Saad, A. Z. Mat

    2012-01-01

    Wound bed preparation has been performed for over two decades, and the concept is well accepted. The ‘TIME’ acronym, consisting of tissue debridement, infection or inflammation, moisture balance and edge effect, has assisted clinicians systematically in wound assessment and management. While the focus has usually been concentrated around the wound, the evolving concept of wound bed preparation promotes the treatment of the patient as a whole. This article discusses wound bed preparation and its clinical management components along with the principles of advanced wound care management at the present time. Management of tissue necrosis can be tailored according to the wound and local expertise. It ranges from simple to modern techniques like wet to dry dressing, enzymatic, biological and surgical debridement. Restoration of the bacterial balance is also an important element in managing chronic wounds that are critically colonized. Achieving a balance moist wound will hasten healing and correct biochemical imbalance by removing the excessive enzymes and growth factors. This can be achieved will multitude of dressing materials. The negative pressure wound therapy being one of the great breakthroughs. The progress and understanding on scientific basis of the wound bed preparation over the last two decades are discussed further in this article in the clinical perspectives. PMID:23162216

  5. Novel simulated moving-bed adsorber for the fractionation of gas mixtures.

    PubMed

    Rao, D P; Sivakumar, S V; Mandal, Susmita; Kota, Sridevi; Ramaprasad, B S G

    2005-03-25

    The separation of propylene-propane mixture is an energy intensive operation commercially practiced using cryogenic distillation. The separation by pressure swing adsorption has been studied as an alternative. A fixed-bed pressure swing adsorption yields the heavy component as a pure product. The product recovery and the productivity are not high. In a moving-bed process, because of the counter-current solid-gas contact, the separation achieved is similar to that of the fractionation by distillation. Although the moving-bed operation offers the upper limit for the performance of a cyclic adsorptive process, due to mechanical complexities in the handling of solids the 'simulated' moving-bed is preferred. By moving the inlet and outlet ports of streams located along the length of the bed, a moving-bed process can be realized in a fixed bed. We describe here a 'moving-port' system which permits injection or withdrawal of the fluid along the axial direction in a fixed bed. A fixed bed embedded with the moving-port systems emulates a simulated moving-bed adsorber. The proposed adsorber can fractionate a binary gas mixture into two product streams with high purities. It is similar to the Sorbex process of UOP but does not have the eluent as an additional separating agent. A parametric study indicates that high purity products and a higher productivity by an order of magnitude can be achieved with simulated moving-beds compared to the fixed beds. PMID:15844493

  6. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  7. Bed of polydisperse viscous spherical drops under thermocapillary effects

    NASA Astrophysics Data System (ADS)

    Sharanya, V.; Raja Sekhar, G. P.; Rohde, Christian

    2016-08-01

    Viscous flow past an ensemble of polydisperse spherical drops is investigated under thermocapillary effects. We assume that the collection of spherical drops behaves as a porous media and estimates the hydrodynamic interactions analytically via the so- called cell model that is defined around a specific representative particle. In this method, the hydrodynamic interactions are assumed to be accounted by suitable boundary conditions on a fictitious fluid envelope surrounding the representative particle. The force calculated on this representative particle will then be extended to a bed of spherical drops visualized as a Darcy porous bed. Thus, the "effective bed permeability" of such a porous bed will be computed as a function of various parameters and then will be compared with Carman-Kozeny relation. We use cell model approach to a packed bed of spherical drops of uniform size (monodisperse spherical drops) and then extend the work for a packed bed of polydisperse spherical drops, for a specific parameters. Our results show a good agreement with the Carman-Kozeny relation for the case of monodisperse spherical drops. The prediction of overall bed permeability using our present model agrees well with the Carman-Kozeny relation when the packing size distribution is narrow, whereas a small deviation can be noted when the size distribution becomes broader.

  8. Continuum Statistics of the Bed Topography in a Sandy River

    NASA Astrophysics Data System (ADS)

    McElroy, B.; Jerolmack, D.; Mohrig, D.

    2005-12-01

    Temporal and spatial variabilities in the bed geometry of sandy rivers contain information about processes of sediment transport that has not been fully appreciated. This is primarily due to a disparity between the dynamic nature of the sediment-fluid interface and the relatively static methods of surveying bed elevation, e.g. single profiles or point measurements. High resolution topographic data is paramount to understanding the dynamic behavior of sandy beds. We present and analyze a data set collected on a 2cm x 2cm grid at 1 minute intervals and with a vertical precision of ~1mm. This was accomplished by using Lambert-Beer's Law for attenuation of light to transform low-altitude aerial photographs into digital elevation models. Forty successive models were generated for a 20 m by 30 m section of channel bottom of the N. Loup River, Nebraska. To calculate the average, whole bed translation rate, or celerity, cross-correlations between a reference bed topography and its proceeding configurations were determined. Time differences between models were related to the shift lengths that produced correlation maxima for each model pair. The result is a celerity of ~3.8cm/s with a correlation coefficient of 0.992. Bed topography also deforms while it translates, and this can be seen as a secular decrease of correlation maxima. The form of this decrease in correlation is exponential, and from it an interface half-life is defined. In this case, the bed had become extensively reorganized within ~40 minutes, the time necessary to translate the bed one wavelength of the dominant roughness element. Although the bed is continuously deforming, its roughness is statistically stationary. Essentially, a mean roughness is maintained as the bed creates new realizations of itself. The dynamic nature of the whole bed and similarly transient behavior of individual elements suggests the utility of a holistic approach to studying the feedback between bed topography, fluid flow, and

  9. The Influence of Relative Submergence on the Near-bed Flow Field: Implications for Bed-load Transport

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Tait, S.; Marion, A.

    2005-12-01

    the above tests. The overlap between this distribution and the measured velocities are used to estimate entrainment rates. Predicted entrainment rates increase with relative submergence, even for similar bed shear stress. Assuming bed-load rate is the product of entrainment rate and hop length, and that hop lengths are sensibly stable, suggests that transport rate has a dependence on relative submergence. This demonstrates that transport rate is not a direct function of average bed shear stress. The results describe a mechanism that will cause river channels with contrasting morphologies (and different relative submergence) but similar levels of average bed stress to experience different levels of sediment mobility. Chegini A. Tait S. Heald J. McEwan I. 2002 The development of an automated system for the measurement of near bed turbulence and grain motion. Proc. ASCE Conf. on Hydraulic Measurements and Experimental Methods, ISBN 0-7844-0655-3. Drake T.G. Shreve R.L. Dietrich W.E. Whiting P.J. Leopold L.B. 1988 Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193-217. Heald J. McEwan I. Tait, S. 2004 Sediment transport over a flat bed in a unidirectional flow: simulations and validation, Phil. Trans. Roy. Soc. of London A, 362, 1973-1986. Nelson J.M. Shreve R.L. McLean S.R. Drake T.G. 1995 Role of near-bed turbulence structure in bed-load transport and bed form mechanics, Water. Res. Res., 31, 8, 2071-2086.

  10. CERTS Microgrid Laboratory Test Bed

    SciTech Connect

    Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

    2009-06-18

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations

  11. Suspended load and bed-load transport of particle-laden gravity currents: the role of particle-bed interaction

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Bergantz, G. W.

    2007-03-01

    The development of particle-enriched regions (bed-load) at the base of particle-laden gravity currents has been widely observed, yet the controls and relative partitioning of material into the bed-load is poorly understood. We examine particle-laden gravity currents whose initial mixture (particle and fluid) density is greater than the ambient fluid, but whose interstitial fluid density is less than the ambient fluid (such as occurs in pyroclastic flows produced during volcanic eruptions or when sediment-enriched river discharge enters the ocean, generating hyperpycnal turbidity currents). A multifluid numerical approach is employed to assess suspended load and bed-load transport in particle-laden gravity currents under varying boundary conditions. Particle-laden flows that traverse denser fluid (such as pyroclastic flows crossing water) have leaky boundaries that provide the conceptual framework to study suspended load in isolation from bed-load transport. We develop leaky and saltation boundary conditions to study the influence of flow substrate on the development of bed-load. Flows with saltating boundaries develop particle-enriched basal layers (bed-load) where momentum transfer is primarily a result of particle-particle collisions. The grain size distribution is more homogeneous in the bed-load and the saltation boundaries increase the run-out distance and residence time of particles in the flow by as much as 25% over leaky boundary conditions. Transport over a leaky substrate removes particles that reach the bottom boundary and only the suspended load remains. Particle transport to the boundary is proportional to the settling velocity of particles, and flow dilution results in shear and buoyancy instabilities at the upper interface of these flows. These instabilities entrain ambient fluid, and the continued dilution ultimately results in these currents becoming less dense than the ambient fluid. A unifying concept is energy dissipation due to particle

  12. NDEA Institute for Advanced Study in Industrial Arts. (Detroit, June 24-August 2, 1968). Final Report. Integration of Fluid Power Instruction into Energy and Propulsion Systems.

    ERIC Educational Resources Information Center

    Cochran, Leslie H.; Wolansky, William D.

    The institute was designed to provide industrial arts teachers with updating experiences in fluid power education. It had four educational phases: technical instruction, directed field experiences, teaching strategies, and professional development. The latter involved meeting with participants in two other institutes. Twenty-one participants were…

  13. Bed-load sediment motion and dispersion over a smooth bed

    NASA Astrophysics Data System (ADS)

    Ballio, Francesco; Radice, Alessio

    2015-04-01

    Under the assumption that bed-load sediment motion be drive by mechanisms of (i) flow-particle, (ii) roughness-particle and (iii) particle-particle interactions, appropriate experimental campaigns designed to switch off any of these interactions may provide insight in individual effect of each interaction. In the context of a long-term project undertaken in cooperation with the Environmental and Industrial Fluid Mechanics group at the University of Aberdeen (UK), results are here presented for experiments with bed-load motion of isolated particles over a plane, smooth bed. Such a condition, evidently much distant from that of natural streams, represents a case where the contribution of bed roughness and particle-particle interaction is filtered out, thus highlighting the role of flow turbulence for particle dynamics. Experiments were performed at the Hydraulics Laboratory of the Politecnico di Milano. Three flow conditions were tested. Motion of particles was almost continuous, differently from the intermittent motion typically detected at weak bed load over rough beds. Sediment particles were individually tracked along their paths, measuring position, velocity and acceleration of the single grains. The collected database was considerably wide, counting more than 450 identified paths (resulting in more than 60,000 instantaneous velocity values) for each experimental configuration. A number of analyses was applied to the data: probability density function, auto-correlation and spectra of grain velocity; Kolmogorov and generalized structure functions of sediment velocity; temporal growth of variance of particle position as representative of the sediment dispersion process. Results for the various hydrodynamic conditions proved a good collapse when normalized using the friction velocity of the flow as the kinematic scaling parameter. Several dimensionless time scales of particle motion, obtained from the different analyses, were compared to each other and, whenever

  14. Production of MHD fluid

    DOEpatents

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  15. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo; Hosek, William S.

    1981-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  16. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo; Hosek, William

    1983-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  17. Amniotic fluid

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002220.htm Amniotic fluid To use the sharing features on this page, please enable JavaScript. Amniotic fluid is a clear, slightly yellowish liquid that surrounds ...

  18. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.

    PubMed

    Aleksić, Ivana; Đuriš, Jelena; Ibrić, Svetlana; Parojčić, Jelena

    2015-12-30

    Melt granulation in fluid bed processors is an emerging technique, but literature data regarding the modeling of this granulation method are lacking. In the present study different techniques (response surface analysis, multilayer perceptron neural network, and partial least squares method) were applied for modeling of spray-on fluidized bed melt granulation. Experiments were organized in line with central composite design. The effect of binder content and spray air pressure on granule properties was evaluated. The results obtained indicate that binder content can be identified as a critical factor controlling the granule size and size distribution. It was found that agglomeration mechanism involved, i.e., granule shape, can be greatly influenced by binder properties. The spray air pressure was identified as critical process parameter affecting granule flowability. The results presented indicate that application of in silico tools enables enhanced understanding and better control of novel pharmaceutical processes, such as melt granulation in fluidized bed. The artificial neural networks and partial least squares method were found to be superior to response surface methodology in prediction of granule properties. According to the results obtained, application of more advanced empirical modeling techniques complementary to design of experiments can be a suitable approach in defining the design space and optimization of spray-on fluidized bed melt granulation. PMID:26551673

  19. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  20. Cardiovascular Adaptations to Long Duration Head-Down Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Martin, David S.; Perez, Sondar A.; Ribeiro, Christine; Stenger, Michael B.; Summers, Richard; Meck, Janice V.

    2008-01-01

    INTRODUCTION: Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS: Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 days of bed rest, and compared to pre-bed rest data. Ultrasound data were collected on vascular and cardiac structure and function. Tilt testing was conducted for 30 minutes or until presyncopal symptoms intervened. RESULTS: Plasma volume was significantly reduced by day 7 of bed rest. Flow-mediated dilation in the leg was significantly increased at bed rest day 49. Arterial responses to nitroglycerin differed in the arm and leg, but did not change as a result of bed rest. Intimal-medial thickness markedly decreased at bed rest days 21, 35 and 49. Several cardiac functional parameters including isovolumic relaxation time, ejection time and myocardial performance index were significantly increased (indicating a decrease in cardiac function) during bed rest. There was a trend for decreased orthostatic tolerance following 60 days of bed rest. DISCUSSION: These data suggest that 6 head-down tilt bed rest alters cardiovascular structure and function in a pattern similar to short duration spaceflight. Additionally, the vascular alterations are primarily seen in the lower body, while vessels of the upper body are unaffected. KEY WORDS: spaceflight, orthostatic intolerance, hypotension, fluid-shift, plasma volume

  1. Predictive models of circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  2. Beds of reconfigurable angled hairs rectify Stokes flows

    NASA Astrophysics Data System (ADS)

    Alvarado, Jose; Comtet, Jean; Hosoi, Anette Peko

    2015-11-01

    Biological tissues such as intestines, blood vessels, kidneys, and tongues are coated with beds of passive, elongated, hair-like protrusions such as microvilli, hyaluronans, primary cilia, and papillae. Stresses from fluid flows can bend deformable hairs, but this reconfiguration can in turn affect confined fluid flows. We investigate this elastoviscous coupling by developing a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows in a Taylor-Couette geometry. We characterize this system with a theoretical model which shows that reconfiguration of hair beds is controlled by a single elastoviscous number. Hair bending results in an apparent shear thinning because the hair tip lowers toward the base and thus widens the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base and thus narrows the gap. Beds of reconfigurable angled hairs can thus give rise to an asymmetric flow impedance at arbitrarily low Reynolds number and could therefore function as a microfluidic rectifier.

  3. Bed drain cover assembly for a fluidized bed

    DOEpatents

    Comparato, Joseph R.; Jacobs, Martin

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  4. Method and apparatus for improving heat transfer in a fluidized bed

    DOEpatents

    Lessor, Delbert L.; Robertus, Robert J.

    1990-01-01

    An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.

  5. Bed Rest Muscular Atrophy

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  6. Coal Bed Methane Primer

    SciTech Connect

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  7. Structural perturbations in immersed granular beds due to shear-flow-driven erosion in a laboratory flume

    NASA Astrophysics Data System (ADS)

    Salevan, J. C.; Shattuck, M. D.; Ohern, C.; Ouellette, N. T.

    2014-12-01

    Our understanding of the detailed physical mechanisms that underlie erosion remains limited due to the complexity of the coupling between hydrodynamic shear, sediment transport, internal granular bed rearrangement, and bedform dynamics. In particular, it is unclear how the internal bed structure, including grain rearrangements, jamming, and force networks, affects bedform evolution and sediment transport. To address these questions, we perform experimental studies of shear flow across model granular beds in a recirculating laboratory flume. We monitor changes in the contour of the granular bed surface and in structural properties of the internal granular packing, and we examine the effects of varied fluid flow regimes and time scales on bed rearrangements.

  8. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  9. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides

    PubMed Central

    Zhu, Fang; Gujar, Hemant; Gordon, Jennifer R.; Haynes, Kenneth F.; Potter, Michael F.; Palli, Subba R.

    2013-01-01

    Recent advances in genomic and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius transcriptome analysis, we identified 14 molecular markers associated with pyrethroid resistance. Our studies revealed that most of the resistance-associated genes functioning in diverse mechanisms are expressed in the epidermal layer of the integument, which could prevent or slow down the toxin from reaching the target sites on nerve cells, where an additional layer of resistance (kdr) is possible. This strategy evolved in bed bugs is based on their unique morphological, physiological and behavioral characteristics and has not been reported in any other insect species. RNA interference-aided knockdown of resistance associated genes showed the relative contribution of each mechanism towards overall resistance development. Understanding the complexity of adaptive strategies employed by bed bugs will help in designing the most effective and sustainable bed bug control methods. PMID:23492626

  10. Computational fluid dynamics for the CFBR : challenges that lie ahead /

    SciTech Connect

    Kashiwa, B. A.; Yang, Wen-ching,

    2001-01-01

    The potential of Computational Fluid Dynamics as a tool for design and analysis of the Circulating Fluidized Bed Reactor is considered. The ruminations are largely philosophical in nature, and are based mainly on experience. An assessment of where CFD may, or may not, be a helpful tool for developing the needed understanding, is furnished. To motivate this assessment, a clarification of what composes a CFD analysis is provided. Status of CFD usage in CFBR problems is summarized briefly. Some successes and failures of CFD in CFBR analysis are also discussed; this suggests a practical way to proceed toward the goal of adding CFD as a useful tool, to be used in combination with well-defined experiments, for CFBR needs. The conclusion is that there remains substantial hope that CFD could be very useful in this application. In order to make the hope a reality, nontrivial, and achievable, advances in multiphase flow theory must be made.

  11. Adsorption dynamics of trichlorofluoromethane in activated carbon fiber beds.

    PubMed

    Zhang, Xiaoping; Zhao, Xin; Hu, Jiaqi; Wei, Chaohai; Bi, Hsiaotao T

    2011-02-28

    Adsorption on carbon fixed-beds is considered as an inexpensive and highly effective way for controlling chlorofluorocarbons (CFCs) emissions. In the present work, a dynamic model under constant-pattern wave conditions has been developed to predict the breakthrough behavior of trichlorofluoromethane (CFC-11) adsorption in a fixed bed packed with activated carbon fibers (ACFs). The adsorption of CFC-11 vapor onto viscose-based ACFs was performed in a fixed bed at different test conditions. The results showed that, in a deep bed (>120 mm), the analytical model based on the external mass transfer with the Langmuir isotherm could describe the adsorption dynamics well. The model parameters, the characteristic breakthrough time and the film mass-transfer coefficients are related to such operating parameters as the superficial gas velocity, feed concentration and bed height. It was found from the breakthrough dynamics that the mass transfer from the fluid phase to the fiber surface dominated the CFC-11 adsorption onto ACFs in fixed beds. PMID:21216098

  12. Capture of alkali during pressurized fluidized-bed combustion using in-bed sorbents

    SciTech Connect

    Mann, M.D.; Ludlow, D.K.

    1997-12-31

    The primary focus of this research was the removal of alkali from PFBC flue gases to a level specified by turbine manufactures. The target level was less than 24 ppbw. Several of the aluminosilicate minerals have the potential to capture alkalis, especially sodium and potassium, under conditions typical of fluid-bed operation. Other goals of this work were to investigate the potential for simultaneously removing SO{sub 2} and Cl from the PFBC gas stream. The initial work focused primarily on one class of sorbents, sodalites, with the goal of determining whether sodalites can be used as an in-bed sorbent to simultaneously remove alkali and sulfur. Thermo gravimetric analysis (TGA) was used to study the mechanism of alkali capture using sodalite. Further testing was performed on a 7.6 cm (3-in.)-diameter pressurized fluid-bed reactor (PFBR). Early results indicated that simultaneous removal of alkali and sulfur and/or chlorine was not practical under the conditions for commercial PFBC operations. Therefore, the focus of the latter part of this work was on sorbents that have been shown to capture alkali in other systems. The effectiveness of bauxite and kaolinite to reduce vapor-phase alkali concentrations was determined. In addition to studying the gettering capability of the sorbent, the impact of the getter on operational performance was evaluated. This evaluation included examining potential agglomeration of bed particles, deposition on heat-transfer surfaces, and the bridging and blinding of ceramic candle filters. The focus of this paper is on the work performed on the PFBR.

  13. Capacitively-Heated Fluidized Bed

    NASA Technical Reports Server (NTRS)

    Mchale, E. J.

    1982-01-01

    Fluidized-bed chamber in which particles in bed are capacitively heated produces high yields of polycrystalline silicon for semiconductor devices. Deposition of unrecoverable silicon on chamber wall is reduced, and amount of recoverable silicon depositing on seed particles in bed is increased. Particles also have a size and density suitable for direct handling without consolidation, unlike silicon dust produced in heated-wall chambers.

  14. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  15. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  16. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  17. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  18. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  19. Development of advanced low-temperature heat transfer fluids for district heating and cooling. Final report, September 25, 1990--September 24, 1991

    SciTech Connect

    Not Available

    1991-09-30

    The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

  20. Slow Granular Dynamics in River Beds: Toward a Continuous Definition of Bed Load Transport.

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J.

    2014-12-01

    Field records and experimental studies show that the fluvial geophysical processes that shape the landscape, such as debris flows and river sediment transport, are extremely unpredictable in large part due to the nonlinear dependence of the transport rates on the structural properties of the sediment. There is a need for a more fundamental understanding of the physical processes that control sediment transfer rates, particularly the magnitude and frequency of the bed load transport flux. We present experiments in a simple geometry, an annular couette cell, that allows us to study the free-surface dynamics at the interface between a flowing viscous fluid and a submerged particle bed made of plastic spheres, a highly idealized river. This geometry presents an opportunity to study details of the bed structure and particle transport with a well-controlled steady shear stress during long-time experiments. We use the refractive-index-matched laser scanning technique [Dijksman et al. 2012], to detect the particle positions on a two-dimensional vertical slice at the middle of the 15 particle wide bed, and characterize their dynamics over a range of timescales of six-orders of magnitude. We find that the particle dynamics are spatiotemporally heterogeneous, but that the overall flow field reaches a well-developed steady-state. Below the fluid flow depth, we find a wide flowing layer characterized by a fast, approximately exponential decay of the particle velocity versus depth. This layer can be associated with the active layer commonly mentioned in the literature. We find that the thickness of the flow layer increases with the applied shear stress. However, deep in the bed, the velocity profile does not indefinitely follow a exponential decay. Instead, the rate of decay of the velocity profile slows drastically, transitioning continuously to a quasistatic flow regime, with a very different exponential decay. This study provides a new framework for understanding the

  1. Validation of bed-load transport measurements with time-sequenced bathymetric data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in bathymetric data acquisition have made it possible to adopt a new, expedient method for measuring bed load transport in rivers. The method consists of comparing time sequenced bathymetric data sets and utilizing a simple mass conservation relation for bed load transport. Assuming a tri...

  2. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  3. Granular controls on the dispersion of bed load tracers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Martin, R. L.; Phillips, C. B.

    2014-12-01

    Coarse particles are transported in a river as bed load, i.e., they move in frequent contact with and are supported by the granular bed. This movement is typically intermittent and may be described by a series of steps are rests, the distributions of which determine particle dispersion. Laboratory and field studies of bed load tracer dispersion have reported sub- and super-diffusive behavior, both of which have been successfully reproduced with stochastic transport models. Although researchers have invoked heavy-tailed step lengths as the cause of anomalous dispersion, most observations report thin-tailed distributions. Little attention has been paid to rest periods, and stochastic transport models have not been connected to the underlying mechanics of particle motion. Based on theoretical and experimental evidence, we argue that step lengths are thin-tailed and do not control the longterm dispersion of bed load tracers; they are determined by momentum balance between the fluid and solid. Using laboratory experiments with both marbles and natural sediments, we demonstrate that the rest time distribution is power law, and argue that this distribution controls asymptotic dispersion. Observed rest times far exceed any hydrodynamic timescale. Experiments reveal that rest times of deposited particles are governed by fluctuations in river bed elevation; in particular, the return time for the bed to scour to the base of a deposited particle. Stochastic fluctuations in bed elevation are describable by an Ornstein-Uhlenbeck (mean-reverting random walk) model that contains two parameters, which we show are directly related to the granular shear rate and range of bed elevation fluctuations, respectively. Combining these results with the theory of asymmetric random walks (particles only move downstream), we predict superdiffusive behavior that is in quantitative agreement with our observations of tracer dispersion in a natural river.

  4. Local liquid velocity measurement of Trickle Bed Reactor using Digital Industrial X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Mohd Salleh, Khairul Anuar

    Trickle Bed Reactors (TBRs) are fixed beds of particles in which both liquid and gas flow concurrently downward. They are widely used to produce not only fuels but also lubrication products. The measurement and the knowledge of local liquid velocities (VLL) in TBRs is less which is essential for advancing the understanding of its hydrodynamics and for validation computational fluid dynamics (CFD). Therefore, this work focused on developing a new, non-invasive, statistically reliable technique that can be used to measure local liquid velocity (VLL) in two-dimensions (2-D). This is performed by combining Digital Industrial X-ray Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques. This work also make possible the development of three-dimensional (3-D) VLL measurements that can be taken in TBRs. Measurements taken through both the combined and the novel technique, once validated, were found to be comparable to another technique (a two-point fiber optical probe) currently being developed at Missouri University of Science and Technology. The results from this study indicate that, for a gas-liquid-solid type bed, the measured VLL can have a maximum range that is between 35 and 51 times that of its superficial liquid velocity (VSL). Without the existence of gas, the measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. At a higher V SL, the particle tracer was greatly distributed and became carried away by a high liquid flow rate. Neither the variance nor the range of measured VLL varied for any of the replications, confirming the reproducibility of the experimental measurements used, regardless of the VSL . The liquid's movement inside the pore was consistent with findings from previous studies that used various techniques.

  5. MONITORING STRATEGIES FOR FLUIDIZED BED COMBUSTION COAL PLANTS

    EPA Science Inventory

    Air and water monitoring strategies for commercial-size Fluidized Bed Combustion (FBC) coal plants are presented. This is one of five reports developing air and water monitoring strategies for advanced coal combustion (FBC), coal conversion (coal gasification and liquefaction), a...

  6. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    sufficiently large that Brownian motion of the particles can be ignored and the Reynolds number sufficiently small that particle inertia is negligible. A packed particle bed is used to randomize and disperse the flowing fluid introduced by a peristaltic pump. The bed itself is a rectangular glass cell 8 cm wide (x), 0.8 cm deep and a height of 30.5 cm (z). The depth of field of the camera is approximately 0.5 cm so depth information is averaged. Over flow fluid is returned to the reservoir making a closed loop system. In these experiments the particles form a sediment approximately 5.7 cm high with the pump off and expand to 22 cm with the pump on. For the smaller particles the pump velocity is .5 millimeters per second and 1.1 millimeters per second for the large particles. At this concentration the bed has a very well defined top where particle concentration rapidly drops to zero.

  7. New Advances In Multiphase Flow Numerical Modelling Using A General Domain Decomposition and Non-orthogonal Collocated Finite Volume Algorithm: Application To Industrial Fluid Catalytical Cracking Process and Large Scale Geophysical Fluids.

    NASA Astrophysics Data System (ADS)

    Martin, R.; Gonzalez Ortiz, A.

    momentum exchange forces and the interphase heat exchanges are 1 treated implicitly to ensure stability. In order to reduce one more time the computa- tional cost, a decomposition of the global domain in N subdomains is introduced and all the previous algorithms applied to one block is performed in each block. At the in- terface between subdomains, an overlapping procedure is used. Another advantage is that different sets of equations can be solved in each block like fluid/structure interac- tions for instance. We show here the hydrodynamics of a two-phase flow in a vertical conduct as in industrial plants of fluid catalytical cracking processes with a complex geometry. With an initial Richardson number of 0.16 slightly higher than the critical Richardson number of 0.1, particles and water vapor are injected at the bottom of the riser. Countercurrents appear near the walls and gravity effects begin to dominate in- ducing an increase of particulate volumic fractions near the walls. We show here the hydrodynamics for 13s. 2

  8. Spacer fluids

    SciTech Connect

    Wilson, W.N.; Bradshaw, R.D.; Wilton, B.S.; Carpenter, R.B.

    1992-05-19

    This patent describes a method for cementing a wellbore penetrating an earth formation into which a conduit extends, the wellbore having a space occupied by a drilling fluid. It comprises displacing the drilling fluid from the space with a spacer fluid comprising: sulfonated styrene-maleic anhydride copolymer, bentonite, welan gum, surfactant and a weighting agent; and displacing the spacer composition and filling the wellbore space with a settable cement composition.

  9. Gravel pack screen having retention means and fluid permeable particulate solids

    SciTech Connect

    Gaidry, J.E.; Quebedeaux, L.J.; Donovan, J.F.; Ashton, J.P.

    1991-09-24

    This patent describes an apparatus for use on a subterranean well conduit to prevent particulate matter in the well of a pre-determinable size from passing into the conduit with the well production fluids. It comprises a cylindrically shaped inner tubular member having an interior wall and an exterior wall; a fluid flow passageway defined within the interior wall of the tubular member; fluid flow passage means extending from the interior of the tubular member through the exterior wall of the tubular member and in communication with the fluid flow passageway; retention means disposed around the exterior wall of the tubular member and passing across the fluid flow passage means, and having fluid flow openings therethrough; a fluid permeable bed of particulate solids around the exterior of the retention means sized to prevent effectively all such particulate matter in the well from passing inwardly with the production fluids through the fluid permeable bed and through the fluid flow passage means and into the fluid flow passageway when the conduit and the apparatus are positioned within the subterranean well, whereby the openings in the retention means are sized to prevent the particulate solids of the fluid permeable bed from passing into the fluid flow passage means and into the fluid flow passageway and further sized to permit any particulate matter in the well passing through the fluid permeable bed to pass through the retention means and through the subterranean well conduit.

  10. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    PubMed

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities. PMID:18782819

  11. Experimental modelling of outburst flood - bed interactions

    NASA Astrophysics Data System (ADS)

    Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.

    2009-04-01

    Outburst floods are a sudden release and advancing wave of water and sediment, with a peak discharge that is often several orders of magnitude greater than perennial flows. Common outburst floods from natural sources include those from glacial and moraine-impounded lakes, freshwater dyke and levee bursts, volcanic debris dams, landslides, avalanches, coastal bay-bars, and those from tree or vegetation dams. Outburst flood hazards are regularly incorporated into risk assessments for urban, coastal and mountainous areas, for example. Outburst flood hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to outburst floods. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental outburst floods. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow

  12. What can cross-bedding tell us?

    NASA Astrophysics Data System (ADS)

    Douillet, G.; Kueppers, U.; Dingwell, D. B.

    2014-12-01

    Pyroclastic density currents (PDCs) are a common transport mechanism associated with explosive eruptions. They behave as particulate density current (flows of particles and fluid, whose driving force is the excess density compared to the ambient fluid). The particles thus are the defining part of the flow acting as the agent of momentum and the resultant deposits, making PDC sedimentology fundamental. We combine wind tunnel measurements with nontraditional field techniques to consider cross-bedding from dilute PDCs from the mm to the km scale. Each deposited particle requires 1) momentum to reach its final location, but 2) sufficiently low shearing to halt at this place. A range of shearing is constrained from wind tunnel measurements. The results are combined with field data from lacquer peel sampling (an outcrop is impregnated with a solidifying glue, preserving the primary organization of the grains). This enables quantification of the grain size of mm-scale laminae, giving an order of magnitude of turbulence during deposition. The lacquer peel technique also imaged cm-scale, soft sediment deformation patterns producing overturned beds. These are interpreted as related to Kelvin-Helmholtz shear instabilities between a granular-based flow and the bed. Dune bedform (DBs) cross-stratification at the m scale generally have an overall stoss-aggrading stacking pattern. Often interpreted as indicating supercritical flows, the wind-tunnel results and DBs' geometry rather suggest they are a specificity of particulate density currents with high deposition rates. Ground penetrating radar (GPR) reveals the 3D stability in location of a DB over several m depth, although stacking patterns vary with time and laterally. This emphasizes the primary influence of the basal boundary layer in the depositional dynamics. At the 100 m scale, DBs' shape evolves in dimensions and form, calling for 3D datasets. Terrestrial laser scanner and photogrammetry enable quantification of the

  13. Velocity Fluctuations in Gas-Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Cody, G. D.

    1998-03-01

    Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres

  14. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs.

    PubMed

    Pfiester, Margie; Koehler, Philip G; Pereira, Roberto M

    2008-08-01

    The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5-6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs. PMID:18767752

  15. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  16. LSP Composite Test Bed Design

    NASA Technical Reports Server (NTRS)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  17. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  18. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  19. Mathematical modelling of coal fired fluidized bed combustors

    SciTech Connect

    Selcuk, N.; Siddall, R.G.; Sivrioglu, U.

    1980-12-01

    A system model of continuous fluidized bed combustors burning coal of wide size distribution has been derived, and applied to the investigation of the effect of excess air and recycle on bed concentration and temperature profiles and combustion efficiency of a pilot scale coal fired fluidized combustor. To demonstrate the effect of recycling, the behaviour of the fluidized combustor has been predicted for two extreme cases of recycle: complete and no recycle of elutriated char particles, the former was chosen to determine the behaviour of the model in the absence of elutriation, and the latter corresponds to the actual operating conditions of the fluidized combustor. Expected trends for concentration and temperature profiles and combustion efficiency are predicted correctly for both cases. The predictive ability and the flexibility of the model for incorporation of refinements such as a correlation for bubble growth and a detailed combustion mechanism, makes the model a promising one for the evaluation of performance of the fluid bed industrial boilers.

  20. Effect Of Leg Exercise On Vascular Volumes During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1993-01-01

    Report describes experiments on effects of no-exercise regimen and of two leg-exercise regimens on volumes of plasma, volumes of red blood cells, densities of bodies, and water balances of 19 men (32 to 42 years old) confined to minus 6 degrees-head-down bed rest for 30 days. Purpose of study to determine whether either or both exercise regimens maintain plasma volume and to relate levels of hypovolemia to body fluid balances. Results showed during bed rest, plasma volume maintained in isotomic group but not in other two groups, and no significant differences in body densities, body weights, or water balances among three groups. Concludes isotonic-exercise regimen better than isokinetic-exercise regimen for maintaining plasma volume during prolonged exposure to bed rest.

  1. Catalytic gasification studies in a pressurized fluid-bed unit

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  2. RAS and LES Simulation of the supercritical flow over the waving bed

    NASA Astrophysics Data System (ADS)

    Fu, X.; Ma, H.; Heyman, J.; Mettra, F.; Liu, D.; Ancey, C.

    2013-12-01

    The phenomena of bed forms exist widely in the natural rivers and are still not fully understood. The detailed sediment dynamics near the bed is essential for this problem. However, the fluid dynamics near the bed, which drives the sediment motion, is not clear. In this talk, we focus on the fluid dynamics of supercritical flow over a sinusoidal wavy bed, especially around the wall region. This setup mimics anti-dunes morphology i.e. bedforms that are commonly found in steep mountain streams. In this case, the flow depth and the bedform amplitude have the same order of magnitude with the amplitude of the bedform. To study the detailed fluid flow, a 3-Dimensional numerical simulation of Navier-Stokes equations is performed. Two different models, Reynolds Average Simulation (RAS) and Large Eddy Simulation (LES), are used for the turbulence closure. The two models are validated with experiments carried out on a wavy bed. Particular attention is paid to the fluid shear stress on the wavy bed and the bedform equivalent roughness. LES shows more abilities for this problem. In future, various wavelength and amplitude of the sinus wave will be implemented so that new shear stress formulas and parameterization for the anti-dune roughness in shallow water equations will be proposed.

  3. Forces on stationary particles in near-bed turbulent flows

    USGS Publications Warehouse

    Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.

    2007-01-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The

  4. Discrete element modelling of bed load transport

    NASA Astrophysics Data System (ADS)

    Maurin, Raphael; Chareyre, Bruno; Chauchat, Julien; Frey, Philippe

    2013-04-01

    Discrete element method (DEM) is a numerical method to simulate an assembly of particles, which has been widely used in mechanics (soil, rock) and granular physics. DEM consists in considering undeformable particles and modelling the intergranular interactions with simple laws (e.g. linear elastic and Coulomb friction law). The expression of the equation of motion on each particle considering the nearest neighbor interactions allows then to solve the dynamical behavior of the system explicitely. Since its introduction more than thirty years ago, this type of model has proven its ability to well describe the behavior of granular media in several different situations, from quasi-static system to flow of granular media. Bedload transport in streams is characterized by particle transport restricted to the interface between fluid flow and immerged granular media, where particles are rolling, sliding or in saltation over the bed. This situation corresponds to the larger particles transported on the bed in stream channels and has a great influence on geomorphology. Physical mechanisms and processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known. This is partly due to the small attention given to the role of granular interactions. Starting from these considerations, we used DEM to reproduce experiments carried out with spherical glass beads in an experimental steep and narrow flume. This was done in order to focus on granular interactions and to have access to parameters not available in the experiment. DEM open-source code Yade was coupled with a simplified fluid model, taking into account the different hydrodynamical interactions (buoyancy, drag, lift...) experienced by the particles. Numerical results obtained from the simulation are compared with an experimental data set established previously at the laboratory. It consists in monodisperse and bidisperse mixtures of coarse spherical glass beads entrained by a shallow

  5. MULTIFLUID EULERIAN MODELLING OF DENSE GAS-SOLID FLUIDIZED BED HYDRODYNAMICS: INFLUENCE OF THE DISSIPATION PARAMETERS

    SciTech Connect

    Reuge, N; Cadoret, L.; Pannala, Sreekanth; Syamlal, M; Coufort, C; Caussat, B

    2008-01-01

    Computational fluid dynamic (CFD) models must be thoroughly validated before they can be used with confidence for designing fluidized bed reactors. In this study, validation data were collected from a fluidized bed of (Geldart's group B) alumina particles operated at different gas velocities involving two fluidization hydrodynamic regimes (bubbling and slugging). The bed expansion, height of bed fluctuations, and frequency of fluctuations were measured from a videos of the fluidized bed. The Eulerian-Eulerian two fluid model MFIX was then used to simulate the experiments. Two different models for the particle stresses - Schaeffer (Syamlal et al., (1993), Schaeffer (1987)) and Princeton (Srivastava and Sundaresan (2003)) models - and different values of the restitution coefficient and internal angle of friction were evaluated. 3-D simulations are required for getting quantitative and qualitative agreement with experimental data. The results from the Princeton model are in better agreement with data than from the Schaeffer model. Both free-slip and Johnson-Jackson boundary conditions give nearly identical results. An increase in e from 0.8 to 1 leads to larger bed expansions and lower heights of fluctuations in the bubbling regime whereas it leads to unchanged bed expansion and to a massive reduction in the height of fluctuations in the slugging regime. The angle of internal friction (φ) in the range 10 -40 does not affect the bed expansion, but its reduction significantly reduces the height of fluctuations.

  6. Capillary Movement of Liquid in Granular Beds in Microgravity

    NASA Technical Reports Server (NTRS)

    Yendeler, Boris S.; Webbon, Bruce; Podolski, Igor; Bula, Raymond J.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    A more complete understanding of the dynamics of capillary flow through an g unsaturated porous medium would be useful for a number of space and terrestrial applications. One such application involves the development of an effective water and nutrient delivery system for the growth of plants in space. An experiment was conducted on the Mir Space Station that used an experimental cuvette called "Capillary Test Bed". An objective of this experiment was to compare fluid migration in the "Capillary Test Bed" under terrestrial laboratory simulated microgravity conditions by positioning the cuvette such that the hydrostatic force is negated and on Mir at microgravity conditions. Difference in fluid migration in the cuvette were observed. Based on these observations, improvements in the design of the cuvette are under-way that should allow for collection of more precise data in future flight experiments. The results of the MIR experiment and modifications being made to the cuvette for improved data collection will be discussed.

  7. Capillary movement of liquid in granular beds in microgravity

    NASA Astrophysics Data System (ADS)

    Yendler, B. S.; Webbon, B.; Podolski, I.; Bula, R. J.

    1996-01-01

    A more complete understanding of the dynamics of capillary flow through an unsaturated porous medium would be useful for the development of an effective water and nutrient delivery system for the growth of plants in space. An experiment was conducted on the Mir Space Station that used an experimental cuvette called ``Capillary Test Bed'' to compare fluid migration under terrestrial laboratory conditions by positioning the cuvette such that the hydrostatic force is negated and on Mir under microgravity conditions. Differences in fluid migration in the cuvette were observed with migration being slower in microgravity compared with some ground control experiments.

  8. Capillary movement of liquid in granular beds in microgravity.

    PubMed

    Yendler, B S; Webbon, B; Podolski, I; Bula, R J

    1996-01-01

    A more complete understanding of the dynamics of capillary flow through an unsaturated porous medium would be useful for the development of an effective water and nutrient delivery system for the growth of plants in space. An experiment was conducted on the Mir Space Station that used an experimental cuvette called "Capillary Test Bed" to compare fluid migration under terrestrial laboratory conditions by positioning the cuvette such that the hydrostatic force is negated and on Mir under microgravity conditions. Differences in fluid migration in the cuvette were observed with migration being slower in microgravity compared with some ground control experiments. PMID:11538803

  9. Capillary movement of liquid in granular beds in microgravity

    NASA Technical Reports Server (NTRS)

    Yendler, B. S.; Webbon, B.; Podolski, I.; Bula, R. J.

    1996-01-01

    A more complete understanding of the dynamics of capillary flow through an unsaturated porous medium would be useful for the development of an effective water and nutrient delivery system for the growth of plants in space. An experiment was conducted on the Mir Space Station that used an experimental cuvette called "Capillary Test Bed" to compare fluid migration under terrestrial laboratory conditions by positioning the cuvette such that the hydrostatic force is negated and on Mir under microgravity conditions. Differences in fluid migration in the cuvette were observed with migration being slower in microgravity compared with some ground control experiments.

  10. Parallel-Processing Test Bed For Simulation Software

    NASA Technical Reports Server (NTRS)

    Blech, Richard; Cole, Gary; Townsend, Scott

    1996-01-01

    Second-generation Hypercluster computing system is multiprocessor test bed for research on parallel algorithms for simulation in fluid dynamics, electromagnetics, chemistry, and other fields with large computational requirements but relatively low input/output requirements. Built from standard, off-shelf hardware readily upgraded as improved technology becomes available. System used for experiments with such parallel-processing concepts as message-passing algorithms, debugging software tools, and computational steering. First-generation Hypercluster system described in "Hypercluster Parallel Processor" (LEW-15283).

  11. Fundamental Thermal Fluid Physics of High Temperature Flows in Advanced Reactor Systems - Nuclear Energy Research Initiative Program Interoffice Work Order (IWO) MSF99-0254 Final Report for Period 1 August 1999 to 31 December 2002

    SciTech Connect

    McEligot, D.M.; Condie, K.G.; Foust, T.D.; McCreery, G.E.; Pink, R.J.; Stacey, D.E.; Shenoy, A.; Baccaglini, G.; Pletcher, R.H.; Wallace, J.M.; Vukoslavcevic, P.; Jackson, J.D.; Kunugi, T.; Satake, S.-i.

    2002-12-31

    The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of advanced reactors for higher efficiency and enhanced safety and for deployable reactors for electrical power generation, process heat utilization and hydrogen generation. While key applications would be advanced gas-cooled reactors (AGCRs) using the closed Brayton cycle (CBC) for higher efficiency (such as the proposed Gas Turbine - Modular Helium Reactor (GT-MHR) of General Atomics [Neylan and Simon, 1996]), results of the proposed research should also be valuable in reactor systems with supercritical flow or superheated vapors, e.g., steam. Higher efficiency leads to lower cost/kwh and reduces life-cycle impacts of radioactive waste (by reducing waters/kwh). The outcome will also be useful for some space power and propulsion concepts and for some fusion reactor concepts as side benefits, but they are not the thrusts of the investigation. The objective of the project is to provide fundamental thermal fluid physics knowledge and measurements necessary for the development of the improved methods for the applications.

  12. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    SciTech Connect

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  13. Sepsis Resuscitation: Fluid Choice and Dose.

    PubMed

    Semler, Matthew W; Rice, Todd W

    2016-06-01

    Sepsis is a common and life-threatening inflammatory response to severe infection treated with antibiotics and fluid resuscitation. Despite the central role of intravenous fluid in sepsis management, fundamental questions regarding which fluid and in what amount remain unanswered. Recent advances in understanding the physiologic response to fluid administration, and large clinical studies examining resuscitation strategies, fluid balance after resuscitation, colloid versus crystalloid solutions, and high- versus low-chloride crystalloids, inform the current approach to sepsis fluid management and suggest areas for future research. PMID:27229641

  14. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  15. Feasibility Study of a Lunar Analog Bed Rest Model

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.; Platts, Steven H.; Yarbough, Patrice; Buccello-Stout, Regina

    2010-01-01

    The purpose of this study was to determine the feasibility of using a 9.5deg head-up tilt bed rest model to simulate the effects of the 1/6 g load to the human body that exists on the lunar surface. The lunar analog bed rest model utilized a modified hospital bed. The modifications included mounting the mattress on a sled that rolled on bearings to provide freedom of movement. The weight of the sled was off-loaded using a counterweight system to insure that 1/6 body weight was applied along the long axis (z-axis) of the body. Force was verified through use of a force plate mounted at the foot of the bed. A seating assembly was added to the bed to permit periods of sitting. Subjects alternated between standing and sitting positions throughout the day. A total of 35% of the day was spent in the standing position and 65% was spent sitting. In an effort to achieve physiologic fluid shifts expected for a 1/6 G environment, subjects wore compression stockings and performed unloaded foot and ankle exercises. Eight subjects (3 females and 5 males) participated in this study. Subjects spent 13 days in the pre-bed rest phase, 6 days in bed rest and 3 days post bed rest. Subjects consumed a standardized diet throughout the study. To determine feasibility, measures of subject comfort, force and plasma volume were collected. Subject comfort was assessed using a Likert scale. Subjects were asked to assess level of comfort (0-100) for 11 body regions and provide an overall rating. Results indicated minimal to no discomfort as most subjects reported scores of zero. Force measures were performed for each standing position and were validated against subject s calculated 1/6 body weight (r(sup 2) = 0.993). The carbon monoxide rebreathing technique was used to assess plasma volume during pre-bed rest and on the last day of bed rest. Plasma volume results indicated a significant decrease (p = 0.001) from pre to post bed rest values. Subjects lost on average 8.3% (sd = 6.1%) during the

  16. Numerical simulation of particle bed scour by vortices

    NASA Astrophysics Data System (ADS)

    Hagan, Dan; Dubief, Yves; Dewoolkar, Mandar

    2014-11-01

    The repeated impacts of a vortex dipole on a particle bed are simulated using a Direct Numerical Simulation (DNS) code. The resulting scour characteristics and flow dynamics are investigated as a function of the Shields number. The fluid phase is treated as a continuum and the discretized Navier-Stokes equations are solved down to the smallest scales of the flow, on an Eulerian grid. The particles comprising the bed are represented by the Discrete Particle Model (DPM), whereby each individual particle is tracked in a Lagrangian framework. Particle-particle and particle-wall collisions are modeled using a soft-sphere model. The fluid phase and the solid phase are coupled through a forcing term in the fluid conservation of momentum equation, and a drag force in the particle equation of motion, governed by Newton's Second Law. Above the critical Shields number, the scour hole topography is not fundamentally altered with subsequent impacts until the scale of the scour hole reaches a critical value. At which point, the shape and scale of the scour hole significantly alters the behavior of the vortex dipole and results in strongly asymmetric scour topographies. The two-way coupling between the bed scour and the vortex dipole dynamics are analyzed. Support from UVM Transportation Research Center and NSF CBET-0967224.

  17. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  18. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.

  19. Process analysis of fluidized bed granulation.

    PubMed

    Rantanen, J; Jørgensen, A; Räsänen, E; Luukkonen, P; Airaksinen, S; Raiman, J; Hänninen, K; Antikainen, O; Yliruusi, J

    2001-01-01

    This study assesses the fluidized bed granulation process for the optimization of a model formulation using in-line near-infrared (NIR) spectroscopy for moisture determination. The granulation process was analyzed using an automated granulator and optimization of the verapamil hydrochloride formulation was performed using a mixture design. The NIR setup with a fixed wavelength detector was applied for moisture measurement. Information from other process measurements, temperature difference between process inlet air and granules (T(diff)), and water content of process air (AH), was also analyzed. The application of in-line NIR provided information related to the amount of water throughout the whole granulation process. This information combined with trend charts of T(diff) and AH enabled the analysis of the different process phases. By this means, we can obtain in-line documentation from all the steps of the processing. The choice of the excipient affected the nature of the solid-water interactions; this resulted in varying process times. NIR moisture measurement combined with temperature and humidity measurements provides a tool for the control of water during fluid bed granulation. PMID:14727858

  20. Rock bed thermal storage: Concepts and costs

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth; von Backström, Theodor; Joubert, Eugene; Gauché, Paul

    2016-05-01

    Thermal storage enables concentrating solar power (CSP) plants to provide baseload or dispatchable power. Currently CSP plants use two-tank molten salt thermal storage, with estimated capital costs of about 22-30 /kWhth. In the interests of reducing CSP costs, alternative storage concepts have been proposed. In particular, packed rock beds with air as the heat transfer fluid offer the potential of lower cost storage because of the low cost and abundance of rock. Two rock bed storage concepts which have been formulated for use at temperatures up to at least 600 °C are presented and a brief analysis and cost estimate is given. The cost estimate shows that both concepts are capable of capital costs less than 15 /kWhth at scales larger than 1000 MWhth. Depending on the design and the costs of scaling containment, capital costs as low as 5-8 /kWhth may be possible. These costs are between a half and a third of current molten salt costs.