Sample records for advanced fossil fuel

  1. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  2. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  3. Beyond fossil fuel-driven nitrogen transformations.

    PubMed

    Chen, Jingguang G; Crooks, Richard M; Seefeldt, Lance C; Bren, Kara L; Bullock, R Morris; Darensbourg, Marcetta Y; Holland, Patrick L; Hoffman, Brian; Janik, Michael J; Jones, Anne K; Kanatzidis, Mercouri G; King, Paul; Lancaster, Kyle M; Lymar, Sergei V; Pfromm, Peter; Schneider, William F; Schrock, Richard R

    2018-05-25

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. A key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. The legacy of fossil fuels.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Progress of fossil fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal ismore » a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.« less

  6. Traversing the mountaintop: world fossil fuel production to 2050.

    PubMed

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  7. Traversing the mountaintop: world fossil fuel production to 2050

    PubMed Central

    Nehring, Richard

    2009-01-01

    During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios—low, medium and high—are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15–30 years. The subsequent peak plateau will last for 10–15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030. PMID:19770156

  8. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  9. Energy properties of solid fossil fuels and solid biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk; Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison withmore » solid fossil fuels.« less

  10. Recent developments in biodesulfurization of fossil fuels.

    PubMed

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  11. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  12. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  13. Emissions Scenarios and Fossil-fuel Peaking

    NASA Astrophysics Data System (ADS)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  14. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    DTIC Science & Technology

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use...Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  15. The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?

    NASA Astrophysics Data System (ADS)

    Greene, C. H.; Kammen, D. M.

    2014-12-01

    For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.

  16. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...

  17. Material flow analysis of fossil fuels in China during 2000-2010.

    PubMed

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  18. Assessing global fossil fuel availability in a scenario framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Nico; Hilaire, Jérôme; Brecha, Robert J.

    This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to includemore » alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.« less

  19. Fossil fuels in the 21st century.

    PubMed

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  20. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of themore » emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.« less

  1. Divesting from Fossil Fuels Makes Sense Morally… and Financially

    ERIC Educational Resources Information Center

    Cleveland, Cutler J.; Reibstein, Richard

    2015-01-01

    Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…

  2. Diatoms: a fossil fuel of the future.

    PubMed

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    PubMed Central

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525

  4. Hydrogen production econometric studies. [hydrogen and fossil fuels

    NASA Technical Reports Server (NTRS)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  5. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Kumar, N.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less

  6. Economic value of U.S. fossil fuel electricity health impacts.

    PubMed

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP. Published by Elsevier Ltd.

  7. Children are likely to suffer most from our fossil fuel addiction.

    PubMed

    Perera, Frederica P

    2008-08-01

    The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster.

  8. Children Are Likely to Suffer Most from Our Fossil Fuel Addiction

    PubMed Central

    Perera, Frederica P.

    2008-01-01

    Background The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. Objectives In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Discussion Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Conclusions Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster. PMID:18709169

  9. Upward revision of global fossil fuel methane emissions based on isotope database.

    PubMed

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  10. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  11. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  12. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  13. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these

  14. The logic of fossil fuel bans

    NASA Astrophysics Data System (ADS)

    Green, Fergus

    2018-06-01

    Until recently, national bans on fossil fuel-related activities were a taboo subject, but they are now becoming increasingly common. The logic of appropriateness that underpins such bans is key to understanding their normative appeal, and to explaining and predicting their proliferation.

  15. Environmental aspects of fossil fuels combustion in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekula, R.

    Combustion of fossil fuels is the main source of energy in Poland. Coal will probably remain the basic fuel for energy generation for many years. The principal problems connected with fuel utilization in Poland are presented in this study. The major pollutants and ways to reduce air pollution are also described. Data are based on the report of the Polish Academy of Sciences.

  16. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes thatmore » > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.« less

  17. High-resolution global fossil fuel CO2 emissions for 1992 to 2010 using integrated in-situ and remotely sensed data in a fossil fuel data assimilation system

    NASA Astrophysics Data System (ADS)

    Asefi-Najafabady, S.; Gurney, K. R.; Rayner, P.; Huang, J.; Song, Y.

    2012-12-01

    The largest single net source of CO2 into the Earth's atmosphere is due to the combustion of fossil fuel and an accurate quantification of the fossil fuel flux is needed to better address the concern of rising atmospheric greenhouse gas concentrations. In the last decade, there has been a growing need, from both the science and policymaking communities for quantification of global fossil fuel CO2 emissions at finer space and time scales. Motivated by this concern, we have built a global fossil fuel CO2 emission inventory at 0.25° and 0.1° resolutions for the years of 1992 - 2010 using a combination of in situ and remotely sensed data in a fossil fuel data assimilation system (FFDAS). A suite of observations which include nightlights, population, sectoral national emissions and power plant stations are used to constrain the FFDAS model. FFDAS is based on a modified Kaya identity which expresses emissions as the product of areal population density, per capita economic activity, energy intensity of economic activity, and carbon intensity of energy consumption. Nightlights has been shown to correlate well with national and regional GDP and its relationship with population has been used as an initial means of downscaling fossil fuel emissions. However nightlights data are subject to instrumental saturation, causing areas of bright nightlights, such as urban cores, to be truncated. To address the saturation problem during several time periods, the National Geophysical Data Center (NGDC) has requested and received data collected at multiple fixed gain settings to observe the bright areas with no saturation. However, this dataset is limited to only four years (1999, 2002, 2006 and 2010). We have applied a numerical technique to these four years of data to estimate the unsaturated values for all years from 1992 to 2010. The corrected nightlights time series is then used in FFDAS to generate a multiyear fossil fuel CO2 emissions data product. Nightlights and population

  18. 75 FR 63404 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... [Docket No. EERE-2010-BT-STD-0031] RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for... of fossil fuel-generated energy consumption in new Federal buildings and Federal buildings undergoing... full fossil fuel-generated energy consumption reduction level is technically impracticable in light of...

  19. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  20. Water interaction with laboratory-simulated fossil fuel combustion particles.

    PubMed

    Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D

    2009-10-01

    To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere.

  1. The Fascinating Story of Fossil Fuels

    ERIC Educational Resources Information Center

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  2. Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city.

    PubMed

    Gurney, Kevin R; Razlivanov, Igor; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul-Massih, Michel

    2012-11-06

    In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO(2) emissions, the primary greenhouse gas, is essential. Called the "Hestia Project", this research effort is the first to use bottom-up methods to quantify all fossil fuel CO(2) emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. Here, we describe the methods used to quantify the on-site fossil fuel CO(2) emissions across the city of Indianapolis, IN. This effort combines a series of data sets and simulation tools such as a building energy simulation model, traffic data, power production reporting, and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon-monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare the natural gas component of our fossil fuel CO(2) emissions estimate to consumption data provided by the local gas utility. At the zip code level, we achieve a bias-adjusted Pearson r correlation value of 0.92 (p < 0.001).

  3. Comparing extraction rates of fossil fuel producers against global climate goals

    NASA Astrophysics Data System (ADS)

    Rekker, Saphira A. C.; O'Brien, Katherine R.; Humphrey, Jacquelyn E.; Pascale, Andrew C.

    2018-06-01

    Meeting global and national climate goals requires action and cooperation from a multitude of actors1,2. Current methods to define greenhouse gas emission targets for companies fail to acknowledge the unique influence of fossil fuel producers: combustion of reported fossil fuel reserves has the potential to push global warming above 2 °C by 2050, regardless of other efforts to mitigate climate change3. Here, we introduce a method to compare the extraction rates of individual fossil fuel producers against global climate targets, using two different approaches to quantify a burnable fossil fuel allowance (BFFA). BFFAs are calculated and compared with cumulative extraction since 2010 for the world's ten largest investor-owned companies and ten largest state-owned entities (SOEs), for oil and for gas, which together account for the majority of global oil and gas reserves and production. The results are strongly influenced by how BFFAs are quantified; allocating based on reserves favours SOEs over investor-owned companies, while allocating based on production would require most reduction to come from SOEs. Future research could refine the BFFA to account for equity, cost-effectiveness and emissions intensity.

  4. Dataset for analysing the relationships among economic growth, fossil fuel and non-fossil fuel consumption.

    PubMed

    Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano

    2017-02-01

    The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.

  5. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  6. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  7. Microbial denitrogenation of fossil fuels.

    PubMed

    Benedik, M J; Gibbs, P R; Riddle, R R; Willson, R C

    1998-09-01

    The microbial degradation of nitrogen compounds from fossil fuels is important because of the contribution these contaminants make to the formation of nitrogen oxides (NOx) and hence to air pollution and acid rain. They also contribute to catalyst poisoning during the refining of crude oil, thus reducing process yields. We review the current status of microbial degradation of aromatic nitrogen compounds and discuss the potential of microbial processes to alleviate these problems.

  8. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  9. General circulation model response to production-limited fossil fuel emission estimates.

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Rutledge, D.; Miller, C.

    2008-12-01

    The differences in emissions scenarios used to drive IPCC climate projections are the largest sources of uncertainty in future temperature predictions. These estimates are critically dependent on oil, gas, and coal production where the extremal variations in fossil fuel production used in these scenarios is roughly 10:1 after 2100. The development of emission scenarios based on production-limited fossil fuel estimates, i.e., total fossil fuel reserves can be reliably predicted from cumulative production, offers the opportunity to significantly reduce this uncertainty. We present preliminary results of the response of the NASA GISS atmospheric general circulation model to input forcings constrained by production-limited cumulative future fossil-fuel CO2 emissions estimates that reach roughly 500 GtC by 2100, which is significantly lower than any of the IPCC emission scenarios. For climate projections performed from 1958 through 2400 and a climate sensitivity of 5C/2xCO2, the change in globally averaged annual mean temperature relative to fixed CO2 does not exceed 3C with most changes occurring at high latitudes. We find that from 2100-2400 other input forcings such as increased in N2O play an important role in maintaining increase surface temperatures.

  10. Estimates of Fossil Fuel Carbon Dioxide Emissions From Mexico at Monthly Time Intervals

    NASA Astrophysics Data System (ADS)

    Losey, L. M.; Andres, R. J.

    2003-12-01

    Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuels. Mexico is among the top fifteen nations in the world for producing fossil fuel carbon dioxide emissions. Based on this information and that emissions from Mexico are a focus of the North American Carbon Program, Mexico was selected for this study. Mexican monthly inland sales volumes for January 1988-May 2003 were collected on natural gas and liquid fuels from the Energy Information Agency in the United States Department of Energy. These sales figures represent a major portion of the total fossil fuel consumption in Mexico. The fraction of a particular fossil fuel consumed in a given month was determined by dividing the monthly sales volumes by the annual sum of monthly sales volumes for a given year. This fraction was then multiplied by the annual carbon dioxide values reported by the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) to estimate the monthly carbon dioxide emissions from the respective fuels. The advantages of this methodology are: 1) monthly fluxes are consistent with the annual flux as determined by the widely-accepted CDIAC values, and 2) its general application can be easily adapted to other nations for determining their sub-annual time scale emissions. The major disadvantage of this methodology is the proxy nature inherent to it. Only a fraction of the total emissions are used as an estimate in determining the seasonal cycle. The error inherent in this approach increases as the fraction of total emissions represented by the proxy decreases. These data are part of a long-term project between researchers at the University of North Dakota and ORNL which attempts to identify and understand the source(s) of seasonal variations of global, fossil-fuel derived, carbon dioxide emissions

  11. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    PubMed

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  12. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  13. Uncertainty in projected climate change arising from uncertain fossil-fuel emission factors

    NASA Astrophysics Data System (ADS)

    Quilcaille, Y.; Gasser, T.; Ciais, P.; Lecocq, F.; Janssens-Maenhout, G.; Mohr, S.

    2018-04-01

    Emission inventories are widely used by the climate community, but their uncertainties are rarely accounted for. In this study, we evaluate the uncertainty in projected climate change induced by uncertainties in fossil-fuel emissions, accounting for non-CO2 species co-emitted with the combustion of fossil-fuels and their use in industrial processes. Using consistent historical reconstructions and three contrasted future projections of fossil-fuel extraction from Mohr et al we calculate CO2 emissions and their uncertainties stemming from estimates of fuel carbon content, net calorific value and oxidation fraction. Our historical reconstructions of fossil-fuel CO2 emissions are consistent with other inventories in terms of average and range. The uncertainties sum up to a ±15% relative uncertainty in cumulative CO2 emissions by 2300. Uncertainties in the emissions of non-CO2 species associated with the use of fossil fuels are estimated using co-emission ratios varying with time. Using these inputs, we use the compact Earth system model OSCAR v2.2 and a Monte Carlo setup, in order to attribute the uncertainty in projected global surface temperature change (ΔT) to three sources of uncertainty, namely on the Earth system’s response, on fossil-fuel CO2 emission and on non-CO2 co-emissions. Under the three future fuel extraction scenarios, we simulate the median ΔT to be 1.9, 2.7 or 4.0 °C in 2300, with an associated 90% confidence interval of about 65%, 52% and 42%. We show that virtually all of the total uncertainty is attributable to the uncertainty in the future Earth system’s response to the anthropogenic perturbation. We conclude that the uncertainty in emission estimates can be neglected for global temperature projections in the face of the large uncertainty in the Earth system response to the forcing of emissions. We show that this result does not hold for all variables of the climate system, such as the atmospheric partial pressure of CO2 and the

  14. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    PubMed

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed.

  15. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    PubMed Central

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  16. Fossil Fuel Industry Funding of Climate-Relevant Research at U.S. Universities

    NASA Astrophysics Data System (ADS)

    Franta, B.; Supran, G.

    2017-12-01

    Commercial producers of lead, tobacco, petroleum, and other products have funded extensive scholarly research in ways designed to confuse the public about the dangers of those products and thwart regulation [1-3]. For example, strategy documentation of the U.S. oil and gas industry from the late 1990s describes using selective support for scientists as a strategy for creating an atmosphere of debate and uncertainty, with the ultimate goal of delaying and defeating climate policies [4]. In this context, we systematically examine current funding from commercial fossil fuel interests of climate-relevant research - such as energy technology and climate policy research - in U.S. universities. We quantify such funding using charitable giving databases, university websites, and other publicly available records. We find that, especially among the most influential universities, climate-related research programs are frequently dominated by funding from fossil fuel interests. Moreover, these relationships sometimes afford funders privileges including formal control over research directions. This work represents an advance in mapping the presence of commercial fossil fuel interests in academia and may contribute to discussions of appropriate funding systems for climate-relevant research. 1. Markowitz, G. and D. Rosner, Lead Wars: The Politics of Science and the Fate of America's Children. 1st ed. 2013: University of California Press. 2. Brandt, A.M., Inventing Conflicts of Interest: A History of Tobacco Industry Tactics. American Journal of Public Health, 2012. 102(1): p. 63-71. 3. Oreskes, N. and E.M. Conway, Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. 2011: Bloomsbury Press. 4. Walker, J., Global Climate Science Communications Action Plan. 1998. Workshop held at the headquarters of the American Petroleum Institute.

  17. Exploration for fossil and nuclear fuels from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1977-01-01

    The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.

  18. API focuses on cleanliness, economics of fossil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-15

    Fossil fuels, consumed in free markets, are playing positive economic and environmental roles as the world economy becomes integrated, industry leader said last week. Environmental zealots threaten to force conversion from gasoline as a motor fuel in the U.S. and oppose the growing integration of the world economy. Fossil fuels, free markets, human creativity, and entrepreneurial spirit--not government intervention--are the keys to a clean environment, said API pres. Charles J. DiBona and outgoing Chairman C.J. (Pete) Silas, chairman and chief executive officer of Phillips Petroleum Co. DiBona said proponents of the BTU tax defeated earlier this year used erroneous assumptionsmore » to make a case against oil use in an effort to replace the efficiency of the marketplace with the inefficiency of bureaucracy. The government's role is to set tough standards and avoid dictating the way environmental standards are met, they said. Other speakers warned that voluntary measures put forward by the Clinton administration of address global climate change issues likely will fall short.« less

  19. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    PubMed Central

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  20. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993-March 31, 1995

    NASA Astrophysics Data System (ADS)

    Carlson, Paul T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in referred journals, full-length papers in published proceedings of conferences, full-length papers in unreferred journals, and books and book articles.

  1. Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes

    EPA Pesticide Factsheets

    This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.

  2. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  3. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    PubMed

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  5. US fossil fuel technologies for developing countries: Costa Rica country packet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Costa Rica presents long-term opportunities for US participation in the power generation sector. A growing industrial base, high economic growth, and an increasing living standard will continue to require more reliable electric generation. Although the country has depended upon hydropower to meet much of its energy needs, coal could become a more reliable form of energy in the near term, based on estimated indigenous resources and proximity to food quality imports. Thus, trade opportunities exist for the United States, in the electric power sector, for the US advanced fossil fuel technologies and related services. This report describes the Costa Ricanmore » energy situation; examines the financial, economic, and trade issues; and discusses project opportunities in Costa Rica. Costa Rica appears to have a positive climate for trade and investment activities, stimulated by the Caribbean Basin Initiative. Although the economy has recently slowed, the economic outlook appears healthy. Application for membership in the General Agreement on Tariffs and Trade is pending. Due to an unexpectedly large growth in electricity demand, the Costa Rican utility Instituto Costarricense de Electricidad is evaluating the need for construction of a coal-fired power plant in the size range of 60 to 125 MW, with an in-service data of the mid-1990s. A decision is expected by the end of 1988 concerning the required size, source of coal, and timing of this coal-fired plant. Based on conditions in Costa Rica, US advanced fossil-fuel technologies were chosen for continued study in conjunction with the identified potential project opportunities. These technologies are the atmospheric fluidized bed combustor and coal-water mixtures. They could play a major role in meeting the utility expansion and/or industrial conversion opportunities summarized in Table I.1. The value of such projects could approximate US $160 million.« less

  6. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    PubMed

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  7. Geochemical controls on vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  8. Geochemical controls of vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  9. Partial replacement of non renewable fossil fuels energy by the use of waste materials as alternative fuels

    NASA Astrophysics Data System (ADS)

    Indrawati, V.; Manaf, A.; Purwadi, G.

    2009-09-01

    This paper reports recent investigations on the use of biomass like rice husk, palm kernel shell, saw dust and municipal waste to reduce the use of fossil fuels energy in the cement production. Such waste materials have heat values in the range approximately from 2,000 to 4,000 kcal/kg. These are comparable to the average value of 5800 kcal/kg from fossil materials like coals which are widely applied in many industrial processing. Hence, such waste materials could be used as alternative fuels replacing the fossil one. It is shown that replacement of coals with such waste materials has a significant impact on cost effectiveness as well as sustainable development. Variation in moisture content of the waste materials, however should be taken into account because this is one of the parameter that could not be controlled. During fuel combustion, some amount of the total energy is used to evaporate the water content and thus the net effective heat value is less.

  10. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification,more » heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.« less

  11. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    ERIC Educational Resources Information Center

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  12. CARBON DIOXIDE FROM FOSSIL FUELS: ADAPTING TO UNCERTAINTY

    EPA Science Inventory

    The paper discusses the general effect and control of CO2. The world is likely to experience noticeable global warming by the beginning of the next century if high annual growth rates of fossil fuel energy use continue. Only with optimistic assumptions and low growth rates will C...

  13. Rationale of Early Adopters of Fossil Fuel Divestment

    ERIC Educational Resources Information Center

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  14. Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017

    NASA Astrophysics Data System (ADS)

    Sherwood, Owen A.; Schwietzke, Stefan; Arling, Victoria A.; Etiope, Giuseppe

    2017-08-01

    The concentration of atmospheric methane (CH4) has more than doubled over the industrial era. To help constrain global and regional CH4 budgets, inverse (top-down) models incorporate data on the concentration and stable carbon (δ13C) and hydrogen (δ2H) isotopic ratios of atmospheric CH4. These models depend on accurate δ13C and δ2H end-member source signatures for each of the main emissions categories. Compared with meticulous measurement and calibration of isotopic CH4 in the atmosphere, there has been relatively less effort to characterize globally representative isotopic source signatures, particularly for fossil fuel sources. Most global CH4 budget models have so far relied on outdated source signature values derived from globally nonrepresentative data. To correct this deficiency, we present a comprehensive, globally representative end-member database of the δ13C and δ2H of CH4 from fossil fuel (conventional natural gas, shale gas, and coal), modern microbial (wetlands, rice paddies, ruminants, termites, and landfills and/or waste) and biomass burning sources. Gas molecular compositional data for fossil fuel categories are also included with the database. The database comprises 10 706 samples (8734 fossil fuel, 1972 non-fossil) from 190 published references. Mean (unweighted) δ13C signatures for fossil fuel CH4 are significantly lighter than values commonly used in CH4 budget models, thus highlighting potential underestimation of fossil fuel CH4 emissions in previous CH4 budget models. This living database will be updated every 2-3 years to provide the atmospheric modeling community with the most complete CH4 source signature data possible. Database digital object identifier (DOI): https://doi.org/10.15138/G3201T.

  15. Assessing fossil fuel CO2 emissions in California using atmospheric observations and models

    NASA Astrophysics Data System (ADS)

    Graven, H.; Fischer, M. L.; Lueker, T.; Jeong, S.; Guilderson, T. P.; Keeling, R. F.; Bambha, R.; Brophy, K.; Callahan, W.; Cui, X.; Frankenberg, C.; Gurney, K. R.; LaFranchi, B. W.; Lehman, S. J.; Michelsen, H.; Miller, J. B.; Newman, S.; Paplawsky, W.; Parazoo, N. C.; Sloop, C.; Walker, S. J.

    2018-06-01

    Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO2 (ffCO2) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO2 by measuring radiocarbon (14C) in CO2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014–15. There is strong agreement between the measurements and ffCO2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO2 emissions are consistent with the California Air Resources Board’s reported ffCO2 emissions, providing tentative validation of California’s reported ffCO2 emissions in 2014–15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO2 emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions.

  16. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    PubMed

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  17. Quantifying fossil fuel CO2 from continuous measurements of APO: a novel approach

    NASA Astrophysics Data System (ADS)

    Pickers, Penelope; Manning, Andrew C.; Forster, Grant L.; van der Laan, Sander; Wilson, Phil A.; Wenger, Angelina; Meijer, Harro A. J.; Oram, David E.; Sturges, William T.

    2016-04-01

    Using atmospheric measurements to accurately quantify CO2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO2 fluxes. The ability to quantify the fossil fuel component of CO2 (ffCO2) from atmospheric measurements enables more accurate 'top-down' verification of CO2 emissions inventories, which frequently have large uncertainty. Typically, ffCO2 is quantified (in ppm units) from discrete atmospheric measurements of Δ14CO2, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ffCO2 ratios. In the United Kingdom (UK), however, measurements of Δ14CO2 are often significantly biased by nuclear power plant influences, which limit the use of this approach. We present a novel approach for quantifying ffCO2 using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO2 and O2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying ffCO2 from CO measurements (ffCO2(CO)), whereby ffCO2(APO) = (APOmeas - APObg)/RAPO, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO:CO2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our ffCO2(APO) results to results obtained using the ffCO2(CO) method, using CO:CO2 fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO ffCO2 quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO:CO2 fossil fuel emission ratios, compared to the CO:CO2 emission ratio range. Using a long-term dataset of atmospheric O2, CO2, CO and Δ14CO2 from Lutjewad, The Netherlands, we examine the

  18. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    PubMed

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  19. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    EPA Science Inventory

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  20. Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860-1982

    DOE Data Explorer

    Rotty, R.M. [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Marland, G. [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2004-01-01

    Global carbon dioxide emissions for 1950 through 1982 were estimated by Marland and Rotty (1984) from fuel production data from the U.N. Energy Statistics Yearbook (1983, 1984). Data before 1950 came from Keeling (1973). Fuel-production data were used in these calculations because they appeared to be more reliable on a global basis than fuel-consumption data. The data given are the year and annual global CO2 emissions (annual global total; cumulative global total since 1860; and annual global emissions from solid fuels, liquid fuels, natural gas, gas flaring, and cement manufacturing). These data provide the only pre-1950 estimates of the amount of carbon emitted to the atmosphere from fossil-fuel burning. The CO2 emission record since 1950 has been updated and revised several times with the most recent estimates being published by Marland et al. (1989).

  1. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  2. Fuel feasibility study for Red River Army Depot boiler plant. Final report. [Economic breakeven points for conversion to fossil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ables, L.D.

    This paper establishes economic breakeven points for the conversion to various fossil fuels as a function of time and pollution constraints for the main boiler plant at Red River Army Depot in Texarkana, Texas. In carrying out the objectives of this paper, the author develops what he considers to be the basic conversion costs and operating costs for each fossil fuel under investigation. These costs are analyzed by the use of the present worth comparison method, and the minimum cost difference between the present fuel and the proposed fuel which would justify the conversion to the proposed fuel is calculated.more » These calculated breakeven points allow a fast and easy method of determining the feasibility of a fuel by merely knowing the relative price difference between the fuels under consideration. (GRA)« less

  3. 78 FR 44103 - Announcement of Public Meetings To Receive Comments on Draft Solicitation for Advanced Fossil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Advanced Fossil Energy Projects AGENCY: U.S. Department of Energy. ACTION: Notice of public meetings to... a potential future solicitation announcement for Federal Loan Guarantees for Advanced Fossil Energy... Guarantees for Advanced Fossil Energy Projects are invited to attend any of the meetings listed in DATES. To...

  4. Effect of subsidies to fossil fuel companies on United States crude oil production

    NASA Astrophysics Data System (ADS)

    Erickson, Peter; Down, Adrian; Lazarus, Michael; Koplow, Doug

    2017-11-01

    Countries in the G20 have committed to phase out `inefficient' fossil fuel subsidies. However, there remains a limited understanding of how subsidy removal would affect fossil fuel investment returns and production, particularly for subsidies to producers. Here, we assess the impact of major federal and state subsidies on US crude oil producers. We find that, at recent oil prices of US50 per barrel, tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades. This oil, equivalent to 6 billion tonnes of CO2, could make up as much as 20% of US oil production through 2050 under a carbon budget aimed at limiting warming to 2 °C. Our findings show that removal of tax incentives and other fossil fuel support policies could both fulfil G20 commitments and yield climate benefits.

  5. Modeling Seasonality in Carbon Dioxide Emissions From Fossil Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Andres, R. J.

    2004-05-01

    Using United States data, a method is developed to estimate the monthly consumption of solid, liquid and gaseous fossil fuels using monthly sales data to estimate the relative monthly proportions of the total annual national fossil fuel use. These proportions are then used to estimate the total monthly carbon dioxide emissions for each state. From these data, the goal is to develop mathematical models that describe the seasonal flux in consumption for each type of fuel, as well as the total emissions for the nation. The time series models have two components. First, the general long-term yearly trend is determined with regression models for the annual totals. After removing the general trend, two alternatives are considered for modeling the seasonality. The first alternative uses the mean of the monthly proportions to predict the seasonal distribution. Because the seasonal patterns are fairly consistent in the United States, this is an effective modeling technique. Such regularity, however, may not be present with data from other nations. Therefore, as a second alternative, an ordinary least squares autoregressive model is used. This model is chosen for its ability to accurately describe dependent data and for its predictive capacity. It also has a meaningful interpretation, as each coefficient in the model quantifies the dependency for each corresponding time lag. Most importantly, it is dynamic, and able to adapt to anomalies and changing patterns. The order of the autoregressive model is chosen by the Akaike Information Criterion (AIC), which minimizes the predicted variance for all models of increasing complexity. To model the monthly fuel consumption, the annual trend is combined with the seasonal model. The models for each fuel type are then summed together to predict the total carbon dioxide emissions. The prediction error is estimated with the root mean square error (RMSE) from the actual estimated emission values. Overall, the models perform very well

  6. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE PAGES

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; ...

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  7. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  8. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the modelsmore » showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.« less

  9. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel

  10. A Vulnerability-Benefit Analysis of Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Delman, E. M.; Stephenson, S. R.; Davis, S. J.; Diffenbaugh, N. S.

    2015-12-01

    Although we can anticipate continued improvements in our understanding of future climate impacts, the central challenge of climate change is not scientific, but rather political and economic. In particular, international climate negotiations center on how to share the burden of uncertain mitigation and adaptation costs. We expose the relative economic interests of different countries by assessing and comparing their vulnerability to climate impacts and the economic benefits they derive from the fossil fuel-based energy system. Vulnerability refers to the propensity of humans and their assets to suffer when impacted by hazards, and we draw upon the results from a number of prior studies that have quantified vulnerability using multivariate indices. As a proxy for benefit, we average CO2 related to each country's extraction of fossil fuels, production of CO2 emissions, and consumption of goods and services (Davis et al., 2011), which should reflect benefits accrued in proportion to national economic dependence on fossil fuels. We define a nondimensional vulnerability-benefit ratio for each nation and find a large range across countries. In general, we confirm that developed and emerging economies such as the U.S., Western Europe, and China rely heavily on fossil fuels and have substantial resources to respond to the impacts of climate change, while smaller, less-developed economies such as Sierra Leone and Vanuatu benefit little from current CO2 emissions and are much more vulnerable to adverse climate impacts. In addition, we identify some countries with a high vulnerability and benefit, such as Iraq and Nigeria; conversely, some nations exhibit both a low vulnerability and benefit, such as New Zealand. In most cases, the ratios reflect the nature of energy-climate policies in each country, although certain nations - such as the United Kingdom and France - assume a level of responsibility incongruous with their ratio and commit to mitigation policy despite

  11. Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?

    PubMed

    Guo, Miao; Li, Changsheng; Facciotto, Gianni; Bergante, Sara; Bhatia, Rakesh; Comolli, Roberto; Ferré, Chiara; Murphy, Richard

    2015-01-01

    Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU's commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. Our results demonstrate that carbon and nitrogen cycling in perennial crop-soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global

  12. Processing of solid fossil-fuel deposits by electrical induction heating

    NASA Astrophysics Data System (ADS)

    Fisher, S. T.

    1980-02-01

    A study has been made to determine the feasibility of extracting the energy commodities electricity, gas, petroleum, chemical feedstocks, and coke from the solid fossil fuels coal, oil shale, oil sand, and heavy oil by the electrical induction heating of the deposits. Available electrical, physical, and chemical data indicate that this process may be technically and economically feasible. Some basic data are missing, and it has been necessary to indicate possible ranges of values for some parameters. The tentative conclusions drawn are the following. All four solid fossil fuels can be processed successfully underground. All five energy commodities can be produced economically in adequate quantities for a period of a century or more in North America, without recourse to any other major energy source. The development and construction time required is short enough to permit an uninterrupted supply of all energy commodities as present sources decline

  13. Revisiting global fossil fuel and biofuel emissions of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    2017-02-01

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (2008-2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  14. Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Caldeira, K.

    2015-12-01

    The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.

  15. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  16. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  17. Dependence of the radiative forcing of the climate system on fossil fuel type

    NASA Astrophysics Data System (ADS)

    Nunez, L. I.

    2015-12-01

    Climate change mitigation strategies are greatly directed towards the reduction of CO2 emissions and other greenhouse gases from fossil fuel combustion to limit warming to 2º C in this century. For example, the Clean Power Plan aims to reduce CO2 emissions from the power sector by 32% of 2005 levels by 2030 by increasing power plant efficiency but also by switching from coal-fired power plants to natural gas-fired power plants. It is important to understand the impact of such fuel switching on climate change. While all fossil fuels emit CO2, they also emit other pollutants with varying effects on climate, health and agriculture. First, The emission of CO2 per joule of energy produced varies significantly between coal, oil and natural gas. Second, the complexity that the co-emitted pollutants add to the perturbations in the climate system necessitates the detangling of radiative forcing for each type of fossil fuel. The historical (1850-2011) net radiative forcing of climate as a function of fuel type (coal, oil, natural gas and biofuel) is reconstructed. The results reveal the significant dependence of the CO2 and the non-CO2 forcing on fuel type. The CO2 forcing per joule of energy is largest for coal. Radiative forcing from the co-emitted pollutants (black carbon, methane, nitrogen oxides, organic carbon, sulfate aerosols) changes the global mean CO2 forcing attributed to coal and oil significantly. For natural gas, the CO2-only radiative forcing from gas is increased by about 60% when the co-emitted pollutants are included.

  18. Impacts of Particulate Pollution from Fossil Fuel and Biomass Burnings on the Air Quality and Human Health in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.

    2017-12-01

    Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.

  19. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: thoughmore » coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  20. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  1. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  2. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    PubMed

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  3. QUANTIFYING HAZARDOUS SPECIES IN PARTICULATE MATTER DERIVED FROM FOSSIL-FUEL COMBUSTION

    EPA Science Inventory

    An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size- segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used...

  4. Evaluation of sustainability by a population living near fossil fuel resources in Northwestern Greece.

    PubMed

    Vatalis, Konstantinos I

    2010-12-01

    The emergence of sustainability as a goal in the management of fossil fuel resources is a result of the growing global environmental concern, and highlights some of the issues expected to be significant in coming years. In order to secure social acceptance, the mining industry has to face these challenges by engaging its many different stakeholders and examining their sustainability concerns. For this reason a questionnaire was conducted involving a simple random sampling of inhabitants near an area rich in fossil fuel resources, in order to gather respondents' views on social, economic and environmental benefits. The study discusses new subnational findings on public attitudes to regional sustainability, based on a quantitative research design. The site of the study was the energy-rich Greek region of Kozani, Western Macedonia, one of the country's energy hubs. The paper examines the future perspectives of the area. The conclusions can form a useful framework for energy policy in the wider Balkan area, which contains important fossil fuel resources. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Detecting fossil fuel emissions patterns from subcontinental regions using North American in situ CO2 measurements.

    PubMed

    Shiga, Yoichi P; Michalak, Anna M; Gourdji, Sharon M; Mueller, Kim L; Yadav, Vineet

    2014-06-28

    The ability to monitor fossil fuel carbon dioxide (FFCO 2 ) emissions from subcontinental regions using atmospheric CO 2 observations remains an important but unrealized goal. Here we explore a necessary but not sufficient component of this goal, namely, the basic question of the detectability of FFCO 2 emissions from subcontinental regions. Detectability is evaluated by examining the degree to which FFCO 2 emissions patterns from specific regions are needed to explain the variability observed in high-frequency atmospheric CO 2 observations. Analyses using a CO 2 monitoring network of 35 continuous measurement towers over North America show that FFCO 2 emissions are difficult to detect during nonwinter months. We find that the compounding effects of the seasonality of atmospheric transport patterns and the biospheric CO 2 flux signal dramatically hamper the detectability of FFCO 2 emissions. Results from several synthetic data case studies highlight the need for advancements in data coverage and transport model accuracy if the goal of atmospheric measurement-based FFCO 2 emissions detection and estimation is to be achieved beyond urban scales. Poor detectability of fossil fuel CO 2 emissions from subcontinental regionsDetectability assessed via attribution of emissions patterns in atmospheric dataLoss in detectability due to transport modeling errors and biospheric signal.

  6. Advanced development: Fuels

    NASA Astrophysics Data System (ADS)

    Ramohalli, K.

    1981-05-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  7. Advanced development: Fuels

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1981-01-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  8. Analysis of the uncertainty associated with national fossil fuel CO2 emissions datasets for use in the global Fossil Fuel Data Assimilation System (FFDAS) and carbon budgets

    NASA Astrophysics Data System (ADS)

    Song, Y.; Gurney, K. R.; Rayner, P. J.; Asefi-Najafabady, S.

    2012-12-01

    High resolution quantification of global fossil fuel CO2 emissions has become essential in research aimed at understanding the global carbon cycle and supporting the verification of international agreements on greenhouse gas emission reductions. The Fossil Fuel Data Assimilation System (FFDAS) was used to estimate global fossil fuel carbon emissions at 0.25 degree from 1992 to 2010. FFDAS quantifies CO2 emissions based on areal population density, per capita economic activity, energy intensity and carbon intensity. A critical constraint to this system is the estimation of national-scale fossil fuel CO2 emissions disaggregated into economic sectors. Furthermore, prior uncertainty estimation is an important aspect of the FFDAS. Objective techniques to quantify uncertainty for the national emissions are essential. There are several institutional datasets that quantify national carbon emissions, including British Petroleum (BP), the International Energy Agency (IEA), the Energy Information Administration (EIA), and the Carbon Dioxide Information and Analysis Center (CDIAC). These four datasets have been "harmonized" by Jordan Macknick for inter-comparison purposes (Macknick, Carbon Management, 2011). The harmonization attempted to generate consistency among the different institutional datasets via a variety of techniques such as reclassifying into consistent emitting categories, recalculating based on consistent emission factors, and converting into consistent units. These harmonized data form the basis of our uncertainty estimation. We summarized the maximum, minimum and mean national carbon emissions for all the datasets from 1992 to 2010. We calculated key statistics highlighting the remaining differences among the harmonized datasets. We combine the span (max - min) of datasets for each country and year with the standard deviation of the national spans over time. We utilize the economic sectoral definitions from IEA to disaggregate the national total emission into

  9. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, B.

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  10. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2016

    DOE Data Explorer

    Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachian State University, Boone, NC (United States)

    2016-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  11. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2015

    DOE Data Explorer

    Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, J. [Appalachian State University, Boone, NC (United States)

    2015-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2011 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2015), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  12. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2013

    DOE Data Explorer

    Andres, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachain State University, Boone, NC (United States)

    1996-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  13. Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotope Signature (DB1013, V. 2016)

    DOE Data Explorer

    Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2016-01-01

    The 2016 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2013. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial biosphere reservoirs.

  14. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background.

    PubMed

    Levin, Ingeborg; Hammer, Samuel; Kromer, Bernd; Meinhardt, Frank

    2008-03-01

    Monthly mean 14CO2 observations at two regional stations in Germany (Schauinsland observatory, Black Forest, and Heidelberg, upper Rhine valley) are compared with free tropospheric background measurements at the High Alpine Research Station Jungfraujoch (Swiss Alps) to estimate the regional fossil fuel CO2 surplus at the regional stations. The long-term mean fossil fuel CO2 surplus at Schauinsland is 1.31+/-0.09 ppm while it is 10.96+/-0.20 ppm in Heidelberg. No significant trend is observed at both sites over the last 20 years. Strong seasonal variations of the fossil fuel CO2 offsets indicate a strong seasonality of emissions but also of atmospheric dilution of ground level emissions by vertical mixing.

  15. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.

    PubMed

    McGlade, Christophe; Ekins, Paul

    2015-01-08

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  16. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field beingmore » estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.« less

  17. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.

    PubMed

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne

    2003-01-01

    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  18. Long time management of fossil fuel resources to limit global warming and avoid ice age onsets

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary

    2009-02-01

    There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.

  19. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  20. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000

    NASA Astrophysics Data System (ADS)

    Ito, Akinori; Penner, Joyce E.

    2005-06-01

    Historical changes of black carbon (BC) and particulate organic matter (POM) emissions from biomass burning (BB) and fossil fuel (FF) burning are estimated from 1870 to 2000. A bottom-up inventory for open vegetation (OV) burning is scaled by a top-down estimate for the year 2000. Monthly and interannual variations are derived over the time period from 1979 to 2000 based on the TOMS satellite aerosol index (AI) and this global map. Prior to 1979, emissions are scaled to a CH4 emissions inventory based on land-use change. Biofuel (BF) emissions from a recent inventory for developing countries are scaled forward and backward in time using population statistics and crop production statistics. In developed countries, wood consumption data together with emission factors for cooking and heating practices are used for biofuel estimates. For fossil fuel use, we use fuel consumption data and specific emission factors for different fuel use categories to develop an inventory over 1950-2000, and emissions are scaled to a CO2 inventory prior to that time. Technology changes for emissions from the diesel transport sector are included. During the last decade of this time period, the BC and POM emissions from biomass burning (i.e., OV + BF) contribute a significant amount to the primary sources of BC and POM and are larger than those from FF. Thus 59% of the NH BC emissions and 90% of the NH POM emissions are from BB in 2000. Fossil fuel consumption technologies are needed prior to 1990 in order to improve estimates of fossil fuel emissions during the twentieth century. These results suggest that the aerosol emissions from biomass burning need to be represented realistically in climate change assessments. The estimated emissions are available on a 1° × 1° grid for global climate modeling studies of climate changes.

  1. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    NASA Astrophysics Data System (ADS)

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  2. Annual Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (V. 2015)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Appalachian State University, Boone, North Carolina (USA)

    2015-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  3. Annual Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree latitude by One Degree Longitude (V. 2013)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Appalachian State University, Boone, North Carolina (USA).

    2013-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  4. Understanding Our Energy Footprint: Undergraduate Chemistry Laboratory Investigation of Environmental Impacts of Solid Fossil Fuel Wastes

    ERIC Educational Resources Information Center

    Berger, Michael; Goldfarb, Jillian L.

    2017-01-01

    Engaging undergraduates in the environmental consequences of fossil fuel usage primes them to consider their own anthropogenic impact, and the benefits and trade-offs of converting to renewable fuel strategies. This laboratory activity explores the potential contaminants (both inorganic and organic) present in the raw fuel and solid waste…

  5. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    PubMed

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  6. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century

    PubMed Central

    Graven, Heather D.

    2015-01-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon (14C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio 14C/C in atmospheric CO2 (Δ14CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ14CO2 because fossil fuels have lost all 14C from radioactive decay. Simulations of Δ14CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ14CO2 near the preindustrial level of 0‰ through 2100, whereas “business-as-usual” emissions will reduce Δ14CO2 to −250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial “aging” of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757

  7. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment

  8. Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations

    DOE PAGES

    Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran; ...

    2017-03-09

    Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less

  9. Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran

    Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less

  10. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    USDA-ARS?s Scientific Manuscript database

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  11. Radiation exposures due to fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  12. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...

  13. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...

  14. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...

  15. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  16. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Science.gov Websites

    Laws and Incentives: 2014 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review

  17. Climate Science and the Responsibilities of Fossil Fuel Companies for Climate Damages and Adaptation

    NASA Astrophysics Data System (ADS)

    Frumhoff, P. C.; Ekwurzel, B.

    2017-12-01

    Policymakers in several jurisdictions are now considering whether fossil fuel companies might bear some legal responsibility for climate damages and the costs of adaptation to climate change potentially traceable to the emissions from their marketed products. Here, we explore how scientific research, outreach and direct engagement with industry leaders and shareholders have informed and may continue to inform such developments. We present the results of new climate model research quantifying the contribution of carbon dioxide and methane emissions traced to individual fossil fuel companies to changes in global temperature and sea level; explore the impact of such research and outreach on both legal and broader societal consideration of company responsibility; and discuss the opportunities and challenges for scientists to engage in further work in this area.

  18. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    DOE PAGES

    O'Sullivan, M.; Rap, A.; Reddington, C. L.; ...

    2016-07-29

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less

  19. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, M.; Rap, A.; Reddington, C. L.

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less

  20. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century.

    PubMed

    O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W

    2016-08-16

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  1. Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (1751-2008) (DB1013 V.2011)

    DOE Data Explorer

    Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    1996-01-01

    The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial biosphere reservoirs.

  2. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  3. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  4. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  5. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  6. The climate responsibilities of the fossil fuel industry: why the Paris Agreement goals require an end to growth

    NASA Astrophysics Data System (ADS)

    Trout, K.; Muttitt, G.; Kretzmann, S.; Stockman, L.; Doukas, A.

    2017-12-01

    In December 2015, governments agreed in Paris to limit global average temperature rise to well below 2°C, and to aim to limit it to 1.5°C, compared to pre-industrial levels. Achieving these goals would require greenhouse gas emissions to reach net zero early in the second half of this century, and consequently most fossil fuel use to be phased out. This has clear implications for fossil fuel industry, and shines light on what should be expected of the industry in its business decisions - complementing the discussion of the industry's role in the scientific debate. This presentation shares the results to date of ongoing research into the committed emissions from oilfields, gasfields and coal mines, compared to carbon budgets. Building on prior work on fossil fuel reserves (notably Meinshausen 2009), our research focuses just on the developed reserves, from already-producing fields and mines. We estimate developed reserves of oil and gas using industry databases, and of coal using analysis by the International Energy Agency, and compare with carbon budgets published in the IPCC's 5th Assessment Report. The key findings are that: Developed reserves of oil, gas, and coal are more than we can afford to burn while keeping likely warming below 2°C. Developed reserves of oil and gas alone would take the world beyond 1.5°C. The implications are that development of any new fields or mines will either push the world beyond agreed climate limits, or cause some existing extraction assets to become stranded. This suggests that fossil fuel companies should stop developing new infrastructure, and governments should oversee a managed decline of the industry over the coming decades, combined with an upscaling of clean energy, as existing fossil fuel reserves are depleted.

  7. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2010) (V.2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2010-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  8. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (V. 2011) (1950 - 2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA_; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2011-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  9. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  10. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  11. Burning Fossil Fuels: Impact of Climate Change on Health.

    PubMed

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. © The Author(s) 2015.

  12. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technicalmore » support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less

  13. Indoor air pollution and the health of children in biomass- and fossil-fuel users of Bangladesh: situation in two different seasons

    PubMed Central

    Khalequzzaman, Md.; Sakai, Kiyoshi; Hoque, Bilqis Amin; Nakajima, Tamie

    2010-01-01

    Objectives Indoor air pollution levels are reported to be higher with biomass fuel, and a number of respiratory diseases in children are associated with pollution from burning such fuel. However, little is known about the situation in developing countries. The aim of the study was to compare indoor air pollution levels and prevalence of symptoms in children between biomass- and fossil-fuel-using households in different seasons in Bangladesh. Methods We conducted a cross-sectional study among biomass- (n = 42) and fossil-fuel (n = 66) users having children <5 years in Moulvibazar and Dhaka, Bangladesh. Health-related information of one child from each family was retrieved once in winter (January 2008) and once in summer (June 2008). The measured pollutants were carbon monoxide (CO), carbon dioxide (CO2), dust particles, volatile organic compounds (VOCs), and nitrogen dioxide. Results Mean concentration of dust particles and geometric mean concentrations of VOCs such as benzene, toluene, and xylene, which were significantly higher in biomass- than fossil-fuel-users’ kitchens (p < 0.05), were significantly higher in winter than in summer (p < 0.05). Levels of CO and CO2, which were significantly higher in biomass than fossil-fuel users (p < 0.05), were significantly higher in summer than winter (p < 0.05). However, no significant difference was found in the occurrence of symptoms between biomass- and fossil-fuel users either in winter or in summer. Conclusions It was suggested that the measured indoor air pollution did not directly result in symptoms among children. Other factors may be involved. PMID:21432551

  14. Indoor air pollution and the health of children in biomass- and fossil-fuel users of Bangladesh: situation in two different seasons.

    PubMed

    Khalequzzaman, Md; Kamijima, Michihiro; Sakai, Kiyoshi; Hoque, Bilqis Amin; Nakajima, Tamie

    2010-07-01

    Indoor air pollution levels are reported to be higher with biomass fuel, and a number of respiratory diseases in children are associated with pollution from burning such fuel. However, little is known about the situation in developing countries. The aim of the study was to compare indoor air pollution levels and prevalence of symptoms in children between biomass- and fossil-fuel-using households in different seasons in Bangladesh. We conducted a cross-sectional study among biomass- (n = 42) and fossil-fuel (n = 66) users having children <5 years in Moulvibazar and Dhaka, Bangladesh. Health-related information of one child from each family was retrieved once in winter (January 2008) and once in summer (June 2008). The measured pollutants were carbon monoxide (CO), carbon dioxide (CO(2)), dust particles, volatile organic compounds (VOCs), and nitrogen dioxide. Mean concentration of dust particles and geometric mean concentrations of VOCs such as benzene, toluene, and xylene, which were significantly higher in biomass- than fossil-fuel-users' kitchens (p < 0.05), were significantly higher in winter than in summer (p < 0.05). Levels of CO and CO(2), which were significantly higher in biomass than fossil-fuel users (p < 0.05), were significantly higher in summer than winter (p < 0.05). However, no significant difference was found in the occurrence of symptoms between biomass- and fossil-fuel users either in winter or in summer. It was suggested that the measured indoor air pollution did not directly result in symptoms among children. Other factors may be involved.

  15. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950-2008) (V. 2011)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2011-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  16. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2010) (V. 2013)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2013-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  17. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2009) (V. 2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2012-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  18. Annual Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1751 - 2009) (V. 2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marlad, Greg [Appalachian State University, Boone, NC (USA)

    2012-01-01

    The annual, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1751-2009 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2012) and references therein. The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  19. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2015-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2011.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signature (del 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  20. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral contentmore » can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.« less

  1. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

    PubMed Central

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-01-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  2. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    PubMed

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  3. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels.

    PubMed

    Heger, Sebastian; Bluhm, Kerstin; Brendt, Julia; Mayer, Philipp; Anders, Nico; Schäffer, Andreas; Seiler, Thomas-Benjamin; Hollert, Henner

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence "Tailor-made Fuels from Biomass" design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.

  4. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels

    PubMed Central

    Bluhm, Kerstin; Brendt, Julia; Mayer, Philipp; Anders, Nico; Schäffer, Andreas; Seiler, Thomas-Benjamin; Hollert, Henner

    2016-01-01

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence “Tailor-made Fuels from Biomass” design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels. PMID:27684069

  5. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  6. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  7. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    DOE PAGES

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; ...

    2015-10-19

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less

  8. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results

    NASA Astrophysics Data System (ADS)

    Asefi-Najafabady, S.; Rayner, P. J.; Gurney, K. R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K.

    2014-09-01

    High-resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008-2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

  9. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  10. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  11. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less

  12. Monthly Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (Uncertainties, V.2016)

    DOE Data Explorer

    Andres, J.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    The monthly, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  13. Radiocarbon-based assessment of fossil fuel-derived contaminant associations in sediments.

    PubMed

    White, Helen K; Reddy, Christopher M; Eglinton, Timothy I

    2008-08-01

    Hydrophobic organic contaminants (HOCs) are associated with natural organic matter (OM) in the environment via mechanisms such as sorption or chemical binding. The latter interactions are difficult to quantitatively constrain, as HOCs can reside in different OM pools outside of conventional analytical windows. Here, we exploited natural abundance variations in radiocarbon (14C) to trace various fossil fuel-derived HOCs (14C-free) within chemically defined fractions of contemporary OM (modern 14C content) in 13 samples including marine and freshwater sediments and one dust and one soil sample. Samples were sequentially treated by solvent extraction followed by saponification. Radiocarbon analysis of the bulk sample and resulting residues was then performed. Fossil fuel-derived HOCs released by these treatments were quantified from an isotope mass balance approach as well as by gas chromatography-mass spectrometry. For the majority of samples (n = 13), 98-100% of the total HOC pool was solvent extractable. Nonextracted HOCs are only significant (29% of total HOC pool)in one sample containing p,p-2,2-bis(chlorophenyl)-1,1,1-trichloroethane and its metabolites. The infrequency of significant incorporation of HOCs into nonextracted OM residues suggests that most HOCs are mobile and bioavailable in the environment and, as such, have a greater potential to exert adverse effects.

  14. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Δ14C in ginkgo leaves

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.

    2013-01-01

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  15. Advanced Fuels Campaign FY 2015 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori Ann; Carmack, William Jonathan

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  16. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE PAGES

    Liu, Z.; Guan, D.; Wei, W.; ...

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO 2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  17. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Guan, D.; Wei, W.

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO 2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  18. Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda

    With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple

  19. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2007) (V. 2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy, and Economics Appalachian State University Boone, NC 28608-2131 USA

    2010-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2013.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signature (del 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996) for years prior to 1990 and a variable population distribution for later years (Andres et al. 2016). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production). The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http

  20. Quantification of uncertainty associated with United States high resolution fossil fuel CO2 emissions: updates, challenges and future plans

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Chandrasekaran, V.; Mendoza, D. L.; Geethakumar, S.

    2010-12-01

    The Vulcan Project has estimated United States fossil fuel CO2 emissions at the hourly time scale and at spatial scales below the county level for the year 2002. Vulcan is built from a wide variety of observational data streams including regulated air pollutant emissions reporting, traffic monitoring, energy statistics, and US census data. In addition to these data sets, Vulcan relies on a series of modeling assumptions and constructs to interpolate in space, time and transform non-CO2 reporting into an estimate of CO2 combustion emissions. The recent version 2.0 of the Vulcan inventory has produced advances in a number of categories with particular emphasis on improved temporal structure. Onroad transportation emissions now avail of roughly 5000 automated traffic count monitors allowing for much improved diurnal and weekly time structure in our onroad transportation emissions. Though the inventory shows excellent agreement with independent national-level CO2 emissions estimates, uncertainty quantification has been a challenging task given the large number of data sources and numerous modeling assumptions. However, we have now accomplished a complete uncertainty estimate across all the Vulcan economic sectors and will present uncertainty estimates as a function of space, time, sector and fuel. We find that, like the underlying distribution of CO2 emissions themselves, the uncertainty is also strongly lognormal with high uncertainty associated with a relatively small number of locations. These locations typically are locations reliant upon coal combustion as the dominant CO2 source. We will also compare and contrast Vulcan fossil fuel CO2 emissions estimates against estimates built from DOE fuel-based surveys at the state level. We conclude that much of the difference between the Vulcan inventory and DOE statistics are not due to biased estimation but mechanistic differences in supply versus demand and combustion in space/time.

  1. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    PubMed

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  2. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (V. 2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, North Caroline (USA)

    2012-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2009.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html Q10 for a description why emission totals based upon consumption differ from those based upon production).

  3. Global and Latitudinal Estimates of del 13C from Fossil-Fuel Consumption and Cement Manufacture (DB1013)

    DOE Data Explorer

    Andres, R. J. [University of Alaska, Fairbanks, Alaska (USA); Marland, Greg [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Bischof, Steve [Connecticut College, New London, Connecticut

    1996-01-01

    This database contains estimates of the annual mean value of 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1860-1992. It also contains estimates of the value of 13C for 1° latitude bands for the years 1950, 1960, 1970, 1980, 1990, 1991, and 1992. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of fossil-fuel 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial biosphere reservoirs. The data are in two files ranging in size from 2.8 to 12.9 kB.

  4. Annual Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (1950-2013) (V. 2016)

    DOE Data Explorer

    Andres, R. J. [CDIAC; Boden, T. A. [CDIAC

    2016-01-01

    The annual, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  5. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments Database

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  6. Advanced fuels campaign 2013 accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori; Hamelin, Doug

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle optionsmore » defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.« less

  7. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Gruber, N.

    2011-12-01

    The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  8. EPA/IFP EUROPEAN WORKSHOP ON THE EMISSION ON NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increas...

  9. Education Program on Fossil Resources Including Coal

    NASA Astrophysics Data System (ADS)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  10. The future of oil: unconventional fossil fuels.

    PubMed

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  11. Thermal impacts of a fossil-fueled electric power plant discharge on seagrass bed communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeth, J.C.; Garrett, R.A.; Imbur, W.E.

    1979-01-01

    This paper deals with a 316a demonstration for an older fossil-fueled electric power plant which is often overlooked but nevertheless a regultory compliance. In this report, the Lansing Smith coal-fired steam electric power plant went under a 316a demonstration and the results are recorded and tabulated.

  12. A FEASIBILITY STUDY FOR THE COPROCESSING OF FOSSIL FUELS WITH BIOMASS BY THE HYDROCARB PROCESS

    EPA Science Inventory

    The report describes and gives results of an assessment of a new process concept for the production of carbon and methanol from fossil fuels. The Hydrocarb Process consists of the hydrogasification of carbonaceous material to produce methane, which is subsequently thermally decom...

  13. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... and Security Act of 2007 (EISA) to reduce the use of fossil fuels and encourage increased production... renewable fuel to replace or reduce the quantity of fossil fuel present in transportation fuel. Under EPA's... quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel...

  14. Fossil Energy: Drivers and Challenges.

    NASA Astrophysics Data System (ADS)

    Friedmann, Julio

    2007-04-01

    Concerns about rapid economic growth, energy security, and global climate change have created a new landscape for fossil energy exploration, production, and utilization. Since 85% of primary energy supply comes from fossil fuels, and 85% of greenhouse gas emissions come from fossil fuel consumption, new and difficult technical and political challenges confront commercial, governmental, and public stakeholders. As such, concerns over climate change are explicitly weighed against security of international and domestic energy supplies, with economic premiums paid for either or both. Efficiency improvements, fuel conservation, and deployment of nuclear and renewable supplies will help both concerns, but are unlikely to offset growth in the coming decades. As such, new technologies and undertakings must both provide high quality fossil energy with minimal environmental impacts. The largest and most difficult of these undertakings is carbon management, wherein CO2 emissions are sequestered indefinitely at substantial incremental cost. Geological formations provide both high confidence and high capacity for CO2 storage, but present scientific and technical challenges. Oil and gas supply can be partially sustained and replaced through exploitation of unconventional fossil fuels such as tar-sands, methane hydrates, coal-to-liquids, and oil shales. These fuels provide enormous reserves that can be exploited at current costs, but generally require substantial energy to process. In most cases, the energy return on investment (EROI) is dropping, and unconventional fuels are generally more carbon intensive than conventional, presenting additional carbon management challenges. Ultimately, a large and sustained science and technology program akin to the Apollo project will be needed to address these concerns. Unfortunately, real funding in energy research has dropped dramatically (75%) in the past three decades, and novel designs in fission and fusion are not likely to provide any

  15. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Dong, Junhang; Lin, Jerry

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  16. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  17. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    PubMed

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nitrogen Stable Isotope Composition of Various Fossil-fuel Combustion Nitrogen Oxide Sources

    NASA Astrophysics Data System (ADS)

    Walters, W.; Michalski, G. M.; Fang, H.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) are important trace gases that impact atmospheric chemistry, air quality, and climate. In order to help constrain NOx source contributions, the nitrogen (N) stable isotope composition of NOx (δ15N-NOx) may be a useful indicator for NOx source partitioning. However, despite anthropogenic emissions being the most prevalent source of NOx, there is still large uncertainty in the δ15N-NOx values for anthropogenic sources. To this end, this study provides a detailed analysis of several fossil-fuel combustion NOx sources and their δ15N-NOx values. To accomplish this, exhaust or flue samples from several fossil-fuel combustion sources were sampled and analyzed for their δ15N-NOx that included airplanes, gasoline-powered vehicles not equipped with a catalytic converter, gasoline-powered lawn tools and utility vehicles, diesel-electric buses, diesel semi-trucks, and natural gas-burning home furnace and power plant. A relatively large range of δ15N-NOx values were measured from -28.1 to 0.3‰ for individual exhaust/flue samples with cold started diesel-electric buses contributing on average the lowest δ15N-NOx values at -20.9‰, and warm-started diesel-electric buses contributing on average the highest values of -1.7‰. The NOx sources analyzed in this study primarily originated from the "thermal production" of NOx and generally emitted negative δ15N-NOx values, likely due to the kinetic isotope effect associated with its production. It was found that there is a negative correlation between NOx concentrations and δ15N-NOx for fossil-fuel combustion sources equipped with catalytic NOx reduction technology, suggesting that the catalytic reduction of NOx may have an influence on δ15N-NOx values. Based on the δ15N-NOx values reported in this study and in previous studies, a δ15N-NOx regional and seasonal isoscape was constructed for the contiguous United States. The constructed isoscape demonstrates the seasonal importance of various

  19. Quantification of fossil fuel CO2 at the building/street level for large US cities

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2012-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain as a pilot effort to a CMS. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Phoenix (see figure). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving our emissions data product and measurement strategies. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban

  20. Proceedings of the 18th Annual Conference on Fossil Energy Materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    2004-11-02

    The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff membersmore » at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.« less

  1. Impact assessment of biomass-based district heating systems in densely populated communities. Part II: Would the replacement of fossil fuels improve ambient air quality and human health?

    NASA Astrophysics Data System (ADS)

    Petrov, Olga; Bi, Xiaotao; Lau, Anthony

    2017-07-01

    To determine if replacing fossil fuel combustion with biomass gasification would impact air quality, we evaluated the impact of a small-scale biomass gasification plant (BRDF) at a university campus over 5 scenarios. The overall incremental contribution of fine particles (PM2.5) is found to be at least one order of magnitude lower than the provincial air quality objectives. The maximum PM2.5 emission from the natural gas fueled power house (PH) could adversely add to the already high background concentration levels. Nitrogen dioxide (NO2) emissions from the BRDF with no engineered pollution controls for NOx in place exceeded the provincial objective in all seasons except during summer. The impact score, IS, was the highest for NO2 (677 Disability Adjusted Life Years, DALY) when biomass entirely replaced fossil fuels, and the highest for PM2.5 (64 DALY) and CO (3 DALY) if all energy was produced by natural gas at PH. Complete replacement of fossil fuels by one biomass plant can result in almost 28% higher health impacts (708 DALY) compared to 513 DALY when both the current BRDF and the PH are operational mostly due to uncontrolled NO2 emissions. Observations from this study inform academic community, city planners, policy makers and technology developers on the impacts of community district heating systems and possible mitigation strategies: a) community energy demand could be met either by splitting emissions into more than one source at different locations and different fuel types or by a single source with the least-impact-based location selection criteria with biomass as a fuel; b) advanced high-efficiency pollution control devices are essential to lower emissions for emission sources located in a densely populated community; c) a spatial and temporal impact assessment should be performed in developing bioenergy-based district heating systems, in which the capital and operational costs should be balanced with not only the benefit to greenhouse gas emission

  2. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2006) (V.2009)

    DOE Data Explorer

    Andres, R. J. [.; Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory Oak Ridge, TN (USA).; Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory Oak Ridge, TN (USA).; Marland, Greg [Appalachian State University, Boone, North Carolina (USA)

    2009-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2006.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  3. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  4. Fossil energy biotechnology: A research needs assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less

  5. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the westernmore » United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.« less

  6. Annual Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1751 - 2008) (V. 2011)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.; Boden, T. A. [Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.; Marland, G. [Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.

    2012-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2008.html) and references therein. The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signature (del 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  7. Advanced Fuels Campaign FY 2014 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori; May, W. Edgar

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more

  8. Research needs for finely resolved fossil carbon emissions

    USGS Publications Warehouse

    Gurney, K.; Ansley, W.; Mendoza, D.; Petron, G.; Frost, G.; Gregg, J.; Fischer, M.; Pataki, Diane E.; Ackerman, K.; Houweling, S.; Corbin, K.; Andres, R.; Blasing, T.J.

    2007-01-01

    Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO2 Fossil Fuel Emission Effort (CO2FFEE) outlines a research agenda to meet the need for improved fossil fuel CO2 emissions information and solicits comment from the scientific community and research agencies.

  9. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  10. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄.

    PubMed

    Schaefer, Hinrich; Mikaloff Fletcher, Sara E; Veidt, Cordelia; Lassey, Keith R; Brailsford, Gordon W; Bromley, Tony M; Dlugokencky, Edward J; Michel, Sylvia E; Miller, John B; Levin, Ingeborg; Lowe, Dave C; Martin, Ross J; Vaughn, Bruce H; White, James W C

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production. Copyright © 2016, American Association for the Advancement of Science.

  11. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland

    NASA Astrophysics Data System (ADS)

    Berhanu, Tesfaye A.; Szidat, Sönke; Brunner, Dominik; Satar, Ece; Schanda, Rüdiger; Nyfeler, Peter; Battaglia, Michael; Steinbacher, Martin; Hammer, Samuel; Leuenberger, Markus

    2017-09-01

    Fossil fuel CO2 (CO2ff) is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Since October 2012, we have been continuously measuring the mixing ratios of CO, CO2, CH4, and H2O at five different heights at the Beromünster tall tower, Switzerland. Air samples for radiocarbon (Δ14CO2) analysis have also been collected from the highest sampling inlet (212.5 m) of the tower on a biweekly basis. A correction was applied for 14CO2 emissions from nearby nuclear power plants (NPPs), which have been simulated with the Lagrangian transport model FLEXPART-COSMO. The 14CO2 emissions from NPPs offset the depletion in 14C by fossil fuel emissions, resulting in an underestimation of the fossil fuel component in atmospheric CO2 by about 16 %. An average observed ratio (RCO) of 13.4 ± 1.3 mmol mol-1 was calculated from the enhancements in CO mixing ratios relative to the clean-air reference site Jungfraujoch (ΔCO) and the radiocarbon-based fossil fuel CO2 mole fractions. The wintertime RCO estimate of 12.5 ± 3.3 is about 30 % higher than the wintertime ratio between in situ measured CO and CO2 enhancements at Beromünster over the Jungfraujoch background (8.7 mmol mol-1) corrected for non-fossil contributions due to strong biospheric contribution despite the strong correlation between ΔCO and ΔCO2 in winter. By combining the ratio derived using the radiocarbon measurements and the in situ measured CO mixing ratios, a high-resolution time series of CO2ff was calculated exhibiting a clear seasonality driven by seasonal variability in emissions and vertical mixing. By subtracting the fossil fuel component and the large-scale background, we have determined the regional biospheric CO2 component that is characterized by seasonal variations ranging between -15 and +30 ppm. A pronounced diurnal variation was observed during summer modulated by biospheric exchange and vertical mixing, while no

  12. Proceedings of the sixth annual conference on fossil energy materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) asmore » the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less

  13. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    EPA Science Inventory

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  14. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  15. Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data

    PubMed Central

    Qvist, Staffan A.; Brook, Barry W.

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621

  16. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    PubMed

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  17. NREL Dedicates Advanced Hydrogen Fueling Station | News | NREL

    Science.gov Websites

    5 » NREL Dedicates Advanced Hydrogen Fueling Station News Release: NREL Dedicates Advanced Hydrogen Fueling Station October 8, 2015 The Energy Department's National Renewable Energy Laboratory (NREL ) today dedicated its 700 bar hydrogen fueling station, the first of its kind in Colorado and in the

  18. 78 FR 9016 - Approval and Promulgation of Air Quality Implementation Plans; Massachusetts; Revisions to Fossil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... Promulgation of Air Quality Implementation Plans; Massachusetts; Revisions to Fossil Fuel Utilization and..., inspection, maintenance and testing requirements for certain fossil fuel utilization facilities, rename and... fossil fuel utilization facility regulation, source registration regulation, and new industrial...

  19. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2007-08-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. The relationship, in both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production and deforestation, is consistent, showing an overall conversion factor of 3-5%. This factor is covered only in part by the ~1% of "direct" emissions from agricultural crop lands estimated by IPCC (2006), or the "indirect" emissions cited therein. This means that the extra N2O entering the atmosphere as a result of using N to produce crops for biofuels will also be correspondingly greater than that estimated just on the basis of IPCC (2006). When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.

  20. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    DTIC Science & Technology

    2001-02-01

    needed. Do not return it to the originator. iii Oxygenates for Advanced Petroleum-Based Diesel Fuels INTERIM REPORT TFLRF No. 351 by David W. Naegeli ...Blends,” 219th American Chemical Society Meeting, San Francisco, CA, March 26-30, 2000. 5. Naegeli , D.W. and Moses, C.A., “Effects of Fuel...Alternative Fuels in an Advanced Automotive Diesel Engine,” SAE Paper 2000- 01-2048. 25. Vertin, K.D., Ohi, J.M., Naegeli , D.W., Childress, K.H

  1. Estimated contributions of primary and secondary organic aerosol from fossil fuel combustion during the CalNex and Cal-Mex campaigns

    NASA Astrophysics Data System (ADS)

    Guzman-Morales, J.; Frossard, A. A.; Corrigan, A. L.; Russell, L. M.; Liu, S.; Takahama, S.; Taylor, J. W.; Allan, J.; Coe, H.; Zhao, Y.; Goldstein, A. H.

    2014-05-01

    Observations during CalNex and Cal-Mex field campaigns at Bakersfield, Pasadena, Tijuana, and on board the R/V Atlantis show a substantial contribution of fossil fuel emissions to the ambient particle organic mass (OM). At least two fossil fuel combustion (FFC) factors with a range of contributions of oxidized organic functional groups were identified at each site and accounted for 60-88% of the total OM. Additional marine, vegetative detritus, and biomass burning or biogenic sources contribute up to 40% of the OM. Comparison of the FTIR spectra of four different unburned fossil fuels (gasoline, diesel, motor oil, and ship diesel) with PMF factors from ambient samples shows absorbance peaks from the fuels are retained in organic aerosols, with the spectra of all of the FFC factors containing at least three of the four characteristic alkane peaks observed in fuel standards at 2954, 2923, 2869 and 2855 cm-1. Based on this spectral similarity, we estimate the primary OM from FFC sources for each site to be 16-20%, with secondary FFC OM accounting for an additional 42-62%. Two other methods for estimating primary OM that use carbon monoxide (CO) and elemental carbon (EC) as tracers of primary organic mass were investigated, but both approaches were problematic for the CalNex and Cal-Mex urban sites because they were influenced by multiple emission sources that had site-specific and variable initial ratios to OM. For example, using the ΔPOM/ΔCO ratio of 0.0094 μg ppb V-1 proposed by other studies produces unrealistically high estimates of primary FFC OM of 55-100%.

  2. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  3. Replacing fossil diesel by biodiesel fuel: expected impact on health.

    PubMed

    Hutter, Hans-Peter; Kundi, Michael; Moshammer, Hanns; Shelton, Janie; Krüger, Bernd; Schicker, Irene; Wallner, Peter

    2015-01-01

    Biofuels have become an alternative to fossil fuel, but consequences on human health from changes to emissions compositions are not well understood. By combining information on composition of vehicle exhaust, dispersion models, and relationship between exposure to air contaminants and health, the authors determined expected mortality outcomes in 2 scenarios: a blend of 10% biodiesel and 90% standard diesel (B10) and biodiesel only (B100), for a rural and an urban environment. Vehicle exhaust for both fuel compositions contained lower fine particle mass but higher NO2 levels. Ambient air concentrations in scenario B10 were almost unchanged. In scenario B100, PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) levels decreased by 4-8% and NO2 levels increased 7-11%. Reduction of PM2.5 is expected to reduce mortality rate by 5 × 10(-6) and 31 × 10(-6) per year, whereas NO2 increase adds 17 × 10(-6) and 30 × 10(-6) to mortality rate for B10 and B100, respectively. Since effects of PM2.5 and NO2 are not independent, a positive net effect is possible.

  4. Partial replacement of fossil fuel in a cement plant: risk assessment for the population living in the neighborhood.

    PubMed

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2010-10-15

    In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO(2), but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM(10) levels remained constant, with a value of 16μgm(-3). In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO(2) emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    DOE R&D Accomplishments Database

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  6. Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2008 (Version 2011)

    DOE Data Explorer

    Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory

    2011-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2010), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2010) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  7. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2010) (V. 2013)

    DOE Data Explorer

    Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory; Marland, G.

    2013-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2013), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2012) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  8. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2014) (V. 2017)

    DOE Data Explorer

    Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2017-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2017), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2017) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  9. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2013) (V. 2016)

    DOE Data Explorer

    Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2016-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2016), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2016) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  10. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2011) (V. 2015)

    DOE Data Explorer

    Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University Boone, NC (USA)

    2015-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2014), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2014) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  11. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2009) (V. 2012)

    DOE Data Explorer

    Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [Oak Ridge National Laboratory; Marland, G. [Research Institute for Environment, Energy and Economics, Appalachian State University

    2012-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2012), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2011) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  12. Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2007 (Version 2010)

    DOE Data Explorer

    Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory

    2010-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2009), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2009) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  13. Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2006 (published 2009)

    DOE Data Explorer

    Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory

    2009-01-01

    Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2008), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2008) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  14. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    PubMed

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress. © The Author(s) 2015.

  15. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  16. Proceedings: 1990 fossil plant cycling conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities,more » vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.« less

  17. Fuel cell systems program plan, FY 1990

    NASA Astrophysics Data System (ADS)

    1989-10-01

    A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.

  18. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    PubMed

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Projected Growth in Small-Scale, Fossil-Fueled Distributed Generation: Potential Implications for the U.S. Greenhouse Gas Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Heath, Garvin A

    The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less

  20. Alternative Fuels Data Center: Alternative Fuel and Advanced Technology

    Science.gov Websites

    Vehicles Aid in Emergency Recovery EffortsA> Alternative Fuel and Advanced Technology Vehicles MotorWeek - Television's Original Automotive Magazine Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in

  1. Beyond fossil fuel–driven nitrogen transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

  2. Beyond fossil fuel–driven nitrogen transformations

    DOE PAGES

    Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.; ...

    2018-05-25

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

  3. FEASIBILITY OF PRODUCING AND MARKETING BYPRODUCT GYPSUM FROM SO2 EMISSION CONTROL AT FOSSIL-FUEL-FIRED POWER PLANTS

    EPA Science Inventory

    The report gives results of a study to identify fossil-fuel-fired power plants that might, in competition with existing crude gypsum sources and other power plants, lower the cost of compliance with SO2 regulations by producing and marketing abatement gypsum. In the Eastern U.S.,...

  4. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  5. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in themore » meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.« less

  6. Cermet-fueled reactors for advanced space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less

  7. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling.

    PubMed

    Geels, C; Christensen, J H; Hansen, A W; Heinemeier, J; Kiilsholm, S; Larsen, N W; Larsen, S E; Pedersen, T; Sørensen, L L; Brandt, J; Frohn, L M; Djurhuus, S

    2006-06-01

    As part of the Danish NEAREX project the origin and variability of anthropogenic atmospheric CO(2) over the Northeast Atlantic Region (NEAR) has been studied. The project consisted of a combination of experimental and modelling activities. Local volunteers operated CO(2) sampling stations, built at University of Copenhagen, for (14)C analysis at four locations (East Denmark, Shetland Isles, Faroe Isles and Iceland). The samples were only collected during winter periods of south-easterly winds in an attempt to trace air enriched in fossil-fuel derived CO(2) due to combustion of fossil fuels within European countries. In order to study the transport and concentration fields over the region in detail, a three-dimensional Eulerian hemispheric air pollution model has been extended to include the main anthropogenic sources for atmospheric CO(2). During the project period (1998-2001) only a few episodes of transport from Central Europe towards NEAR arose, which makes the data set for the evaluation of the method sparse. The analysed samples indicate that the signal for fossil CO(2), as expected, is largest (up to 3.7+/-0.4% fossil CO(2)) at the Danish location closest to the European emissions areas and much weaker (up to approximately 1.5+/-0.6% fossil CO(2)) at the most remote location. As the anthropogenic signal is weak in the clean atmosphere over NEAR these numbers will, however, be very sensitive to the assumed background (14)CO(2) activity and the precision of the measurements. The model simulations include the interplay between the driving processes from the emission into the boundary layer and the following horizontal/vertical mixing and atmospheric transport and are used to analyse the meteorological conditions leading to the observed events of high fossil CO(2) over NEAR. This information about the history of the air masses is essential if an observed signal is to be utilised for identifying and quantifying sources for fossil CO(2).

  8. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  9. Replacing Burning of Fossil Fuels with Solar Cell and Wind Energy: How Important and How Soon?

    NASA Astrophysics Data System (ADS)

    Partain, L., II; Hansen, R. T.; Hansen, S. F.; Bennett, D.; Newlands, A.

    2016-12-01

    The IPCC indicated that atmospheric CO2 rise should stop to control global climate change. CO2 is the longest lived, most problematic anthropogenic greenhouse emission from burning fossil fuel. For 2000 years atmospheric CO2 concentration remained 280 ppm until 1870, when it rose sharply and nonlinearly to 400 ppm, correlated with a 1oC global mean temperature rise. Antarctic ice core data for the past 400,000 years indicate, 80 ppm shifts in atmospheric CO2 concentrations with 10,000-30,000 year interglacial periods at 280 ppm, were between ice-age glacial periods of 75,000-100,000 years at 200 ppm. The last 12,000-year interglacial "Goldilocks" period so far spans 4 civilizations: 6000 years of Western, 4000-5000 years of Inca and Aztec and 7000-8000 years of Chinese civilizations. The UN-led 2015 Paris Agreement set a goal limiting temperature rise to 2oC to prevent devastating climate change. Unfortunately IPCC modeling found a substantial probability of a rise by 4oC or more should all current fossil fuels be burned by 2100. This would result in weather extremes, rising oceans, storm surges and temperatures where low-lying coastal regions, Pacific Islands and large equatorial regions of the world could become uninhabitable. By Swanson's Law, an empirical learning curve observation, solar cell production costs drop 50% for every 10X increase in their cumulative production. After 40 years and over 5 orders-of-magnitude cumulative production increase, solar cells currently provide over 1% of the world's electricity generating capacity at a cost competitive with electricity generated from burning fossil fuels. If their cumulative generating capacity keeps doubling every 2 years (similar to Moore's Law), energy equivalent to all the world's electricity generating capacity could be provided by solar cells by 2028. The variability of solar cell energy can be mitigated by combining it with wind power, storage, super grids, space mirrors, and demand response.

  10. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    PubMed

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled

  11. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  13. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2017-12-09

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  14. RADIOACTIVITY IN THE ATMOSPHERIC EFFLUENTS OF POWER PLANTS THAT USE FOSSIL FUELS.

    PubMed

    EISENBUD, M; PETROW, H G

    1964-04-17

    Analysis of the fly ash produced by combustion of pulverized Appalachian coal has shown that a 1000-megawatt coal-burning power plant will discharge into the atmosphere from about 28 millicuries to nearly 1 curie per year of radium-226 and radium-228. An oil-burning plant of similar size will discharge about 0.5 millicurie of radium per year. Comparison of these data with data on the release of fission products from nuclear-powered generating stations shows that when the physical and biological properties of the various radionuclides are taken into consideration, the conventional fossil-fueled plants discharge relatively greater quantities of radioactive materials into the atmosphere than nuclearpowered plants of comparable size.

  15. Device for separating CO2 from fossil-fueled power plant emissions

    DOEpatents

    Burchell, Timothy D [Oak Ridge, TN; Judkins, Roddie R [Knoxville, TN; Wilson, Kirk A [Knoxville, TN

    2002-04-23

    A gas separation device includes an inner conduit, and a concentric outer conduit. An electrically conductive filter media, preferably a carbon fiber composite molecular sieve, is provided in the annular space between the inner conduit and the outer conduit. Gas flows through the inner conduit and the annular space between the inner conduit and the outer conduit, so as to contact the filter media. The filter media preferentially adsorbs at least one constituent of the gas stream. The filter media is regenerated by causing an electric current to flow through the filter media. The inner conduit and outer conduit are preferably electrically conductive whereby the regeneration of the filter media can be electrically stimulated. The invention is particularly useful for the removal of CO.sub.2 from the exhaust gases of fossil-fueled power plants.

  16. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE PAGES

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  17. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  18. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Kuo, Wen-Chien; Lin, Wen-Yinn

    2011-01-01

    This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.

  19. Characterizing Uncertainties in Atmospheric Inversions of Fossil Fuel CO2 Emissions in California

    NASA Astrophysics Data System (ADS)

    Brophy, K. J.; Graven, H. D.; Manning, A.; Arnold, T.; Fischer, M. L.; Jeong, S.; Cui, X.; Parazoo, N.

    2016-12-01

    In 2006 California passed a law requiring greenhouse gas emissions be reduced to 1990 levels by 2020, equivalent to a 20% reduction over 2006-2020. Assessing compliance with greenhouse gas mitigation policies requires accurate determination of emissions, particularly for CO2 emitted by fossil fuel combustion (ffCO2). We found differences in inventory-based ffCO2 flux estimates for California total emissions of 11% (standard deviation relative to the mean), and even larger differences on some smaller sub-state levels. Top-down studies may be useful for validating ffCO2 flux estimates, but top-down studies of CO2 typically focus on biospheric CO2 fluxes and they are not yet well-developed for ffCO2. Implementing top-down studies of ffCO2 requires observations of a fossil fuel combustion tracer such as 14C to distinguish ffCO2 from biospheric CO2. However, even if a large number of 14C observations are available, multiple other sources of uncertainty will contribute to the uncertainty in posterior ffCO2 flux estimates. With a Bayesian inverse modelling approach, we use simulated atmospheric observations of ffCO2 at a network of 11 tower sites across California in an observing system simulation experiment to investigate uncertainties. We use four different prior ffCO2 flux estimates, two different atmospheric transport models, different types of spatial aggregation, and different assumptions for observational and model transport uncertainties to investigate contributions to posterior ffCO2 emission uncertainties. We show how various sources of uncertainty compare and which uncertainties are likely to limit top-down estimation of ffCO2 fluxes in California.

  20. Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Robert, A. J.

    2005-05-01

    Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic CO2 emissions among countries of the world. The demand for energy in Indonesia has been growing rapidly in recent years as Indonesia attempts to modernize and upgrade the standard of living for its citizens. With such a large population (a quarter of a billion people), the recent increase observed in the per capita energy use equates to a large escalation in total CO2 emissions. However, the economy and political climate is rather turbulent and thus emissions tend to fluctuate wildly. For example, Indonesia's energy consumption dropped substantially during the Asian economic crisis in the late 1990s. It is likely that the recent tsunami will also significantly impact energy consumption as the hard-hit Aceh region is the largest fuel-producing region of Indonesia. Therefore, Indonesia is a country whose emissions are more unpredictable than most countries that emit comparable levels of CO2. Complicating matters further, data collection practices in Indonesia are less diligent than in other countries with more stable economies. Thus, though CO2 emissions from Indonesia are a particular challenge to model, they are an important component to understanding the total global carbon cycle.

  1. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  2. Proceedings of the second US Department of Energy environmental control symposium. Volume 1. Fossil energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)

  3. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  4. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  5. Fuel cells

    NASA Astrophysics Data System (ADS)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  6. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2008-01-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate

  7. Investments in Fossil Energy Technology: How the Government's Fossil Energy R&D Program Has Made a Difference

    DOE R&D Accomplishments Database

    1997-03-01

    America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

  8. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    PubMed

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  9. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    NASA Astrophysics Data System (ADS)

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  10. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Treesearch

    David Nicholls; John Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  11. Radiocarbon measurements constrain the fossil and biological components of total CO2

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Lehman, S. J.; Tans, P. P.; Turnbull, J. C.

    2009-12-01

    In a rapidly evolving environment in which binding treaties and laws at the international, national and state levels are likely to limit greenhouse gas emissions, it will be critical for society to have independent verification of emissions and their accumulation in the atmosphere. Current treaties and laws like the Kyoto Protocol and California’s AB32 rely upon “bottom-up” reporting by governments and industry from inventories and process models to assess emissions. What we propose here is that to promote accuracy and transparency, it will also be necessary to verify these “bottom-up” approaches from the “top-down” perspective of the atmosphere. In particular, total CO2, which is the bottom line for climate forcing, and fossil fuel CO2, which is the primary driver of the observed increase need to be monitored. Total CO2 is already measured at high precision and accuracy at numerous sites nationally and globally by a variety of university and government entities (see e.g., www.esrl.noaa.gov/gmd/ccgg/globalview/). CO2 measurements in more locations and at higher frequencies are required to establish tighter constraints to emissions. For fossil fuel CO2, however, we require measurements of the rare isotopic species 14CO2. Fossil fuel emissions of CO2 are devoid of 14 (radiocarbon), because, by definition, these fuels are many millions of years old and the 14 half-life is only 5730 years. This makes 14CO2 an ideal tracer for fossil fuel emissions. Here we will present results of a nascent United States 14CO2 observation program that together with model simulations suggest a large number of 14CO2 measurements over the coterminous USA would allow for tight (~20%) regional (~105 - 106 km2) constraints on fossil fuel emissions at annual or seasonal time scales. Additionally, correlations of our 14CO2 observations with a wide suite of anthropogenic tracers suggest that “tuning” of these tracers with 14CO2 for fossil fuel detection may be possible

  12. Sources of non-fossil-fuel emissions in carbonaceous aerosols during early winter in Chinese cities

    NASA Astrophysics Data System (ADS)

    Liu, Di; Li, Jun; Cheng, Zhineng; Zhong, Guangcai; Zhu, Sanyuan; Ding, Ping; Shen, Chengde; Tian, Chongguo; Chen, Yingjun; Zhi, Guorui; Zhang, Gan

    2017-09-01

    China experiences frequent and severe haze outbreaks from the beginning of winter. Carbonaceous aerosols are regarded as an essential factor in controlling the formation and evolution of haze episodes. To elucidate the carbon sources of air pollution, source apportionment was conducted using radiocarbon (14C) and unique molecular organic tracers. Daily 24 h PM2. 5 samples were collected continuously from October 2013 to November 2013 in 10 Chinese cities. The 14C results indicated that non-fossil-fuel (NF) emissions were predominant in total carbon (TC; average = 65 ± 7 %). Approximately half of the EC was derived primarily from biomass burning (BB) (average = 46 ± 11 %), while over half of the organic carbon (OC) fraction comprised NF (average = 68 ± 7 %). On average, the largest contributor to TC was NF-derived secondary OC (SOCnf), which accounted for 46 ± 7 % of TC, followed by SOC derived from fossil fuels (FF) (SOCf; 16 ± 3 %), BB-derived primary OC (POCbb; 13 ± 5 %), POC derived from FF (POCf; 12 ± 3 %), EC derived from FF (ECf; 7 ± 2 %) and EC derived from BB (ECbb; 6 ± 2 %). The regional background carbonaceous aerosol composition was characterized by NF sources; POCs played a major role in northern China, while SOCs contributed more in other regions. However, during haze episodes, there were no dramatic changes in the carbon source or composition in the cities under study, but the contribution of POC from both FF and NF increased significantly.

  13. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  14. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L. F.; Nie, W.; Liu, Q.; Wei, X. L.; Kulmala, M.

    2013-10-01

    The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution-weather interactions, and quantify how air pollution affects weather via air pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.

  15. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    EIA Publications

    2015-01-01

    The U.S. Energy Information Administration estimates that total sales of fossil fuels produced from Federal and Indian Lands increased in fiscal year 2014 compared to fiscal year 2013. Production of crude oil increased 7%, natural gas production declined 7%, natural gas plant liquids production increased by 8%, and coal production increased slightly. Detailed tables and maps of production, by State, are contained in the report. EIA’s estimates are based on data provided by the U.S. Department of the Interior’s Office of Natural Resources Revenue.

  16. US-UK Collaboration on Fossil Energy Advanced Materials: Task 1—Steam Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey

    This presentation goes over the following from the US-UK collaboration on Fossil Energy Advanced Materials: Task 1, Steam Oxidation: US-led or co-led deliverables, Phase II products (US), 2011-present, Phase III products, Phase III Plan, an explanation of sCO 2 compared with sH 2O, an explanation of Ni-base Alloys, an explanation of 300 Series (18Cr-8Ni)/E-Brite, an explanation of the typical Microchannel HX Fabrication process, and an explanation of diffusion bonded Ni-base superalloys.

  17. Alternative fossil-based transportation fuels

    DOT National Transportation Integrated Search

    2008-01-01

    "Alternative fuels derived from oil sands and from coal liquefaction can cost-effectively diversify fuel supplies, but neither type significantly reduces U.S. carbon-dioxide emissions enough to arrest long-term climate change".

  18. Modules for estimating solid waste from fossil-fuel technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less

  19. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  20. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist.

    PubMed

    Perera, Frederica

    2017-12-23

    Fossil-fuel combustion by-products are the world's most significant threat to children's health and future and are major contributors to global inequality and environmental injustice. The emissions include a myriad of toxic air pollutants and carbon dioxide (CO₂), which is the most important human-produced climate-altering greenhouse gas. Synergies between air pollution and climate change can magnify the harm to children. Impacts include impairment of cognitive and behavioral development, respiratory illness, and other chronic diseases-all of which may be "seeded" in utero and affect health and functioning immediately and over the life course. By impairing children's health, ability to learn, and potential to contribute to society, pollution and climate change cause children to become less resilient and the communities they live in to become less equitable. The developing fetus and young child are disproportionately affected by these exposures because of their immature defense mechanisms and rapid development, especially those in low- and middle-income countries where poverty and lack of resources compound the effects. No country is spared, however: even high-income countries, especially low-income communities and communities of color within them, are experiencing impacts of fossil fuel-related pollution, climate change and resultant widening inequality and environmental injustice. Global pediatric health is at a tipping point, with catastrophic consequences in the absence of bold action. Fortunately, technologies and interventions are at hand to reduce and prevent pollution and climate change, with large economic benefits documented or predicted. All cultures and communities share a concern for the health and well-being of present and future children: this shared value provides a politically powerful lever for action. The purpose of this commentary is to briefly review the data on the health impacts of fossil-fuel pollution, highlighting the neurodevelopmental

  1. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist

    PubMed Central

    Perera, Frederica

    2017-01-01

    Fossil-fuel combustion by-products are the world’s most significant threat to children’s health and future and are major contributors to global inequality and environmental injustice. The emissions include a myriad of toxic air pollutants and carbon dioxide (CO2), which is the most important human-produced climate-altering greenhouse gas. Synergies between air pollution and climate change can magnify the harm to children. Impacts include impairment of cognitive and behavioral development, respiratory illness, and other chronic diseases—all of which may be “seeded“ in utero and affect health and functioning immediately and over the life course. By impairing children’s health, ability to learn, and potential to contribute to society, pollution and climate change cause children to become less resilient and the communities they live in to become less equitable. The developing fetus and young child are disproportionately affected by these exposures because of their immature defense mechanisms and rapid development, especially those in low- and middle-income countries where poverty and lack of resources compound the effects. No country is spared, however: even high-income countries, especially low-income communities and communities of color within them, are experiencing impacts of fossil fuel-related pollution, climate change and resultant widening inequality and environmental injustice. Global pediatric health is at a tipping point, with catastrophic consequences in the absence of bold action. Fortunately, technologies and interventions are at hand to reduce and prevent pollution and climate change, with large economic benefits documented or predicted. All cultures and communities share a concern for the health and well-being of present and future children: this shared value provides a politically powerful lever for action. The purpose of this commentary is to briefly review the data on the health impacts of fossil-fuel pollution, highlighting the

  2. Surrogate gas prediction model as a proxy for Δ14C-based measurements of fossil fuel-CO2.

    PubMed

    Coakley, Kevin J; Miller, John B; Montzka, Stephen A; Sweeney, Colm; Miller, Ben R

    2016-06-27

    The measured 14 C: 12 C isotopic ratio of atmospheric CO 2 (and its associated derived Δ 14 C value) is an ideal tracer for determination of the fossil fuel derived CO 2 enhancement contributing to any atmospheric CO 2 measurement ( C ff ). Given enough such measurements, independent top-down estimation of US fossil fuel-CO 2 emissions should be possible. However, the number of Δ 14 C measurements is presently constrained by cost, available sample volume, and availability of mass spectrometer measurement facilities. Δ 14 C is therefore measured in just a small fraction of samples obtained by ask air sampling networks around the world. Here, we develop a Projection Pursuit Regression (PPR) model to predict C ff as a function of multiple surrogate gases acquired within the NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured enhancements of various anthropogenic trace gases, including CO, SF 6 , and halo- and hydrocarbons acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 through 2010. Model performance for these sites is quantified based on predicted values corresponding to test data excluded from the model building process. Chi-square hypothesis test analysis indicates that these predictions and corresponding observations are consistent given our uncertainty budget which accounts for random effects and one particular systematic effect. However, quantification of the combined uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range of the observations and their relatively high fractional uncertainties at the sampling sites considered here. To account for the possibility of additional systematic effects, we incorporate another component of uncertainty into our budget. Expanding the number of Δ 14 C measurements in the NOAA GGGRN and building new PPR models at additional sites would improve our understanding of uncertainties

  3. Proceedings of the Fifteenth Annual Conference on Fossil Energy Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, R.R.

    2002-02-12

    The Fifteenth Annual Conference on Fossil Energy Materials was held in Knoxville, Tennessee, on April 30 through May 2, 2001. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff membersmore » at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer. These proceedings were produced primarily from electronic files provided by the authors. They have been neither refereed nor extensively edited. However, most of the papers have already undergone technical review within the individual organizations before submission to the Program Office. The proceedings are available on the Fossil Energy home page at http://www.ornl.gov/fossil (Workshops and Conferences). The successful completion of the conference and publication of the proceedings has required help from several people. The organizers wish to thank Angela Beach of the ORNL Conference Office for her help in the many arrangements, and the numerous staff and support personnel associated with the conference. Finally, we express our sincere appreciation to the authors whose efforts are the very basis of the conference.« less

  4. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  5. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.

    2009-12-01

    all have a major influence on progress to an international agreement. It is important that the political challenges are not underestimated. Long-term observers of the negotiations necessary for global agreements (Inman 2009) are pessimistic about the chances for success at COP15, and argue that agreements between smaller groups of countries may be more effective. China and other developing countries clearly expect greater emission cuts by developed nations as a condition for a successful deal (Pan 2009). Conversely, the constraints on US climate policies are considerable, notably those imposed by fears that an international agreement that does not include equitable emission control measures for developing countries like China and India, will compromise the agreement and reduce its effectiveness (Skodvin and Andresen 2009). In this context the need for earlier, and more reliable, information on emissions is a high priority. Myhre and coworkers (Myhre et al 2009) provide an efficient method for calculating global carbon dioxide emissions from fossil fuel combustion by combining industry statistics with data from the Carbon Dioxide Information Analysis Center (CDIAC; http://cdiac.ornl.gov/). Recent analyses of carbon dioxide emission data show a worrying acceleration in emissions, beyond even the most extreme IPCC projections, but are based largely on the CDIAC which gives information about emissions released two to three years before real time (Canadell et al 2007, Raupach et al 2007). The approach used by Myhre et al (2009) uses BP annual statistics of fossil fuel consumption and has a much shorter lag, of the order of six months. Of significant concern is that their analysis of the data also reveals that the recent strong increase in fossil fuel CO2 is largely driven by an increase in emissions from coal, most significantly in China. By contrast, emissions from oil and gas continue to follow longer-term historical trends. Earlier and accurate data on CO2 emissions is

  6. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2010-01-01

    The 2010 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2007. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2007 were published earlier (Boden et al. 2010). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  7. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2013)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2013-01-01

    The 2013 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2010. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2010 were published earlier (Boden et al. 2013). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  8. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2015)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2015-01-01

    The 2015 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2011. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2011 were published earlier (Boden et al. 2015). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  9. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2011)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    2011-01-01

    The 2011 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2008 were published earlier (Boden et al. 2011). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  10. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2012-01-01

    The 2012 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2009. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2009 were published earlier (Boden et al. 2012). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  11. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2016)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    2016-01-01

    The 2016 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2013. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2013 were published earlier (Boden et al. 2016). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  12. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  13. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  14. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  15. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollum, David; Bauer, Nico; Calvin, Katherine V.

    Fossil resource endowments and the future development of fossil fuel prices are important factors that will critically influence the nature and direction of the global energy system. In this paper we analyze a multi-model ensemble of long-term energy and emissions scenarios that were developed within the framework of the EMF27 integrated assessment model inter-comparison exercise. The diverse nature of these models highlights large uncertainties in the likely development of fossil resource (coal, oil, and natural gas) consumption, trade, and prices over the course of the twenty-first century and under different climate policy frameworks. We explore and explain some of themore » differences across scenarios and models and compare the scenario results with fossil resource estimates from the literature. A robust finding across the suite of IAMs is that the cumulative fossil fuel consumption foreseen by the models is well within the bounds of estimated recoverable reserves and resources. Hence, fossil resource constraints are, in and of themselves, unlikely to limit future GHG emissions. Our analysis also shows that climate mitigation policies could lead to a major reallocation of financial flows between regions, in terms of expenditures on fossil fuels and carbon, and can help to alleviate near-term energy security concerns via the reductions in oil imports and increases in energy system diversity they will help to motivate.« less

  16. Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US

    NASA Astrophysics Data System (ADS)

    Hudiburg, Tara W.; Wang, Weiwei; Khanna, Madhu; Long, Stephen P.; Dwivedi, Puneet; Parton, William J.; Hartman, Melannie; Delucia, Evan H.

    2016-01-01

    Sustainable transportation biofuels may require considerable changes in land use to meet mandated targets. Understanding the possible impact of different policies on land use and greenhouse gas emissions has typically proceeded by exploring either ecosystem or economic modelling. Here we integrate such models to assess the potential for the US Renewable Fuel Standard to reduce greenhouse gas emissions from the transportation sector through the use of cellulosic biofuels. We find that 2022 US emissions are decreased by 7.0 ± 2.5% largely through gasoline displacement and soil carbon storage by perennial grasses. If the Renewable Fuel Standard is accompanied by a cellulosic biofuel tax credit, these emissions could be reduced by 12.3 ± 3.4%. Our integrated approach indicates that transitioning to cellulosic biofuels can meet a 32-billion-gallon Renewable Fuel Standard target with negligible effects on food crop production, while reducing fossil fuel use and greenhouse gas emissions. However, emissions savings are lower than previous estimates that did not account for economic constraints.

  17. Inverse modeling of fossil fuel CO2 emissions at urban scale using OCO-2 retrievals of total column CO2

    NASA Astrophysics Data System (ADS)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Lin, J. C.; Oda, T.; Yang, E.; Wu, D.

    2016-12-01

    Rapid economic development has given rise to a steady increase of global carbon emissions, which have accumulated in the atmosphere for the past 200 years. Urbanization has concentrated about 70% of the global fossil-fuel CO2 emissions in large metropolitan areas distributed around the world, which represents the most significant anthropogenic contribution to climate change. However, highly uncertain quantifications of urban CO2 emissions are commonplace for numerous cities because of poorly-documented inventories of energy consumption. Therefore, accurate estimates of carbon emissions from global observing systems are a necessity if mitigation strategies are meant to be implemented at global scales. Space-based observations of total column averaged CO2 concentration (XCO2) provide a very promising and powerful tool to quantify urban CO2 fluxes. For the first time, measurements from the Orbiting Carbon Observatory 2 (OCO-2) mission are assimilated in a high resolution inverse modeling system to quantify fossil-fuel CO2 emissions of multiple cities around the globe. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission inventory is employed as a first guess, while the atmospheric transport is simulated using the WRF-Chem model at 1-km resolution. Emission detection and quantification is performed with an Ensemble Kalman Filter method. We demonstrate here the potential of the inverse approach for assimilating thousands of OCO-2 retrievals along tracks near metropolitan areas. We present the detection potential of the system with real-case applications near power plants and present inverse emissions using actual OCO-2 measurements on various urban landscapes. Finally, we will discuss the potential of OCO-2-like satellite instruments for monitoring temporal variations of fossil-fuel CO2 emissions over multiple years, which can provide valuable insights for future satellite observation strategies.

  18. Intense atmospheric pollution modifies weather: a~case of mixed biomass burning with fossil fuel combustion pollution in the eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y. N.; Herrmann, E.; Zheng, L. F.; Nie, W.; Wei, X. L.; Kulmala, M.

    2013-06-01

    The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution - weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.

  19. MATERIALS SCIENCE: New Tigers in the Fuel Cell Tank.

    PubMed

    Service, R F

    2000-06-16

    After decades of incremental advances, a spurt of findings suggests that fuel cells that run on good old fossil fuels are almost ready for prime time. Although conventional ceramic cells, known as solid oxide fuel cells, require expensive heat-resistant materials, a new generation of SOFCs, including one featured on page 2031, converts hydrocarbons directly into electricity at lower temperatures. And a recent demonstration of a system of standard SOFCs large enough to light up more than 200 homes showed that it is the most efficient large-scale electrical generator ever designed.

  20. Masters Study in Advanced Energy and Fuels Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternatemore » energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both

  1. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    PubMed

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  2. National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests

    DOT National Transportation Integrated Search

    2017-12-31

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...

  3. Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs

    NASA Astrophysics Data System (ADS)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.

    2017-12-01

    Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future

  4. NREL Facilitates Installment of Advanced Hydrogen Fuel Station in

    Science.gov Websites

    . Department of Energy's (DOE's) Fuel Cell Technologies Office and Department of Interior's National Park the first phase of their collaborative efforts to accelerate deployment of advanced hydrogen fuel cell experience by showcasing and using fuel cell electric vehicle (FCEV) technologies throughout the D.C. metro

  5. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  6. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, providesmore » estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.« less

  7. Community, environmental, and occupational health risks associated with fossil fuel energy production

    NASA Astrophysics Data System (ADS)

    Shepherd, Mark A.

    Short-term and long-term health risks associated with fossil fuel power production can be grouped into three broad categories: risks to the surrounding community, the natural environment and to plant workers. The results of three studies examining the primary short-term or long-term impacts of fossil fuel power plants are presented within this dissertation. The first study estimates the plausible community health effects associated with peak SO2 emissions from three coal-fired power plants in the Baltimore, Maryland area. Concentrations from mobile and stationary air monitoring were compared to human clinical studies that demonstrated respiratory morbidity. Results indicate that exposure concentrations are below levels associated with respiratory symptoms. A single measurement at one monitoring site, however, may indicate risk of asymptomatic lung function decrement for SO2-sensitive asthmatics. The second study estimates the relationship between operational, environmental and temporal factors at a Texas coastal power plant and fish and shellfish impingement. Impingement is a long-term risk to fish populations near power plants. When large quantities of water are withdrawn from water bodies for cooling, fish and shellfish may be harmed if impinged against screens intended to remove debris. In this study, impingement of fish and shellfish was best explained by dissolved oxygen concentration, sampling month and sampling time. When examined separately, temperature and sampling month were most important in explaining fish impingement, while for shellfish, sampling month and sampling time were most important. Operational factors were not significant predictors of impingement. The third study examines whether the number of worker similar exposure groups classified using observation methods was the same as groups classified using personal exposure monitoring. Using observational techniques and personal monitoring, power plant workers were grouped according to exposure

  8. FOSSIL2 energy policy model documentation: generic structures of the FOSSIL2 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. In Volume I, an overview of the basicmore » structures, assumptions, and behavior of the FOSSIL2 model is presented so that the reader can understand the results of various policy tests. The discussion covers the three major building blocks, or generic structures, used to construct the model: supply/demand balance; finance and capital formation; and energy production. These structures reflect the components and interactions of the major processes within each energy industry that directly affect the dynamics of fuel supply, demand, and price within the energy system as a whole.« less

  9. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    NASA Astrophysics Data System (ADS)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  10. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century

    DOE PAGES

    Kriegler, Elmar; Bauer, Nico; Popp, Alexander; ...

    2016-08-18

    Here, this paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, markingmore » the upper end of the scenario literature in several dimensions. The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5), and represents currently the only socio-economic scenario family that can be combined with climate model projections based on RCP8.5. This paper further investigates the direct impact of mitigation policies on the energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. Finally, the SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.« less

  11. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Bauer, Nico; Popp, Alexander

    Here, this paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, markingmore » the upper end of the scenario literature in several dimensions. The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5), and represents currently the only socio-economic scenario family that can be combined with climate model projections based on RCP8.5. This paper further investigates the direct impact of mitigation policies on the energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. Finally, the SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.« less

  12. Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less

  13. Connecticut Nutmeg Fuel Cell Bus Project : Demonstrating Advanced-Design Hybrid Fuel Cell Buses in Connecticut

    DOT National Transportation Integrated Search

    2011-07-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...

  14. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  15. Recent advances on Zeolite modification for direct alcohol fuel cells (DAFCs)

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-03-01

    The increase of energy demand and global warming issues has driven studies of alternative energy sources. The polymer electrolyte membrane fuel cell (PEMFC) can be an alternative energy source by (partially) replacing the use of fossil fuel which is in line with the green technology concept. However, the usage of hydrogen as a fuel has several disadvantages mainly transportation and storage related to its safety aspects. Recently, alcohol has gained attention as an energy source for fuel cell application, namely direct alcohol fuel cell (DAFC). Among alcohols, high-mass energy density methanol and ethanol are widely used as direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC), respectively. Currently, the performance of DMFC is still rudimentary. Furthermore, the use of ethanol gives some additional privileges such as non-toxic property, renewable, ease of production in great quantity by the fermentation of sugar-containing raw materials. Direct alcohol fuel cell (DAFC) still has weakness in the low proton conductivity and high alcohol crossover. Therefore, to increase the performance of DAFC, modification using zeolite has been performed to improve proton conductivity and decrease alcohol crossover. Zeolite also has high thermal resistance properties, thereby increasing DAFC performance. This paper will discuss briefly about modification of catalyst and membrane for DAFC using zeolite. Zeolite modification effect on fuel cell performance especially proton conductivity and alcohol crossover will be presented in detail.

  16. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1751-2006) (NDP-058.2009)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    2009-01-01

    The 2009 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2006. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2006 were published earlier (Boden et al. 2009). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  17. Radiocarbon Records of Fossil Fuel Emissions From Urban Trees in the Greater Salt Lake Valley From Mid-Century to Present.

    NASA Astrophysics Data System (ADS)

    Chritz, K.; Buchert, M.; Walker, J. C.; Mendoza, D.; Pataki, D. E.; Xu, X.; Lin, J. C.

    2017-12-01

    Generating long term records of fossil fuel emissions of urban environments is complicated by the fact that direct observations of emissions and urban atmospheric CO2 concentrations were only collected in the recent past. Radiocarbon (14C) in tree rings from urban trees can provide archives of fossil fuel emissions that may track population growth over time, as higher population density is typically correlated with increased vehicular traffic and associated CO2 emissions, which are radiocarbon dead. We present radiocarbon measurements (n=125) from five roadside green ash trees (Fraxinus pennsylvanica) located in three cities of northern Utah - Salt Lake City (urban, 2016 population: 193,744), Logan City (agricultural, 2016 population: 49,110) and Heber (rural, 2016 population: 14,969). Urban trees were cored in four cardinal directions and ring widths were measured and counted to establish a chronology. One ring from every third year in a single core from each tree was removed and holocellulose was extracted from bulk wood of individual rings for 14C analysis. Fraction CO2 from fossil fuel burning (CO2-ff) was calculated using a simple mass-balance calculation from measured 14C values and remote background atmospheric 14CO2 values for NH Zone 2. The data from all three cities indicate a general trend of increasing CO2-ff uptake by the trees from 1980s to present, as expected with increased population growth and vehicular traffic. However, records in all three cities show unique elevated CO2-ff prior to the 1980s, assuming similar climate patterns through time, diverging from historic population size. We employed atmospheric simulations from the STILT (Stochastic Time-Inverted Lagrangian Transport) models for each of these trees to create footprints to determine source areas for CO2. These footprints reveal that atmospheric sampling areas can be large for certain trees, and other sources of 14C dead carbon, such as coal and natural gas from industrial emissions

  18. Poly(3-Hydroxypropionate): a Promising Alternative to Fossil Fuel-Based Materials

    PubMed Central

    Andreeßen, Björn; Taylor, Nicolas

    2014-01-01

    Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated. PMID:25149521

  19. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    PubMed

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  20. Monitoring fossil fuel sources of methane in Australia

    NASA Astrophysics Data System (ADS)

    Loh, Zoe; Etheridge, David; Luhar, Ashok; Hibberd, Mark; Thatcher, Marcus; Noonan, Julie; Thornton, David; Spencer, Darren; Gregory, Rebecca; Jenkins, Charles; Zegelin, Steve; Leuning, Ray; Day, Stuart; Barrett, Damian

    2017-04-01

    CSIRO has been active in identifying and quantifying methane emissions from a range of fossil fuel sources in Australia over the past decade. We present here a history of the development of our work in this domain. While we have principally focused on optimising the use of long term, fixed location, high precision monitoring, paired with both forward and inverse modelling techniques suitable either local or regional scales, we have also incorporated mobile ground surveys and flux calculations from plumes in some contexts. We initially developed leak detection methodologies for geological carbon storage at a local scale using a Bayesian probabilistic approach coupled to a backward Lagrangian particle dispersion model (Luhar et al. JGR, 2014), and single point monitoring with sector analysis (Etheridge et al. In prep.) We have since expanded our modelling techniques to regional scales using both forward and inverse approaches to constrain methane emissions from coal mining and coal seam gas (CSG) production. The Surat Basin (Queensland, Australia) is a region of rapidly expanding CSG production, in which we have established a pair of carefully located, well-intercalibrated monitoring stations. These data sets provide an almost continuous record of (i) background air arriving at the Surat Basin, and (ii) the signal resulting from methane emissions within the Basin, i.e. total downwind methane concentration (comprising emissions including natural geological seeps, agricultural and biogenic sources and fugitive emissions from CSG production) minus background or upwind concentration. We will present our latest results on monitoring from the Surat Basin and their application to estimating methane emissions.

  1. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  2. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  3. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  4. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  5. Alternative Fuels in Transportation

    ERIC Educational Resources Information Center

    Kouroussis, Denis; Karimi, Shahram

    2006-01-01

    The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…

  6. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  7. Atmospheric Fossil Fuel CO2 Tracing By 14C In Some Chinese Cities

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Niu, Z.; Zhu, Y., Sr.

    2016-12-01

    CO2 plays an important role in global climate as a primary greenhouse gas in the atmosphere. Moreover, it has been shown that more than 70% of global fossil fuel CO2 (CO2ff) emissions are concentrated in urban areas (Duren and Miller, 2012). Our study focuses on atmospheric CO2ff concentrations in 15 Chinese cities using accelerator mass spectrometer (AMS) to measure 14C. Our objectives are: (1) to document atmospheric CO2ff concentrations in a variety of urban environments, (2) to differentiate the spatial-temporal variations in CO2ff among these cities, and (3) to ascertain the factors that control the observed variations. For about two years (winter 2014 to winter 2016), the CO2ff concentrations we observed from all sites varied from 5.1±4.5 ppm to 65.8±39.0 ppm. We observed that inland cities display much higher CO2ff concentrations and overall temporal variations than coastal cities in winter, and that northern cities have higher CO2ff concentrations than those of southern cities in winter. For inland cities relatively high CO2ff values are observed in winter and low values in summer; while seasonal variations are not distinct in the coastal cities. No significant (p > 0.05) differences in CO2ff values are found between weekdays and weekends as was shown previously in Xi'an (Zhou et al., 2014). Diurnal CO2ff variations are plainly evident, with high values between midnight and 4:00 am, and during morning and afternoon rush hours (Niu et al., 2016). The high CO2ff concentrations in northern inland cities in winter results mainly from the substantial consumption of fossil fuels for heating. The high CO2ff concentrations seen in diurnal measurements result mainly from variations in atmospheric dispersion, and from vehicle emissions related to traffic flows. The inter-annual variations in CO2ff in cities could provide a useful reference for local governments to develop policy around the effect of energy conservation and emission reduction strategies.

  8. Semiconductor Quantum Dots for Applications to Advanced Concepts for Solar Photon Conversion to Electricity and Solar Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozik, Arthur J; Beard, Matthew C

    The challenge of photoconversion research is to produce photovoltaic electricity at costs much less than those based on fossil fuels. Novel photoactive semiconductors and molecules of various types and structures are discussed for this purpose.

  9. Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia).

    PubMed

    Talovskaya, A V; Yazikov, E G; Filimonenko, E A; Lata, J-C; Kim, J; Shakhova, T S

    2017-07-20

    Recognition and detailed characterization of solid particles emitted from thermal power plants into the environment is highly important due to their potential detrimental effects on human health. Snow cover is used for the identification of anthropogenic emissions in the environment. However, little is known about types, physical and chemical properties of solid airborne particles (SAP) deposited in snow around thermal power plants. The purpose of this study is to quantify and characterize in detail the traceable SAP deposited in snow near fossil fuel thermal power plant in order to identify its emissions into the environment. Applying the scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, mineral and anthropogenic phase groups in SAP deposited in snow near the plant and in fly ash were observed. We identified quartz, albite and mullite as most abundant mineral phases and carbonaceous matter, slag and spherical particles as dominate anthropogenic phases. This is the first study reporting that zircon and anthropogenic sulphide-bearing, metal oxide-bearing, intermetallic compound-bearing and rare-earth element-bearing particles were detected in snow deposits near thermal power plant. The identified mineral and anthropogenic phases can be used as tracers for fossil fuel combustion emissions, especially with regard to their possible effect on human health.

  10. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn thesemore » actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.« less

  11. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn Elizabeth; Papesch, Cynthia Ann

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, importantmore » to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and

  12. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in

  13. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  14. Fuel savings potential of the NASA Advanced Turboprop Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, J.B. Jr.; Sievers, G.K.

    1984-01-01

    The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technologymore » are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.« less

  15. Nanostructured materials for advanced energy conversion and storage devices

    NASA Astrophysics Data System (ADS)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  16. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials.

    PubMed

    Andreessen, Björn; Taylor, Nicolas; Steinbüchel, Alexander

    2014-11-01

    Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    NASA Astrophysics Data System (ADS)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to

  18. Recent Advances in High-Performance Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Chun, W.; Valdez, T. I.; Jeffries-Nakamura, B.; Frank, H.; Surumpudi, S.; Halpert, G.; Kosek, J.; Cropley, C.; La Conti, A. B.; hide

    1996-01-01

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed, direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant.

  19. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  20. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  1. IECEC '84: Advanced energy systems - Their role in our future; Proceedings of the Nineteenth Intersociety Energy Conversion Engineering Conference, San Francisco, CA, August 19-24, 1984. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.

  2. Kyoto-Related Fossil-Fuel CO2 Emission Totals (1990 - 2009) (Version 2012) (Updated 01/16/2013)

    DOE Data Explorer

    Marland, Greg [Appalachian State University, Boone, NC (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN

    2013-01-16

    This table shows the total of CO2 emissions from fossil-fuel use and cement manufacture for those countries listed in Annex B of the Kyoto Protocol and for those countries not listed in Annex B. In keeping with the convention of the IPCC methodology for calculating national greenhouse gas emissions, emissions from international bunker fuels (fuels used in international commerce) are not included in the country totals but are shown separately under the country group in which final fuel loading occurred. Note, that the list of countries in Annex B of the Kyoto Protocol differs from the list of countries in Annex I of the Framework Convention on Climate Change by the addition of Croatia, Liechtenstein, Monaco, and Slovenia and the removal of Belarus and Turkey. We have estimated emissions for 1990 and 1991 from the republics that were formerly part of the USSR and of Yugoslavia by taking total emissions from the USSR (and Yugoslavia) for 1990 and 1991 and distributing them among the new republics in the same ratio as emissions from those republics in 1992. Because of minor differences in the method of estimating the global total of emissions and the national totals of emissions, the sum of emissions from all countries produces a number that is less than the global total by about 2%. Consequently we have inflated the sum of emissions from all Annex B countries and the sum of emissions from all non-Annex B countries by about 2% (the value differs from year to year) so that the sum of the two values plus emissions from bunker fuels is equal to our best estimate of the global total of emissions.

  3. 40 CFR 80.1126 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... crude-based renewable fuels produced in a facility or unit that coprocesses renewable crudes and fossil... renewable crudes and fossil fuels may submit a petition to the Agency requesting the use of volumes of...

  4. 40 CFR 80.1126 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... crude-based renewable fuels produced in a facility or unit that coprocesses renewable crudes and fossil... renewable crudes and fossil fuels may submit a petition to the Agency requesting the use of volumes of...

  5. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breazeale, K.; Yamaguchi, N.D.; Keeville, H.

    1993-12-01

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts onmore » patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.« less

  6. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLWmore » and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.« less

  7. Technical and economic feasibility study of solar/fossil hybrid power systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Calogeras, J. E.

    1977-01-01

    Results show that new hybrid systems utilizing fossil fuel augmentation of solar energy can provide significant capital and energy cost benefits when compared with solar thermal systems requiring thermal storage. These benefits accrue from a reduction of solar collection area that results from both the use of highly efficient gas and combined cycle energy conversion subsystems and elimination of the requirement for long-term energy storage subsystems. Technical feasibility and fuel savings benefits of solar hybrid retrofit to existing fossil-fired, gas and vapor cycle powerplants was confirmed; however, economic viability of steam cycle retrofit was found to be dependent on the thermodynamic and operational characteristics of the existing powerplant.

  8. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  9. FY2017 Advanced Combustion Systems and Fuels Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Systems and Fuels Program supports VTO’s goal and focuses early-stage research and development (R&D) to improve understanding of the combustion processes, fuel properties, and emission control technologies while generating knowledge and insight necessary for industry to develop the next generation of engines.

  10. Fuel cells for hospitals

    NASA Astrophysics Data System (ADS)

    Damberger, Thomas A.

    Traditionally, electrical and thermal energy is produced in a conventional combustion process. Coal, fuel oil, and natural gas are common fuels used for electrical generation, while nuclear, hydroelectric, and solar are non-combustion processes. All fossil fuels release their stored energy and air pollution simultaneously when burned in a contemporary combustion process. To reduce or eliminate air pollution, the combustion process must be shifted in some way to another type of process. Extracting pollution-free energy from fossil fuels can be accomplished through the electrochemical reaction of a fuel cell. A non-combustion process is a foundation from which pollution-free energy emerges, fulfilling our incessant need for energy without environmental compromise.

  11. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; Masalaite, A.; Blees, J.; Fröhlich, R.; Dällenbach, K. R.; Canonaco, F.; Slowik, J. G.; Dommen, J.; Zimmermann, R.; Schnelle-Kreis, J.; Salazar, G. A.; Agrios, K.; Szidat, S.; El Haddad, I.; Prévôt, A. S. H.

    2015-09-01

    In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 μg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the TC, respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 % and 7-12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  12. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  13. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  14. Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions: A New Data Product

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T.

    2014-12-01

    With the publication of a new assessment of the uncertainty associated with the mass of fossil fuel carbon dioxide (FFCO2) emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616), it is now possible to extend that work with a gridded map of fossil fuel emission uncertainties. The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, for the first time, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year 1950 to 2010. The start

  15. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOEpatents

    Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  16. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    PubMed

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe. © The Author(s) 2014.

  17. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGES

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  18. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  19. Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project

    NASA Astrophysics Data System (ADS)

    Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane

    2017-06-01

    This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise

  20. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, James H.; Cox, Philip; Harrington, William J

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure

  1. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  2. Fuel conservation merits of advanced turboprop transport aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Tullis, R. H.

    1977-01-01

    The advantages of a propfan powered aircraft for the commercial air transportation system were assessed by the comparison with an equivalent turbofan transport. Comparisons were accomplished on the basis of fuel utilization and operating costs, as well as aircraft weight and size. Advantages of the propfan aircraft, concerning fuel utilization and operating costs, were accomplished by considering: (1) incorporation of propfan performance and acoustic data; (2) revised mission profiles (longer design range and reduction in; and cruise speed) (3) utilization of alternate and advanced technology engines.

  3. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  4. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    NASA Astrophysics Data System (ADS)

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-01

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4-190 %, with an average of 120 % (2σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.

  5. Fossil fuel combined cycle power system

    DOEpatents

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  6. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    PubMed

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.

  7. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  8. Biofuels, fossil energy ratio, and the future of energy production

    NASA Astrophysics Data System (ADS)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  9. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  10. Combined Heat and Power Market Potential for Opportunity Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, David; Lemar, Paul

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  11. Bayesian phylogenetic estimation of fossil ages.

    PubMed

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  12. Bayesian phylogenetic estimation of fossil ages

    PubMed Central

    Drummond, Alexei J.; Stadler, Tanja

    2016-01-01

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences

  13. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 5: Conclusions and recomendations

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    Air pollution resulting from the use of fossil fuels is discussed. Phenomena relating to the emission of CO2 such as the greenhouse effect and multiplier effect are explored. Particulate release is also discussed. The following recommendations are made for the elimination of fossil fuel combustion products in the United States: development of nuclear breeder reactors, use of solar energy systems, exploration of energy alternatives such as geothermal and fusion, and the substitution of coal for gas and oil use.

  14. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less

  15. Instrumentation and Control for Fossil-Energy Processes

    NASA Technical Reports Server (NTRS)

    Mark, A., Jr.

    1984-01-01

    Instrumentation and control requirements for fossil-energy processes discussed in working document. Published to foster advancement of instrumentation and control technology by making equipment suppliers and others aware of specifications, needs, and potential markets.

  16. Alternative fuels and advanced technology vehicles : issues in Congress

    DOT National Transportation Integrated Search

    2009-02-13

    Alternative fuels and advanced technology vehicles are seen by proponents as integral to improving urban air quality, decreasing dependence on foreign oil, and reducing emissions of greenhouse gases. However, major barriers especially economics curre...

  17. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2005-05-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the

  18. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2006-12-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the

  19. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  20. Radiocarbon-depleted CO2 evidence for fuel biodegradation at the Naval Air Station North Island (USA) fuel farm site.

    PubMed

    Boyd, Thomas J; Pound, Michael J; Lohr, Daniel; Coffin, Richard B

    2013-05-01

    Dissolved CO(2) radiocarbon and stable carbon isotope ratios were measured in groundwater from a fuel contaminated site at the North Island Naval Air Station in San Diego, CA (USA). A background groundwater sampling well and 16 wells in the underground fuel contamination zone were evaluated. For each sample, a two end-member isotopic mixing model was used to determine the fraction of CO(2) derived from fossil fuel. The CO(2) fraction from fossil sources ranged from 8 to 93% at the fuel contaminated site, while stable carbon isotope values ranged from -14 to +5‰VPDB. Wells associated with highest historical and contemporary fuel contamination showed the highest fraction of CO(2) derived from petroleum (fossil) sources. Stable carbon isotope ratios indicated sub-regions on-site with recycled CO(2) (δ(13)CO(2) as high as +5‰VPDB) - most likely resulting from methanogenesis. Ancillary measurements (pH and cations) were used to determine that no fossil CaCO(3), for instance limestone, biased the analytical conclusions. Radiocarbon analysis is verified as a viable and definitive technique for confirming fossil hydrocarbon conversion to CO(2) (complete oxidation) at hydrocarbon-contaminated groundwater sites. The technique should also be very useful for assessing the efficacy of engineered remediation efforts and by using CO(2) production rates, contaminant mass conversion over time and per unit volume.

  1. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  2. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  3. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less

  4. On the Acceptability of Funding from Fossil Energy Companies

    NASA Astrophysics Data System (ADS)

    Frumhoff, P. C.; Goldman, G. T.

    2016-12-01

    Vigorous debates within the American Geophysical Union over the acceptability of funding from ExxonMobil sit within a broader societal debate over the climate responsibilities of fossil energy companies in a carbon constrained world. This has been fueled by recent evidence that leading companies have invested heavily in efforts to sow doubt about climate science in order to avoid regulation of their products. This talk examines the nature of this evidence and the ethical stances that AGU and other scientific societies and organizations might take toward acceptability of funding from fossil energy companies in light of it. The results of a climate responsibility scorecard, assessing a sample of leading oil, gas and coal companies against specific criteria for a more responsible fossil energy company, also will be presented.

  5. Control of Fossil-Fuel Particulate Black Carbon and Organic Matter, the Most Effective Method of Slowing Global Warming

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2001-12-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which seven new particles feedbacks to climate are identified, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) will slow global warming more than will any emission reduction of CO2 or CH4 for a definite time period. When all f.f. BC+OM and anthropogenic CO2 and CH4 emissions are eliminated together, that period is 20-90 years. It is also found that historical net global warming can be attributed roughly to greenhouse-gas plus f.f. BC+OM warming minus anthropogenic sulfate cooling. Eliminating all f.f. BC+OM could eliminate more than 40 percent of such net warming within three years if no other changes occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars warm climate more than do equivalent gasoline cars; thus, fuel- and carbon-tax laws that favor diesel promote global warming.

  6. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema

    Dan; Arvizu; Barbara; Goodman; Robert; McCormick; Tony; Markel; Matt; Keyser; Sreekant; Narumanchi; Rob; Farrington

    2017-12-09

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles.

  7. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  8. Thermomechanics of candidate coatings for advanced gas reactor fuels

    NASA Astrophysics Data System (ADS)

    Nosek, A.; Conzen, J.; Doescher, H.; Martin, C.; Blanchard, J.

    2007-09-01

    Candidate fuel/coating combinations for an advanced, coated-fuel particle for a gas-cooled fast reactor (GFR) have been evaluated. These all-ceramic fuel forms consist of a fuel kernel made of UC or UN, surrounded with two shells (a buffer and a coating) made of TiC, SiC, ZrC, TiN, or ZrN. These carbides and nitrides are analyzed with finite element models to determine the stresses produced in the micro fuel particles from differential thermal expansion, fission gas release, swelling, and creep during particle fabrication and reactor operation. This study will help determine the feasibility of different fuel and coating combinations and identify the critical loads. The analysis shows that differential thermal expansion of the fuel and coating dictate the amount of stress for changing temperatures (such as during fabrication), and that the coating creep is able to mitigate an otherwise overwhelming amount of stress from fuel swelling. Because fracture is a likely mode of failure, a fracture mechanics study is also included to identify the relative likelihood of catastrophic fracture of the coating and resulting gas release. Overall, the analysis predicts that UN/ZrC is the best thermomechanical fuel/coating combination for mitigating the stress within the new fuel particle, but UN/TiN and UN/ZrN could also be strong candidates if their unknown creep rates are sufficiently large.

  9. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  10. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  11. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    DOE PAGES

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-05

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less

  12. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less

  13. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.

  14. The Future of Fossil Fuels: A Century of Abundance or a Century of Decline?

    NASA Astrophysics Data System (ADS)

    Nelder, C.

    2012-12-01

    Horizontal drilling, hydraulic fracturing, and other advanced technologies have spawned a host of new euphoric forecasts of hydrocarbon abundance. Yet although the world's remaining oil and gas resources are enormous, most of them are destined to stay in the ground due to real-world constraints on price, flow rates, investor appetite, supply chain security, resource quality, and global economic conditions. While laboring under the mistaken belief that it sits atop a 100-year supply of natural gas, the U.S. is contemplating exporting nearly all of its shale gas production even as that production is already flattening due to poor economics. Instead of bringing "energy independence" to the U.S. and making it the top oil exporter, unrestricted drilling for tight oil and in the federal outer continental shelf would cut the lifespan of U.S. oil production in half and make it the world's most desperate oil importer by mid-century. And current forecasts for Canadian tar sands production are as unrealistic as their failed predecessors. Over the past century, world energy production has moved progressively from high quality resources with high production rates and low costs to lower quality resources with lower production rates and higher costs, and that progression is accelerating. Soon we will discover the limits of practical extraction, as production costs exceed consumer price tolerance. Oil and gas from tight formations, shale, bitumen, kerogen, coalbeds, deepwater, and the Arctic are not the stuff of new abundance, but the oil junkie's last dirty fix. This session will highlight the gap between the story the industry tells about our energy future, and the story the data tells about resource size, production rates, costs, and consumer price tolerance. It will show why it's time to put aside unrealistic visions of continued dependence on fossil fuels, face up to a century of decline, and commit ourselves to energy and transportation transition.

  15. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  16. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... consider your comment. Electronic files should avoid the use of special characters, any form of encryption... technical information and/or data that you used. If you estimate potential costs or burdens, explain how you... the quantity of fossil fuel present in transportation fuel. Under EPA's RFS program this is...

  17. Co-Simulation for Advanced Process Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen E. Zitney

    2009-01-01

    Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelitymore » process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.« less

  18. Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

    1978-12-01

    A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Qualitymore » Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.« less

  19. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union.

    PubMed

    Littlewood, Jade; Guo, Miao; Boerjan, Wout; Murphy, Richard J

    2014-01-01

    The European Union has made it a strategic objective to develop its biofuels market in order to minimize greenhouse gas (GHG) emissions, to help mitigate climate change and to address energy insecurity within the transport sector. Despite targets set at national and supranational levels, lignocellulosic bioethanol production has yet to be widely commercialized in the European Union. Here, we use techno-economic modeling to compare the price of bioethanol produced from short rotation coppice (SRC) poplar feedstocks under two leading processing technologies in five European countries. Our evaluation shows that the type of processing technology and varying national costs between countries results in a wide range of bioethanol production prices (€0.275 to 0.727/l). The lowest production prices for bioethanol were found in countries that had cheap feedstock costs and high prices for renewable electricity. Taxes and other costs had a significant influence on fuel prices at the petrol station, and therefore the presence and amount of government support for bioethanol was a major factor determining the competitiveness of bioethanol with conventional fuel. In a forward-looking scenario, genetically engineering poplar with a reduced lignin content showed potential to enhance the competitiveness of bioethanol with conventional fuel by reducing overall costs by approximately 41% in four out of the five countries modeled. However, the possible wider phenotypic traits of advanced poplars needs to be fully investigated to ensure that these do not unintentionally negate the cost savings indicated. Through these evaluations, we highlight the key bottlenecks within the bioethanol supply chain from the standpoint of various stakeholders. For producers, technologies that are best suited to the specific feedstock composition and national policies should be optimized. For policymakers, support schemes that benefit emerging bioethanol producers and allow renewable fuel to be

  20. Diversifying bio-petro fuel sources for future energy sustainability and its challenges

    NASA Astrophysics Data System (ADS)

    Othman, M. R.; Helwani, Z.; Idris, I.

    2018-04-01

    Petroleum has been important in the energy industry since 19th century when the refining of paraffin from crude oil began. The industry recently appears to be in a downtown and fragile moment despite the price of oil is slowly rising. Renewable alternatives such as biofuels have gained increasing traction while petroleum fuel seemingly concedes to bio-fuels due to the rising public concern on the environment and stricter emission regulations. To be a strategic fuel in the energy security matrix, both fossil and bio-fuels options should be considered. However, the use of bio-fuels to achieve a degree of carbon neutrality is not without challenges. Among the challenges are land development and socio-political issue, carbon neutrality due to ILUC, high 2G bio-fuel feedstock and production cost, competing technology from electric vehicles and the impending fourth industrial revolution, NOx emissions and variation in biodiesel quality. This paper briefly reviews the potential of fuels source diversification and the challenges and how they can raise up to the challenges in order to be sustainable and attractive. In order to achieve this objective, first carbon credit through carbon trading needs to continue to stabilize the energy price. Second, 1G bio-fuel needs to forgo the use of natural, peat forest, rubber estate since these are an effective carbon sink and oxygen source. Third, advanced bio-fuels with high yield, process economics and sustainability need to be innovated. Fourth, the quality and standard bio-fuel that reduces NOx emission need to be improved. Finally and most importantly, carbon capture technology needs to be deployed immediately in fossil fuel power plants.

  1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of publicmore » impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.« less

  2. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  3. Zooplankton fecal pellets link fossil fuel and phosphate deposits

    USGS Publications Warehouse

    Porter, K.G.; Robbins, E.I.

    1981-01-01

    Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling. Copyright ?? 1981 AAAS.

  4. SO 2 and NO x emissions due to fossil ruel combustion in Saudi Arabia: A preliminary inventory

    NASA Astrophysics Data System (ADS)

    Ahmed, Azhari Fatahalla Mohamed

    Phenomenal economic growth during the last two decades, as a result of oil wealth, has led to a dramatic increase in the demand for fossil fuel in the Kingdom of Saudi Arabia (KSA). In this paper a preliminary inventory for sulfur dioxide (SO 2) and nitrogen oxides (NO x) emitted into the atmosphere as a result of fossil fuel combustion by various economic sectors in KSA in the year 1986 is presented. Emissions are discussed in relation to major source categories (major fuel consuming economic sectors) and on the basis of type of fuel combusted. The data are also geographically disaggregated according to major economic and population centers in KSA in order to show the spatial distribution of emissions. Also, SO 2 and NO x emission trends (1971-1990) were estimated from 1986 data and historical and projected fuel consumption figures.

  5. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less

  6. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  7. 78 FR 49793 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... produced in plants using waste materials to displace 90% or more of fossil fuel use under the then... made to our approach in evaluating the information that forms the basis for our projection of...

  8. A Global Emission Inventory of Black Carbon and Primary Organic Carbon from Fossil-Fuel and Biofuel Combustion

    NASA Astrophysics Data System (ADS)

    Bond, T. C.; Streets, D. G.; Nelson, S. M.

    2001-12-01

    Regional and global climate models rely on emission inventories of black carbon and organic carbon to determine the climatic effects of primary particulate matter (PM) from combustion. The emission of primary carbonaceous particles is highly dependent on fuel type and combustion practice. Therefore, simple categories such as "domestic" or "industrial" combustion are not sufficient to quantify emissions, and the black-carbon and organic-carbon fractions of PM vary with combustion type. We present a global inventory of primary carbonaceous particles that improves on previous "bottom-up" tabulations (e.g. \\textit{Cooke et al.,} 1999) by considering approximately 100 technologies, each representing one combination of fuel, combustion type, and emission controls. For fossil-fuel combustion, we include several categories not found in previous inventories, including "superemitting" and two-stroke vehicles, steel-making. We also include emissions from waste burning and biofuels used for heating and cooking. Open biomass burning is not included. Fuel use, drawn from International Energy Agency (IEA) and United Nations (UN) data, is divided into technologies on a regional basis. We suggest that emissions in developing countries are better characterized by including high-emitting technologies than by invoking emission multipliers. Due to lack of information on emission factors and technologies in use, uncertainties are high. We estimate central values and uncertainties by combining the range of emission factors found in the literature with reasonable estimates of technology divisions. We provide regional totals of central, low and high estimates, identify the sources of greatest uncertainty to be targeted for future work, and compare our results with previous emission inventories. Both central estimates and uncertainties are given on a 1\\deg x1\\deg grid. As we have reported previously for the case of China (\\textit{Streets et al.,} 2001), low-technology combustion

  9. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  10. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2014-12-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the interface oxic - anoxic zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that produced by modern large, mat-forming, sulphide-oxidizing bacteria, belonging mostly to Trichichnus-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  11. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-04-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic-anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  12. Fossil energy waste management. Technology status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less

  13. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    NASA Astrophysics Data System (ADS)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  14. Systematic analysis of advanced fusion fuel in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  15. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    NASA Astrophysics Data System (ADS)

    Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

    2018-03-01

    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

  16. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Erik

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  17. Advanced Fuel Cycles for Fusion Reactors: Passive Safety and Zero-Waste Options

    NASA Astrophysics Data System (ADS)

    Zucchetti, Massimo; Sugiyama, Linda E.

    2006-05-01

    Nuclear fusion is seen as a much ''cleaner'' energy source than fission. Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the world's community has stimulated the research on other fuel cycles than the DT one, based on 'advanced' reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose problems, such as the availability of 3He and the attainment of the higher plasma parameters that are required for burning. However, they have many advantages, like for instance the very low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles (Candor) has been studied. Results show that Candor does reach the passive safety and zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate response to the environmental requirements for future nuclear power plants.

  18. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less

  19. Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes

    USGS Publications Warehouse

    Robbins, E.I.

    1983-01-01

    A study of active and ancient rift systems around the world suggests that accumulations of fossil fuels and metallic minerals are related to the interactions of processes that form rift valleys with those that take place in and around rift lakes. The deposition of the precursors of petroleum, gas, oil shale, coal, phosphate, barite, Cu-Pb-Zn sulfides, and uranium begins with erosion of uplifted areas, and the consequent input of abundant nutrients and solute loads into swamps and tectonic lakes. Hot springs and volcanism add other nutrients and solutes. The resulting high biological productivity creates oxidized/reduced interfaces, and anoxic and H2S-rich bottom waters which preserves metal-bearing organic tissues and horizons. In the depositional phases, the fine-grained lake deposits are in contact with coarse-grained beach, delta, river, talus, and alluvial fan deposits. Earthquake-induced turbidites also are common coarse-grained deposits of rift lakes. Postdepositional processes in rifts include high heat flow and a resulting concentration of the organic and metallic components that were dispersed throughout the lakebeds. Postdepositional faulting brings organic- and metal-rich sourcebeds in contact with coarse-grained host and reservoir rocks. A suite of potentially economic deposits is therefore a characteristic of rift valleys. ?? 1983.

  20. Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes

    NASA Astrophysics Data System (ADS)

    Robbins, Eleanora Iberall

    1983-05-01

    A study of active and ancient rift systems around the world suggests that accumulations of fossil fuels and metallic minerals are related to the interactions of processes that form rift valleys with those that take place in and around rift lakes. The deposition of the precursors of petroleum, gas, oil shale, coal, phosphate, barite, Cu-Pb-Zn sulfides, and uranium begins with erosion of uplifted areas, and the consequent input of abundant nutrients and solute loads into swamps and tectonic lakes. Hot springs and volcanism add other nutrients and solutes. The resulting high biological productivity creates oxidized/reduced interfaces, and anoxic and H 2S-rich bottom waters which preserves metal-bearing organic tissues and horizons. In the depositional phases, the fine-grained lake deposits are in contact with coarse-grained beach, delta, river, talus, and alluvial fan deposits. Earthquake-induced turbidites also are common coarse-grained deposits of rift lakes. Postdepositional processes in rifts include high heat flow and a resulting concentration of the organic and metallic components that were dispersed throughout the lakebeds. Postdepositional faulting brings organic- and metal-rich sourcebeds in contact with coarse-grained host and reservoir rocks. A suite of potentially economic deposits is therefore a characteristic of rift valleys.

  1. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  2. Reducing DoD Fossil-Fuel Dependence

    DTIC Science & Technology

    2006-09-01

    hour: the amount of energy available from one gigawatt in one hour. HFCS High - fructose corn syrup HHV High -heat value HICE Hydrogen internal combustion...63 Ethanol derived from corn .................................................... 63...particular, alternate fuels and energy sources are to be assessed in terms of multiple parameters, to include (but not limited to) stability, high & low

  3. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  4. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  5. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Hameed, S.; Hogan, J. S.

    1980-01-01

    Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.

  6. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.; Li, H.; Neill, S.

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  7. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  8. The Fuel Cell Powered Club Car Carryall

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA Glenn Research Center initiated development of the Fuel Cell Powered Club Car Carryall as a way to reduce pollution in industrial settings, reduce fossil fuel consumption and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future aeronautics and space applications. The work was done under the Hybrid Power Management (HPM) Program. The Carryall is a state of the art, dedicated, electric utility vehicle. Hydrogen powered proton exchange membrane (PEM) fuel cells are the primary power source. Ultracapacitors were used for energy storage as long life, maintenance free operation, and excellent low temperature performance is essential. Metal hydride hydrogen storage was used to store hydrogen in a safe and efficient low-pressure solid form. The report concludes that the Fuel Cell Powered Club Car Carryall can provide excellent performance, and that the implementation of fuel cells in conjunction with ultracapacitors in the power system can provide significant reliability and performance improvements.

  9. Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion.

    PubMed

    Ranville, Mara A; Cutter, Gregory A; Buck, Clifton S; Landing, William M; Cutter, Lynda S; Resing, Joseph A; Flegal, A Russell

    2010-03-01

    Energy production from fossil fuels, and in particular the burning of coal in China, creates atmospheric contamination that is transported across the remote North Pacific with prevailing westerly winds. In recent years this pollution from within Asia has increased dramatically, as a consequence of vigorous economic growth and corresponding energy consumption. During the fourth Intergovernmental Oceanographic Commission baseline contaminant survey in the western Pacific Ocean from May to June, 2002, surface waters and aerosol samples were measured to investigate whether atmospheric deposition of trace elements to the surface North Pacific was altering trace element biogeochemical cycling. Results show a presumably anthropogenic enrichment of Ag and of Se, which is a known tracer of coal combustion, in the North Pacific atmosphere and surface waters. Additionally, a strong correlation was seen between dissolved Ag and Se concentrations in surface waters. This suggests that Ag should now also be considered a geochemical tracer for coal combustion, and provides further evidence that Ag exhibits a disturbed biogeochemical cycle as the result of atmospheric deposition to the North Pacific.

  10. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Pavuluri, C. M.; Swaminathan, T.

    2009-10-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs). At daytime, phthalates was found to be the most abundant compound class; while at nighttime, fatty acids was the dominant one. Concentrations of total quantified organics were higher in summer (611-3268 ng m-3, average 1586 ng m-3) than in winter (362-2381 ng m-3, 1136 ng m-3), accounting for 11.5±1.93% and 9.35±1.77% of organic carbon mass in summer and winter, respectively. Di-(2-ethylhexyl) phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. The abundances of anhydrosugars (e.g., levoglucosan), lignin and resin products, hopanes and PAHs in the Chennai aerosols suggest that biomass burning and fossil fuel combustion are significant sources of organic aerosols in tropical India. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive correlation was found between the concentration of 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. This study demonstrates that, in addition to biomass burning and fossil fuel combustion, the open-burning of plastics also contributes to the organic aerosols in South Asia.

  11. Space/time explicit Hestia version 2.0 fossil fuel CO2 emissions for the Los Angeles Basin: comparison to atmospheric monitoring, emission drivers, and policy implications

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Liang, J.; Patarasuk, R.; O'Keeffe, D.; Newman, S.; Rao, P.; Hutchins, M.; Huang, J.

    2016-12-01

    The Los Angeles Basin represents one of the largest metropolitan areas in the United States and is home to the Megacity Carbon Project, a multi-institutional effort led by NASA JPL to understand the total carbon budget of the Los Angeles Basin. A key component of that effort is the Hestia bottom-up fossil fuel CO2 emissions data product, which quantifies FFCO2 every hour to the spatial scale of individual buildings and road segments. This data product has undergone considerable revision in the last year and the version 2.0 data product is now complete covering the 2011-2014 time period. In this presentation, we highlight the advances in the Hestia version 2.0 including the improvements to onroad, building and industrial emissions. We make comparisons to the independently reported GHG reporting program of the EPA and to in-situ atmospheric measurement of CO2 at two monotiring locations in Pasadena and Palos Verdes. We provide an analysis of the socioeconomic drivers of emissions in the building and onroad transportation sectors across the domain highlighting hotspots of emissions and spatially-specific opportunities for reductions.

  12. Δ14CO2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    PubMed

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ( 14 C) has been widely used for quantification of fossil fuel CO 2 (CO 2ff ) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the 14 C signature of fossil fuels and other sources. In past studies, the 14 C content of CO 2 derived from plants has been equated with the 14 C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO 2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO 2 we determine Δ 14 C res values, and from the bulk organic matter we determine Δ 14 C bom values. A significant difference between Δ 14 C res and Δ 14 C bom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ 14 C res values are in agreement with mean atmospheric Δ 14 CO 2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ 14 C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO 2ff , an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ 14 C in plants to quantify atmospheric CO 2ff . Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Finding fossils in new ways: an artificial neural network approach to predicting the location of productive fossil localities.

    PubMed

    Anemone, Robert; Emerson, Charles; Conroy, Glenn

    2011-01-01

    Chance and serendipity have long played a role in the location of productive fossil localities by vertebrate paleontologists and paleoanthropologists. We offer an alternative approach, informed by methods borrowed from the geographic information sciences and using recent advances in computer science, to more efficiently predict where fossil localities might be found. Our model uses an artificial neural network (ANN) that is trained to recognize the spectral characteristics of known productive localities and other land cover classes, such as forest, wetlands, and scrubland, within a study area based on the analysis of remotely sensed (RS) imagery. Using these spectral signatures, the model then classifies other pixels throughout the study area. The results of the neural network classification can be examined and further manipulated within a geographic information systems (GIS) software package. While we have developed and tested this model on fossil mammal localities in deposits of Paleocene and Eocene age in the Great Divide Basin of southwestern Wyoming, a similar analytical approach can be easily applied to fossil-bearing sedimentary deposits of any age in any part of the world. We suggest that new analytical tools and methods of the geographic sciences, including remote sensing and geographic information systems, are poised to greatly enrich paleoanthropological investigations, and that these new methods should be embraced by field workers in the search for, and geospatial analysis of, fossil primates and hominins. Copyright © 2011 Wiley-Liss, Inc.

  14. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less

  15. Marquee Fossils

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2008-01-01

    Professors of an online graduate-level paleontology class developed the concept of marquee fossils--fossils that have one or more unique characteristics that capture the attention and direct observation of students. In the classroom, Marquee fossils integrate the geology, biology, and environmental science involved in the study of fossilized…

  16. Can industry`s `fourth` fossil fuel establish presence in US?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armor, A.F.; Dene, C.E.

    1996-09-01

    After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion nowmore » fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.« less

  17. Three generation production biotechnology of biomass into bio-fuel

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  18. Fossil Explorers

    ERIC Educational Resources Information Center

    Moran, Sean; McLaughlin, Cheryl; MacFadden, Bruce; Jacobbe, Elizabeth; Poole, Michael

    2015-01-01

    Many young learners are fascinated with fossils, particularly charismatic forms such as dinosaurs and giant sharks. Fossils provide tangible, objective evidence of life that lived millions of years ago. They also provide a timescale of evolution not typically appreciated by young learners. Fossils and the science of paleontology can, therefore,…

  19. The spatial distribution of fossil fuel CO2 traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China.

    PubMed

    Niu, Zhenchuan; Zhou, Weijian; Zhang, Xiaoshan; Wang, Sen; Zhang, Dongxia; Lu, Xuefeng; Cheng, Peng; Wu, Shugang; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-01-01

    Atmospheric fossil fuel CO2 (CO2ff ) information is an important reference for local government to formulate energy-saving and emission reduction in China. The CO2ff spatial distribution in Beijing City was traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) from late March to September in 2009. The Δ(14)C values were in the range of -35.2 ± 2.8∼15.5 ± 3.2 ‰ (average 3.4 ± 11.8 ‰), with high values found at suburban sites (average 12.8 ± 3.1 ‰) and low values at road sites (average -8.4 ± 18.1 ‰). The CO2ff concentrations varied from 11.6 ± 3.7 to 32.5 ± 9.0 ppm, with an average of 16.4 ± 4.9 ppm. The CO2ff distribution in Beijing City showed spatial heterogeneity. CO2ff hotspots were found at road sites resulted from the emission from vehicles, while low CO2ff concentrations were found at suburban sites because of the less usage of fossil fuels. Additionally, CO2ff concentrations in the northwest area were generally higher than those in the southeast area due to the disadvantageous topography.

  20. Production of High Energy Aviation Fuels from Advanced Coal Liquids. Phase 1.

    DTIC Science & Technology

    1987-04-01

    AD-A192 333 PRODUCTION OF HIGH ENERGY AVIATION FUELS FROM RDYANCED 1/1 COAL LIQUIDS PHASE 1(U) STRAT CO SALT LAKE CITY UT J DOWNEN APR 9? AFWRL-TR-87...OF HIGH ENERGY AVIATION FUELS FROM ADVANCED COAL LIQUIDS * JOHN DOWNEN STRAT CO. 4597 JUPITER DRIVE SALT LAKE CITY, UTAH 84124 APRIL 1987 FINAL REPORT...OAU TION NME or dokew AFo Prpulsin LCbrator NOA"TO INACCE1SPONONO II-TTEX Xuc*cait* 65502F 1 3005 I 20 r 63 Production of High Energy Aviation Fuels

  1. Unconventional fossil-based fuels : economic and environmental trade-offs

    DOT National Transportation Integrated Search

    2008-01-01

    Both high import payments for petroleum motor fuels and concerns regarding emissions of carbon dioxide (CO2) are motivating interest in possible fuel substitutes. In this report, RAND researchers assess the potential future production levels, product...

  2. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  3. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission

  4. A review of phase separation issues in aviation gasoline fuel and motor gasoline fuels in aviation

    NASA Astrophysics Data System (ADS)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    In an attempt to bring in sustainable energy resources into the current combustibles mix, recent European legislations make obligatory the addition of biogenic fuels into traditional fossil gasoline. The preferred biogenic fuel, for economic reasons, is predominantly ethanol. Even though likened to fossil gasoline constituents, ethanol has a dissimilar chemical formulation that may lead to a potentially hazardous physicochemical phenomenon, particularly in the presence of water. Owing to increased financially driven propensity to utilize motor vehicle gasoline as aviation gasoline fuel, this may result in potentially hazardous situations, specifically in running smaller or compact General Aviation aircraft. The potential risks posed by ethanol admixtures in aircraft are phase separation and carburettor icing. Gasoline mixed with ethanol is also prone to an increased vulnerability to vapor lock that happens when fuel turns into vapor in the fuel pumps due to high temperatures and lessened ambient pressure at high altitudes. This article provides a literature review on phase separation issues in aviation gasoline fuel and motor gasoline fuels in aviation.

  5. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    PubMed

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  6. Distributed renewable power from biomass and other waste fuels

    NASA Astrophysics Data System (ADS)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  7. Diagnosing Homo sapiens in the fossil record.

    PubMed

    Stringer, Christopher Brian; Buck, Laura Tabitha

    2014-01-01

    Diagnosing Homo sapiens is a critical question in the study of human evolution. Although what constitutes living members of our own species is straightforward, in the fossil record this is still a matter of much debate. The issue is complicated by questions of species diagnoses and ideas about the mode by which a new species is born, by the arguments surrounding the behavioural and cognitive separateness of the species, by the increasing appreciation of variation in the early African H. sapiens record and by new DNA evidence of hybridization with extinct species. This study synthesizes thinking on the fossils, archaeology and underlying evolutionary models of the last several decades with recent DNA results from both H. sapiens and fossil species. It is concluded that, although it may not be possible or even desirable to cleanly partition out a homogenous morphological description of recent H. sapiens in the fossil record, there are key, distinguishing morphological traits in the cranium, dentition and pelvis that can be usefully employed to diagnose the H. sapiens lineage. Increasing advances in retrieving and understanding relevant genetic data provide a complementary and perhaps potentially even more fruitful means of characterizing the differences between H. sapiens and its close relatives.

  8. Fossilized bioelectric wire – the trace fossil Trichichnus

    PubMed Central

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-01-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”. PMID:26290671

  9. The combined effect of reduced fossil fuel consumption and increasing biomass combustion on Athens' air quality, as inferred from long term CO measurements.

    PubMed

    Gratsea, Myrto; Liakakou, Eleni; Mihalopoulos, Nikos; Adamopoulos, Anastasios; Tsilibari, Eirini; Gerasopoulos, Evangelos

    2017-08-15

    To evaluate the role of biomass burning emissions, and in particular of residential wood heating, as a result of the economic recession in Greece, carbon monoxide (CO) atmospheric concentrations from five (5) stations of the National Air Pollution Monitoring Network in Athens, spanning the period 2000-2015, in conjunction with black carbon (BC) concentrations from the NOA (National Observatory of Athens) station at Thissio were analysed. The contribution of the different sources to the diurnal cycle of these two pollutants is clear, resulting to a morning peak, mainly due to traffic, and a late evening peak attributed both to fossil fuel (traffic plus central heating) and biomass combustion. Calculated morning and evening integrals of CO peaks, for the investigated period, show consistent seasonal modulations, characterised by low summer and high winter values. The summer and winter morning CO peak integrals demonstrate an almost constant decreasing trend of CO concentrations over time (by almost 50% since 2000), attributed to the renewal of passenger car fleet and to reduced anthropogenic activities during the last years. On the other hand, an increase of 23%-78% (depending on the monitoring site) in the winter evening integrals since 2012, provides evidence of the significant contribution of biomass combustion, which has prevailed over fossil fuel for domestic heating. CO emitted by wood burning was found to contribute almost 50% to the total CO emissions during night time (16:00-5:00), suggesting that emissions from biomass combustion have gained an increasing role in atmospheric pollution levels in Athens. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less

  11. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L., E-mail: hess@ast.uct.ac.za, E-mail: ewilcots@astro.wisc.edu, E-mail: vhartwick@wisc.edu

    2012-08-15

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L{sub 1.4GHz} > 10{sup 23} W Hz{sup -1}) active galactic nucleusmore » (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.« less

  12. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    1999-10-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  13. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  14. Fossil fuel combined cycle power generation method

    DOEpatents

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  15. Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating

    NASA Astrophysics Data System (ADS)

    Dutta, Koushik

    2016-06-01

    Radiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO2 and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.

  16. Lignin depolymerization and upgrading via fast pyrolysis and electrocatalysis for the production of liquid fuels and value-added products

    NASA Astrophysics Data System (ADS)

    Garedew, Mahlet

    The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.

  17. JP-8 and Other Military Fuels (2014 UPDATE)

    DTIC Science & Technology

    2014-06-17

    Biodiesel , Ethanol – Not cost competitive with fossil fuels • 2nd Generation Alternative Fuels – Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK) and...Generation Alternative Fuels Unclassified • Biodiesel – a fuel comprised of mono-alkyl esters of long chain fatty acids derived from Vegetable oils or

  18. Fuel for the Future: Biodiesel - A Case study

    NASA Astrophysics Data System (ADS)

    Lutterbach, Márcia T. S.; Galvão, Mariana M.

    High crude oil prices, concern over depletion of world reserves, and growing apprehension about the environment, encouraged the search for alternative energy sources that use renewable natural resources to reduce or replace traditional fossil fuels such as diesel and gasoline (Hill et al., 2006). Among renewable fuels, biodiesel has been attracting great interest, especially in Europe and the United States. Biodiesel is defined by the World Customs Organization (WCO) as 'a mixture of mono-alkyl esters of long-chain [C16-C18] fatty acids derived from vegetable oils or animal fats, which is a domestic renewable fuel for diesel engines and which meets the US specifications of ASTM D 6751'. Biodiesel is biodegradable and non toxic, produces 93% more energy than the fossil energy required for its production, reduces greenhouse gas emissions by 40% compared to fossil diesel (Peterson and Hustrulid, 1998; Hill et al., 2006) and stimulates agriculture.

  19. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrelmore » of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).« less

  20. Reconstructing the past: methods and techniques for the digital restoration of fossils

    PubMed Central

    2016-01-01

    During fossilization, the remains of extinct organisms are subjected to taphonomic and diagenetic processes. As a result, fossils show a variety of preservational artefacts, which can range from small breaks and cracks, disarticulation and fragmentation, to the loss and deformation of skeletal structures and other hard parts. Such artefacts can present a considerable problem, as the preserved morphology of fossils often forms the basis for palaeontological research. Phylogenetic and taxonomic studies, inferences on appearance, ecology and behaviour and functional analyses of fossil organisms strongly rely on morphological information. As a consequence, the restoration of fossil morphology is often a necessary prerequisite for further analyses. Facilitated by recent computational advances, virtual reconstruction and restoration techniques offer versatile tools to restore the original morphology of fossils. Different methodological steps and approaches, as well as software are outlined and reviewed here, and advantages and disadvantages are discussed. Although the complexity of the restorative processes can introduce a degree of interpretation, digitally restored fossils can provide useful morphological information and can be used to obtain functional estimates. Additionally, the digital nature of the restored models can open up possibilities for education and outreach and further research. PMID:27853548

  1. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    NASA Technical Reports Server (NTRS)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  2. Optimal Time Advance In Terminal Area Arrivals: Throughput vs. Fuel Savings

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V .; Swenson, Harry N.; Haskell, William B.; Rakas, Jasenka

    2011-01-01

    The current operational practice in scheduling air traffic arriving at an airport is to adjust flight schedules by delay, i.e. a postponement of an aircrafts arrival at a scheduled location, to manage safely the FAA-mandated separation constraints between aircraft. To meet the observed and forecast growth in traffic demand, however, the practice of time advance (speeding up an aircraft toward a scheduled location) is envisioned for future operations as a practice additional to delay. Time advance has two potential advantages. The first is the capability to minimize, or at least reduce, the excess separation (the distances between pairs of aircraft immediately in-trail) and thereby to increase the throughput of the arriving traffic. The second is to reduce the total traffic delay when the traffic sample is below saturation density. A cost associated with time advance is the fuel expenditure required by an aircraft to speed up. We present an optimal control model of air traffic arriving in a terminal area and solve it using the Pontryagin Maximum Principle. The admissible controls allow time advance, as well as delay, some of the way. The cost function reflects the trade-off between minimizing two competing objectives: excess separation (negatively correlated with throughput) and fuel burn. A number of instances are solved using three different methods, to demonstrate consistency of solutions.

  3. Use of freeze-casting in advanced burner reactor fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R.

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  4. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, Carlos N; Caro, J A; Lebensohn, R A

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less

  5. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  6. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  7. Harsh environment sensor development for advanced energy systems

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.; Maley, Susan M.

    2013-05-01

    Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.

  8. "Fossil" Forecasting.

    ERIC Educational Resources Information Center

    Brody, Michael J.; deOnis, Ann

    2001-01-01

    Presents a density study in which students calculate the density of limestone substrate to determine if the specimen contains any fossils. Explains how to make fossils and addresses national standards. (YDS)

  9. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  10. Inter-annual variability in fossil-fuel CO2 emissions due to temperature anomalies

    NASA Astrophysics Data System (ADS)

    Bréon, F.-M.; Boucher, O.; Brender, P.

    2017-07-01

    It is well known that short-term (i.e. interannual) variations in fossil-fuel CO2 emissions are closely related to the evolution of the national economies. Nevertheless, a fraction of the CO2 emissions are linked to domestic and business heating and cooling, which can be expected to be related to the meteorology, independently of the economy. Here, we analyse whether the signature of the inter-annual temperature anomalies is discernible in the time series of CO2 emissions at the country scale. Our analysis shows that, for many countries, there is a clear positive correlation between a heating-degree-person index and the component of the CO2 emissions that is not explained by the economy as quantified by the gross domestic product (GDP). Similarly, several countries show a positive correlation between a cooling-degree-person (CDP) index and CO2 emissions. The slope of the linear relationship for heating is on the order of 0.5-1 kg CO2 (degree-day-person)-1 but with significant country-to-country variations. A similar relationship for cooling shows even greater diversity. We further show that the inter-annual climate anomalies have a small but significant impact on the annual growth rate of CO2 emissions, both at the national and global scale. Such a meteorological effect was a significant contribution to the rather small and unexpected global emission growth rate in 2014 while its contribution to the near zero emission growth in 2015 was insignificant.

  11. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2018-01-26

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  12. 18 CFR 35.14 - Fuel cost and purchased economic power adjustment clauses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) The fuel clause shall be of the form that provides for periodic adjustments per kWh of sales equal to... and in the current period: Adjustment Factor =Fm/Sm-Fb/Sb Where: F is the expense of fossil and...) shall be the cost of: (i) Fossil and nuclear fuel consumed in the utility's own plants, and the utility...

  13. 18 CFR 35.14 - Fuel cost and purchased economic power adjustment clauses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) The fuel clause shall be of the form that provides for periodic adjustments per kWh of sales equal to... and in the current period: Adjustment Factor =Fm/Sm-Fb/Sb Where: F is the expense of fossil and...) shall be the cost of: (i) Fossil and nuclear fuel consumed in the utility's own plants, and the utility...

  14. 18 CFR 35.14 - Fuel cost and purchased economic power adjustment clauses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) The fuel clause shall be of the form that provides for periodic adjustments per kWh of sales equal to... and in the current period: Adjustment Factor =Fm/Sm-Fb/Sb Where: F is the expense of fossil and...) shall be the cost of: (i) Fossil and nuclear fuel consumed in the utility's own plants, and the utility...

  15. 18 CFR 35.14 - Fuel cost and purchased economic power adjustment clauses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The fuel clause shall be of the form that provides for periodic adjustments per kWh of sales equal to... and in the current period: Adjustment Factor =Fm/Sm-Fb/Sb Where: F is the expense of fossil and...) shall be the cost of: (i) Fossil and nuclear fuel consumed in the utility's own plants, and the utility...

  16. 18 CFR 35.14 - Fuel cost and purchased economic power adjustment clauses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The fuel clause shall be of the form that provides for periodic adjustments per kWh of sales equal to... and in the current period: Adjustment Factor =Fm/Sm-Fb/Sb Where: F is the expense of fossil and...) shall be the cost of: (i) Fossil and nuclear fuel consumed in the utility's own plants, and the utility...

  17. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Science.gov Websites

    -ethanol blends, many vehicle owners don't realize their car is an FFV and that they have a choice of fuels Turbocharged GDI Vehicle and Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Fuel and Advanced Vehicle Inventory Clean Cities Alternative Fuel and Advanced Vehicle Inventory AFV

  18. Modelling socio-metabolic transitions: The historical take-off, the acceleration of fossil fuel use, and the 1970s oil price shock - the first trigger of a future decline?

    NASA Astrophysics Data System (ADS)

    Wiedenhofer, Dominik; Rovenskaya, Elena; Krausmann, Fridolin; Haas, Willi; Fischer-Kowalski, Marina

    2013-04-01

    By talking about socio-metabolic transitions, we talk about changes in the energy base of socio-economic systems, leading to fundamental changes in social and environmental relations. This refers to the historical shift from a biomass-based (agrarian) economy to a fossil fuel based (industrial) economy just as much as to a future shift from fossil fuels to renewable energy carriers. In our presentation, • We will first show that this pattern of transition can be identified for most high income industrial countries: the later the transition started, the faster it proceeded, and the turning point to stabilization of metabolic rates in all of them happened in the early 1970ies. Due to the inherent non-linearity of this process, two approaches will be aplied to estimate parameters for the starting point, transition speed and saturation level: firstly a combination of an expontential and a generalized logistic function and secondly a Gompertz function. For both an iterative test procedure is applied to find the global minimum of the residual error for the whole function and all its parameters. This theory-based approach allows us to apply a robust methodology across all cases, thereby yielding results which can be generalized. • Next, we will show that this was not just a "historical" socio-ecological transition, however. Currently, a substantial number of countries comprising more than half of the world's population are following a similar transitional pathway at an ever accelerating pace. Based on empirical data on physical resource use and the above sketched methodology, we can show that these so-called emerging economies are currently in the take-off or acceleration phase of the very same transition. • Apart from these "endogenous" processes of socio-metabolic transition, we will investigate the effect of external shocks and their impact on the dynamics of energy and materials use. The first such shock we will explore is the oil crisis of 1972 that possibly

  19. A statistical approach for isolating fossil fuel emissions in atmospheric inverse problems

    DOE PAGES

    Yadav, Vineet; Michalak, Anna M.; Ray, Jaideep; ...

    2016-10-27

    We study independent verification and quantification of fossil fuel (FF) emissions that constitutes a considerable scientific challenge. By coupling atmospheric observations of CO 2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO 2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlyingmore » processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO 2 measurements over North America. Also, inversions are performed only for the month of January, as predominance of biospheric CO 2 signal relative to FF CO 2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 µmol m -2 s -1 between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data.« less

  20. Spatially- explicit Fossil Fuel Carbon Dioxide Inventories for Transportation in the U.S.

    NASA Astrophysics Data System (ADS)

    Hutchins, M.; Gurney, K. R.

    2016-12-01

    The transportation sector is the second largest source of Fossil Fuel CO2 (FFCO2) emissions, and is unique in that federal, state, and municipal levels of government are all able to enact transportation policy. However, since data related to transportation activities are reported by multiple different government agencies, the data are not always consistent. As a result, the methods and data used to inventory and account for transportation related FFCO2 emissions have important implications for both science and policy. Aggregate estimates of transportation related FFCO2 emissions can be spatially distributed using traffic data, such as the Highway Performance Monitoring System (HPMS) Average Annual Daily Traffic (AADT). There are currently two datasets that estimate the spatial distribution of transportation related FFCO2 in the United States- Vulcan 3.0 and the Database of Road Transportation Emissions (DARTE). Both datasets are at 1 km resolution, for the year 2011, and utilize HPMS AADT traffic data. However, Vulcan 3.0 and DARTE spatially distribute emissions using different methods and inputs, resulting in a number of differences. Vulcan 3.0 and DARTE estimate national transportation related FFCO2 emissions within 2.5% of each other, with more significant differences at the county and state level. The differences are most notable in urban versus rural regions, and for specific road classes. The origin of these differences are explored in depth to understand the implication of using specific data sources, such as the National Emissions Inventory and other aggregate transportation statistics from the Federal Highway Administration (FHWA). In addition to comparing Vulcan 3.0 and DARTE to each other, the results from both data sets are compared to independent traffic volume measurements acquired from the FHWA Continuous Count Station (CCS) network. The CCS records hourly traffic counts at fixed locations in space throughout the U.S. We calculate transportation

  1. Modes of fossil preservation

    USGS Publications Warehouse

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  2. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE PAGES

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  3. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan Wesley; Wu, Weihua

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  4. Molecular preservation of the pigment melanin in fossil melanosomes.

    PubMed

    Lindgren, Johan; Uvdal, Per; Sjövall, Peter; Nilsson, Dan E; Engdahl, Anders; Schultz, Bo Pagh; Thiel, Volker

    2012-05-08

    Fossil feathers, hairs and eyes are regularly preserved as carbonized traces comprised of masses of micrometre-sized bodies that are spherical, oblate or elongate in shape. For a long time, these minute structures were regarded as the remains of biofilms of keratinophilic bacteria, but recently they have been reinterpreted as melanosomes; that is, colour-bearing organelles. Resolving this fundamental difference in interpretation is crucial: if endogenous then the fossil microbodies would represent a significant advancement in the fields of palaeontology and evolutionary biology given, for example, the possibility to reconstruct integumentary colours and plumage colour patterns. It has previously been shown that certain trace elements occur in fossils as organometallic compounds, and hence may be used as biomarkers for melanin pigments. Here we expand this knowledge by demonstrating the presence of molecularly preserved melanin in intimate association with melanosome-like microbodies isolated from an argentinoid fish eye from the early Eocene of Denmark.

  5. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  6. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  7. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...

  8. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...

  9. Feasibility of Using Alternate Fuels in the U.S. Antarctic Program: Initial Assessment

    DTIC Science & Technology

    2017-09-01

    Figures 1 Platts’ Jet A fuel prices per gallons from 1990 to 2013. Platts’ pricing is a real time market process for determining the cost of fossil ... fossil fuels. This process takes into account supply, demand, and current events. Since 1909, Platts has been reporting these real time prices and...refinery to upload NSF’s fuel to the day it arrives at a destination where it will per- form work for a different customer). Over the past decade, day

  10. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empiricalmore » approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed

  11. Hybrid cars now, fuel cell cars later.

    PubMed

    Demirdöven, Nurettin; Deutch, John

    2004-08-13

    We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.

  12. Hybrid Cars Now, Fuel Cell Cars Later

    NASA Astrophysics Data System (ADS)

    Demirdöven, Nurettin; Deutch, John

    2004-08-01

    We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.

  13. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  14. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.

  15. Theoretical studies of oxides relevant to the combustion of fossil fuels

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Michael

    Anthropogenic pollution has greatly increased since the industrial revolution and continues to increase as more of the world becomes dependent upon fossil fuels for important applications like transportation and power production. In a general case, whenever a fossil fuel is consumed, a primary product of a complete combustion reaction is carbon dioxide. In a more specific case, the collection, processing and combustion of coal for power production are one of the primary ways by which trace elements, such as arsenic and selenium, are released into the environment. All of these pollutants are known to have harmful effects, whether on the environment, human health or power production itself. Because of this there has been an increasing interest in studies related to combating these pollutants. Concerning CO2 emissions, recently there has been a significant amount of work related to CO2 capture. A promising method involves the encapsulation of CO2 into isoreticular metal-organic frameworks (IRMOFs). The effectiveness of IMROFs greatly depends on the choice of both metal and organic parts. Molecular simulations have been used in the past to aid in the design and characterization of new MOFs, in particular by generating an adsorption isotherm. However, these traditional simulation methods have several drawbacks. The method used in this thesis, namely expanded Wang-Landau, not only overcomes these drawbacks but provides access to all the thermodynamic properties relevant to the adsorption process through a solution thermodynamics approach. This is greatly beneficial, since an excellent way to characterize the performance of various MOFs is by comparing their desorption free energy, i.e., the energy it takes to regenerate a saturated MOF to prepare it for the next adsorption cycle. Expanded WL was used in the study of CO 2 adsorption into IRMOF-1, 8 and 10 at eight temperatures, spanning both the subcritical and supercritical regimes and the following were obtained

  16. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  17. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  18. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  19. Protein molecular data from ancient (>1 million years old) fossil material: pitfalls, possibilities and grand challenges.

    PubMed

    Schweitzer, Mary Higby; Schroeter, Elena R; Goshe, Michael B

    2014-07-15

    Advances in resolution and sensitivity of analytical techniques have provided novel applications, including the analyses of fossil material. However, the recovery of original proteinaceous components from very old fossil samples (defined as >1 million years (1 Ma) from previously named limits in the literature) is far from trivial. Here, we discuss the challenges to recovery of proteinaceous components from fossils, and the need for new sample preparation techniques, analytical methods, and bioinformatics to optimize and fully utilize the great potential of information locked in the fossil record. We present evidence for survival of original components across geological time, and discuss the potential benefits of recovery, analyses, and interpretation of fossil materials older than 1 Ma, both within and outside of the fields of evolutionary biology.

  20. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.