Science.gov

Sample records for advanced generation iv

  1. Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum

    SciTech Connect

    F. Delage; J. Carmack; C. B. Lee; T. Mizuno; M. Pelletier; J. Somers

    2013-10-01

    The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxide and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels.

  2. Multiscale Modeling of the Deformation of Advanced Ferritic Steels for Generation IV Nuclear Energy

    SciTech Connect

    Nasr M. Ghoniem; Nick Kioussis

    2009-04-18

    The objective of this project is to use the multi-scale modeling of materials (MMM) approach to develop an improved understanding of the effects of neutron irradiation on the mechanical properties of high-temperature structural materials that are being developed or proposed for Gen IV applications. In particular, the research focuses on advanced ferritic/ martensitic steels to enable operation up to 650-700°C, compared to the current 550°C limit on high-temperature steels.

  3. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    SciTech Connect

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  4. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  5. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  6. Test Review: Advanced Clinical Solutions for WAIS-IV and WMS-IV

    ERIC Educational Resources Information Center

    Chu, Yiting; Lai, Mark H. C.; Xu, Yining; Zhou, Yuanyuan

    2012-01-01

    The authors review the "Advanced Clinical Solutions for WAIS-IV and WMS-IV". The "Advanced Clinical Solutions (ACS) for the Wechsler Adult Intelligence Scale-Fourth Edition" (WAIS-IV; Wechsler, 2008) and the "Wechsler Memory Scale-Fourth Edition" (WMS-IV; Wechsler, 2009) was published by Pearson in 2009. It is a clinical tool for extending the…

  7. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  8. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  9. From NDE to Prognostics: A Revolution in Asset Management for Generation IV Nuclear Power Plants

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.

    2007-06-01

    For Generation IV nuclear power plants (NPP) to achieve operational goals it is necessary to adopt new on-line monitoring and prognostic methodologies, giving operators better plant situational awareness and reliable predictions of remaining service life. Such techniques can improve plant economics, reduce unplanned outages, improve safety and provide probabilistic risk assessments. This paper reviews the state of the art and the potential impact from monitoring, diagnostics and prognostics on advanced NPP, with a focus on the needs of Generation IV systems.

  10. ADVANCED STEAM GENERATORS

    SciTech Connect

    Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A.; Woike, Mark R.; Willis; Brian P.

    2001-11-06

    1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

  11. The U.S. Generation IV Implementation Strategy

    SciTech Connect

    2003-09-01

    This report has been prepared by the U.S. Department of Energy (DOE) to respond to Congressional direction contained in Senate Report 107-220 from the Senate Committee on Appropriations regarding the Energy and Water Development Appropriations for 2003. In that report, the Committee instructed the Department to prepare a report regarding how it intends to carry out the results of the Generation IV Roadmap. This report is the U.S. Department of Energy's response to the Congressional directive. It summarizes results from the Generation IV Technology Roadmap and the strategy for implementing of the Generation IV program in the United States. Planning for the implementation of the Generation IV program is based on (1) the long-term outlook for nuclear energy in the United States, (2) the advice of the Nuclear Energy Research Advisory Committee during the two-year development of the Generation IV Technology Roadmap, and (3) the need for the Generation IV program to be integrated with other nuclear energy research programs of the Department. Considerable emphasis is given to developing the priorities and necessary timelines for the U.S. Generation IV Program, as well as developing international R&D cooperation that will benefit the program and strengthen U.S. leadership in nuclear technology R&D.

  12. Maize RNA polymerase IV defines trans-generational epigenetic variation.

    PubMed

    Erhard, Karl F; Parkinson, Susan E; Gross, Stephen M; Barbour, Joy-El R; Lim, Jana P; Hollick, Jay B

    2013-03-01

    The maize (Zea mays) RNA Polymerase IV (Pol IV) largest subunit, RNA Polymerase D1 (RPD1 or NRPD1), is required for facilitating paramutations, restricting expression patterns of genes required for normal development, and generating small interfering RNA (siRNAs). Despite this expanded role for maize Pol IV relative to Arabidopsis thaliana, neither the general characteristics of Pol IV-regulated haplotypes, nor their prevalence, are known. Here, we show that specific haplotypes of the purple plant1 locus, encoding an anthocyanin pigment regulator, acquire and retain an expanded expression domain following transmission from siRNA biogenesis mutants. This conditioned expression pattern is progressively enhanced over generations in Pol IV mutants and then remains heritable after restoration of Pol IV function. This unusual genetic behavior is associated with promoter-proximal transposon fragments but is independent of sequences required for paramutation. These results indicate that trans-generational Pol IV action defines the expression patterns of haplotypes using co-opted transposon-derived sequences as regulatory elements. Our results provide a molecular framework for the concept that induced changes to the heterochromatic component of the genome are coincident with heritable changes in gene regulation. Alterations of this Pol IV-based regulatory system can generate potentially desirable and adaptive traits for selection to act upon. PMID:23512852

  13. A Technology Roadmap for Generation IV Nuclear Energy Systems Executive Summary

    SciTech Connect

    2003-03-01

    To meet future energy needs, ten countries--Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States--have agreed on a framework for international cooperation in research for an advanced generation of nuclear energy systems, known as Generation IV. These ten countries have joined together to form the Generation IV International Forum (GIF) to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste, proliferation, and public perception concerns. The objective for Generation IV nuclear energy systems is to be available for international deployment before the year 2030, when many of the world's currently operating nuclear power plants will be at or near the end of their operating licenses.

  14. High Temperature Irradiation Effects in Selected Generation IV Structural Alloys

    SciTech Connect

    Nanstad, Randy K; McClintock, David A; Hoelzer, David T; Tan, Lizhen; Allen, Todd R.

    2009-01-01

    In the Generation IV Materials Program cross-cutting task, irradiation and testing were carried out to address the issue of high temperature irradiation effects with selected current and potential candidate metallic alloys. The materials tested were (1) a high-nickel iron-base alloy (Alloy 800H); (2) a nickel-base alloy (Alloy 617); (3) two advanced nano-structured ferritic alloys (designated 14YWT and 14WT); and (4) a commercial ferritic-martensitic steel (annealed 9Cr-1MoV). Small tensile specimens were irradiated in rabbit capsules in the High-Flux Isotope Reactor at temperatures from about 550 to 700 C and to irradiation doses in the range 1.2 to 1.6 dpa. The Alloy 800H and Alloy 617 exhibited significant hardening after irradiation at 580 C; some hardening occurred at 660 C as well, but the 800H showed extremely low tensile elongations when tested at 700 C. Notably, the grain boundary engineered 800H exhibited even greater hardening at 580 C and retained a high amount of ductility. Irradiation effects on the two nano-structured ferritic alloys and the annealed 9Cr-1MoV were relatively slight at this low dose.

  15. Automatic generation and analysis of solar cell IV curves

    DOEpatents

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  16. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    SciTech Connect

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  17. Advanced downhole periodic seismic generator

    DOEpatents

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  18. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  19. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    SciTech Connect

    2005-03-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  20. Generation IV PR and PP Methods and Applications

    SciTech Connect

    Bari,R.A.

    2008-10-13

    This paper presents an evaluation methodology for proliferation resistance and physical protection (PR&PP) of Generation IV nuclear energy systems (NESs). For a proposed NES design, the methodology defines a set of challenges, analyzes system response to these challenges, and assesses outcomes. The challenges to the NES are the threats posed by potential actors (proliferant States or sub-national adversaries). The characteristics of Generation IV systems, both technical and institutional, are used to evaluate the response of the system and determine its resistance against proliferation threats and robustness against sabotage and terrorism threats. The outcomes of the system response are expressed in terms of six measures for PR and three measures for PP, which are the high-level PR&PP characteristics of the NES. The methodology is organized to allow evaluations to be performed at the earliest stages of system design and to become more detailed and more representative as design progresses. Uncertainty of results are recognized and incorporated into the evaluation at all stages. The results are intended for three types of users: system designers, program policy makers, and external stakeholders. Particular current relevant activities will be discussed in this regard. The methodology has been illustrated in a series of demonstration and case studies and these will be summarized in the paper.

  1. Advanced IRFPAs for next-generation sensors

    NASA Astrophysics Data System (ADS)

    Caulfield, John T.; Fletcher, Christopher L.; Graham, Roger W.; Patten, Elizabeth A.; Pham, Le T.; Pierce, Gregory; Scribner, Dean A.; Skele, Martins; Taylor, Scott M.; Trautfield, Walter C.

    2004-08-01

    Raytheon Vision Systems (RVS) has invented and demonstrated a new class of advanced focal plane arrays. These Advanced FPAs are sometimes called 3rd Generation or "Next Generation" FPAs because they have integrated onto the FPA the ability to sense multiple IR spectrums, have improved resolution and performance, and conduct image processing on the FPA ROIC. These next generation of FPAs are allowing more functionality and the detection of a more diverse set of data than previously possible with 2nd Gen FPAs. Examples and history of advanced next generation FPAs are reviewed including RVS"s Multispectral, Uncooled, Adaptive Sensors and other advanced sensors.

  2. An Economic Analysis of Generation IV Small Modular Reactors

    SciTech Connect

    Stewart, J S; Lamont, A D; Rothwell, G S; Smith, C F; Greenspan, E; Brown, N; Barak, A

    2002-03-01

    This report examines some conditions necessary for Generation IV Small Modular Reactors (SMRs) to be competitive in the world energy market. The key areas that make nuclear reactors an attractive choice for investors are reviewed, and a cost model based on the ideal conditions is developed. Recommendations are then made based on the output of the cost model and on conditions and tactics that have proven successful in other industries. The Encapsulated Nuclear Heat Source (ENHS), a specific SMR design concept, is used to develop the cost model and complete the analysis because information about the ENHS design is readily available from the University of California at Berkeley Nuclear Engineering Department. However, the cost model can be used to analyze any of the current SMR designs being considered. On the basis of our analysis, we determined that the nuclear power industry can benefit from and SMRs can become competitive in the world energy market if a combination of standardization and simplification of orders, configuration, and production are implemented. This would require wholesale changes in the way SMRs are produced, manufactured and regulated, but nothing that other industries have not implemented and proven successful.

  3. Advanced piggyback water power generator

    SciTech Connect

    Wiggs, B.R.

    1988-02-16

    A power generating system is described including: a central boat containing gearing and electric and/or power generation equipment, with a forward angled-back deflection screen and a rear non-angled deflection screen, with a smaller outrigger pontoon on each respective side of the central boat, with closed cell, waterproof, plastic foam filling in the central boat and pontoons, and with the bow of the respective outrigger pontoons angled so as to completely turn water away from, and to the outside of, the space and/or incoming water area between each such respective pontooon and the central boat. There are legs with cone shaped bottoms and with wheels attached, with the wheels extending slightly below the cone shaped bottoms; paddle wheels on each side of the central boat, between the central boat, and respective outrigger pontoons, with 90 degree spaced, flat, paddle blades, and with a solid, disk division vertically dividing each respective side paddle wheel in half and extending at right angles to, and from, the central axle, to the outside extreme end of the paddle blades, with each such half of the equally divided paddle wheel being constructed so that the 90 degree spaced paddle blades in one half are offset by 45 degrees from the 90 degree space paddle blades in the other half, and with the extreme ends of each such set of divided paddle wheels being enclosed via a similar solid.

  4. A Project Management and Systems Engineering Structure for a Generation IV Very High Temperature Reactor

    SciTech Connect

    Ed Gorski; Dennis Harrell; Finis Southworth

    2004-09-01

    The Very High Temperature Reactor (VHTR) will be an advanced, very high temperature (approximately 1000o C. coolant outlet temperature), gas cooled nuclear reactor and is the nearest term of six Generation IV reactor technologies for nuclear assisted hydrogen production. In 2001, the Generation IV International Forum (GIF), a ten nation international forum working together with the Department of Energy’s (DOE) Nuclear Energy Research Advisory Committee (NERAC), agreed to proceed with the development of a technology roadmap and identified the next generation of nuclear reactor systems for producing new sources of power. Since a new reactor has not been licensed in the United States since the 1970s, the risks are too large for a single utility to assume in the development of an unprecedented Generation IV reactor. The government must sponsor and invest in the research to resolve major first of a kind (FOAK) issues through a full-scale demonstration prior to industry implementation. DOE’s primary mission for the VHTR is to demonstrate nuclear reactor assisted cogeneration of electricity and hydrogen while meeting the Generation IV goals for safety, sustainability, proliferation resistance and physical security and economics. The successful deployment of the VHTR as a demonstration project will aid in restarting the now atrophied U.S. nuclear power industry infrastructure. It is envisioned that VHTR project participants will include DOE Laboratories, industry partners such as designers, constructors, manufacturers, utilities, and Generation IV international countries. To effectively mange R&D, engineering, procurement, construction, and operation for this multi-organizational and technologically complex project, systems engineering will be used extensively to ensure delivery of the final product. Although the VHTR is an unprecedented FOAK system, the R&D, when assessed using the Office of Science and Technology Gate Model, falls primarily in the 3rd - Exploratory

  5. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural

  6. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  7. Evaluation of Thermoelectric Generators by I-V Curves

    NASA Astrophysics Data System (ADS)

    Min, Gao; Singh, Tanuj; Garcia-Canadas, Jorge; Ellor, Robert

    2016-03-01

    A recent theoretical study proposes a new way to evaluate thermoelectric devices by measuring two I-V curves—one obtained under a constant temperature difference and the other obtained for a constant thermal input. We report an experimental demonstration of the feasibility of this novel technique. A measurement system was designed and constructed, which enables both types of I-V curves to be obtained automatically. The effective ZT values of a thermoelectric module were determined using this system and compared with those measured by an impedance spectroscopy technique. The results confirm the validity of the proposed technique. In addition, the capability of measuring ZT under a large temperature difference was also investigated. The results show that the ZTs obtained for a large temperature difference are significantly smaller than those for a small temperature difference, providing insights into the design and operation of thermoelectric modules in realistic applications.

  8. Technology advancement of an oxygen generation subsystem

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Burke, K. A.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    An oxygen generation subsystem based on water electrolysis was developed and tested to further advance the concept and technology of the spacecraft air revitalization system. Emphasis was placed on demonstrating the subsystem integration concept and hardware maturity at a subsystem level. The integration concept of the air revitalization system was found to be feasible. Hardware and technology of the oxygen generation subsystem was demonstrated to be close to the preprototype level. Continued development of the oxygen generation technology is recommended to further reduce the total weight penalties of the oxygen generation subsystem through optimization.

  9. Group IV nanotube transistors for next generation ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Fahad, Hossain M.; Hussain, Aftab M.; Sevilla Torres, Galo A.; Banerjee, Sanjay K.; Hussain, Muhammad M.

    2014-06-01

    Evolution in transistor technology from increasingly large power consuming single gate planar devices to energy efficient multiple gate non-planar ultra-narrow (< 20 nm) fins has enhanced the scaling trend to facilitate doubling performance. However, this performance gain happens at the expense of arraying multiple devices (fins) per operation bit, due to their ultra-narrow dimensions (width) originated limited number of charges to induce appreciable amount of drive current. Additionally arraying degrades device off-state leakage and increases short channel characteristics, resulting in reduced chip level energy-efficiency. In this paper, a novel nanotube device (NTFET) topology based on conventional group IV (Si, SiGe) channel materials is discussed. This device utilizes a core/shell dual gate strategy to capitalize on the volume-inversion properties of an ultra-thin (< 10 nm) group IV nanotube channel to minimize leakage and short channel effects while maximizing performance in an area-efficient manner. It is also shown that the NTFET is capable of providing a higher output drive performance per unit chip area than an array of gate-all-around nanowires, while maintaining the leakage and short channel characteristics similar to that of a single gate-all-around nanowire, the latter being the most superior in terms of electrostatic gate control. In the age of big data and the multitude of devices contributing to the internet of things, the NTFET offers a new transistor topology alternative with maximum benefits from performance-energy efficiency-functionality perspective.

  10. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  11. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    SciTech Connect

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

  12. Maize RNA Polymerase IV Defines trans-Generational Epigenetic Variation[W

    PubMed Central

    Erhard, Karl F.; Parkinson, Susan E.; Gross, Stephen M.; Barbour, Joy-El R.; Lim, Jana P.; Hollick, Jay B.

    2013-01-01

    The maize (Zea mays) RNA Polymerase IV (Pol IV) largest subunit, RNA Polymerase D1 (RPD1 or NRPD1), is required for facilitating paramutations, restricting expression patterns of genes required for normal development, and generating small interfering RNA (siRNAs). Despite this expanded role for maize Pol IV relative to Arabidopsis thaliana, neither the general characteristics of Pol IV–regulated haplotypes, nor their prevalence, are known. Here, we show that specific haplotypes of the purple plant1 locus, encoding an anthocyanin pigment regulator, acquire and retain an expanded expression domain following transmission from siRNA biogenesis mutants. This conditioned expression pattern is progressively enhanced over generations in Pol IV mutants and then remains heritable after restoration of Pol IV function. This unusual genetic behavior is associated with promoter-proximal transposon fragments but is independent of sequences required for paramutation. These results indicate that trans-generational Pol IV action defines the expression patterns of haplotypes using co-opted transposon-derived sequences as regulatory elements. Our results provide a molecular framework for the concept that induced changes to the heterochromatic component of the genome are coincident with heritable changes in gene regulation. Alterations of this Pol IV–based regulatory system can generate potentially desirable and adaptive traits for selection to act upon. PMID:23512852

  13. Next Generation NASA GA Advanced Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2006-01-01

    Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.

  14. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  15. Benchmark Development in Support of Generation-IV Reactor Validation (IRPhEP 2010 Handbook)

    SciTech Connect

    John D. Bess; J. Blair Briggs

    2010-06-01

    The March 2010 edition of the International Reactor Physics Experiment Evaluation Project (IRPhEP) Handbook includes additional benchmark data that can be implemented in the validation of data and methods for Generation IV (GEN-IV) reactor designs. Evaluations supporting sodium-cooled fast reactor (SFR) efforts include the initial isothermal tests of the Fast Flux Test Facility (FFTF) at the Hanford Site, the Zero Power Physics Reactor (ZPPR) 10B and 10C experiments at the Idaho National Laboratory (INL), and the burn-up reactivity coefficient of Japan’s JOYO reactor. An assessment of Russia’s BFS-61 assemblies at the Institute of Physics and Power Engineering (IPPE) provides additional information for lead-cooled fast reactor (LFR) systems. Benchmarks in support of the very high temperature reactor (VHTR) project include evaluations of the HTR-PROTEUS experiments performed at the Paul Scherrer Institut (PSI) in Switzerland and the start-up core physics tests of Japan’s High Temperature Engineering Test Reactor. The critical configuration of the Power Burst Facility (PBF) at the INL which used ternary ceramic fuel, U(18)O2-CaO-ZrO2, is of interest for fuel cycle research and development (FCR&D) and has some similarities to “inert-matrix” fuels that are of interest in GEN-IV advanced reactor design. Two additional evaluations were revised to include additional evaluated experimental data, in support of light water reactor (LWR) and heavy water reactor (HWR) research; these include reactor physics experiments at Brazil’s IPEN/MB-01 Research Reactor Facility and the French High Flux Reactor (RHF), respectively. The IRPhEP Handbook now includes data from 45 experimental series (representing 24 reactor facilities) and represents contributions from 15 countries. These experimental measurements represent large investments of infrastructure, experience, and cost that have been evaluated and preserved as benchmarks for the validation of methods and collection of

  16. A Supercritical CO{sub 2} Cycle- a Promising Power Conversion System for Generation IV Reactors

    SciTech Connect

    Hejzlar, Pavel; Dostal, Vaclav; Driscoll, Michael J.

    2006-07-01

    Advances in power conversion systems (PCS) for Generation IV power plants are of high importance because of their impact on plant specific capital cost reduction, which can be more significant than the cost savings achieved through the modifications of the nuclear island itself. One such PCS candidate, especially attractive for reactor outlet temperatures in the range of 550 to 650 deg C, is applicable to lead-alloy, sodium, or liquid salt-cooled reactors, as well as direct-cycle CO{sub 2} cooled reactors. The efficiencies achievable in this medium temperature range exceed those of conventional Brayton cycles and supercritical steam Rankine cycles and are comparable to those of conventional helium Brayton cycles at turbine inlet temperatures of 800 to 900 deg C. The S-CO{sub 2} recompression cycle under evaluation at MIT, is described with its advantages, drawbacks and R and D needs. The cycle is shown to excel in efficiency, simplicity and compactness which projects to cost savings, and in lower sensitivity of efficiency to core bypass flow, component pressure losses and flow maldistribution in recuperators. On the other hand, the cycle is highly recuperative and thus requires very compact heat exchangers, poses challenges to design of piping for large units, and its control and part load operation is more complicated. (authors)

  17. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  18. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS

    SciTech Connect

    M.A. Alvin

    2002-01-31

    Through sponsorship from the Department of Energy's National Energy Technology Laboratory (DOE/NETL), development and manufacture of advanced second generation candle filters was undertaken in the early 1990's. Efforts were primarily focused on the manufacture of fracture toughened, 1.5 m, continuous fiber ceramic composite (CFCC) and filament wound candle filters by 3M, McDermott, DuPont Lanxide Composites, and Techniweave. In order to demonstrate long-term thermal, chemical, and mechanical stability of the advanced second generation candle filter materials, Siemens Westinghouse initiated high temperature, bench-scale, corrosion testing of 3M's CVI-SiC and DuPont's PRD-66 mini-candles, and DuPont's CFCC SiC-SiC and IF&P Fibrosic{sup TM} coupons under simulated, pressurized fluidized-bed combustion (PFBC) conditions. This effort was followed by an evaluation of the mechanical and filtration performance of the advanced second generation filter elements in Siemens Westinghouse's bench-scale PFBC test facility in Pittsburgh, Pennsylvania. Arrays of 1.4-1.5 m 3M CVI-SiC, DuPont PRD-66, DuPont SiC-SiC, and IF&P Fibrosic{sup TM} candles were subjected to steady state process operating conditions, increased severity thermal transients, and accelerated pulse cycling test campaigns which represented {approx}1760 hours of equivalent filter operating life. Siemens Westinghouse subsequently participated in early material surveillance programs which marked entry of the 3M CVI-SiC and DuPont PRD-66 candle filters in Siemens Westinghouse Advanced Particulate Filtration (APF) system at the American Electric Power (AEP) Tidd Demonstration Plant in Brilliant, Ohio. Siemens Westinghouse then conducted an extended, accelerated life, qualification program, evaluating the performance of the 3M, McDermott, and Techniweave oxide-based CFCC filter elements, modified DuPont PRD-66 elements, and the Blasch, Scapa Cerafil{sup TM}, and Specific Surface monolithic candles for use in the APF

  19. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    SciTech Connect

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  20. The Generation in Between: A Perspective from the Keystone IV Conference.

    PubMed

    Chen, Frederick M; Bliss, Erika; Dunn, Aaron; Edgoose, Jennifer; Elliott, Tricia C; Maxwell, Lisa C; Morris, Carl G; Phillips, Robert L

    2016-01-01

    Keystone IV affirmed the value of relationships in family medicine, but each generation of family physicians took away different impressions and lessons. "Generation III," between the Baby Boomers and Millennials, reported conflict between their professional ideal of family medicine and the realities of current practice. But the Keystone conference also helped them appreciate core values of family medicine, their shared experience, and new opportunities for leadership. PMID:27387165

  1. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  2. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  3. Generation IV nuclear energy system initiative. Pin core subassembly designfor the Gas-Cooled Fast Reactor.

    SciTech Connect

    Farmer, M. T.; Hoffman, E. A.; Pfeiffer, P. F.; Therios, I. U.

    2006-07-31

    The Gas-Cooled Fast Reactor (GFR) is one of six systems selected for viability assessment in the Generation IV program. It features a closed nuclear fuel cycle, consisting of a high-temperature helium-cooled fast spectrum reactor, coupled to a direct-cycle helium turbine for electricity production. The GFR combines the advances of fast spectrum systems with those of high-temperature systems. It was clear from the very beginning that GFR design should be driven by the objective to offer a complementary approach to liquid metal cooling. On this basis, CEA and the US DOE decided to collaborate on the pre-conceptual design of a GFR. This reactor design will provide a high level of safety and full recycling of the actinides, and will also be highly proliferation resistant and economically attractive. The status of this collaborative project is that two unit sizes, 600 MWt and 2400 MWt were selected as the focus of the design and safety studies. Researchers studied fuel forms, fuel assembly/element designs, core configurations, primary and balance-of-plant layouts, and safety approaches for both of these unit sizes. Results regarding the feasibility of this GFR design are encouraging. For example, sustainability and non-proliferation goals can be met and the proposed concept has attractive safety features. These features take advantage of the helium in terms of its neutronic quasi-transparency as well as the enhanced Doppler effect in connection with candidate fuel and structural materials. The current design trend is to consider high unit power for the GFR (2400 MWt), an attractive level for the power density (100 MW/m{sup 3}), and the implementation of an innovative plate type fuel or pin type sub-assembly with carbide-based actinide compounds and SiC-based structural materials. Work is still needed to refine the safety approach, to select the main system options, and to more definitively establish economic parameters.

  4. Advanced Eddy current NDE steam generator tubing.

    SciTech Connect

    Bakhtiari, S.

    1999-03-29

    As part of a multifaceted project on steam generator integrity funded by the U.S. Nuclear Regulatory Commission, Argonne National Laboratory is carrying out research on the reliability of nondestructive evaluation (NDE). A particular area of interest is the impact of advanced eddy current (EC) NDE technology. This paper presents an overview of work that supports this effort in the areas of numerical electromagnetic (EM) modeling, data analysis, signal processing, and visualization of EC inspection results. Finite-element modeling has been utilized to study conventional and emerging EC probe designs. This research is aimed at determining probe responses to flaw morphologies of current interest. Application of signal processing and automated data analysis algorithms has also been addressed. Efforts have focused on assessment of frequency and spatial domain filters and implementation of more effective data analysis and display methods. Data analysis studies have dealt with implementation of linear and nonlinear multivariate models to relate EC inspection parameters to steam generator tubing defect size and structural integrity. Various signal enhancement and visualization schemes are also being evaluated and will serve as integral parts of computer-aided data analysis algorithms. Results from this research will ultimately be substantiated through testing on laboratory-grown and in-service-degraded tubes.

  5. Next Generation Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Spencer, Susan; Bryan, Tom; Johnson, Jimmie; Robertson, Bryan

    2008-01-01

    The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. The United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport. Systems (COTS) Automated Rendezvous and Docking (AR&D). AVGS has a proven pedigree, based on extensive ground testing and flight demonstrations. The AVGS on the Demonstration of Autonomous Rendezvous Technology (DART)mission operated successfully in "spot mode" out to 2 km. The first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. Parts obsolescence issues prevent the construction of more AVGS. units, and the next generation sensor must be updated to support the CEV and COTS programs. The flight proven AR&D sensor is being redesigned to update parts and add additional. capabilities for CEV and COTS with the development of the Next, Generation AVGS (NGAVGS) at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities might include greater sensor range, auto ranging, and real-time video output. This paper presents an approach to sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, parts selection and test plans for the NGAVGS will be addressed to provide a highly reliable flight qualified sensor. Expanded capabilities through innovative use of existing capabilities will also be

  6. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  7. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    SciTech Connect

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  8. Generation IV reactors and the ASTRID prototype: Lessons from the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Gauché, François

    2012-05-01

    In France, the ASTRID prototype is a sodium-cooled fast neutron industrial demonstrator, fulfilling the criteria for Generation IV reactors. ASTRID will meet safety requirements as stringent as for 3rd generation reactors, and take into account lessons from the Fukushima accident. The objectives are to reinforce the robustness of the safety demonstration for all safety functions. ASTRID will feature an innovative core with a negative sodium void coefficient, take advantage of the large thermal inertia of SFRs for decay heat removal, and provide for a design either eliminating the sodium-water reaction, or guaranteeing no consequences for safety in case such reaction would take place.

  9. Advance crew procedures development techniques: Procedures generation program requirements document

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.

    1974-01-01

    The Procedures Generation Program (PGP) is described as an automated crew procedures generation and performance monitoring system. Computer software requirements to be implemented in PGP for the Advanced Crew Procedures Development Techniques are outlined.

  10. A nonheme manganese(IV)-oxo species generated in photocatalytic reaction using water as an oxygen source.

    PubMed

    Wu, Xiujuan; Yang, Xiaonan; Lee, Yong-Min; Nam, Wonwoo; Sun, Licheng

    2015-03-01

    A nonheme manganese(IV)-oxo complex, [Mn(IV)(O)(BQCN)](2+), was generated in the photochemical and chemical oxidation of [Mn(II)(BQCN)](2+) with water as an oxygen source, respectively. The photocatalytic oxidation of organic substrates, such as alcohol and sulfide, by [Mn(II)(BQCN)](2+) has been demonstrated in both neutral and acidic media. PMID:25658677

  11. High Efficiency Thermionics (HET-IV) and Converter Advancement (CAP) programs. Final reports

    SciTech Connect

    Geller, C.B.; Murray, C.S.; Riley, D.R.; Desplat, J.L.; Hansen, L.K.; Hatch, G.L.; McVey, J.B.; Rasor, N.S.

    1996-04-01

    This report contains the final report of the High Efficiency Thermionics (HET-IV) Program, Attachment A, performed at Rasor Associates, Inc. (RAI); and the final report of the Converter Advancement Program (CAP), performed at the Bettis Atomic Power Laboratory, Attachment B. The phenomenology of cesium-oxygen thermionic converters was elucidated in these programs, and the factors that had prevented the achievement of stable, enhanced cesium-oxygen converter performance for the previous thirty years were identified. Based on these discoveries, cesium-oxygen vapor sources were developed that achieved stable performance with factor-of-two improvements in power density and thermal efficiency, relative to conventional, cesium-only ignited mode thermionic converters. Key achievements of the HET-IV/CAP programs are as follows: a new technique for measuring minute traces of oxygen in cesium atmospheres; the determination of the proper range of oxygen partial pressures for optimum converter performance--10{sup {minus}7} to 10{sup {minus}9} torr; the discovery, and analysis of the cesium-oxygen liquid migration and compositional segregation phenomena; the successful use of capillary forces to contain the migration phenomenon; the use of differential heating to control compositional segregation, and induce vapor circulation; the development of mechanically and chemically stable, porous reservoir structures; the development of precise, in situ oxygen charging methods; stable improvements in emitter performance, up to effective emitter bare work functions of 5.4 eV; stable improvements in barrier index, to value below 1.8 Volts; the development of detailed microscopic models for cesium-oxygen reservoir dynamics and collector work function behavior; and the discovery of new relationships between electrode geometry and Schock Instability.

  12. Multiple Unit Instrumentation and Control (I and C) Systems for Generation IV Nuclear Power Systems

    SciTech Connect

    Miller, Don W.; Fiorino, Michael M.; Quinn, Edward 'Ted'; Mauck, Jerry L.

    2002-07-01

    Several Generation IV design concepts involve compact modular reactor configurations that can significantly reduce the overall cost of construction of a nuclear plant. However, the operating costs of independent smaller units are increased on a per-MW basis versus larger scale reactors. To offset this economic penalty, Generation IV nuclear plants will benefit economically from a multi-unit (or multi-module) configuration, where some facilities or power conversion system resources are shared; balance of plant systems, auxiliary systems, and the main control room are all candidates for shared or integrated implementation. However, these multi-modular configurations introduce safety and operational challenges that must be addressed at an early stage in the design process. The goal of this paper is the identification and evaluation of the regulatory, operational, and monitoring issues arising from multi-unit nuclear plant implementations. The paper will provide an overview of a research approach that uses a model of a generic module as a basis for integration of design and monitoring, alongside regulatory requirements, for these proposed configurations. (authors)

  13. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    SciTech Connect

    Pahladsingh, R.R.

    2002-07-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  14. Recent advances in RF power generation

    SciTech Connect

    Tallerico, P.J.

    1990-01-01

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

  15. Evaluation Methodology For Proliferation Resistance And Physical Protection Of Generation IV Nuclear Energy Systems: An Overview

    SciTech Connect

    T. Bjornard; R. Bari; R. Nishimura; P. Peterson; J. Roglans; D. Bley; J. Cazalet; G.G.M. Cojazzi; P. Delaune; M. Golay; G. Rendad; G. Rochau; M. Senzaki; I. Therios; M. Zentner

    2006-05-01

    This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: 1.System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. 2.Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. 3.Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include

  16. EVALUATION METHODOLOGY FOR PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION OF GENERATION IV NUCLEAR ENERGY SYSTEMS: AN OVERVIEW.

    SciTech Connect

    BARI, R.; ET AL.

    2006-03-01

    This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: (1) System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. (2) Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. (3) Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include

  17. Impact of Advance Control on Microturbine Generation System Performance

    NASA Astrophysics Data System (ADS)

    Kamil Mat Hussin, Ahmad; Zamri Che Wanik, Mohd

    2013-06-01

    Advance control employed in microturbine generation system (MTGS) is expected to improve its performance in responding to grid faults. This paper compares the effect of advance control of MTGS power conversion topology on the performance in riding through the grid faults. The analysis and investigation study through simulation shows there is no significant different on MTGS output performance even advance control is employed for its rectifier.

  18. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  19. Advancing-layers method for generation of unstructured viscous grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.

  20. Multidimensional Model of Fluid Flow and Heat Transfer in Generation-IV Supercritical Water Reactors

    SciTech Connect

    Gallaway, Tara; Antal, Steven P.; Podowski, Michael Z.

    2006-07-01

    This paper is concerned with the mechanistic modeling and theoretical/computational analysis of flow and heat transfer in future Generation-IV Supercritical Water Cooled Reactors (SCWR). The issues discussed in the paper include: the development of analytical models of the properties of supercritical water, and the application of full three-dimensional computational modeling framework to simulate fluid flow and heat transfer in SCWRs. Several results of calculations are shown, including the evaluation of water properties (density, specific heat, thermal conductivity, viscosity, and Prandtl number) near the pseudo-critical temperature for various supercritical pressures, and the CFD predictions using the NPHASE computer code. It is demonstrated that the proposed approach is very promising for future mechanistic analyses of SCWR thermal-hydraulics and safety. (authors)

  1. Assessment methodology development for proliferation resistance and physical protection of generation IV systems.

    SciTech Connect

    Roglans, J.; Peterson, P. F.; Nuclear Engineering Division; Univ. of California Berkeley

    2003-01-01

    One of the technology goals set for future Generation IV nuclear energy systems is to be 'a very unattractive and least desirable route' for proliferation, and to provide increased physical protection against theft or sabotage. To evaluate system performance for this goal, an international Expert Group has been formed and has adopted an evaluation method that involves three elements: (1) a process to systematically identify the range of potential security challenges that could face the system-a 'threat space' that includes State diversion or undeclared production of materials for nuclear explosives (proliferation resistance), and non-State theft or radiological sabotage (physical protection robustness); (2) methods for evaluating the system response to these challenges, at a level of detail appropriate to the stage of system or facility design; and (3) a set of measures of system performance that allow assessment and comparison of how well facilities systems meet the goal of providing a 'very unattractive and least desirable route.'

  2. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    SciTech Connect

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  3. High-Force Generation Is a Conserved Property of Type IV Pilus Systems▿

    PubMed Central

    Clausen, Martin; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Maier, Berenike

    2009-01-01

    The type IV pilus (T4P) system of Neisseria gonorrhoeae is the strongest linear molecular motor reported to date, but it is unclear whether high-force generation is conserved between bacterial species. Using laser tweezers, we found that the average stalling force of single-pilus retraction in Myxococcus xanthus of 149 ± 14 pN exceeds the force generated by N. gonorrhoeae. Retraction velocities including a bimodal distribution were similar between M. xanthus and N. gonorrhoeae, but force-dependent directional switching was not. Force generation by pilus retraction is energized by the ATPase PilT. Surprisingly, an M. xanthus mutant lacking PilT apparently still retracted T4P, although at a reduced frequency. The retraction velocity was comparable to the high-velocity mode in the wild type at low forces but decreased drastically when the force increased, with an average stalling force of 70 ± 10 pN. Thus, M. xanthus harbors at least two different retraction motors. Our results demonstrate that the major physical properties are conserved between bacteria that are phylogenetically distant and pursue very different lifestyles. PMID:19429611

  4. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  5. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    SciTech Connect

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  6. Generation of dipeptidyl peptidase-IV-inhibiting peptides from β-lactoglobulin secreted by Lactococcus lactis.

    PubMed

    Shigemori, Suguru; Oshiro, Kazushi; Wang, Pengfei; Yamamoto, Yoshinari; Wang, Yeqin; Sato, Takashi; Uyeno, Yutaka; Shimosato, Takeshi

    2014-01-01

    Previous studies showed that hydrolysates of β-lactoglobulin (BLG) prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV) activity in vitro. In this study, we developed a BLG-secreting Lactococcus lactis strain as a delivery vehicle and in situ expression system. Interestingly, trypsin-digested recombinant BLG from L. lactis inhibited DPP-IV activity, suggesting that BLG-secreting L. lactis may be useful in the treatment of type 2 diabetes mellitus. PMID:25157356

  7. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  8. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  9. SPECIATION OF SELENIUM(IV) AND SELENIUM(VI) USING COUPLED ION CHROMATOGRAPHY: HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple method was developed to speciate inorganic selenium in the microgram per liter range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determination of the redox states selenite, Se(IV), and s...

  10. Carpet Specifiers Guide. Ultron, Advanced Generation Nylon Carpet Fiber.

    ERIC Educational Resources Information Center

    Monsanto Textiles Co., Atlanta, GA.

    The purpose of this guide is to assist specifiers in properly specifying carpet made of Monsanto Ultron advanced generation nylon fiber. The guide describes a variety of conditions that should be considered in arriving at the proper selection and provides reference information and data, ranging from varying regulatory requirements, performance and…

  11. Lead-cooled system design and challenges in the frame of Generation IV International Forum

    NASA Astrophysics Data System (ADS)

    Cinotti, Luciano; Smith, Craig F.; Sekimoto, Hiroshi; Mansani, Luigi; Reale, Marco; Sienicki, James J.

    2011-08-01

    The Generation IV International Forum (GIF) Technology Roadmap identified the Lead-cooled Fast Reactor (LFR) as a technology well suited for electricity generation, hydrogen production and actinide management in a closed fuel cycle. One of the most important features of the LFR is the fact that lead is a relatively inert coolant, a feature that conveys significant advantages in terms of safety, system simplification, and the consequent potential for economic performance. In 2004, the GIF LFR Provisional System Steering Committee was organized and began to develop the LFR System Research Plan. The committee selected two pool-type reactor concepts as candidates for international cooperation and joint development in the GIF framework: these are the Small Secure Transportable Autonomous Reactor (SSTAR); and the European Lead-cooled System (ELSY). The high boiling point (1745 °C) of lead has a beneficial impact to the safety of the system, whereas its high melting point (327.4 °C) requires new engineering strategies, especially for In-Service-Inspection and refuelling. Lead, especially at high temperatures, is also relatively corrosive towards structural materials. This necessitates that coolant purity and the level of dissolved oxygen be carefully controlled, in addition to the proper selection of structural materials. For the GIF LFR concepts, lead has been chosen as the coolant rather than Lead-Bismuth Eutectic primarily because of its greatly reduced generation of the alpha-emitting 210Po isotope formed in the coolant. This results in significantly reduced levels of radioactive contamination of the coolant while minimizing the effect of decay power in the coolant from such contaminants; an additional consideration is the desire to eliminate dependence on bismuth which might be a limited resource. This paper provides an overview of the historical development of the LFR, a summary of the advantages and challenges associated with heavy liquid metal coolants, and an

  12. Development of a High Fidelity System Analysis Code for Generation IV Reactors

    SciTech Connect

    Hongbin Zhang; Vincent Mousseau; Haihua Zhao

    2008-06-01

    Traditional nuclear reactor system analysis codes such as RELAP and TRAC employ an operator split methodology. In this approach, each of the physics (fluid flow, heat conduction and neutron diffusion) is solved separately and the coupling terms are done explicitly. This approach limits accuracy (first order in time at best) and makes the codes slow in running since the explicit coupling imposes stability restrictions on the time step size. These codes have been extensively tested and validated for the existing LWRs. However, for GEN IV nuclear reactor designs which tend to have long lasting transients resulting from passive safety systems, the performance is questionable and modern high fidelity simulation tools will be required. The requirement for accurate predictability is the motivation for a large scale overhaul of all of the models and assumptions in transient nuclear reactor safety simulation software. At INL we have launched an effort with the long term goal of developing a high fidelity system analysis code that employs modern physical models, numerical methods, and computer science for transient safety analysis of GEN IV nuclear reactors. Modern parallel solution algorithms will be employed through utilizing the nonlinear solution software package PETSc developed by Argonne National Laboratory. The physical models to be developed will have physically realistic length scales and time scales. The solution algorithm will be based on the physics-based preconditioned Jacobian-free Newton-Krylov solution methods. In this approach all of the physical models are solved implicitly and simultaneously in a single nonlinear system. This includes the coolant flow, nonlinear heat conduction, neutron kinetics, and thermal radiation, etc. Including modern physical models and accurate space and time discretizations will allow the simulation capability to be second order accurate in space and in time. This paper presents the current status of the development efforts as

  13. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); Chu, Sang-Hyon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Stoakley, Diane M. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  14. Next Generation Advanced Video Guidance Sensor Development and Test

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Lee, Jimmy; Robertson, Bryan

    2009-01-01

    The Advanced Video Guidance Sensor (AVGS) was the primary docking sensor for the Orbital Express mission. The sensor performed extremely well during the mission, and the technology has been proven on orbit in other flights too. Parts obsolescence issues prevented the construction of more AVGS units, so the next generation of sensor was designed with current parts and updated to support future programs. The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been tested as a breadboard, two different brassboard units, and a prototype. The testing revealed further improvements that could be made and demonstrated capability beyond that ever demonstrated by the sensor on orbit. This paper presents some of the sensor history, parts obsolescence issues, radiation concerns, and software improvements to the NGAVGS. In addition, some of the testing and test results are presented. The NGAVGS has shown that it will meet the general requirements for any space proximity operations or docking need.

  15. Advanced Clinical Interpretation of the WAIS-IV and WMS-IV: Prevalence of Low Scores Varies by Level of Intelligence and Years of Education

    ERIC Educational Resources Information Center

    Brooks, Brian L.; Holdnack, James A.; Iverson, Grant L.

    2011-01-01

    Clinicians can use the base rates of low scores in healthy people to reduce the likelihood of misdiagnosing cognitive impairment. In the present study, base rates were developed for the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Wechsler Memory Scale-Fourth Edition (WMS-IV) using 900 healthy adults and validated on 28 patients…

  16. Performance of advanced wind turbine airfoils with vortex generators

    SciTech Connect

    Wetzel, K.K.; Farokhi, S.

    1995-12-31

    The performance of the NREL S807 airfoil is experimentally determined via wind tunnel testing. The tests are conducted at Reynolds numbers of 0.5, 1.0, and 1.5{sm_bullet}10{sup 6}, with a clean surface, with two levels of leading edge surface roughness, and with surface roughness and large wishbone vortex generators. The results show that the S807 maximum lift coefficient drops with the application of leading edge surface roughness. The wishbone vortex generators are successful in restoring most of the loss in maximum lift coefficient at the cost of significant increase in profile drag at pre-stall angles of attack. The aerodynamic characteristics of the S807 with and without vortex generators are used as the input to the PROP93 and SEACC computer models to simulate the performance of an advanced wind turbine employing vortex generators. The results demonstrate that vortex generators could improve the performance of advanced wind turbines using the NREL airfoils by up to 4%.

  17. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Wen, Xingshuo

    The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb-glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and

  18. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  19. Advanced nanoparticle generation and excitation by lasers in liquids.

    PubMed

    Barcikowski, Stephan; Compagnini, Giuseppe

    2013-03-01

    Today, nanoparticles are widely implemented as functional elements onto surfaces, into volumes and as nano-hybrids, resulting for example in bioactive composites and biomolecule conjugates. However, only limited varieties of materials compatible for integration into advanced functional materials are available: nanoparticles synthesized using conventional gas phase processes are often agglomerated into micro powders that are hard to re-disperse into functional matrices. Chemical synthesis methods often lead to impurities of the nanoparticle colloids caused by additives and precursor reaction products. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment, and conjugate a large variety of nanostructures in a scalable and clean manner. This editorial briefly highlights selected recent advancements and critical aspects in the field of pulsed laser-based nanoparticle generation and manipulation, including exemplary strategies to harvest the unique properties of the laser-generated nanomaterials in the field of biomedicine and catalysis. The presented critical aspects address future assignments such as size control and scale-up. PMID:23138867

  20. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV.

    PubMed

    Akman, H Orhan; Sheiko, Tatiana; Tay, Stacey K H; Finegold, Milton J; Dimauro, Salvatore; Craigen, William J

    2011-11-15

    Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen branching enzyme (GBE). The diagnostic feature of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age of disease onset. Absence of enzyme activity is lethal in utero or in infancy affecting primarily muscle and liver. However, residual enzyme activity (5-20%) leads to juvenile or adult onset of a disorder that primarily affects muscle as well as central and peripheral nervous system. Here, we describe two mouse models of GSD IV that reflect this spectrum of disease. Homologous recombination was used to insert flippase recognition target recombination sites around exon 7 of the Gbe1 gene and a phosphoglycerate kinase-Neomycin cassette within intron 7, leading to a reduced synthesis of GBE. Mice bearing this mutation (Gbe1(neo/neo)) exhibit a phenotype similar to juvenile onset GSD IV, with wide spread accumulation of PG. Meanwhile, FLPe-mediated homozygous deletion of exon 7 completely eliminated GBE activity (Gbe1(-/-)), leading to a phenotype of lethal early onset GSD IV, with significant in utero accumulation of PG. Adult mice with residual GBE exhibit progressive neuromuscular dysfunction and die prematurely. Differently from muscle, PG in liver is a degradable source of glucose and readily depleted by fasting, emphasizing that there are structural and regulatory differences in glycogen metabolism among tissues. Both mouse models recapitulate typical histological and physiological features of two human variants of branching enzyme deficiency. PMID:21856731

  1. Advanced DTM Generation from Very High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Perko, R.; Raggam, H.; Gutjahr, K. H.; Schardt, M.

    2015-03-01

    This work proposes a simple filtering approach that can be applied to digital surface models in order to extract digital terrain models. The method focusses on robustness and computational efficiency and is in particular tailored to filter DSMs that are extracted from satellite stereo images. It represents an evolution of an existing DTM generation method and includes distinct advancement through the integration of multi-directional processing as well as slope dependent filtering, thus denoted "MSD filtering". The DTM generation workflow is fully automatic and requires no user interaction. Exemplary results are presented for a DSM generated from a Pléiades tri-stereo image data set. Qualitative and quantitative evaluations with respect to highly accurate reference LiDAR data confirm the effectiveness of the proposed algorithm.

  2. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  3. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features (Phase IV--Summary Report).

    ERIC Educational Resources Information Center

    Polzella, Donald J.; And Others

    Modern aircrew training devices (ATDs) are equipped with sophisticated hardware and software capabilities, known as advanced instructional features (AIFs), that permit a simulator instructor to prepare briefings, manage training, vary task difficulty/fidelity, monitor performance, and provide feedback for flight simulation training missions. The…

  4. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  5. Nuclear Energy Research Initiative Program (NERI) Quarterly Progress Report; New Design Equations for Swelling and Irradiation Creep in Generation IV Reactors

    SciTech Connect

    Wolfer, W G; Surh, M P; Garner, F A; Chrzan, D C; Schaldach, C; Sturgeon, J B

    2003-02-13

    The objectives of this research project are to significantly extend the theoretical foundation and the modeling of radiation-induced microstructural changes in structural materials used in Generation IV nuclear reactors, and to derive from these microstructure models the constitutive laws for void swelling, irradiation creep and stress-induced swelling, as well as changes in mechanical properties. The need for the proposed research is based on three major developments and advances over the past two decades. First, new experimental discoveries have been made on void swelling and irradiation creep which invalidate previous theoretical models and empirical constitutive laws for swelling and irradiation creep. Second, recent advances in computational methods and power make it now possible to model the complex processes of microstructure evolution over long-term neutron exposures. Third, it is now required that radiation-induced changes in structural materials over extended lifetimes be predicted and incorporated in the design of Generation IV reactors. Our approach to modeling and data analysis is a dual one in accord with both the objectives to simulate the evolution of the microstructure and to develop design equations for macroscopic properties. Validation of the models through data analysis is therefore carried out at both the microscopic and the macroscopic levels. For the microstructure models, we utilize the transmission electron microscopy results from steels irradiated in reactors and from model materials irradiated by neutrons as well as ion bombardments. The macroscopic constitutive laws will be tested and validated by analyzing density data, irradiation creep data, diameter changes of fuel elements, and post-irradiation tensile data. Validation of both microstructure models and macroscopic constitutive laws is a more stringent test of the internal consistency of the underlying science for radiation effects in structural materials for nuclear reactors.

  6. Beam Loading Generated by the LOLA-IV Structure in TTF-II

    SciTech Connect

    Bane, Karl LF

    2003-09-17

    The LOLA-IV transverse detecting cavity [1] is used in the Sub-Picosecond Photon Source (SPPS) as a diagnostic for measuring the length of very short bunches (with rms length on the order of tens of microns). It is envisioned to use the same structure for the same purpose in the Tesla Test Facility (TTF)-II. However, unlike the SPPS, the TTF-II may also run in multi-bunch mode, and the question arises, How serious is the beam loading that would be induced? In this report we address this question and find that, for LOLA-IV in TTF-II, the variation in beam-loading induced energy is confined to the first {approx} 80 bunches, and that the total spread in induced energy--the difference in energy between the bunch in the train with the highest energy and the one with the lowest energy--is very small, {approx} 0.03%.

  7. A non-iterative technique for determination of solar cell parameters from the light generated I-V characteristic

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Panchal, Ashish K.

    2013-08-01

    Accurate information about electrical parameters of a photovoltaic (PV) cell is many times essential for evaluating the performance of the cell when delivering power at its full capacity. This paper presents a technique for determining the cell parameters from the light generated current-voltage (I-V) characteristic with a valid assumption for any kind of cells. The technique neither involves any initial approximations nor iteration processes. The technique is employed for various PV cell technologies such as silicon, copper indium gallium selenide, organic, dye sensitized solar cell, and organic tandem cells, previously available in the literatures. Obtained I-V characteristics for the cells using the present technique are in well agreement with those of reported in the literature. The technique is further extended for the analysis of a silicon cell and a silicon module tested in the laboratory and the results obtained are very close to those of the experimental data.

  8. Kinetics of phosphodiester cleavage by differently generated cerium(IV) hydroxo species in neutral solutions.

    PubMed

    Maldonado, Ana L; Yatsimirsky, Anatoly K

    2005-08-01

    Neutral aqueous solutions of cerium ammonium nitrate obtained by dilution of their acetonitrile stock solution with imidazole buffer show high catalytic activity in the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and better reproducibility than other similar systems, but suffer from low stability. The kinetics of catalytic hydrolysis is second-order in Ce(IV), independent of pH in the range 5-8 and tentatively involves the Ce2(OH)7+ species as the active form. Attempts to stabilize the active species by different types of added ligands failed, but the use of Ce(IV) complexes pre-synthesized in an organic solvent with potentially stabilizing ligands as precursors of active hydroxo species appeared to be more successful. Three new Ce(IV) complexes, [Ce(Phen)2O(NO3)2], [Ce(tris)O(NO3)(OH)] and [Ce(BTP)2(NO3)4].2H2O (BTP = bis-tris propane, 1,3-bis[tris(hydroxymethyl)methylamino]propane), were prepared by reacting cerium ammonium nitrate with the respective ligands in acetonitrile and were characterized by analytical and spectroscopic techniques. Aqueous solutions of these complexes undergo rapid hydrolysis producing nearly neutral polynuclear Ce(IV) oxo/hydroxo species with high catalytic activity in BNPP hydrolysis. Potentiometric titrations of the solutions obtained from the complex with BTP revealed the formation of Ce4(OH)15+ species at pH > 7, which are protonated affording Ce4(OH)14(2+) and then Ce4(OH)13(3+) on a decrease in pH from 7 to 5. The catalytic activity increases strongly on going to species with a higher positive charge. The reaction mechanism involves first- and second-order in catalyst paths as well as intermediate complex formation with the substrate for higher charged species. PMID:16032364

  9. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  10. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Bishop, Sean; Duncan, Keith; Hagelin-Weaver, Helena; Neal, Luke; Sanchez, Jose; Paul, Heather L.; Wachsman, Eric

    2007-01-01

    The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. However, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight for life support if the oxygen can be recovered. Recently, the University of Florida devel- oped novel ceramic oxygen generators employing a bilayer elec- trolyte of gadolinia-doped ceria and erbia-stabilized bismuth ox- ide (ESB) for NASA's future exploration of Mars. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. The strategy discussed here for advanced life support systems employs a catalytic layer com- bined with a COG cell so that CO2 is reduced all the way to solid carbon and oxygen without carbon buildup on the COG cell and subsequent deactivation.

  11. The design of an advanced CCD timing generator

    NASA Astrophysics Data System (ADS)

    Cheng, Guimei; Wu, Songbo; Wan, Min; Bao, Bin; Deng, JueQiong; Duan, Jing

    2015-10-01

    This paper describes how to design and develop an advanced Charge Coupled Device (CCD) timing generator which can obtain high precise CCD output signals. Above all, theory of the design and implementation of CCD timing generator is introduced based on Field Programmable Gate Array (FPGA) devices in detail. Secondly, it studies and analyzes the influencing factors that the waveform of CCD driving timing signals have on qualities of CCD output signals, which contain duty-cycle of HCCD clock, positive width of RST, signal-skew and delays among these signals. Then some skills are presented to improve and optimize the design in the phase of coding, compiling and placement and routing, which include code constraint, incremental placement and so on. Finally, simulation and verification of the design are performed with simulation tools, and hardware tests are carried out and experiment results are proved by oscilloscope.

  12. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Astrophysics Data System (ADS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  13. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  14. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  15. Identification of Zr(iv)-based architectures generated from ligands incorporating the 2,2'-biphenolato unit.

    PubMed

    Miao, Chengrui; Khalil, Georges; Chaumont, Alain; Mobian, Pierre; Henry, Marc

    2016-05-10

    The structural identification in solution of the Zr(iv) complexes involving two 2,2-biphenol-based proligands is reported. The proligand L(1)H2 contains one 2,2-biphenol unit whereas L(2)H4 incorporates two 2,2-biphenol units linked by a para-phenylene bridge. Diffusion Ordered Spectroscopy (DOSY) combined with electrospray mass spectrometry analysis and density functional theory (DFT) allowed for determining the molecular structures of such Zr(iv)-based architectures. It is proposed that [Zr(OPr(i))4(HOPr(i))] in the presence of L(1)H2 generates an octahedral complex formulated as [ZrL(1)3H2]. Concerning the self-assembled architecture incorporating the L(2) ligand, the analytical data highlight the formation of an unprecedented neutral Zr(iv) triple-stranded helicate ([Zr2L(2)3H4]). Insight into the geometry of these complexes is obtained via DFT calculations. Remarkably, the helicate structure characterized in solution strongly contrasts with the triple-stranded structure of the complex that crystallizes. PMID:27070916

  16. Characterization of the Advanced Stirling Radioisotope Generator EU2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  17. Advancing the Next Generation of Health Risk Assessment

    PubMed Central

    Anastas, Paul T.; Birnbaum, Linda S.; Clark, Rebecca M.; Dix, David J.; Edwards, Stephen W.; Preuss, Peter W.

    2012-01-01

    Background: Over the past 20 years, knowledge of the genome and its function has increased dramatically, but risk assessment methodologies using such knowledge have not advanced accordingly. Objective: This commentary describes a collaborative effort among several federal and state agencies to advance the next generation of risk assessment. The objective of the NexGen program is to begin to incorporate recent progress in molecular and systems biology into risk assessment practice. The ultimate success of this program will be based on the incorporation of new practices that facilitate faster, cheaper, and/or more accurate assessments of public health risks. Methods: We are developing prototype risk assessments that compare the results of traditional, data-rich risk assessments with insights gained from new types of molecular and systems biology data. In this manner, new approaches can be validated, traditional approaches improved, and the value of different types of new scientific information better understood. Discussion and Conclusions: We anticipate that these new approaches will have a variety of applications, such as assessment of new and existing chemicals in commerce and the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Additionally, results of the effort are likely to spur further research and test methods development. Full implementation of new approaches is likely to take 10–20 years. PMID:22875311

  18. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  19. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    PubMed Central

    Johnstone, Timothy C.; Suntharalingam, Kogularamanan; Lippard, Stephen J.

    2016-01-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer,, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing non-classical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore non-classical platinum(II) complexes with trans geometry and with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-treat agents, and photoactivatable platinum(IV) complexes. Nanodelivery particles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also reflect our optimism that the next generation of platinum cancer drugs is about to arrive. PMID:26865551

  20. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs.

    PubMed

    Johnstone, Timothy C; Suntharalingam, Kogularamanan; Lippard, Stephen J

    2016-03-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive. PMID:26865551

  1. Development of next generation 1500C class advanced combustion turbines

    SciTech Connect

    Aoki, S.; Tskuda, Y.; Akita, E.; Tomita, Y.

    1998-07-01

    The full load test run of the 501G combustion turbine has just finished at Takasago combined cycle plant in MHI, Japan. The 501G has power output of 230MW at turbine inlet temperature of 1,500 C and can achieve combined net efficiency of 52%. The NO{sub x} level proved to be less than 25 ppm. The 501G and 701G1 combustion turbines are large heavy-duty single shaft combustion turbines which combine the proven reliability and efficiency of the F series with the latest low NO{sub x} combustion technology and the state-of-the-art cooling technique. As the full load test run has proved, it is a highly advanced designed turbine with documented high temperature, low NO{sub x} and high efficiency. This combined with time proven design concepts has created a new powerful combustion turbine, which will satisfy the large combustion turbine power generation needs for the next decades. The 501G turbine is the 60Hz, 3,600 rpm heavy duty combustion turbine rated at 230MW at a turbine inlet of 1,500 C fired on natural gas fuel. The combined cycle net efficiency is 58%. Verification tests for various components have been conducted through the last 3 years and since February '97 a full scale-full load test is being performed to verify the high performance, reliability and maintainability. The 701G1 is a 3,000 rpm combustion turbine designed for the 50 Hz power generation utilities and industrial service. The first 701G1 gas turbine is expected to begin commercial operation in 1999 in Tohoku Electric Power Co. Higashi Nilgata Power Plant No.4, in Japan. This paper describes the features of the next generation 1,500 C class advanced combustion turbines. Aerodynamic, cooling and mechanical design improvement is discussed along with the evolutionary changes based on time proven design concepts.

  2. Setting health research priorities using the CHNRI method: IV. Key conceptual advances

    PubMed Central

    Rudan, Igor

    2016-01-01

    Introduction Child Health and Nutrition Research Initiative (CHNRI) started as an initiative of the Global Forum for Health Research in Geneva, Switzerland. Its aim was to develop a method that could assist priority setting in health research investments. The first version of the CHNRI method was published in 2007–2008. The aim of this paper was to summarize the history of the development of the CHNRI method and its key conceptual advances. Methods The guiding principle of the CHNRI method is to expose the potential of many competing health research ideas to reduce disease burden and inequities that exist in the population in a feasible and cost–effective way. Results The CHNRI method introduced three key conceptual advances that led to its increased popularity in comparison to other priority–setting methods and processes. First, it proposed a systematic approach to listing a large number of possible research ideas, using the “4D” framework (description, delivery, development and discovery research) and a well–defined “depth” of proposed research ideas (research instruments, avenues, options and questions). Second, it proposed a systematic approach for discriminating between many proposed research ideas based on a well–defined context and criteria. The five “standard” components of the context are the population of interest, the disease burden of interest, geographic limits, time scale and the preferred style of investing with respect to risk. The five “standard” criteria proposed for prioritization between research ideas are answerability, effectiveness, deliverability, maximum potential for disease burden reduction and the effect on equity. However, both the context and the criteria can be flexibly changed to meet the specific needs of each priority–setting exercise. Third, it facilitated consensus development through measuring collective optimism on each component of each research idea among a larger group of experts using a simple

  3. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  4. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  5. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    SciTech Connect

    Sakata, M.; Aoyagi, S.; Ogura, T.; Nishibori, E.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kind of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.

  6. Generation mechanism of the slowly drifting narrowband structure in the type IV solar radio bursts observed by AMATERAS

    SciTech Connect

    Katoh, Y.; Nishimura, Y.; Kumamoto, A.; Ono, T.; Iwai, K.; Misawa, H.; Tsuchiya, F.

    2014-05-20

    We investigate the type IV burst event observed by AMATERAS on 2011 June 7, and reveal that the main component of the burst was emitted from the plasmoid eruption identified in the EUV images of the Solar Dynamics Observatory (SDO)/AIA. We show that a slowly drifting narrowband structure (SDNS) appeared in the burst's spectra. Using statistical analysis, we reveal that the SDNS appeared for a duration of tens to hundreds of milliseconds and had a typical bandwidth of 3 MHz. To explain the mechanism generating the SDNS, we propose wave-wave coupling between Langmuir waves and whistler-mode chorus emissions generated in a post-flare loop, which were inferred from the similarities in the plasma environments of a post-flare loop and the equatorial region of Earth's inner magnetosphere. We assume that a chorus element with a rising tone is generated at the top of a post-flare loop. Using the magnetic field and plasma density models, we quantitatively estimate the expected duration of radio emissions generated from coupling between Langmuir waves and chorus emissions during their propagation in the post-flare loop, and we find that the observed duration and bandwidth properties of the SDNS are consistently explained by the proposed generation mechanism. While observations in the terrestrial magnetosphere show that the chorus emissions are a group of large-amplitude wave elements generated naturally and intermittently, the mechanism proposed in the present study can explain both the intermittency and the frequency drift in the observed spectra.

  7. Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems

    SciTech Connect

    H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

    2012-07-01

    The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

  8. Cross flow filter development for advanced fossil power generation

    SciTech Connect

    Lippert, T.E.; Alvin, M.A.; Bachovchin, D.M.; Haldipur, G.B.; Newby, R.A.; Smeltzer, E.E. )

    1990-01-01

    The porous ceramic cross flow filter has been under development at Westinghouse in conjunction with the U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) for advanced fossil power generation. The ceramic cross flow filter is capable of high temperature operation, and is basically an absolute filter on ash. The cross flow filter can be operated at high flow capacity, while simultaneously exhibiting relatively low pressure drop flow characteristics. This paper describes the cross flow filter development at Westinghouse, and reviews the results of many in-house and field test programs. Testing has included operation of the filter in subpilot pressurized fluidized-bed combustion and coal gasification applications. Testing is also being conducted at Westinghouse to evaluate filter characteristics over long-term operation (3,000 hours) utilizing dedicated test facilities.

  9. Reliability Demonstration Approach for Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Ha, CHuong; Zampino, Edward; Penswick, Barry; Spronz, Michael

    2010-01-01

    Developed for future space missions as a high-efficiency power system, the Advanced Stirling Radioisotope Generator (ASRG) has a design life requirement of 14 yr in space following a potential storage of 3 yr after fueling. In general, the demonstration of long-life dynamic systems remains difficult in part due to the perception that the wearout of moving parts cannot be minimized, and associated failures are unpredictable. This paper shows a combination of systematic analytical methods, extensive experience gained from technology development, and well-planned tests can be used to ensure a high level reliability of ASRG. With this approach, all potential risks from each life phase of the system are evaluated and the mitigation adequately addressed. This paper also provides a summary of important test results obtained to date for ASRG and the planned effort for system-level extended operation.

  10. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. PMID:26403162

  11. An advanced control system for a next generation transport aircraft

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  12. Clonal forestry, heterosis and advanced-generation breeding

    SciTech Connect

    Tuskan, G.A.

    1997-08-01

    This report discusses the clonal planting stock offers many advantages to the forest products industry. Advanced-generation breeding strategies should be designed to maximize within-family variance and at the same time allow the capture of heterosis. Certainly there may be a conflict in the choice of breeding strategy based on the trait of interest. It may be that the majority of the traits express heterosis due to overdominance. Alternatively, disease resistance is expressed as the lack of a specific metabolite or infection court then the homozygous recessive genotype may be the most desirable. Nonetheless, as the forest products industry begins to utilize the economic advantages of clonal forestry, breeding strategies will have to be optimized for these commercial plant materials. Here, molecular markers can be used to characterize the nature of heterosis and therefore define the appropriate breeding strategy.

  13. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Vitali V. Lissianski

    1999-12-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The ninth reporting period in Phase II (October 1-December 31, 1999) included preparation of the 10 x 10{sup 6} Btu/hr Tower Furnace for tests and setting the SGAR model to predict process performance under Tower Furnace conditions. Based on results of previous work, a paper has been prepared and submitted for the presentation at the 28 Symposium (International) on Combustion to be held at the University of Edinburgh, Scotland.

  14. Low-Rank Coal and Advanced Technologies for Power Generation

    NASA Astrophysics Data System (ADS)

    Zhang', Dong-ke; Jackson, Peter J.; Vuthaluru, Hari B.

    Fluidised-bed based advanced power generation technologies offer higher efficiencies than conventional pulverised fuel fired power plants and better prospects in reducing ash-related problems associated with low-rank coal in such plants. However, bed material agglomeration and bed defluidisation present significant operational difficulties for the utilisation of the low-rank coal in fluidised-bed processes. Alkali and alkaline-earth elements and sulphur compounds, often found in low-rank coals, form low melting point eutectics at typical fluidised-bed combustion and gasification operating temperatures. These low melting-point materials are subsequently transferred onto the bed material particle surfaces, and the ash-coated particles then become adhesive and agglomerate. Defluidisation can occur either as an extension of agglomeration as a rate process gradually leading to defluidisation or as an instantaneous event without agglomeration. A critical thickness of the ash coating layer on the particle surface exists, above which defluidisation occurs. This critical thickness decreases with an increase in bed temperature. Several mineral additives, alternative bed materials and pretreatment of coal have been shown to suppress, to different extents, particle agglomeration and bed defluidisation when burning a high sodium, high sulphur low-rank coal in a spouted fluidised-bed combustor. Sillimanite as an alternative bed material is found to be most effective for defluidisation control. Alternative advanced technologies such as low-temperature pyrolysis and co-production are proposed for future investigation.

  15. Advanced Video Guidance Sensor and Next Generation Autonomous Docking Sensors

    NASA Technical Reports Server (NTRS)

    Granade, Stephen R.

    2004-01-01

    In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.

  16. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  17. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  18. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    NASA Astrophysics Data System (ADS)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  19. validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems

    SciTech Connect

    Robert E. Spall; Barton Smith; Thomas Hauser

    2008-12-08

    Nationwide, the demand for electricity due to population and industrial growth is on the rise. However, climate change and air quality issues raise serious questions about the wisdom of addressing these shortages through the construction of additional fossil fueled power plants. In 1997, the President's Committee of Advisors on Science and Technology Energy Research and Development Panel determined that restoring a viable nuclear energy option was essential and that the DOE should implement a R&D effort to address principal obstacles to achieving this option. This work has addressed the need for improved thermal/fluid analysis capabilities, through the use of computational fluid dynamics, which are necessary to support the design of generation IV gas-cooled and supercritical water reactors.

  20. The Mercury Laser Advances Laser Technology for Power Generation

    SciTech Connect

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  1. A Comparison of the Safety Analysis Process and the Generation IV Proliferation Resistance/Physical Protection Assessment Methodology

    SciTech Connect

    T. A. Bjornard; M. D. Zentner

    2006-05-01

    The Generation IV International Forum (GIF) is a vehicle for the cooperative international development of future nuclear energy systems. The Generation IV program has established primary objectives in the areas of sustainability, economics, safety and reliability, and Proliferation Resistance and Physical Protection (PR&PP). In order to help meet the latter objective a program was launched in December 2002 to develop a rigorous means to assess nuclear energy systems with respect to PR&PP. The study of Physical Protection of a facility is a relatively well established methodology, but an approach to evaluate the Proliferation Resistance of a nuclear fuel cycle is not. This paper will examine the Proliferation Resistance (PR) evaluation methodology being developed by the PR group, which is largely a new approach and compare it to generally accepted nuclear facility safety evaluation methodologies. Safety evaluation methods have been the subjects of decades of development and use. Further, safety design and analysis is fairly broadly understood, as well as being the subject of federally mandated procedures and requirements. It is therefore extremely instructive to compare and contrast the proposed new PR evaluation methodology process with that used in safety analysis. By so doing, instructive and useful conclusions can be derived from the comparison that will help to strengthen the PR methodological approach as it is developed further. From the comparison made in this paper it is evident that there are very strong parallels between the two processes. Most importantly, it is clear that the proliferation resistance aspects of nuclear energy systems are best considered beginning at the very outset of the design process. Only in this way can the designer identify and cost effectively incorporate intrinsic features that might be difficult to implement at some later stage. Also, just like safety, the process to implement proliferation resistance should be a dynamic

  2. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  3. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    SciTech Connect

    1998-07-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The third reporting period in Phase II (April 1--June 30, 1998) included experimental activities at pilot scale and comparison of the results with full-scale data. The pilot scale tests were performed with the objective of simulating furnace conditions of ongoing full-scale tests at the Greenidge boiler No. 6 owned and operated by NYSEG and defining the processes controlling AR performance to subsequently improve the performance. The tests were conducted in EER' s Boiler Simulator Facility. The main fuel pulsing system was used at the BSF to control the degree of unmixedness, thus providing control over furnace gas O{sub 2} and CO concentrations. Results on AR-Lean, presented in the previous quarterly report, were compared with full-scale data. Performance of reburn+SNCR was tested to predict NO{sub x} control at Greenidge. The results of the BSF reburn+SNCR simulation tests demonstrated that there are synergistic advantages of using these two technologies in series. In particular, injection of overfire air provides additional mixing that reduces negative effects on AR performance at the temperature regime of the Greenidge boiler.

  4. The next generation in aircraft protection against advanced MANPADS

    NASA Astrophysics Data System (ADS)

    Chapman, Stuart

    2014-10-01

    This paper discusses the advanced and novel technologies and underlying systems capabilities that Selex ES has applied during the development, test and evaluation of the twin head Miysis DIRCM System in order to ensure that it provides the requisite levels of protection against the latest, sophisticated all-aspect IR MANPADS. The importance of key performance parameters, including the fundamental need for "spherical" coverage, rapid time to energy-on-target, laser tracking performance and radiant intensity on seeker dome is covered. It also addresses the approach necessary to ensure that the equipment is suited to all air platforms from the smallest helicopters to large transports, while also ensuring that it achieves an inherent high reliability and an ease of manufacture and repair such that a step change in through-life cost in comparison to previous generation systems can be achieved. The benefits and issues associated with open architecture design are also considered. Finally, the need for extensive test and evaluation at every stage, including simulation, laboratory testing, platform and target dynamic testing in a System Integration Laboratory (SIL), flight trial, missile live-fire, environmental testing and reliability testing is also described.

  5. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    SciTech Connect

    Timothy Shaw; Vaugh Whisker

    2004-02-28

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

  6. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  7. Calculation of stellar structure. IV. Results using a detailed energy generation subroutine.

    NASA Astrophysics Data System (ADS)

    Rouse, C. A.

    1995-12-01

    The results from two solar model calculations using the "energy.for" energy generation and neutrino flux code (Bahcall & Pinsonneault 1992) are presented. The models of the present Sun were generated using the program described in the first three papers of this series and using only the helium abundance profile from the Bahcall & Ulrich (1988) (BU) standard model in the present model structure calculations. One model is a simulation of the BU model and yields a ^37^Cl solar neutrino counting rate of 7.0SNU (compared to 7.9SNU for the BU model) and a ^71^Ga neutrino experiment counting rate between 112 and 137SNU (compared to 132SNU for the BU model). The second model has a postulated small high-Z core (Rouse 1983) and yields a ^37^Cl neutrino experiment counting rate of 2.45SNU that is within one sigma of the Homestake Collaboration observed rate of (2.55+/-0.25)SNU (see Parke 1995). It yields a ^71^Ga neutrino experiment counting rate between 89 and 103SNU that is within one sigma of the GALLEX Collaboration neutrino experiment observed rate of (79+/-12)SNU (see Parke 1995). The theoretical ^8^B solar neutrino flux and the observed Kamiokande ^8^B flux (Hirata et al. 1989) are discussed regarding the puzzle of explaining both the chlorine experiment results and the Kamiokande results. The modification of the energy.for code for use in the current Rouse program is described. Consistency of a high-Z core solar model with theories of star formation from pre-stellar nuclei (Krat 1952; Urey 1956; Huang 1957) is suggested.

  8. Managing Model Data Introduced Uncertainties in Simulator Predictions for Generation IV Systems via Optimum Experimental Design

    SciTech Connect

    Turinsky, Paul J; Abdel-Khalik, Hany S; Stover, Tracy E

    2011-03-31

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept’s core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment

  9. THE NEXT GENERATION VIRGO CLUSTER SURVEY. IV. NGC 4216: A BOMBARDED SPIRAL IN THE VIRGO CLUSTER

    SciTech Connect

    Paudel, Sanjaya; Duc, Pierre-Alain; Ferriere, Etienne; Cuillandre, Jean-Charles; Mihos, J. Christopher; Vollmer, Bernd; Balogh, Michael L.; Carlberg, Ray G.; Boissier, Samuel; Boselli, Alessandro; Durrell, Patrick R.; Emsellem, Eric; Michel-Dansac, Leo; Mei, Simona; Van Driel, Wim

    2013-04-20

    The final stages of mass assembly of present-day massive galaxies are expected to occur through the accretion of multiple satellites. Cosmological simulations thus predict a high frequency of stellar streams resulting from this mass accretion around the massive galaxies in the Local Volume. Such tidal streams are difficult to observe, especially in dense cluster environments, where they are readily destroyed. We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird telescope. Using the deeper, higher-resolution, and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already cataloged Virgo Cluster Catalog dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g - i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of the so-called pre-processing before it gets affected by the cluster environment, or in a

  10. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  11. SVBR-100 module-type fast reactor of the IV generation for regional power industry

    NASA Astrophysics Data System (ADS)

    Zrodnikov, A. V.; Toshinsky, G. I.; Komlev, O. G.; Stepanov, V. S.; Klimov, N. N.

    2011-08-01

    In the report the following is presented: basic conceptual provisions of the innovative nuclear power technology (NPT) based on modular fast reactors (FR) SVBR-100, summarized results of calculations of the reactor, analysis of the opportunities of multi-purpose application of such reactor facilities (RF) including export potentials with due account of nonproliferation requirements. The most important features of the proposed NPT analyzed in the report are as follows: (1) integral (monoblock) arrangement of the primary circuit equipment with entire elimination of the primary circuit pipelines and valves that considerably reduces the construction and assembly works period and coupling with high boiling point of lead-bismuth coolant (LBC) deterministically eliminates accidents of the LOCA type, (2) option for 100 MWe power and dimensions of the reactor provide: on the one hand, an opportunity to transport the reactor monoblock in factory-readiness by railway as well as other kinds of transport, on the other hand, core breeding ratio (CBR) exceeds 1 while MOX-fuel is used. The preferable area of application of RF SVBR-100 is regional and small power requiring power-units of electric power in a range of (100-600) MW, which could be used for cogeneration-based district heating while locating them nearby cities as well as for generation of electric power in a mode of load tracking in the regions with low network systems.

  12. Generation-IV Multi-Application Small Light Water Reactor (MASLWR)

    SciTech Connect

    Modro, S. Michael; Fisher, James; Weaver, Kevan; Babka, Pierre; Reyes, Jose; Groome, John

    2002-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Nexant Inc. and the Oregon State University (OSU) have developed a Multi-Application Small Light Water Reactor (MASLWR) concept. The MASLWR is a small, safe and economic natural circulation pressurized light water reactor. MASLWR reactor module consists of an integral reactor/steam generator located in a steel cylindrical containment. The entire module is to be entirely shop fabricated and transported to site on most railways or roads. Two or more modules are located in a reactor building, each being submersed in a common, below grade cavity filled with water. For the most severe postulated accident, the volume of water in the cavity provides a passive ultimate heat sink for 3 or more days allowing the restoration of lost normal active heat removal systems. MASLWR thermal power of a single module is 150 MWt, primary system pressure 10.5 MPa, steam pressure 1.52 MPa and the net electrical output is 35 - 50 MWe. (authors)

  13. Generation-IV Multi-Application Small Light Water Reactor (MASLWR)

    SciTech Connect

    Modro, Slawomir Michael; Fisher, James Ebberly; Weaver, Kevan Dean; Babka, P.; Reyes, Johnny Paul; Groome, J.; Wilson, Gary Edward

    2002-04-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Nexant Inc. and the Oregon State University (OSU) have developed a Multi-Application Small Light Water Reactor (MASLWR) concept. The MASLWR is a small, safe and economic natural circulation pressurized light water reactor. MASLWR reactor module consists of an integral reactor/steam generator located in a steel cylindrical containment. The entire module is to be entirely shop fabricated and transported to site on most railways or roads. Two or more modules are located in a reactor building, each being submersed in a common, below grade cavity filled with water. For the most severe postulated accident, the volume of water in the cavity provides a passive ultimate heat sink for 3 or more days allowing the restoration of lost normal active heat removal systems. MASLWR thermal power of a single module is 150 MWt, primary system pressure 10.5 MPa, steam pressure1.52 MPa and the net electrical output is 35 - 50 MWe.

  14. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Bishop, s. R.; Duncan, K. L.; Hagelin-Weaver, H. E.; Neal, L.; Paul, H. L.; Wachsman, E. D.

    2007-01-01

    The partial electrochemical reduction of CO2 using ceramic oxygen generators (COGs) is well known and has been studied. Conventional COGs use yttria-stabilized zirconia (YSZ) electrolytes and operate at temperatures greater than 700 C (1, 2). Operating at a lower temperature has the advantage of reducing the mass of the ancillary components such as insulation. Moreover, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight if the oxygen can be recovered. Recently, the University of Florida developed ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth oxide (ESB) for NASA s future exploration of Mars (3). The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal is an issue. This strategy for CO2 removal in advanced life support systems employs a catalytic layer combined with a COG so that the CO2 is reduced completely to solid carbon and oxygen. First, to reduce the COG operating temperature, a thin, bilayer electrolyte was employed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, a catalytic carbon deposition layer was designed and the cathode utilized materials shown to be coke resistant. Third, a composite anode was used consisting of bismuth ruthenate (BRO) and ESB that has been shown to have high performance (4). The inset of figure 1 shows the conceptual design of the tubular COG and the rest of the figure shows schematically the test apparatus. Figure 2 shows the microstructure of a COG tube prior to testing. During testing, current is applied across the cell and initially CuO is reduced to copper metal by electrochemical pumping. Then the oxygen source becomes the CO/CO2. This presentation

  15. The Next Generation Virgo Cluster Survey. IV. NGC 4216: A Bombarded Spiral in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Paudel, Sanjaya; Duc, Pierre-Alain; Côté, Patrick; Cuillandre, Jean-Charles; Ferrarese, Laura; Ferriere, Etienne; Gwyn, Stephen D. J.; Mihos, J. Christopher; Vollmer, Bernd; Balogh, Michael L.; Carlberg, Ray G.; Boissier, Samuel; Boselli, Alessandro; Durrell, Patrick R.; Emsellem, Eric; MacArthur, Lauren A.; Mei, Simona; Michel-Dansac, Leo; van Driel, Wim

    2013-04-01

    The final stages of mass assembly of present-day massive galaxies are expected to occur through the accretion of multiple satellites. Cosmological simulations thus predict a high frequency of stellar streams resulting from this mass accretion around the massive galaxies in the Local Volume. Such tidal streams are difficult to observe, especially in dense cluster environments, where they are readily destroyed. We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird telescope. Using the deeper, higher-resolution, and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already cataloged Virgo Cluster Catalog dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g - i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of the so-called pre-processing before it gets affected by the cluster environment, or in a

  16. Advanced materials and methods for next generation spintronics

    NASA Astrophysics Data System (ADS)

    Siegel, Gene Phillip

    The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic

  17. Aromatic Ring Currents Illustrated--NMR Spectra of Tin(IV) Porphyrin Complexes. An Advanced Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Arnold, Dennis P.

    1988-01-01

    Attempts to show that in the closed loops of cyclic structures the protons situated in conic regions above and below the ring will be shielded. Uses the diamagnetic and air stable octahedral tin(IV) complexes of porphyrins for study. Notes complexes crystallize easily and offer spectacular purple colors. (MVL)

  18. FAST TRACK COMMUNICATION Generation of stable multi-jets by flow-limited field-injection electrostatic spraying and their control via I-V characteristics

    NASA Astrophysics Data System (ADS)

    Gu, W.; Heil, P. E.; Choi, H.; Kim, K.

    2010-12-01

    The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.

  19. Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose.

    PubMed

    Neiser, Susann; Rentsch, Daniel; Dippon, Urs; Kappler, Andreas; Weidler, Peter G; Göttlicher, Jörg; Steininger, Ralph; Wilhelm, Maria; Braitsch, Michaela; Funk, Felix; Philipp, Erik; Burckhardt, Susanna

    2015-08-01

    The advantage of the new generation IV iron preparations ferric carboxymaltose (FCM), ferumoxytol (FMX), and iron isomaltoside 1000 (IIM) is that they can be administered in relatively high doses in a short period of time. We investigated the physico-chemical properties of these preparations and compared them with those of the older preparations iron sucrose (IS), sodium ferric gluconate (SFG), and low molecular weight iron dextran (LMWID). Mössbauer spectroscopy, X-ray diffraction, and Fe K-edge X-ray absorption near edge structure spectroscopy indicated akaganeite structures (β-FeOOH) for the cores of FCM, IIM and IS, and a maghemite (γ-Fe2O3) structure for that of FMX. Nuclear magnetic resonance studies confirmed the structure of the carbohydrate of FMX as a reduced, carboxymethylated, low molecular weight dextran, and that of IIM as a reduced Dextran 1000. Polarography yielded significantly different fingerprints of the investigated compounds. Reductive degradation kinetics of FMX was faster than that of FCM and IIM, which is in contrast to the high stability of FMX towards acid degradation. The labile iron content, i.e. the amount of iron that is only weakly bound in the polynuclear iron core, was assessed by a qualitative test that confirmed decreasing labile iron contents in the order SFG ≈ IS > LMWID ≥ FMX ≈ IIM ≈ FCM. The presented data are a step forward in the characterization of these non-biological complex drugs, which is a prerequisite to understand their cellular uptake mechanisms and the relationship between the structure and physiological safety as well as efficacy of these complexes. PMID:25801756

  20. Synergetic action of domain II and IV underlies persistent current generation in Nav1.3 as revealed by a tarantula toxin.

    PubMed

    Tang, Cheng; Zhou, Xi; Zhang, Yunxiao; Xiao, Zhaohua; Hu, Zhaotun; Zhang, Changxin; Huang, Ying; Chen, Bo; Liu, Zhonghua; Liang, Songping

    2015-01-01

    The persistent current (INaP) through voltage-gated sodium channels enhances neuronal excitability by causing prolonged depolarization of membranes. Nav1.3 intrinsically generates a small INaP, although the mechanism underlying its generation remains unclear. In this study, the involvement of the four domains of Nav1.3 in INaP generation was investigated using the tarantula toxin α-hexatoxin-MrVII (RTX-VII). RTX-VII activated Nav1.3 and induced a large INaP. A pre-activated state binding model was proposed to explain the kinetics of toxin-channel interaction. Of the four domains of Nav1.3, both domain II and IV might play important roles in the toxin-induced INaP. Domain IV constructed the binding site for RTX-VII, while domain II might not participate in interacting with RTX-VII but could determine the efficacy of RTX-VII. Our results based on the use of RTX-VII as a probe suggest that domain II and IV cooperatively contribute to the generation of INaP in Nav1.3. PMID:25784299

  1. Synergetic Action of Domain II and IV Underlies Persistent Current Generation in Nav1.3 as revealed by a tarantula toxin

    PubMed Central

    Tang, Cheng; Zhou, Xi; Zhang, Yunxiao; xiao, Zhaohua; Hu, Zhaotun; Zhang, Changxin; Huang, Ying; Chen, Bo; Liu, Zhonghua; Liang, Songping

    2015-01-01

    The persistent current (INaP) through voltage-gated sodium channels enhances neuronal excitability by causing prolonged depolarization of membranes. Nav1.3 intrinsically generates a small INaP, although the mechanism underlying its generation remains unclear. In this study, the involvement of the four domains of Nav1.3 in INaP generation was investigated using the tarantula toxin α-hexatoxin-MrVII (RTX-VII). RTX-VII activated Nav1.3 and induced a large INaP. A pre-activated state binding model was proposed to explain the kinetics of toxin-channel interaction. Of the four domains of Nav1.3, both domain II and IV might play important roles in the toxin-induced INaP. Domain IV constructed the binding site for RTX-VII, while domain II might not participate in interacting with RTX-VII but could determine the efficacy of RTX-VII. Our results based on the use of RTX-VII as a probe suggest that domain II and IV cooperatively contribute to the generation of INaP in Nav1.3. PMID:25784299

  2. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  3. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  4. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect

    Not Available

    2012-08-01

    This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  5. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect

    Not Available

    2012-08-01

    This fact sheet provides information on the Alaska Native governments selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  6. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect

    Not Available

    2012-08-01

    This fact sheet provides information on Tribes in the lower 48 states selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  7. 'Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo.

    PubMed

    Bonci, D; Cittadini, A; Latronico, M V G; Borello, U; Aycock, J K; Drusco, A; Innocenzi, A; Follenzi, A; Lavitrano, M; Monti, M G; Ross, J; Naldini, L; Peschle, C; Cossu, G; Condorelli, G

    2003-04-01

    Efficient gene transduction in cardiomyocytes is a task that can be accomplished only by viral vectors. Up to now, the most commonly used vectors for this purpose have been adenoviral-derived ones. Recently, it has been demonstrated that lentiviral vectors can transduce growth-arrested cells, such as hematopoietic stem cells. Moreover, a modified form of lentiviral vector (the 'advanced' generation), containing an mRNA-stabilizer sequence and a nuclear import sequence, has been shown to significantly improve gene transduction in growth-arrested cells as compared to the third-generation vector. Therefore, we tested whether the 'advanced' generation lentivirus is capable of infecting and transducing cardiomyocytes both in vitro and in vivo, comparing efficacy in vitro against the third-generation of the same vector. Here we report that 'advanced' generation lentiviral vectors infected most (>80%) cardiomyocytes in culture, as demonstrated by immunofluorescence and FACS analyses: in contrast the percentage of cardiomyocytes infected by third-generation lentivirus was three- to four-fold lower. Moreover, 'advanced' generation lentivirus was also capable of infecting and inducing stable gene expression in adult myocardium in vivo. Thus, 'advanced' generation lentiviral vectors can be used for both in vitro and in vivo gene expression studies in the cardiomyocyte. PMID:12692591

  8. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  9. Latest developments in advanced network management and cross-sharing of next-generation flux stations

    NASA Astrophysics Data System (ADS)

    Burba, George; Johnson, Dave; Velgersdyk, Michael; Begashaw, Israel; Allyn, Douglas

    2016-04-01

    In recent years, spatial and temporal flux data coverage improved significantly and on multiple scales, from a single station to continental networks, due to standardization, automation, and management of the data collection, and better handling of the extensive amounts of generated data. However, operating budgets for flux research items, such as labor, travel, and hardware, are becoming more difficult to acquire and sustain. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process, including sharing data among collaborative groups. On one hand, such tools can maximize time dedicated to publications answering research questions, and minimize time and expenses spent on data acquisition, processing, quality control and overall station management. On the other hand, cross-sharing the stations with external collaborators may help leverage available funding, and promote data analyses and publications. A new low-cost, advanced system, FluxSuite, utilizes a combination of hardware, software and web-services to address these specific demands. It automates key stages of flux workflow, minimizes day-to-day site management, and modernizes the handling of data flows: (i) The system can be easily incorporated into a new flux station, or as un upgrade to many presently operating flux stations, via weatherized remotely-accessible microcomputer, SmartFlux 2, with fully digital inputs (ii) Each next-generation station will measure all parameters needed for flux computations in a digital and PTP time-synchronized mode, accepting digital signals from a number of anemometers and data loggers (iii) The field microcomputer will calculate final fully-processed flux rates in real time, including computation-intensive Fourier transforms, spectra, co-spectra, multiple rotations, stationarity, footprint, etc. (iv) Final fluxes, radiation, weather and soil data will

  10. Advancing translational research with next-generation protein microarrays.

    PubMed

    Yu, Xiaobo; Petritis, Brianne; LaBaer, Joshua

    2016-04-01

    Protein microarrays are a high-throughput technology used increasingly in translational research, seeking to apply basic science findings to enhance human health. In addition to assessing protein levels, posttranslational modifications, and signaling pathways in patient samples, protein microarrays have aided in the identification of potential protein biomarkers of disease and infection. In this perspective, the different types of full-length protein microarrays that are used in translational research are reviewed. Specific studies employing these microarrays are presented to highlight their potential in finding solutions to real clinical problems. Finally, the criteria that should be considered when developing next-generation protein microarrays are provided. PMID:26749402

  11. Advanced Unstructured Grid Generation for Complex Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new approach for distribution of grid points on the surface and in the volume has been developed and implemented in the NASA unstructured grid generation code VGRID. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.

  12. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  13. Advances in the development of next-generation anthrax vaccines.

    PubMed

    Friedlander, Arthur M; Little, Stephen F

    2009-11-01

    Anthrax, a disease of herbivores, only rarely infects humans. However, the threat of using Bacillus anthracis, the causative agent, to intentionally produce disease has been the impetus for development of next-generation vaccines. Two licensed vaccines have been available for human use for several decades. These are composed of acellular culture supernatants containing the protective antigen (PA) component of the anthrax toxins. In this review we summarize the various approaches used to develop improved vaccines. These efforts have included the use of PA with newer adjuvants and delivery systems, including bacterial and viral vectors and DNA vaccines. Attempts to broaden the protection afforded by PA-based vaccines have focused on adding other B. anthracis components, including spore and capsule antigens. PMID:19837282

  14. Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    2000-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.

  15. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    Cover of the Next <span class=Generation of Risk Assessment Final report" vspace = "5" hspace="5" align="right" border="1" /> This final report, "Next Generation Risk Assessment: Recent Advances in Molec...

  16. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  17. Advanced Unstructured Grid Generation for Complex Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    2010-01-01

    A new approach for distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.

  18. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  19. Clofarabine ± fludarabine with once daily i.v. busulfan as pretransplant conditioning therapy for advanced myeloid leukemia and MDS.

    PubMed

    Andersson, Borje S; Valdez, Benigno C; de Lima, Marcos; Wang, Xuemei; Thall, Peter F; Worth, Laura L; Popat, Uday; Madden, Timothy; Hosing, Chitra; Alousi, Amin; Rondon, Gabriela; Kebriaei, Partow; Shpall, Elizabeth J; Jones, Roy B; Champlin, Richard E

    2011-06-01

    Although a combination of i.v. busulfan (Bu) and fludarabine (Flu) is a safe, reduced-toxicity conditioning program for acute myelogenous leukemia/myelodysplastic syndromes (AML/MDS), recurrent leukemia posttransplantation remains a problem. To enhance the conditioning regimen's antileukemic effect, we decided to supplant Flu with clofarabine (Clo), and assayed the interactions of these nucleoside analogs alone and in combination with Bu in Bu-resistant human cell lines in vitro. We found pronounced synergy between each nucleoside and the alkylator but even more enhanced cytotoxic synergy when the nucleoside analogs were combined prior to exposing the cells to Bu. We then designed a 4-arm clinical trial in patients with myeloid leukemia undergoing allogeneic stem cell transplantation (allo-SCT). Patients were adaptively randomized as follows: Arm I-Clo:Flu 10:30 mg/m(2), Arm II-20:20 mg/m(2), Arm III-30:10 mg/m(2), and Arm IV-single-agent Clo at 40 mg/m(2). The nucleoside analog(s) were/was infused over 1 hour once daily for 4 days, followed on each day by Bu, infused over 3 hours to a pharmacokinetically targeted daily area under the curve (AUC) of 6000 μMol-min ± 10%. Fifty-one patients have been enrolled with a minimum follow-up exceeding 100 days. There were 32 males and 19 females, with a median age of 45 years (range: 6-59). Nine patients had chronic myeloid leukemia (CML) (BC: 2, second AP: 3, and tyrosine-kinase inhibitor refractory first chronic phase [CP]: 4). Forty-two patients had AML: 14 were induction failures, 8 in first chemotherapy-refractory relapse, 7 in untreated relapse, 3 in second or subsequent relapse, 4 were in second complete remission (CR), and 3 in second CR without platelet recovery (CRp), 2 were in high-risk CR1. Finally, 1 patient was in first CRp. Graft-versus-host disease (GVHD) prophylaxis was tacrolimus and mini-methorexate (MTX), and those who had an unrelated or 1 antigen-mismatched donor received low-dose rabbit

  20. Generation IV nuclear energy system initiative. Large GFR core subassemblydesign for the Gas-Cooled Fast Reactor.

    SciTech Connect

    Hoffman, E. A.; Kulak, R. F.; Therios, I. U.; Wei, T. Y. C.

    2006-07-31

    Gas-cooled fast reactor (GFR) designs are being developed to meet Gen IV goals of sustainability, economics, safety and reliability, and proliferation resistance and physical protection as part of an International Generation IV Nuclear Energy System Research Initiative effort. Different organizations are involved in the development of a variety of GFR design concepts. The current analysis has focused on the evaluation of low-pressure drop, pin-core designs with favorable passive cooling properties. Initial evaluation of the passive cooling safety case for the GFR during depressurized decay heat removal accidents with concurrent loss of electric power have resulted in requirements for a reduction of core power density to the 100 w/cc level and a low core pressure drop of 0.5 bars. Additional design constraints and the implementation of their constraints are evaluated in this study to enhance and passive cooling properties of the reactor. Passive cooling is made easier by a flat radial distribution of the decay heat. One goal of this study was to evaluate the radial power distribution and determine to what extent it can be flattened, since the decay heat is nearly proportional to the fission power at shutdown. In line with this investigation of the radial power profile, an assessment was also made of the control rod configuration. The layout provided a large number of control rod locations with a fixed area provided for control rods. The number of control rods was consistent with other fast reactor designs. The adequacy of the available control rod locations was evaluated. Future studies will be needed to optimize the control rod designs and evaluate the shutdown system. The case for low pressure drop core can be improved by the minimization of pressure drop sources such as the number of required fuel spacers in the subassembly design and by the details of the fuel pin design. The fuel pin design is determined by a number of neutronic, thermal-hydraulic (gas dynamics

  1. Advances Made in the Next Generation of Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    1999-01-01

    Because of the unique networking characteristics of communications satellites, global satellite networks are moving to the forefront in enhancing national and global information infrastructures. Simultaneously, broadband data services, which are emerging as the major market driver for future satellite and terrestrial networks, are being widely acknowledged as the foundation for an efficient global information infrastructure. In the past 2 years, various task forces and working groups around the globe have identified pivotal topics and key issues to address if we are to realize such networks in a timely fashion. In response, industry, government, and academia undertook efforts to address these topics and issues. A workshop was organized to provide a forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. The Satellite Networks: Architectures, Applications, and Technologies Workshop was hosted by the Space Communication Program at the NASA Lewis Research Center in Cleveland, Ohio. Nearly 300 executives and technical experts from academia, industry, and government, representing the United States and eight other countries, attended the event (June 2 to 4, 1998). The program included seven panels and invited sessions and nine breakout sessions in which 42 speakers presented on technical topics. The proceedings covers a wide range of topics: access technology and protocols, architectures and network simulations, asynchronous transfer mode (ATM) over satellite networks, Internet over satellite networks, interoperability experiments and applications, multicasting, NASA interoperability experiment programs, NASA mission applications, and Transmission Control Protocol/Internet Protocol (TCP/IP) over satellite: issues, relevance, and experience.

  2. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations

    SciTech Connect

    Williams, M.L.; Yuecel, A.; Nadkarny, S.

    1988-05-01

    The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.

  3. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-12

    The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through the RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle

  4. Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation

    SciTech Connect

    Zeh, C.M.

    1996-08-01

    In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

  5. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  6. Advancing Design-for-Assembly: The Next Generation in Assembly Planning

    SciTech Connect

    Calton, T.L.

    1998-12-09

    At the 1995 IEEE Symposium on Assembly and Task Planning, Sandia National Laboratories introduced the Archimedes 2 Software Tool [2]. The system was described as a second-generation assembly planning system that allowed preliminmy application of awembly planning for industry, while solidly supporting further research in planning techniques. Sandia has worked closely with indust~ and academia over the last four years. The results of these working relationships have bridged a gap for the next generation in assembly planning. Zke goal of this paper is to share Sandia 's technological advancements in assembly planning over the last four years and the impact these advancements have made on the manufacturing communip.

  7. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    NASA Technical Reports Server (NTRS)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  8. Unconstrained plastering : all-hexahedral mesh generation via advancing front geometry decomposition (2004-2008).

    SciTech Connect

    Blacker, Teddy Dean; Staten, Matthew L.; Kerr, Robert A.; Owen, Steven James

    2010-03-01

    The generation of all-hexahedral finite element meshes has been an area of ongoing research for the past two decades and remains an open problem. Unconstrained plastering is a new method for generating all-hexahedral finite element meshes on arbitrary volumetric geometries. Starting from an unmeshed volume boundary, unconstrained plastering generates the interior mesh topology without the constraints of a pre-defined boundary mesh. Using advancing fronts, unconstrained plastering forms partially defined hexahedral dual sheets by decomposing the geometry into simple shapes, each of which can be meshed with simple meshing primitives. By breaking from the tradition of previous advancing-front algorithms, which start from pre-meshed boundary surfaces, unconstrained plastering demonstrates that for the tested geometries, high quality, boundary aligned, orientation insensitive, all-hexahedral meshes can be generated automatically without pre-meshing the boundary. Examples are given for meshes from both solid mechanics and geotechnical applications.

  9. The operation of the BNL/ATF gun-IV photocathode RF gun at the Advanced Photon Source.

    SciTech Connect

    Biedron, S. G.

    1999-04-20

    At the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), a free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) process is nearing completion. Recently, an rf photoinjector gun system was made available to the APS by Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF). It will be used to provide the high-brightness, low-emittance, and low-energy spread electron beam required by the SASE FEL theory. A Nd:Glass laser system, capable of producing a maximum of 500 {micro}J of UV in a 1-10 ps pulse at up to a 10-Hz repetition rate, serves as the photoinjector's drive laser. Here, the design, commissioning, and integration of this gun with the APS is discussed.

  10. Next Generation Advanced Video Guidance Sensor: Low Risk Rendezvous and Docking Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Carrington, Connie; Spencer, Susan; Bryan, Thomas; Howard, Ricky T.; Johnson, Jimmie

    2008-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is being built and tested at MSFC. This paper provides an overview of current work on the NGAVGS, a summary of the video guidance heritage, and the AVGS performance on the Orbital Express mission. This paper also provides a discussion of applications to ISS cargo delivery vehicles, CEV, and future lunar applications.

  11. LOW NOX COMBUSTION CONCEPTS FOR ADVANCED POWER GENERATION SYSTEMS FIRING LOW-BTU GAS

    EPA Science Inventory

    The report gives results of an analysis of several advanced power generating concepts firing low-Btu gasified coal. A combined gas-turbine/steam-cycle power plant with integrated gasifier was the most promising from fuel utilization and economic viewpoints. Two representative com...

  12. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. IV. THE STAR FORMATION HISTORY OF NGC 2976

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Gilbert, Karoline M.; Roskar, Rok; Gogarten, Stephanie M.; Seth, Anil C.; Weisz, Daniel; Skillman, Evan; Dolphin, Andrew; Holtzman, Jon E-mail: jd@astro.washington.ed E-mail: stephanie@astro.washington.ed E-mail: dweisz@astro.umn.ed E-mail: dolphin@raytheon.co

    2010-01-20

    We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or approx6 scale lengths. The outer disk was imaged to a depth of M{sub F606W} approx 1, and an inner field was imaged to the crowding limit at a depth of M{sub F606W} approx -1. Through detailed analysis and modeling of the resulting color-magnitude diagrams, we have reconstructed the star formation history (SFH) of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured SFH, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyr, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group approx>1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.

  13. Advanced Subcritical Assistance Radioisotope Thermoelectric Generator: An Imperative Solution for the Future of NASA Exploration

    NASA Astrophysics Data System (ADS)

    Arias, F. J.

    A new generation of radioisotope thermoelectrical generator is proposed for very long space exploration missions. The Advanced Subcritical Assistance Radioisotope Thermoelectric Generator (ASA-RTG) amplify the power from natural decay of pu-238 by a small subcritical multiplication produced from the small neutron background generated from (α, n) reactions between the α particles from Pu-238 and beryllium, lithium or other low-Z isotope, extracting the maximum advantage and performance from the precious α disintegration, and then of the very scarce pu-238. The process is self controlled by the natural decay of Pu-238 with the progressive reduction of the power output (RTG) and additionally and simultaneously compensate by the natural decay of a neutronic poisson which increase simultaneously the subcritical multiplication resulting in a contrary effect, i.e., causing an increase in the power. ASA-RTG is not in conflict with previous RTG, and could fit within the type of Radioisotope Thermoelectric Generator developed for NASA space missions as the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and the Advanced Stirling Radioisotope Generator (ASRG).

  14. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    SciTech Connect

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  15. Advanced Fuel Cycle Initiative - Projected Linear Heat Generation Rate and Burnup Calculations

    SciTech Connect

    Richard G. Ambrosek; Gray S. Chang; Debbie J. Utterbeck

    2005-02-01

    This report provides documentation of the physics analysis performed to determine the linear heat generation rate (LHGR) and burnup calculations for the Advanced Fuel Cycle Initiative (AFCI) tests, AFC-1D, AFC-1H, and AFC-1G. The AFC-1D and AFC-1H tests consists of low-fertile metallic fuel compositions and the AFC-1G test consists of non-fertile and low-fertile nitride compositions. These tests will be irradiated in the East Flux Trap (EFT) positions E1, E2, and E3, respectively, during Advanced Test Reactor (ATR) Cycle 135B.

  16. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  17. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan U.; Lau, Yuk-Chiu

    2013-06-01

    Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.

  18. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  19. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  20. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  1. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  2. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  3. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  4. Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility

    SciTech Connect

    Kukita, Y.; Nakamura, H.; Tasaka, K. ); Chauliac, C. )

    1988-08-01

    Natural circulation experiments were conducted in a large-scale (1/48 scale in volume) full-height simulator of a Westinghouse-type pressurized water reactor. This facility has two steam generators each containing 141 full-size U-tubes of 9 different heights. Transition of the natural circulation mode was observed in the experiments as the primary of side mass inventory was decreased. Three major circulation modes were observed: single-phase liquid natural circulation, two-phase natural circulation, and reflux condensation. For all these circulation modes, and during the transitions between the modes, the mass flow distribution among the steam generator U-tubes was significantly nonuniform. The longer U-tubes indicated reversed flow at higher primary side mass inventories and also tended to empty earlier than the shorter U-tubes when the primary side mass inventory was decreased.

  5. The role of advanced technology in the future of the power generation industry

    SciTech Connect

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  6. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  7. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  8. Sensitivity Analysis of Neutron Cross-Sections Considered for Design and Safety Studies of Lfr and SFR Generation IV Systems

    NASA Astrophysics Data System (ADS)

    Tucek, Kamil; Carlsson, Johan; Wider, Hartmut

    2006-04-01

    We evaluated the sensitivity of several design and safety parameters with regard to five different nuclear data libraries, JEF2.2, JEFF3.0, ENDF/B-VI.8, JENDL3.2, and JENDL3.3. More specifically, the effective multiplication factor, burn-up reactivity swing and decay heat generation in available LFR and SFR designs were estimated. Monte Carlo codes MCNP and MCB were used in the analyses of the neutronic and burn-up performance of the systems. Thermo-hydraulic safety calculations were performed by the STAR-CD CFD code. For the LFR, ENDF/B-VI.8 and JEF2.2 showed to give a harder neutron spectrum than JEFF3.0, JENDL3.2, and JENDL3.3 data due to the lower inelastic scattering cross-section of lead in these libraries. Hence, the neutron economy of the system becomes more favourable and keff is higher when calculated with ENDF/B-VI.8 and JEF2.2 data. As for actinide cross-section data, the uncertainties in the keff values appeared to be mainly due to 239Pu, 240Pu and 241Am. Differences in the estimated burn-up reactivity swings proved to be significant, for an SFR as large as a factor of three (when comparing ENDF/B-VI.8 results to those of JENDL3.2). Uncertainties in the evaluation of short-term decay heat generation showed to be of the order of several per cent. Significant differences were, understandably, observed between decay heat generation data quoted in literature for LWR-UOX and those calculated for an LFR (U,TRU)O2 spent fuel. A corresponding difference in calculated core parameters (outlet coolant temperature) during protected total Loss-of-Power was evaluated.

  9. Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs

    SciTech Connect

    Ayman Hawari

    2008-06-20

    The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

  10. Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

    SciTech Connect

    Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

    2002-11-26

    OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups.

  11. Advanced synthetic image generation models and their application to multi/hyperspectral algorithm development

    NASA Astrophysics Data System (ADS)

    Schott, John R.; Brown, Scott D.; Raqueno, Rolando V.; Gross, Harry N.; Robinson, Gary

    1999-01-01

    The need for robust image data sets for algorithm development and testing has prompted the consideration of synthetic imagery as a supplement to real imagery. The unique ability of synthetic image generation (SIG) tools to supply per-pixel truth allows algorithm writers to test difficult scenarios that would require expensive collection and instrumentation efforts. In addition, SIG data products can supply the user with `actual' truth measurements of the entire image area that are not subject to measurement error thereby allowing the user to more accurately evaluate the performance of their algorithm. Advanced algorithms place a high demand on synthetic imagery to reproduce both the spectro-radiometric and spatial character observed in real imagery. This paper describes a synthetic image generation model that strives to include the radiometric processes that affect spectral image formation and capture. In particular, it addresses recent advances in SIG modeling that attempt to capture the spatial/spectral correlation inherent in real images. The model is capable of simultaneously generating imagery from a wide range of sensors allowing it to generate daylight, low-light-level and thermal image inputs for broadband, multi- and hyper-spectral exploitation algorithms.

  12. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  13. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  14. Advanced Seal Technology Role in Meeting Next Generation Turbine Engine Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.; Munson, John

    1999-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance in next generation turbine engines. Advanced seals have been identified as critical in meeting engine goals for specific fuel consumption, thrust-to-weight, emissions, durability and operating costs. NASA and the industry are identifying and developing engine and sealing technologies that will result in dramatic improvements and address the goals for engines entering service in the 2005-2007 time frame. This paper provides an overview of advanced seal technology requirements and highlights the results of a preliminary design effort to implement advanced seals into a regional aircraft turbine engine. This study examines in great detail the benefits of applying advanced seals in the high pressure turbine region of the engine. Low leakage film-riding seals can cut in half the estimated 4% cycle air currently used to purge the high pressure turbine cavities. These savings can be applied in one of several ways. Holding rotor inlet temperature (RIT) constant the engine specific fuel consumption can be reduced 0.9%, or thrust could be increased 2.5%, or mission fuel burn could be reduced 1.3%. Alternatively, RIT could be lowered 20 'F resulting in a 50% increase in turbine blade life reducing overall regional aircraft maintenance and fuel bum direct operating costs by nearly 1%. Thermal, structural, secondary-air systems, safety (seal failure and effect), and emissions analyses have shown the proposed design is feasible.

  15. Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)

    SciTech Connect

    Williams, W.C.

    2002-08-01

    The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft{sup 2}, the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft{sup 2}-degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation.

  16. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  17. BESTIA - The next generation ultra-fast CO2 laser for advanced accelerator research

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2016-09-01

    Over the last two decades, BNL's ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. Our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  18. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    DOE PAGESBeta

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particlemore » acceleration of ions and electrons.« less

  19. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia

  20. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  1. HGV2012: Leveraging Next-Generation Technology and Large Datasets to Advance Disease Research

    PubMed Central

    Gonzaludo, Nina; Zheng, Hong-Xiang; Wang, Jiucun; Chanock, Stephen J.; Jin, Li; Scherer, Stephen; Wijmenga, Cisca; Kwok, Pui-Yan; Brookes, Anthony J.

    2013-01-01

    The 13th International Meeting on Human Genome Variation and Complex Genome Analysis (HGV2012: Shanghai, China, 6th 8th September 2012) was a stimulating workshop where researchers from academia and industry explored the latest progress, challenges, and opportunities in genome variation research. Key themes included advancements in next-generation sequencing (NGS) technology, investigation of common and rare diseases, employing NGS in the clinic, utilizing large datasets that leverage biobanks and population-specific cohorts, and exploration of genomic features. PMID:23315969

  2. Monolithic solid oxide fuel cell technology advancement for coal- based power generation. Quarterly report, December 1991

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  3. Monolithic solid oxide fuel cell technology advancement for coal- based power generation

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  4. Advanced Development Projects for Constellation From The Next Generation Launch Technology Program Elements

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne

    2005-01-01

    When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.

  5. The Impact of Local and Regional Disease Extent on Overall Survival in Patients With Advanced Stage IIIB/IV Non-Small Cell Lung Carcinoma

    SciTech Connect

    Higginson, Daniel S.; Chen, Ronald C.; Tracton, Gregg; Morris, David E.; Halle, Jan; Rosenman, Julian G.; Stefanescu, Mihaela; Pham, Erica; Socinski, Mark A.; Marks, Lawrence B.

    2012-11-01

    Purpose: Patients with advanced stage IIIB or stage IV non-small cell lung carcinoma are typically treated with initial platinum-based chemotherapy. A variety of factors (eg, performance status, gender, age, histology, weight loss, and smoking history) are generally accepted as predictors of overall survival. Because uncontrolled pulmonary disease constitutes a major cause of death in these patients, we hypothesized that clinical and radiographic factors related to intrathoracic disease at diagnosis may be prognostically significant in addition to conventional factors. The results have implications regarding the selection of patients for whom palliative thoracic radiation therapy may be of most benefit. Methods and Materials: We conducted a pooled analysis of 189 patients enrolled at a single institution into 9 prospective phase II and III clinical trials involving first-line, platinum-based chemotherapy. Baseline clinical and radiographic characteristics before trial enrollment were analyzed as possible predictors for subsequent overall survival. To assess the relationship between anatomic location and volume of disease within the thorax and its effect on survival, the pre-enrollment computed tomography images were also analyzed by contouring central and peripheral intrapulmonary disease. Results: On univariate survival analysis, multiple pulmonary-related factors were significantly associated with worse overall survival, including pulmonary symptoms at presentation (P=.0046), total volume of intrathoracic disease (P=.0006), and evidence of obstruction of major bronchi or vessels on prechemotherapy computed tomography (P<.0001). When partitioned into central and peripheral volumes, central (P<.0001) but not peripheral (P=.74) disease was associated with worse survival. On multivariate analysis with known factors, pulmonary symptoms (hazard ratio, 1.46; P=.042), central disease volume (hazard ratio, 1.47; P=.042), and bronchial/vascular compression (hazard ratio, 1

  6. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    PubMed

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes. PMID:23955437

  7. Second Generation Advanced Reburning for High Eficiency NO(x) Control

    SciTech Connect

    Zamansky, V.M.; Maly, P.M.; Sheldon, M.S.; Moyeda, D.; Gardiner, W.C., Jr.; Lissianski, V.V.

    1997-04-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The sixth reporting period (January I - March 31, 1997) included both experimental and modeling activities. New kinetic experimental data for high-temperature decomposition of sodium carbonate were obtained in a flow reactor at the University of Texas in Austin. Pilot scale combustion tests in a 1.0 MMBtu/hr Boiler Simulator Facility were continued with firing coal and using natural gas as reburn fuel. The results demonstrate that over 90% NO control is achievable by injecting one or two N-agents with sodium promoters into the reburning zone and with the overfire air. Advanced reburning technologies does not cause significant byproduct emissions. The AR kinetic model was updated to include chemical reactions of sodium carbonate decomposition. Modeling was conducted on evaluation of the effect of sodium on process kinetics in the rebuming zone. This study revealed that increasing or decreasing radical concentrations in the presence of sodium can significantly affect the reactions responsible for NO reduction under fuel-rich conditions. The effect of mixing time on performance with sodium was also evaluated. Initial activities on engineering design methodology for second generation AR improvements are described.

  8. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    NASA Astrophysics Data System (ADS)

    Howard, Richard T.; Bryan, Thomas C.

    2009-03-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998.

  9. Fenton Reaction-Generated Advanced Oxidation Protein Products Induces Inflammation in Human Embryonic Kidney Cells.

    PubMed

    Bochi, Guilherme Vargas; Torbitz, Vanessa Dorneles; Santos, Roberto Christ Vianna; Cubillos-Rojas, Monica; López, José Luis Rosa; Siebel, Anna Maria; Gomes, Patrícia; de Oliveira, Jarbas Rodrigues; Moresco, Rafael Noal

    2016-08-01

    Fenton reaction is a new mechanism able to generate advanced oxidation protein products (AOPPs) by exposing the human serum albumin to the Fenton system. Here, we characterized the effects of Fenton reaction-generated advanced oxidation protein products (AOPP-FR) on the gene transcription of the nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in human embryonic kidney cells (HEK 293). To investigate the effects of AOPP-FR and AOPP-HOCl on transcription of inflammatory genes, the NF-κB, COX-2, and IL-6 luciferase promoter activities were analyzed. AOPP-FR and AOPP-HOCl were able to induce the activation of the gene transcription of NF-κB, COX-2, and IL-6 in HEK 293 cells. However, the effects of AOPP-FR were significantly higher than the effects of AOPP-HOCl in relation to COX-2 and IL-6. AOPP-FR induces the activation of the gene transcription of NF-κB, COX-2, and IL-6 and may represent a novel pathogenic mediator of inflammation in kidney. PMID:27145783

  10. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  11. NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Nov. 15, 2001 - Feb. 15,2002) ''Design and Layout Concepts for Compact, Factory-Produced, Transportable, Generation IV Reactor Systems''

    SciTech Connect

    Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Mohammed Khan; Joe McConn; Lawrence Townsend; Wesley Williams; Martin Williamson

    2002-03-15

    The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. Three nuclear power plant concepts are being studied representing water, helium and lead-bismuth coolants. This is the sixth quarterly progress report.

  12. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  13. IVS Organization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  14. Next generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases

    PubMed Central

    Paik, Paul K.; Shen, Ronglai; Won, Helen; Rekhtman, Natasha; Wang, Lu; Sima, Camelia S.; Arora, Arshi; Seshan, Venkatraman; Ladanyi, Marc; Berger, Michael F.; Kris, Mark G.

    2015-01-01

    Large-scale genomic characterization of squamous cell lung cancers (SQCLC) has revealed several putative oncogenic drivers. There are, however, little data to suggest that these alterations have clinical relevance. We performed comprehensive genomic profiling of 79 stage IV SQCLCs (including next-generation sequencing) and analyzed differences in the clinical characteristics of two major SQCLC subtypes: FGFR1 amplified and PI3K aberrant. Patients with PI3K aberrant tumors had aggressive disease marked by worse survival (median OS 8.6 vs. 19.1 mo, p<0.001), higher metastatic burden (>3 organs 18% vs. 3%, p=0.025), and greater incidence of brain metastases (27% vs. 0% in others, p<0.001). We performed whole-exome and RNA sequencing on paired brain metastases and primary lung cancers to elucidate the metastatic process to brain. SQCLC primaries that gave rise to brain metastases exhibited truncal PTEN loss. SQCLC brain metastases exhibited a high degree of genetic heterogeneity and evidence of clonal differences between their primary sites. PMID:25929848

  15. A Pilot Study Using Next-Generation Sequencing in Advanced Cancers: Feasibility and Challenges

    PubMed Central

    Weiss, Glen J.; Liang, Winnie S.; Demeure, Michael J.; Kiefer, Jeff A.; Hostetter, Galen; Izatt, Tyler; Sinari, Shripad; Christoforides, Alexis; Aldrich, Jessica; Kurdoglu, Ahmet; Phillips, Lori; Benson, Hollie; Reiman, Rebecca; Baker, Angela; Marsh, Vickie

    2013-01-01

    Purpose New anticancer agents that target a single cell surface receptor, up-regulated or amplified gene product, or mutated gene, have met with some success in treating advanced cancers. However, patients' tumors still eventually progress on these therapies. If it were possible to identify a larger number of targetable vulnerabilities in an individual's tumor, multiple targets could be exploited with the use of specific therapeutic agents, thus possibly giving the patient viable therapeutic alternatives. Experimental Design In this exploratory study, we used next-generation sequencing technologies (NGS) including whole genome sequencing (WGS), and where feasible, whole transcriptome sequencing (WTS) to identify genomic events and associated expression changes in advanced cancer patients. Results WGS on paired tumor and normal samples from nine advanced cancer patients and WTS on six of these patients' tumors was completed. One patient's treatment was based on targets and pathways identified by NGS and the patient had a short-lived PET/CT response with a significant reduction in his tumor-related pain. To design treatment plans based on information garnered from NGS, several challenges were encountered: NGS reporting delays, communication of results to out-of-state participants and their treating oncologists, and chain of custody handling for fresh biopsy samples for Clinical Laboratory Improvement Amendments (CLIA) target validation. Conclusion While the initial effort was a slower process than anticipated due to a variety of issues, we demonstrate the feasibility of using NGS in advanced cancer patients so that treatments for patients with progressing tumors may be improved. PMID:24204627

  16. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  17. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  18. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells

    PubMed Central

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  19. Ionic carbamate photoacid/photobase generators for the advancement of dual-tone photolithography

    NASA Astrophysics Data System (ADS)

    Hallett-Tapley, Geniece L.; Wee, Tse-Luen; Eldo, Joby; Jackson, Edward A.; Blackwell, James M.; Scaiano, Juan C.

    2012-03-01

    Current work in lithographic patterning has been carried out using 193 nm excitation sources, limiting the pitch division to approximately λ/2 and, thus, the advancement of Moore's law. Recently, double patterning has emerged as a potential extension of 193 nm techniques as two lines can be patterned in one exposure. In this contribution, the double patterning features of single component carbamate photoacid/photobase generators (PAG/PBG) are examined. At lower exposure doses, sulfonic acid is generated, while at higher doses, a photochemical rearrangement is initiated to activate the PBG. Optimally, at intermediate doses, photoacid and photobase components can exist concurrently resulting in the desired dual tone lithographic features. The energy required to initiate dual tone behavior can be tailored through co-added amine quenchers and carbamate concentration. Using ellipsometry, the energy required for the resists to have the first sign of photoacid generation (film dissolution), E0, and at the energy required for photobase activation (En) were determined, as this value dictates the ability to achieve the desired pitch division.

  20. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  1. Advanced real-time dynamic scene generation techniques for improved performance and fidelity

    NASA Astrophysics Data System (ADS)

    Bowden, Mark H.; Buford, James A.; Mayhall, Anthony J.

    2000-07-01

    Recent advances in real-time synthetic scene generation for Hardware-in-the-loop (HWIL) testing at the U.S. Army Aviation and Missile Command (AMCOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) improve both performance and fidelity. Modeling ground target scenarios requires tradeoffs because of limited texture memory for imagery and limited main memory for elevation data. High- resolution insets have been used in the past to provide better fidelity in specific areas, such as in the neighborhood of a target. Improvements for ground scenarios include smooth transitions for high-resolution insets to reduce high spatial frequency artifacts at the borders of the inset regions and dynamic terrain paging to support large area databases. Transport lag through the scene generation system, including sensor emulation and interface components, has been dealt with in the past through the use of sub-window extraction from oversize scenes. This compensates for spatial effects of transport lag but not temporal effects. A new system has been developed and used successfully to compensate for a flashing coded beacon in the scene. Other techniques have been developed to synchronize the scene generator with the seeker under test (SUT) and to model atmospheric effects, sensor optic and electronics, and angular emissivity attenuation.

  2. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    NASA Astrophysics Data System (ADS)

    Heydt, Gerald T.

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation, and the history of the process is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory in Hawaii, which are discussed in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  3. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  4. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  5. Recent advances on developing 3rd generation enzyme electrode for biosensor applications.

    PubMed

    Das, Priyanki; Das, Madhuri; Chinnadayyala, Somasekhar R; Singha, Irom Manoj; Goswami, Pranab

    2016-05-15

    The electrochemical biosensor with enzyme as biorecognition element is traditionally pursued as an attractive research topic owing to their high commercial perspective in healthcare and environmental sectors. The research interest on the subject is sharply increased since the beginning of 21st century primarily, due to the concomitant increase in knowledge in the field of material science. The remarkable effects of many advance materials such as, conductive polymers and nanomaterials, were acknowledged in the developing efficient 3rd generation enzyme bioelectrodes which offer superior selectivity, sensitivity, reagent less detection, and label free fabrication of biosensors. The present review article compiles the major knowledge surfaced on the subject since its inception incorporating the key review and experimental papers published during the last decade which extensively cover the development on the redox enzyme based 3rd generation electrochemical biosensors. The tenet involved in the function of these direct electrochemistry based enzyme electrodes, their characterizations and various strategies reported so far for their development such as, nanofabrication, polymer based and reconstitution approaches are elucidated. In addition, the possible challenges and the future prospects in the development of efficient biosensors following this direct electrochemistry based principle are discussed. A comparative account on the design strategies and critical performance factors involved in the 3rd generation biosensors among some selected prominent works published on the subject during last decade have also been included in a tabular form for ready reference to the readers. PMID:26735873

  6. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  7. Programmable generation of ultrafast optical waveforms: Recent advances in theory and technology

    SciTech Connect

    Wefers, M.M.; Nelson, K.A.

    1995-11-01

    Recent advances in the shaping of ultrafast optical waveforms using liquid crystal (LC) spatial light modulators (SLM) are presented. Two LC SLMs are used in a novel arrangement to produce programmable waveforms with specified time-dependent amplitude and temporal phase profiles with the greatest fidelity and complexity to date. The apparatus is also used to demonstrate the generation of an ultrafast waveform with a programmable time-dependent polarization profile. A general theoretical result that describes the space-time electric field profile of waveforms shaped by the spectral filtering of spatially separated frequency components is also presented. The main result is that diffraction gives rise to a translational spatial shift in the electric field profile that varies linearly with time along the shaped waveform.

  8. Advanced properties of extended plasmas for efficient high-order harmonic generation

    SciTech Connect

    Ganeev, R. A.; Suzuki, M.; Kuroda, H.

    2014-05-15

    We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasma jets.

  9. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  10. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Fogle, Frank (Technical Monitor)

    2002-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.

  11. Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens.

    PubMed

    Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan

    2015-07-01

    The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants. PMID:26009932

  12. Conceptual design of an advanced Stirling conversion system for terrestrial power generation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.

  13. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  14. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  15. The Illiac IV

    SciTech Connect

    Hord, M.

    1982-01-01

    The story of the Illiac IV is also in part the story of the Institute for Advanced Computation. This is the government organization formed in 1971 by the Defense Advanced Research Projects Agency and the National Aeronautics and Space Administration Ames Research Center to develop and operate this computer. The Institute provides access to the Illiac through a connection to the ARPANET, a national communication network. The Institute also performs software development, maintenance, and research in various advanced computation topics. Considerable effort has been invested by the Institute in documenting the evolution of the Illiac system and providing those publications to the user community. This material has experienced quite limited circulation and to most of the computer world the Illiac remains mysterious. This attitude is fostered by the lack of a thorough summary of the Illiac's environment, design and capabilities. It is in response to that information gap that this book is addressed.

  16. Three-dimensional unsteady flow calculations in an advanced gas generator turbine

    NASA Technical Reports Server (NTRS)

    Rangwalla, Akil A.

    1993-01-01

    This paper deals with the application of a three-dimensional, unsteady Navier-Stokes code for predicting the unsteady flow in a single stage of an advanced gas generator turbine. The numerical method solves the three-dimensional thin-layer Navier-Stokes equations, using a system of overlaid grids, which allow for relative motion between the rotor and stator airfoils. Results in the form of time averaged pressures and pressure amplitudes on the airfoil surfaces will be shown. In addition, instantaneous contours of pressure, Mach number, etc. will be presented in order to provide a greater understanding of the inviscid as well as the viscous aspects of the flowfield. Also, relevant secondary flow features such as cross-plane velocity vectors and total pressure contours will be presented. Prior work in two-dimensions has indicated that for the advanced designs, the unsteady interactions can play a significant role in turbine performance. These interactions affect not only the stage efficiency but can substantially alter the time-averaged features of the flow. This work is a natural extension of the work done in two-dimensions and hopes to address some of the issues raised by the two-dimensional calculations. These calculations are being performed as an integral part of an actual design process and demonstrate the value of unsteady rotor-stator interaction calculations in the design of turbomachines.

  17. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Brown, J.; Adroja, D. T.; Manuel, P.; Kouzmenko, G.; Bewley, R. I.; Wotherspoon, R.

    2012-12-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  18. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  19. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

    PubMed

    Waldrep, J C; Dhand, R

    2008-04-01

    Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I-neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available. PMID:18393813

  20. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  1. Generation of large scale urban environments to support advanced sensor and seeker simulation

    NASA Astrophysics Data System (ADS)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  2. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  3. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA GRC

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-02-01

    A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  4. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-W(sub e) (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 W(sub e) per kilogram. GRC has performed random vibration testing of a lowerpower version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  5. Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Hill, Dennis

    2011-01-01

    After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.

  6. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    SciTech Connect

    Stratakis, Diktys

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  7. The three-dimensional Multi-Block Advanced Grid Generation System (3DMAGGS)

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Weilmuenster, Kenneth J.

    1993-01-01

    As the size and complexity of three dimensional volume grids increases, there is a growing need for fast and efficient 3D volumetric elliptic grid solvers. Present day solvers are limited by computational speed and do not have all the capabilities such as interior volume grid clustering control, viscous grid clustering at the wall of a configuration, truncation error limiters, and convergence optimization residing in one code. A new volume grid generator, 3DMAGGS (Three-Dimensional Multi-Block Advanced Grid Generation System), which is based on the 3DGRAPE code, has evolved to meet these needs. This is a manual for the usage of 3DMAGGS and contains five sections, including the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a sample case for verifying correct operation of the code, and a comparison to both 3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this technical memorandum should be used in conjunction with the 3DGRAPE manual (NASA TM-102224).

  8. Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6

    SciTech Connect

    Katzenberger, John; Arnott, James; Wright, Alyson

    2014-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6,” on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project – 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

  9. The Advanced Video Guidance Sensor: Orbital Express and the Next Generation

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.

    2008-01-01

    The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).

  10. Association of rat thoracic aorta dilatation by astragaloside IV with the generation of endothelium-derived hyperpolarizing factors and nitric oxide, and the blockade of Ca2+ channels

    PubMed Central

    HU, GUANYING; LI, XIXIONG; ZHANG, SANYIN; WANG, XIN

    2016-01-01

    The aim of the present study was to elucidate the roles of endothelium-derived hyperpolarizing factors (EDHFs) and nitric oxide (NO) in mediating the vasodilatation response to astragaloside IV and the effects of astragaloside IV on voltage-dependent Ca2+ channels and receptor-operated Ca2+ channels in rat thoracic aortic rings precontracted with potassium chloride (KCl; 60 mM) or phenylephrine (PHE; 1 µM). The results showed that astragaloside IV (1×10−4-3×10−1 g/l) concentration-dependently relaxed the contraction induced by KCl (10–90 mM) or PHE (1×10−9-3×10−5 µM) and inhibited concentration-contraction curves for the two vasoconstrictors in the aortic rings. Preincubation with Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM) significantly attenuated astragaloside IV-induced relaxation in the endothelium-intact and -denuded arterial rings precontracted with PHE. Astragaloside IV, following preincubation with L-NAME (100 µM) plus indomethacin (10 µM), exerted vasodilatation, which was depressed by tetraethtylamine (1 mM) and propargylglycine (100 µM), but not by carbenoxolone (10 µM), catalase (500 U/ml) or proadifen hydrochloride (10 µM). The action mode of astragaloside IV was evident in comparison to nifedipine. Inhibition of PHE-induced contraction by astragaloside IV (100 mg/l) was more potent compared to inhibition of KCl-induced contraction, while inhibition of KCl-induced contraction by nifedipine (100 mg/l) was more potent compared to inhibition of PHE-induced contraction by nifedipine (100 mg/l). In addition, the combination of astragaloside IV and nifedipine exhibited synergistic and additive inhibitory effects on contraction evoked by KCl, which was similar to PHE. In conclusion, astragaloside IV, as a Ca2+ antagonist, relaxes the vessels through the blockade of superior receptor-operated Ca2+ and inferior voltage-dependent Ca2+ channels, which modulate NO from vascular endothelial cells and vascular smooth muscle cells, and

  11. Targeted Next-generation Sequencing of Advanced Prostate Cancer Identifies Potential Therapeutic Targets and Disease Heterogeneity

    PubMed Central

    Beltran, Himisha; Yelensky, Roman; Frampton, Garrett M.; Park, Kyung; Downing, Sean R.; MacDonald, Theresa Y.; Jarosz, Mirna; Lipson, Doron; Tagawa, Scott T.; Nanus, David M.; Stephens, Philip J.; Mosquera, Juan Miguel; Cronin, Maureen T.; Rubin, Mark A.

    2012-01-01

    Background Most personalized cancer care strategies involving DNA sequencing are highly reliant on acquiring sufficient fresh or frozen tissue. It has been challenging to comprehensively evaluate the genome of advanced prostate cancer (PCa) because of limited access to metastatic tissue. Objective To demonstrate the feasibility of a novel next-generation sequencing (NGS) based platform that can be used with archival formalin-fixed paraffin-embedded (FFPE) biopsy tissue to evaluate the spectrum of DNA alterations seen in advanced PCa. Design, setting, and participants FFPE samples (including archival prostatectomies and prostate needle biopsies) were obtained from 45 patients representing the spectrum of disease: localized PCa, metastatic hormone-naive PCa, and metastatic castration-resistant PCa (CRPC). We also assessed paired primaries and metastases to understand disease heterogeneity and disease progression. Intervention At least 50 ng of tumor DNA was extracted from FFPE samples and used for hybridization capture and NGS using the Illumina HiSeq 2000 platform. Outcome measurements and statistical analysis A total of 3320 exons of 182 cancer-associated genes and 37 introns of 14 commonly rearranged genes were evaluated for genomic alterations. Results and limitations We obtained an average sequencing depth of >900X. Overall, 44% of CRPCs harbored genomic alterations involving the androgen receptor gene (AR), including AR copy number gain (24% of CRPCs) or AR point mutation (20% of CRPCs). Other recurrent mutations included transmembrane protease, serine 2 gene (TMPRSS2):v-ets erythroblastosis virus E26 oncogene homolog (avian) gene (ERG) fusion (44%); phosphatase and tensin homolog gene (PTEN) loss (44%); tumor protein p53 gene (TP53) mutation (40%); retinoblastoma gene (RB) loss (28%); v-myc myelocytomatosis viral oncogene homolog (avian) gene (MYC) gain (12%); and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α gene (PIK3CA) mutation (4

  12. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  13. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  14. Next generation Geostationary Operational Environmental Satellite: GOES-R, the United States' advanced weather sentinel

    NASA Astrophysics Data System (ADS)

    Bloom, Hal J.

    2009-08-01

    The Geostationary Operational Environmental Satellite R-series (GOES-R) is the follow-on to the existing GOES system, completing a transition from 1980's technology to state-of-the-art. The product of a collaborative development effort between NOAA, NASA, DOC and industry, the first GOES-R satellite is planned to be launched in April 2015 with readiness to fully replace the heritage GOES constellation in 2017. This next-generation system will continue as the United States' weather sentinel for forecasting hurricanes, severe storms, and flash floods while providing information about air quality, winds, sea surface temperature, and space weather. It will provide advanced capabilities by providing five times more spectral information, temporal coverage six times faster than the current system, and 50% higher spatial resolution. The heart of the GOES-R system is the ABI instrument, a sixteen-channel imager with six visible channels and 10 infrared channels. The GLM instrument will be the first geostationary sensor to detect and monitor lightning strikes. GOES-R also includes several space environment sensors that will increase the capability to monitor and predict solar flare activity. Additionally, GOES-R will continue to provide heritage search and rescue capabilities, a data collection system, and other direct readout capabilities.

  15. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    PubMed

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection. PMID:23404132

  16. Development of an advanced mobile base for personal mobility and manipulation appliance generation II robotic wheelchair

    PubMed Central

    Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.

    2013-01-01

    Background This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. Findings The mobile base of PerMMA Gen II has two operating modes: “advanced driving mode” on flat and uneven terrain, and “automatic climbing mode” during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Conclusion Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests. PMID:23820149

  17. Locally Advanced Stage IV Squamous Cell Carcinoma of the Head and Neck: Impact of Pre-Radiotherapy Hemoglobin Level and Interruptions During Radiotherapy

    SciTech Connect

    Rades, Dirk Stoehr, Monika; Kazic, Nadja; Hakim, Samer G.; Walz, Annette; Schild, Steven E.; Dunst, Juergen

    2008-03-15

    Purpose: Stage IV head and neck cancer patients carry a poor prognosis. Clear understanding of prognostic factors can help to optimize care for the individual patient. This study investigated 11 potential prognostic factors including pre-radiotherapy hemoglobin level and interruptions during radiotherapy for overall survival (OS), metastases-free survival (MFS), and locoregional control (LC) after radiochemotherapy. Methods and Materials: Eleven factors were investigated in 153 patients receiving radiochemotherapy for Stage IV squamous cell head and neck cancer: age, gender, Karnofsky performance score (KPS), tumor site, grading, T stage, N stage, pre-radiotherapy hemoglobin level, surgery, chemotherapy type, and interruptions during radiotherapy >1 week. Results: On multivariate analysis, improved OS was associated with KPS 90-100 (relative risk [RR], 2.36; 95% confidence interval [CI], 1.20-4.93; p = .012), hemoglobin {>=}12 g/dL (RR, 1.88; 95% CI, 1.01-3.53; p = .048), and no radiotherapy interruptions (RR, 2.59; 95% CI, 1.15-5.78; p = .021). Improved LC was significantly associated with lower T stage (RR, 2.17; 95% CI, 1.16-4.63; p = .013), hemoglobin {>=}12 g/dL (RR, 4.12; 95% CI, 1.92-9.09; p < .001), surgery (RR, 2.67; 95% CI, 1.28-5.88; p = .008), and no radiotherapy interruptions (RR, 3.32; 95% CI, 1.26-8.79; p = .015). Improved MFS was associated with KPS 90-100 (RR, 3.41; 95% CI, 1.46-8.85; p = .012). Conclusions: Significant predictors for outcome in Stage IV head and neck cancer were performance status, stage, surgery, pre-radiotherapy hemoglobin level, and interruptions during radiotherapy >1 week. It appears important to avoid anemia and radiotherapy interruptions to achieve the best treatment results.

  18. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  19. A Phenomenological Study of How High School Advanced Placement Classes Prepared First-Generation College Students for Postsecondary Education

    ERIC Educational Resources Information Center

    Snyder, Scott

    2013-01-01

    This study investigated the lived experiences of first-generation college students and the perceived influence of taking high school Advanced Placement (AP) courses on their college education. The following research questions were addressed: (a) what motivated students to consider going to college, (b) what was their experience in taking AP…

  20. Teaching Advanced Operation of an iPod-Based Speech-Generating Device to Two Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Achmadi, Donna; Kagohara, Debora M.; van der Meer, Larah; O'Reilly, Mark F.; Lancioni, Giulio E.; Sutherland, Dean; Lang, Russell; Marschik, Peter B.; Green, Vanessa A.; Sigafoos, Jeff

    2012-01-01

    We evaluated a program for teaching two adolescents with autism spectrum disorders (ASD) to perform more advanced operations on an iPod-based speech-generating device (SGD). The effects of the teaching program were evaluated in a multiprobe multiple baseline across participants design that included two intervention phases. The first intervention…

  1. Advancement via Individual Determination (AVID) at a Postsecondary Institution: Support for First-Generation College-Goers

    ERIC Educational Resources Information Center

    Watt, Karen M.; Butcher, Jennifer; Ramirez, E. Fidel

    2013-01-01

    This study examines how a selected Hispanic-Serving Institution is implementing Advancement Via Individual Determination as a strategy for improving retention and time to graduation for 1st-generation Hispanic college students. A quasi-experimental design approach was used in which the retention rates and 1st-semester grade point averages of a…

  2. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  3. User's guide to PMESH: A grid-generation program for single-rotation and counterrotation advanced turboprops

    NASA Technical Reports Server (NTRS)

    Warsi, Saif A.

    1989-01-01

    A detailed operating manual is presented for a grid generating program that produces 3-D meshes for advanced turboprops. The code uses both algebraic and elliptic partial differential equation methods to generate single rotation and counterrotation, H or C type meshes for the z - r planes and H type for the z - theta planes. The code allows easy specification of geometrical constraints (such as blade angle, location of bounding surfaces, etc.), mesh control parameters (point distribution near blades and nacelle, number of grid points desired, etc.), and it has good runtime diagnostics. An overview is provided of the mesh generation procedure, sample input dataset with detailed explanation of all input, and example meshes.

  4. Azospirillum IV

    SciTech Connect

    Klingmuller, W.

    1988-01-01

    This book's contents include: Advances in the genetics of Azospirillum brasilense Sp7: Use of Tn5 mutagenesis for gene mapping and identification; Characterization of DNA segments adjacent to the nifHDK genes of Azospirillum brasilense by Sp7 Tn5 site-directed mutagenesis; Selection at the chemostat of Azospirillum brasilense Cd N/sub 2/-fixing at high O/sub 2/ pressure. Root hair deformation induced on maize and medicago by an Azospirillum transconjugant containing a Rhizobium meliloti nodulation region. Azospirilla are bacteria that live in association with the roots of many grain crops. Since these bacteria bind molecular nitrogen from the air and excrete plant growth substances, interest has focussed on their potential to increase crop yields.

  5. Concurrent CO2 Control and O2 Generation for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.

    2007-01-01

    The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then

  6. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    NASA Astrophysics Data System (ADS)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  7. Advanced Thomson scattering system for high-flux linear plasma generator

    SciTech Connect

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A.; Donne, A. J. H.; Schram, D. C.; Naumenko, N. N.; Tugarinov, S. N.

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  8. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  9. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  10. Development of high strength high toughness third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  11. Advanced materials for next generation NiMH portable, HEV and EV batteries

    SciTech Connect

    Ovshinsky, S.R.; Dhar, S.K.; Fetcenko, M.A.; Corrigan, D.A.; Reichman, B.; Young, K.; Fierro, C.; Venkatesan, S.; Gifford, P.; Koch, J.

    1998-07-01

    While Ovonic NiMH batteries are already in high volume commercial production for portable applications, advances in materials technology have enabled performance improvements in specific energy (100 Wh/kg), specific power (600-1000 W/kg), high temperature operation, charge retention, and voltage stability. Concurrent with technology advances, Ovonic NiMH batteries have established performance and commercial milestones in electric vehicles, hybrid electric vehicles, as well as scooter, motorcycle and bicycle applications. As important as these advances, significant manufacturing cost reductions have also occurred which allow continued growth of NiMH technology. In this paper, advances in performance, applications and cost reduction are discussed with particular emphasis on the improved proprietary metal hydride and nickel hydroxide materials that make such advances possible.

  12. The Advanced Program of Vocational Agriculture in Louisiana. Ag III and Ag IV (11th and 12th Grades). Volume II. Bulletin No. 1725.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide consists of materials for use in teaching an advanced course in agricultural mechanics designed for 11th and 12th grade students. Addressed in the individual units of the guide are arc welding; oxy-acetylene welding; soldering; electricity; tractor maintenance, operation, and safety; small engines; farm structures; and cold…

  13. Standard Missile Block IV battery

    SciTech Connect

    Martin, J.

    1996-11-01

    During the 1980`s a trend in automatic primary battery technologies was the replacement of silver-zinc batteries by thermal battery designs. The Standard missile (SM 2) Block IV development is a noteworthy reversal of this trend. The SM2, Block IV battery was originally attempted as a thermal battery with multiple companies attempting to develop a thermal battery design. These attempts resulted in failure to obtain a production thermal battery. A decision to pursue a silver-zinc battery design resulted in the development of a battery to supply the SM 2, Block IV (thermal battery design goal) and also the projected power requirements of the evolving SM 2, Block IVA in a single silver-zinc battery design. Several advancements in silver-zinc battery technology were utilized in this design that improve the producibility and extend the boundaries of silver-zinc batteries.

  14. A theoretical investigation on the Strecker reaction catalyzed by a Ti(IV)-complex catalyst generated from a cinchona alkaloid, achiral substituted 2,2'-biphenol, and tetraisopropyl titanate.

    PubMed

    Su, Zhishan; Li, Weiyi; Wang, Jun; Hu, Changwei; Feng, Xiaoming

    2013-01-28

    The mechanism and the origin of selectivity of the asymmetric Strecker reaction catalyzed by a Ti(IV)-complex catalyst generated from a cinchona alkaloid, achiral substituted 2,2'-biphenol, and tetraisopropyl titanate have been investigated by DFT and ONIOM methods. The calculations indicate that the reaction proceeds through a dual activation mechanism, in which Ti(IV) acts as Lewis acid to activate the electrophile aldimine substrate, whereas the tertiary amine in cinchona alkaloid works as Lewis base to promote the activation and isomerization of HCN. The C-C bond formation step is predicted to be the selectivity-controlling step in the reaction with an energy barrier of 9.3 kcal mol(-1). The "asymmetric activation" is achieved by the transfer of asymmetry from the chiral cinchonine ligand to the axially flexible achiral biphenol ligand through coordination interaction with the central metal Ti(IV) . The large steric hindrance from the 3,3'-position substitute of biphenol, combined with the quinoline fragment of cinchona alkaloid and the orientation of hydrogen bonding of iPrOH, play a key role in controlling the stereoselectivity, which is in good agreement with the experimental observations. PMID:23239409

  15. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 3: Advanced fan section grid generator final report and computer program user's manual

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1991-01-01

    A procedure is studied for generating three-dimensional grids for advanced turbofan engine fan section geometries. The procedure constructs a discrete mesh about engine sections containing the fan stage, an arbitrary number of axisymmetric radial flow splitters, a booster stage, and a bifurcated core/bypass flow duct with guide vanes. The mesh is an h-type grid system, the points being distributed with a transfinite interpolation scheme with axial and radial spacing being user specified. Elliptic smoothing of the grid in the meridional plane is a post-process option. The grid generation scheme is consistent with aerodynamic analyses utilizing the average-passage equation system developed by Dr. John Adamczyk of NASA Lewis. This flow solution scheme requires a series of blade specific grids each having a common axisymmetric mesh, but varying in the circumferential direction according to the geometry of the specific blade row.

  16. Advancements in integrating DSM and distributed generation and storage into T&D planning: Proceedings from the Third Annual Workshop

    SciTech Connect

    Not Available

    1994-09-01

    This third in a series of annual EPRI workshops focused on integrating demand-side management and distributed generation an into transmission and distribution planning. The workshop included utility case studies on integrated planning, results from utility pilot projects, analytical developments, and cross-departmental planning and implementation. In addition, the workshop featured information on advancements in area-specific planning and costing methods along with EPRI products that support utility integrated planning efforts.

  17. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  18. NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Aug 15, 2002 to Nov. 15, 2002) - DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE GENERATION IV REACTOR SYSTEMS

    SciTech Connect

    Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Lawrence Townsend; Martin Williamson; Rupy Sawhney; Jacob Fife

    2002-12-15

    The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. This report covers the ninth quarter of the project. The three reactor concept teams have completed initial plant concept development, evaluation and layout. A significant design effort has proceeded with substantial change and evolution from original ideas. The concepts have been reviewed by the industry participants and improvements have been implemented. The third phase, industrial engineering simulation of reactor fabrication has begun.

  19. [A Patient with Stage IV Advanced Gastric Cancer with Multiple Liver Metastases Living for More Than 6 Years after Treatment with TS-1 Alone].

    PubMed

    Hara, Ryosuke; Yoshida, Kazuya; Fujii, Toshiyuki; Ikeda, Akihiko; Hashiyata, Hiroshi; Nakamoto, Kenbu; Takeshige, Motohiro

    2016-07-01

    The patient was a 58-year-old man with advanced gastric cancer with multiple liver metastases. He received TXL/TS-1 therapy during February 2009, but treatment was stopped immediately when he developed anorexia, diarrhea, and numbness in his fingers. Therefore, only TS-1 was administered. Following treatment initiation, tumor marker levels promptly dropped. The gastric lesion disappeared and, to date, only a slight scar remains since April 2010. Similarly, liver metastases have not been detected since August 2011. There has been no lesion progression for 6 years since the start of the chemotherapy. PMID:27431636

  20. Generation Vexed: Age-Related Culture Clashes in the Advancement Office and How to Avoid Them

    ERIC Educational Resources Information Center

    DiConsiglio, John

    2009-01-01

    Welcome to the Generational Wars--a workplace skirmish over everything from ties and pantyhose to flex time and Facebook. For the first time in American history, three generations are now working desk-to-desk. And each brings wildly varying views on work and life into the office. The battle lines have been drawn. On one side are the Baby Boomers,…

  1. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-01-31

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  2. How Syntactic Reasoners Can Develop Understanding, Evaluate Conjectures, and Generate Counterexamples in Advanced Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith

    2009-01-01

    This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…

  3. Advancing a Complex Systems Approach to Personalized Learning Communities: Bandwidth, Sightlines, and Teacher Generativity

    ERIC Educational Resources Information Center

    Hamilton, Eric

    2015-01-01

    Educational technologies have advanced one of the most important visions of educational reformers, to customize formal and informal learning to individuals. The application of a complex systems framework to the design of learning ecologies suggests that each of a series of ten desirable and malleable features stimulates or propels the other ten,…

  4. Domain decomposition by the advancing-partition method for parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z. (Inventor); Banihashemi, legal representative, Soheila (Inventor)

    2012-01-01

    In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.

  5. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-03-31

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

  6. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer.

    PubMed

    Wang, Shuhang; Cang, Shundong; Liu, Delong

    2016-01-01

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are widely used in patients with non-small cell lung cancer (NSCLC). However, EGFR T790M mutation leads to resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation have been in active clinical development. These agents include osimertinib, rociletinib, HM61713, ASP8273, EGF816, and PF-06747775. Osimertinib and rociletinib have shown clinical efficacy in phase I/II trials in patients who had acquired resistance to first- or second-generation TKIs. Osimertinib (AZD9291, TAGRISSO) was recently approved by FDA for metastatic EGFR T790M mutation-positive NSCLC. HM61713, ASP8237, EGF816, and PF-06747775 are still in early clinical development. This article reviews the emerging data regarding third-generation agents against EGFR T790M mutation in the treatment of patients with advanced NSCLC. PMID:27071706

  7. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    SciTech Connect

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  8. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  9. Mutation Profiling of Clinically Advanced Cancers Using Next-Generation Sequencing for Targeted Therapy: A Lifespan Experience.

    PubMed

    Friedman, Kenneth; Resnick, Murray B; Safran, Howard

    2015-10-01

    The application of modern molecular tests such as next-generation sequencing (NGS) to human malignancies has led to better understanding of tumor biology and the design of targeted molecular therapies. In the research setting, important genomic alterations in tumors have been discovered with potential therapeutic implications but data regarding the impact of this technology in a real world oncology practice is limited. As a result, we decided to review the results of NGS in 144 advanced-stage cancer patients referred to the oncology practices of Lifespan-affiliated centers in Rhode Island. Most cancers revealed genomic alterations in genes commonly mutated in cancer. However, several unexpected genomic alterations were discovered in certain cancers with potential therapeutic intervention. Most cancers contained "actionable" genomic alterations despite being of advanced stage. Our experience demonstrates that application of NGS in the clinical setting contributes both to increasing the therapeutic armamentarium as well as our understanding of tumor biology. PMID:26422540

  10. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    SciTech Connect

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  11. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  12. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  13. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    SciTech Connect

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  14. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    NASA Astrophysics Data System (ADS)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic

  15. Agreement for depression diagnosis between DSM-IV-TR criteria, three validated scales, oncologist assessment, and psychiatric clinical interview in elderly patients with advanced ovarian cancer

    PubMed Central

    Rhondali, Wadih; Freyer, Gilles; Adam, Virginie; Filbet, Marilène; Derzelle, Martine; Abgrall-Barbry, Gaelle; Bourcelot, Sophie; Machavoine, Jean-Louis; Chomat-Neyraud, Muriel; Gisserot, Olivier; Largillier, Rémi; Le Rol, Annick; Priou, Frank; Saltel, Pierre; Falandry, Claire

    2015-01-01

    Background Depression, a major outcome in cancer patients, is often evaluated by physicians relying on their clinical impressions rather than patient self-report. Our aim was to assess agreement between patient self-reported depression, oncologist assessment (OA), and psychiatric clinical interview (PCI) in elderly patients with advanced ovarian cancer (AOC). Methods This analysis was a secondary endpoint of the Elderly Women AOC Trial 3 (EWOT3), designed to assess the impact of geriatric covariates, notably depression, on survival in patients older than 70 years of age. Depression was assessed using the Geriatric Depression Scale-30 (GDS), the Hospital Anxiety Depression Scale, the distress thermometer, the mood thermometer, and OA. The interview guide for PCI was constructed from three validated scales: the GDS, the Hamilton Depression Rating Scale, and the Montgomery Asberg Depression Rating Scale (MADRS). The Diagnostic and Statistical Manual of Mental Disorders, fourth edition, revised (DSM) criteria for depression were used as a gold standard. Results Out of 109 patients enrolled at 21 centers, 99 (91%) completed all the assessments. Patient characteristics were: mean age 78, performance status ≥2: 47 (47%). Thirty six patients (36%) were identified as depressed by the PCI versus 15 (15%) identified by DSM. We found moderate agreement for depression identification between DSM and GDS (κ=0.508) and PCI (κ=0.431) and high agreement with MADRS (κ=0.663). We found low or no agreement between DSM with the other assessment strategies, including OA (κ=−0.043). Identification according to OA (yes/no) resulted in a false-negative rate of 87%. As a screening tool, GDS had the best sensitivity and specificity (94% and 80%, respectively). Conclusion The use of validated tools, such as GDS, and collaboration between psychologists and oncologists are warranted to better identify emotional disorders in elderly women with AOC. PMID:26203235

  16. FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

    2003-06-01

    In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology

  17. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    PubMed

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world. PMID:25394406

  18. Ovarian Cancer Stage IV

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage IV Add to My Pictures View /Download : ... 1200x1335 View Download Large: 2400x2670 View Download Title: Ovarian Cancer Stage IV Description: Drawing of stage IV shows ...

  19. Recent advances on pipe inspection using guided waves generated by electromagnetic acoustic transducers

    NASA Astrophysics Data System (ADS)

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-03-01

    For several years guided waves have been used for pipe wall defect detection. Guided waves have become popular for monitoring large structures because of the capability of these waves to propagate long distances along pipes, plates, interfaces and structural boundaries before loosing their strengths. The current technological challenges are to detect small defects in the pipe wall and estimate their dimensions using appropriate guided wave modes and to generate those modes relatively easily for field applications. Electro-Magnetic Acoustic Transducers (EMAT) can generate guided waves in pipes in the field environment. This paper shows how small defects in the pipe wall can be detected and their dimensions can be estimated by appropriate signal processing technique applied to the signals generated and received by the EMAT.

  20. Recent Advances in Transition-Metal-Free Oxygenation of Alkene C=C Double Bonds for Carbonyl Generation.

    PubMed

    Wan, Jie-Ping; Gao, Yong; Wei, Li

    2016-08-01

    Carbonyl-forming reactions are a class of fundamental transformations in organic chemistry. Guided by the current importance of environmentally benign metal-free catalysis and synthesis, herein we review recent advances in carbonyl-generation reactions based on alkene C=C double oxygenation as well as related cascade reactions in the synthesis of diverse organic products. The content of this focus review consists of two important but different reaction models: oxygenation based on full C=C double-bond cleavage and oxygenation based on partial C=C double-bond cleavage. PMID:27237866

  1. Advances toward commercialization of a new generation of low cost (O)LED-based dissolved oxygen and bioanalyte monitors

    NASA Astrophysics Data System (ADS)

    Smith, Alex; Cai, Yuankun; Vengasandra, Srikanth; Shinar, Ruth; Shinar, Joseph

    2010-08-01

    Recent advances toward commercialization of a new generation of low-cost LED- and OLED-based monitors for dissolved oxygen (DO), and multiple (bio)analytes such as glucose, lactate, alcohol, and cholesterol are described. The design of the DO monitors, which contain no optical fibers, filters, mirrors, or lens, is significantly simpler and consequently lower-cost than that of commercial LED-based DO monitors. The multiple (bio)analyte monitors are based on a DO monitor and the oxidase enzyme specific to each analyte. The potential advantages and disadvantages of the OLED- vs LED-based monitors is also discussed.

  2. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  3. Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: Enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate

    PubMed Central

    Cotruvo, Joseph A.; Stich, Troy A.; Britt, R. David; Stubbe, JoAnne

    2013-01-01

    Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y•) generated by oxidation of a reduced dinuclear metal cluster. The FeIII2-Y• cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from FeII2-NrdB, O2, and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a MnIII2-Y• cofactor in their NrdF subunit. MnII2-NrdF does not react with O2, but it binds the reduced form of a conserved flavodoxin-like protein, NrdIhq, which, in the presence of O2, reacts to form the MnIII2-Y• cofactor. Here we investigate the mechanism of assembly of the MnIII2-Y• cofactor in Bacillus subtilis NrdF. Cluster assembly from MnII2-NrdF, NrdIhq, and O2 has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdIhq reduces O2 to O2•− (40-48 s−1, 0.6 mM O2), the O2•− channels to and reacts with MnII2-NrdF to form a MnIIIMnIV intermediate (2.2 ± 0.4 s−1), and the MnIIIMnIV species oxidizes tyrosine to Y• (0.08-0.15 s−1). Controlled production of O2•− by NrdIhq during class Ib RNR cofactor assembly both circumvents the unreactivity of the MnII2 cluster with O2 and satisfies the requirement for an “extra” reducing equivalent in Y• generation. PMID:23402532

  4. Development and field validation of advanced array probes for steam generator inspection

    SciTech Connect

    Dodd, C.V.; Pate, J.R.

    1995-04-01

    The aging of the steam generators at the nation`s nuclear power plants has led to the appearance of new forms of degradation in steam generator tubes and an increase in the frequency of forced outages due to major tube leak events. The eddy-current techniques currently being used for the inspection of steam generator tubing are no longer adequate to ensure that flaws will be detected before they lead to a shutdown of the plant. To meet the need for a fast and reliable method of inspection, ORNL has designed a 16-coil eddy-current array probe which combines an inspection speed similar to that of the bobbin coil with a sensitivity to cracks of any orientation similar to the rotating pancake coil. In addition, neural network and least square methods have been developed for the automatic analysis of the data acquired with the new probes. The probes and analysis software have been tested at two working steam generators where we have found an increase in the signal-to-noise ratio of a factor of five an increase in the inspection speed of a factor of 75 over the rotating pancake coil which maintaining similar detection and characterization capabilities.

  5. Data Generation in the Discovery Sciences--Learning from the Practices in an Advanced Research Laboratory

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2013-01-01

    General scientific literacy includes understanding the grounds on which scientific claims are based. The measurements scientists make and the data that they produce from them generally constitute these grounds. However, the nature of data generation has received relatively little attention from those interested in teaching science through inquiry.…

  6. Advanced concepts for high power RF generation using solid state materials

    SciTech Connect

    Fazio, M.V.; Erickson, G.A.

    1999-05-01

    Traditionally, high power radio frequency and microwave energy have been generated using electron beam driven hard-vacuum tubes such as klystrons and magnetrons. High-power solid-state sources of RF have not been available. It is well known that a non-linear, dispersive system can convert a pulse into an array of solitons. Although this effect has been exploited in the optical field, using non-linear optical materials, little work has been done in the field of high voltage electronics. It is the goal of this work, which is just beginning, to develop sources of RF in the few hundreds of megahertz to gigahertz range with power levels in the hundreds of megawatts to the gigawatt level. To generate solitons a high voltage pulse is fed onto a transmission line that is periodically loaded with a non-linear ceramic dielectric in the paraelectric phase. The combination of the non-linearity and dispersion causes the pulse to break up into an array of solitons. A soliton-based system has several components: the solid state, high voltage, high current switch to provide the initial high voltage pulse; a shock line to decrease the rise time of the initial pulse to less than a few nanoseconds; and the soliton generating transmission line where the high power RF is generated when driven by the fast rising pulse from the shock line. The approach and progress to date will be described. {copyright} {ital 1999 American Institute of Physics.}

  7. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  8. GUIDCOUN: A Comprehensive FORTRAN IV Computer Program for Generating Item and Test Analyses as Well as a Complete Standard Scores Distribution

    ERIC Educational Resources Information Center

    Noble, Gilbert H.

    1977-01-01

    A computer program providing comprehensive test and item analysis is presented. Completing its performance on one run, the program, written in Fortran and emphasizing ease of use, integrates various statistical techniques for analyzing individual items and the overall test, in addition to generating a variety of standard scores. (Author/JKS)

  9. Speciation of arsenic(III)/arsenic(V) and selenium(IV)/ selenium(VI) using coupled ion chromatography - hydride generation atomic absorption spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple analytical methods have been developed to speciate inorganic arsenic and selenium in the ppb range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determinations of the redox states arsenite A...

  10. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    SciTech Connect

    Sajaev, V.; Borland, M.; Chae, Y.-C.; Decker, G.; Dejus, R.; Emery, L.; Harkay, K.; Nassiri, A.; Shastri, S.; Waldschmidt, G.; Yang, B.; Anfinrud, P.; Dolgashev, V.; NIH; SLAC

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for one APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.

  11. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation.

    PubMed

    Miao, Zhengrui; King, S Bruce

    2016-07-01

    Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems. PMID:27108951

  12. Advanced controls for stability assessment of solar dynamics space power generation

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Anwah, Nnamdi A.

    1995-01-01

    In support of the power requirements for the Space Station Alpha (SSA), a joint program by the U.S. and Russia for a permanently manned space station to be launched into orbit by 1998, a robust control scheme is needed to assure the stability of the rotating machines that will be integrated into the power subsystem. A framework design and systems studies for modeling and analysis is presented. It employs classical d-q axes machine model with voltage/frequency dependent loads. To guarantee that design requirements and necessary trade studies are done, a functional analysis tool CORE is used for the study. This provides us with different control options for stability assessment. Initial studies and recommendations using advanced simulation tools are also presented. The benefits of the stability/control scheme for evaluating future designs and power management are discussed.

  13. Research into advanced concepts of microwave power amplification and generation utilizing linear beam devices

    NASA Technical Reports Server (NTRS)

    Mcisaac, P. R.

    1972-01-01

    A theoretical study of some aspects of the interaction between a drifting stream of electrons with transverse cyclotron motions and an electromagnetic field is presented. Particular emphasis was given to the possible generation and amplification of millimeter waves. The major effort was devoted to a theoretical study of the cyclotron resonance oscillator. The appendices include published papers on the cyclotron resonance oscillator which resulted from this investigation.

  14. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    SciTech Connect

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  15. An Innovative Three-Dimensional Heterogeneous Coarse-Mesh Transport Method for Advanced and Generation IV Reactor Core Analysis and Design

    SciTech Connect

    Farzad Rahnema

    2009-11-12

    This project has resulted in a highly efficient method that has been shown to provide accurate solutions to a variety of 2D and 3D reactor problems. The goal of this project was to develop (1) an accurate and efficient three-dimensional whole-core neutronics method with the following features: based sollely on transport theory, does not require the use of cross-section homogenization, contains a highly accurate and self-consistent global flux reconstruction procedure, and is applicable to large, heterogeneous reactor models, and to (2) create new numerical benchmark problems for code cross-comparison.

  16. Advanced techniques for noise source identification on a large generator unit

    SciTech Connect

    Williams, R.G.D. ); Yang, S.J. )

    1993-03-01

    Power station acoustic noise assessment, which has experienced increased environmental awareness and subsequently more stringent legislation for a number of years, has received and added stimulus due to the recent advent of powerful measurement and analysis techniques including sound intensity and coherence. These experimental techniques are explained and results, for a generator unit, illustrate their value in providing a unique, correlated insight into noise problems. This includes noise quantification, full explanation of site sound pressure level in terms of the various influences and major noise source identification. These techniques are widely applicable and an invaluable aid to any industrial noise problem.

  17. High-temperature coal-syngas plasma characteristics for advanced MHD power generation

    SciTech Connect

    Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S.

    2006-03-15

    Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.

  18. Advances for dielectric elastomer generators: Replacement of high voltage supply by electret

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, C.; Vu Cong, T.; Sylvestre, A.

    2012-10-01

    Dielectric generators require an external circuit with a high bias voltage source to polarize them. To drastically reduce this circuit and to avoid external polarization, we propose here original transducers combining electrets and dielectric elastomer. Two operating modes have been studied and electromechanical analytical models have been developed from the combination of electrets theory and dielectric model. These concepts are applied on e-textile application: scavenging energy during human motion. An energy density around 6 mJ g-1 is expected on an optimal load of 10 MΩ. More generally, the flexibility, the lightness, the absence of high-voltage supply open many fields of applications beyond e-textiles.

  19. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  20. Analytical procedures for estimating structural response to acoustic fields generated by advanced launch systems, phase 2

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac; Lin, Y. K.; Zhu, Li-Ping; Fang, Jian-Jie; Cai, G. Q.

    1994-01-01

    This report supplements a previous report of the same title submitted in June, 1992. It summarizes additional analytical techniques which have been developed for predicting the response of linear and nonlinear structures to noise excitations generated by large propulsion power plants. The report is divided into nine chapters. The first two deal with incomplete knowledge of boundary conditions of engineering structures. The incomplete knowledge is characterized by a convex set, and its diagnosis is formulated as a multi-hypothesis discrete decision-making algorithm with attendant criteria of adaptive termination.

  1. The 400-Hz aircraft power-generation systems: Advancing the baseline

    NASA Astrophysics Data System (ADS)

    Glennon, T.

    1983-06-01

    Today's benchmark system for the Boeing 757/767/A310 airplanes and future trends in hydromechanical aircraft power generating systems are discussed. The 757/767/A310 system represents the commercial state of the art and the direction in which Sundstrand Corp. is headed, particularly in regard to weight reduction. Sundstrand introduced microprocessor control in an in service system in the Boeing 767 and was the first to use databus communications between the controls. Plans to develop this technology are briefly discussed. Alternative ways to produce and use power in aircraft are discussed. The integrated starter drive is discussed.

  2. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    SciTech Connect

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  3. Fitness Consequences of Advanced Ancestral Age over Three Generations in Humans

    PubMed Central

    Hayward, Adam D.; Lummaa, Virpi; Bazykin, Georgii A.

    2015-01-01

    A rapid rise in age at parenthood in contemporary societies has increased interest in reports of higher prevalence of de novo mutations and health problems in individuals with older fathers, but the fitness consequences of such age effects over several generations remain untested. Here, we use extensive pedigree data on seven pre-industrial Finnish populations to show how the ages of ancestors for up to three generations are associated with fitness traits. Individuals whose fathers, grandfathers and great-grandfathers fathered their lineage on average under age 30 were ~13% more likely to survive to adulthood than those whose ancestors fathered their lineage at over 40 years. In addition, females had a lower probability of marriage if their male ancestors were older. These findings are consistent with an increase of the number of accumulated de novo mutations with male age, suggesting that deleterious mutations acquired from recent ancestors may be a substantial burden to fitness in humans. However, possible non-mutational explanations for the observed associations are also discussed. PMID:26030274

  4. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    2016-06-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of a two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, a magnetized beam is compressed with a velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch by a notable factor of 100 (from 15 A to 1.5 kA) while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  5. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  6. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Robson, F. L.

    1981-03-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  7. Advanced wavefront correction technology for the next generation of adaptive optics equipped ophthalmic instrumentation

    NASA Astrophysics Data System (ADS)

    Doble, Nathan; Helmbrecht, Michael; Hart, Matthew; Juneau, Thor

    2005-04-01

    Adaptive optics (AO) is becoming increasingly important in improving system resolution in flood illuminated fundus cameras, confocal laser scanning ophthalmoscopes (cSLO) and optical coherence tomography (OCT). For the latter two cases, AO also provides an increase in the throughput light levels. The flood and cSLO modalities have allowed for the routine, in-vivo visualization of individual cone photoreceptor cells and real time blood flow measurements of single leukocyte cells. Most recently, evidence of the rod mosaic has also been observed. A key component in all of these systems is the deformable mirror (DM) that provides the correction of the high order aberrations. The majority of these systems to-date have utilized large, expensive DMs originally designed for astronomy. This paper details ongoing work at Iris AO, Inc in which advanced fabrication techniques based on microelectromechanical systems (MEMS) are being leveraged. This approach yields extremely compact DMs that offer higher performance and lower cost, coupled with the ability for batch fabrication. The Iris AO design uses an array of individually addressable hexagonal segments than can each be moved in three orthogonal directions. Such a design allows for superior ocular wavefront fitting performance and very high stroke (>10 microns). Additionally, our DMs can be fabricated with diameters that are an order of magnitude smaller than conventional non-MEMS techniques.

  8. Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications.

    PubMed

    Butet, Jérémy; Brevet, Pierre-François; Martin, Olivier J F

    2015-11-24

    Plasmonics has emerged as an important research field in nanoscience and nanotechnology. Recently, significant attention has been devoted to the observation and the understanding of nonlinear optical processes in plasmonic nanostructures, giving rise to the new research field called nonlinear plasmonics. This review provides a comprehensive insight into the physical mechanisms of one of these nonlinear optical processes, namely, second harmonic generation (SHG), with an emphasis on the main differences with the linear response of plasmonic nanostructures. The main applications, ranging from the nonlinear optical characterization of nanostructure shapes to the optimization of laser beams at the nanoscale, are summarized and discussed. Future directions and developments, made possible by the unique combination of SHG surface sensitivity and field enhancements associated with surface plasmon resonances, are also addressed. PMID:26474346

  9. Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)

    NASA Astrophysics Data System (ADS)

    Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.

    2015-05-01

    The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.

  10. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine

    PubMed Central

    Szkolnicka, Dagmara

    2016-01-01

    Abstract The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life‐threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell‐derived hepatocytes as a renewable source of cells for therapy. In addition to cell‐based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte‐like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421–1426 PMID:27015786

  11. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine.

    PubMed

    Szkolnicka, Dagmara; Hay, David C

    2016-06-01

    The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life-threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition to cell-based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421-1426. PMID:27015786

  12. A rule-based expert system for generating control displays at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Coulter, Karen J.

    1994-12-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  13. A rule-based expert system for generating control displays at the Advanced Photon Source

    SciTech Connect

    Coulter, K.J.

    1993-11-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  14. Advancements in oxygen generation and humidity control by water vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  15. The role of minerals in the thermal alteration of organic matter. IV - Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments

    NASA Technical Reports Server (NTRS)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, Isaac R.

    1987-01-01

    The effect of common sedimentary minerals (illite, Na-montmorillonite, or calcite) under different water concentrations on the generation and release of n-alkanes, acyclic isoprenoids, and select alkenes from oil-prone kerogens was investigated. Matrices containing Green River Formation kerogen or Monterey Formation kerogen, alone or in the presence of minerals, were heated at 200 or 300 C for periods of up to 1000 hours, and the pyrolysis products were analyzed. The influence of the first two clay minerals was found to be critically dependent on the water content. Under the dry pyrolysis conditions, both minerals significantly reduced alkene formation; the C12+ n-alkanes and acyclic isoprenoids were mostly destroyed by montmorillonite, but underwent only minor alteration with illite. Under hydrous conditions (mineral/water of 2/1), the effects of both minerals were substantially reduced. Calcite had no significant effect on the thermal evolution of the hydrocarbons.

  16. Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    SciTech Connect

    Dzuba, V. A.; Safronova, U. I.; Johnson, W. R.

    2003-09-01

    To address the shortage of experimental data for electron spectra of triply ionized rare-earth elements we have calculated energy levels and lifetimes of 4f{sup n+1} and 4f{sup n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration-interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III, and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.

  17. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I.

    PubMed

    Stieger, Kai R; Feifel, Sven C; Lokstein, Heiko; Lisdat, Fred

    2014-08-01

    Conversion of light into an electrical current based on biohybrid systems mimicking natural photosynthesis is becoming increasingly popular. Photosystem I (PSI) is particularly useful in such photo-bioelectrochemical devices. Herein, we report on a novel biomimetic approach for an effective assembly of photosystem I with the electron transfer carrier cytochrome c (cyt c), deposited on a thiol-modified gold-surface. Atomic force microscopy and surface plasmon resonance measurements have been used for characterization of the assembly process. Photoelectrochemical experiments demonstrate a cyt c mediated generation of an enhanced unidirectional cathodic photocurrent. Here, cyt c can act as a template for the assembly of an oriented and dense layer of PSI and as wiring agent to direct the electrons from the electrode towards the photosynthetic reaction center of PSI. Furthermore, three-dimensional protein architectures have been formed via the layer-by-layer deposition technique resulting in a successive increase in photocurrent densities. An intermittent cyt c layer is essential for an efficient connection of PSI layers with the electrode and for an improvement of photocurrent densities. PMID:24957935

  18. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  19. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  20. Development of new generation reduced activation ferritic-martenstic steels for advanced fusion reactors

    DOE PAGESBeta

    Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai

    2016-05-26

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimentalmore » results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.« less

  1. NGA's use of aerogravity to advance the next generation of Earth Gravitational Models

    NASA Astrophysics Data System (ADS)

    Kenyon, S. C.; Forsberg, R.; Olesen, A. V.; Holmes, S. A.

    2012-12-01

    NGA has a long history of using aerogravity to improve existing knowledge of the world's gravity field, particularly over remote and inaccessible areas of the earth. Recent and on-going airborne campaigns include projects over Ethiopia, Nepal, Alaska, Tanzania, Antarctica, Indonesia, Mongolia, Afghanistan and the Arctic. Many of these datasets have already contributed to the development of improved national and regional geoid models. Comparisons of these geoid models against independent data serves as a useful quality check on the input aerogravity. Additionally, NGA is using the new airborne data to update their global terrestrial gravity anomaly file. NGA is forming harmonic models of this new aerogravity-enhanced data file and comparing these against the corresponding anomaly file used to develop EGM08, particularly in terms of their relative agreement with new satellite models in the long wavelength band. Initial results show clear improvement over the newly surveyed areas. This type of analysis highlights other regions which would also benefit from new aerogravity campaigns. Ultimately, this new and future data will propagate into NGA's next generation of earth gravitational models, thereby supporting the realization of an improved World Vertical Height System.

  2. An advanced generation land mobile satellite system and its critical technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.

    1982-01-01

    A conceptual design for a Land Mobile Satellite System (LMSS) for the 1990s is presented. LMSS involves small tranceivers accessing satellites directly, with ground reception through small car-top antennas. The satellite would have a large antenna and blanket coverage areas in the UHF. The call may originate from a home, be carried by wire to a gateway, transmitted to satellite on the S-band, converted to UHF on the satellite, and transmitted to the vehicle. The system design is constrained by the number of users in an area during the busiest hours, Shuttle storage, controllability factors, and the total area served. A 55-m antenna has been selected, with 87 spot beams and two 10 MHz UHF bands in the 806-890 MHz band. A 17 dB interbeam isolation level is required, implying that sufficient sub-bands can be generated to assure 8265 total channels. The mobile satellite (MSAT) would have an 83 m mast lower segment, a 34 m upper segment, and a second, 10 m antenna made of a deployable mesh. Various antenna function modes are considered.

  3. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  4. Advancing the Oxygen Generation Assembly Design to Increase Reliability and Reduce Costs for a Future Long Duration Mission

    NASA Technical Reports Server (NTRS)

    Takada, Kevin C.; Ghariani, Ahmed E.; Van Keuren,

    2015-01-01

    The state-of-the-art Oxygen Generation Assembly (OGA) has been reliably producing breathing oxygen for the crew aboard the International Space Station (ISS) for over eight years. Lessons learned from operating the ISS OGA have led to proposing incremental improvements to advance the baseline design for use in a future long duration mission. These improvements are intended to reduce system weight, crew maintenance time and resupply mass from Earth while increasing reliability. The proposed improvements include replacing the cell stack membrane material, deleting the nitrogen purge equipment, replacing the hydrogen sensors, deleting the wastewater interface, replacing the hydrogen dome and redesigning the cell stack power supply. The development work to date will be discussed and forward work will be outlined. Additionally, a redesigned system architecture will be proposed.

  5. Glycation of H1 Histone by 3-Deoxyglucosone: Effects on Protein Structure and Generation of Different Advanced Glycation End Products

    PubMed Central

    Ashraf, Jalaluddin Mohammad; Rabbani, Gulam; Ahmad, Saheem; Hasan, Qambar; Khan, Rizwan Hasan; Alam, Khursheed; Choi, Inho

    2015-01-01

    Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications. PMID:26121680

  6. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    NASA Astrophysics Data System (ADS)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  7. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    SciTech Connect

    Not Available

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  8. DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT-GENERATION INTEGRATED RESERVOIR CHARACTERIZATION

    SciTech Connect

    Scott R. Reeves

    2005-04-01

    Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide substantial benefits for effective oilfield management. By doing so, the predictive reliability of reservoir flow models, which are routinely used as the basis for investment decisions involving hundreds of millions of dollars and designed to recover millions of barrels of oil, can be significantly improved. Even a small improvement in incremental recovery for high-value assets can result in important contributions to bottom-line profitability. Today's standard practice for developing a 3D reservoir description is to use seismic inversion techniques. These techniques make use of geostatistics and other stochastic methods to solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale and compare its acoustic response to that actually observed in the field. This method has several inherent flaws, such as: (1) The resulting models are highly non-unique; multiple equiprobable realizations are produced, meaning (2) The results define a distribution of possible outcomes; the best they can do is quantify the uncertainty inherent in the modeling process, and (3) Each realization must be run through a flow simulator and history matched to assess it's appropriateness, and therefore (4) The method is labor intensive and requires significant time to complete a field study; thus it is applied to only a small percentage of oil and gas producing assets. A new approach to achieve this objective was first examined in a Department of Energy (DOE) study performed by Advanced Resources International (ARI) in 2000/2001. The goal of that study was to evaluate whether robust relationships between data at vastly different scales of measurement could be established using virtual intelligence (VI) methods. The proposed workflow required that three specific relationships be established through use of artificial neural networks (ANN's): core-to-log, log

  9. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  10. Advanced technologies in the ASI MLRO towards a new generation laser ranging system

    NASA Astrophysics Data System (ADS)

    Varghese, Thomas; Bianco, Giuseppe

    1994-11-01

    Matera Laser Ranging Observatory (MLRO) is a high performance, highly automated optical and astronomical observatory currently under design and development by AlliedSignal for the Italian Space Agency (ASI). It is projected to become operational at the Centro Geodesia Spaziale in Matera, Italy, in 1997. MLRO, based on a 1.5-meter astronomical quality telescope, will perform ranging to spacecraft in earthbound orbits, lunar reflectors, and specially equipped deep space missions. The primary emphasis during design is to incorporate state-of-the-art technologies to produce an intelligent, automated, high accuracy ranging system that will mimic the characteristic features of a fifth generation laser ranging system. The telescope has multiple ports and foci to support future experiments in the areas of laser communications, lidar, astrometry, etc. The key features providing state-of-the-art ranging performance include: a diode-pumped picosecond (50 ps) laser, high speed (3-5 GHz) optoelectronic detection and signal processing, and a high accuracy (6 ps) high resolution (less than 2 ps) time measurement capability. The above combination of technologies is expected to yield millimeter laser ranging precision and accuracy on targets up to 300,000 km, surpassing the best operational instrument performance to date by a factor of five or more. Distributed processing and control using a state-of-the-art computing environment provides the framework for efficient operation, system optimization, and diagnostics. A computationally intelligent environment permits optimal planning, scheduling, tracking, and data processing. It also supports remote access, monitor, and control for joint experiments with other observatories.

  11. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  12. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  13. Advanced technologies in the ASI MLRO towards a new generation laser ranging system

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas; Bianco, Giuseppe

    1994-01-01

    Matera Laser Ranging Observatory (MLRO) is a high performance, highly automated optical and astronomical observatory currently under design and development by AlliedSignal for the Italian Space Agency (ASI). It is projected to become operational at the Centro Geodesia Spaziale in Matera, Italy, in 1997. MLRO, based on a 1.5-meter astronomical quality telescope, will perform ranging to spacecraft in earthbound orbits, lunar reflectors, and specially equipped deep space missions. The primary emphasis during design is to incorporate state-of-the-art technologies to produce an intelligent, automated, high accuracy ranging system that will mimic the characteristic features of a fifth generation laser ranging system. The telescope has multiple ports and foci to support future experiments in the areas of laser communications, lidar, astrometry, etc. The key features providing state-of-the-art ranging performance include: a diode-pumped picosecond (50 ps) laser, high speed (3-5 GHz) optoelectronic detection and signal processing, and a high accuracy (6 ps) high resolution (less than 2 ps) time measurement capability. The above combination of technologies is expected to yield millimeter laser ranging precision and accuracy on targets up to 300,000 km, surpassing the best operational instrument performance to date by a factor of five or more. Distributed processing and control using a state-of-the-art computing environment provides the framework for efficient operation, system optimization, and diagnostics. A computationally intelligent environment permits optimal planning, scheduling, tracking, and data processing. It also supports remote access, monitor, and control for joint experiments with other observatories.

  14. Investigation of advanced nanostructured multijunction photoanodes for enhanced solar hydrogen generation via water splitting

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidetaka

    As the worldwide demand for fossil-based fuel increases every day and the fossil reserve continues to be depleted, the need for alternative/renewable energy sources has gained momentum. Electric, hybrid, and hydrogen cars have been at the center of discussion lately among consumers, automobile manufacturers, and politicians, alike. The development of a fuel-cell based engine using hydrogen has been an ambitious research area over the last few decades-ever since Fujishima showed that hydrogen can be generated via the solar-energy driven photo-electrolytic splitting of water. Such solar cells are known as Photo-Electro-Chemical (PEC) solar cells. In order to commercialize this technology, various challenges associated with photo-conversion efficiency, chemical corrosion resistance, and longevity need to be overcome. In general, metal oxide semiconductors such as titanium dioxide (TiO 2, titania) are excellent candidates for PEC solar cells. Titania nanotubes have several advantages, including biocompatibility and higher chemical stability. Nevertheless, they can absorb only 5-7% of the solar spectrum which makes it difficult to achieve the higher photo-conversion efficiency required for successful commercial applications. A two-prong approach was employed to enhance photo-conversion efficiency: 1) surface modification of titania nanotubes using plasma treatment and 2) nano-capping of the titania nanotubes using titanium disilicide. The plasma surface treatment with N2 was found to improve the photo-current efficiency of titania nanotubes by 55%. Similarly, a facile, novel approach of nano-capping titania nanotubes to enhance their photocurrent response was also investigated. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using RF magnetron sputtering technique. The optical properties of titania nanotubes were not found to change due to the capping; however, a considerable increase (40%) in the photocurrent

  15. Using PLATO IV.

    ERIC Educational Resources Information Center

    Meller, David V.

    This beginning reference manual describes PLATO IV hardware for prospective users and provides an introduction to PLATO for new authors. The PLATO terminal is described in detail in Chapter 1. Chapter 2 provides a block diagram of the PLATO IV system. Procedures for getting on line are described in Chapter 3, and Chapter 4 provides references to…

  16. IV treatment at home

    MedlinePlus

    ... 24 hours a day. If there is a problem with the IV, you can call your home health care agency for help. If the IV comes out of ... bleeding stops. Then call the home health care agency or the doctor right away.

  17. High-Brightness Beam Generation and Characterization at the Advanced Photon Source Low-Energy Undulator Test Line Linac*

    NASA Astrophysics Data System (ADS)

    Lewellen, John; Biedron, Sandra; Borland, Michael; Hahne, Michael; Harkay, Katherine; Lumpkin, Alex; Milton, Stephen; Sereno, Nicholas; Travish, Gil

    2000-04-01

    Improvements to the Advanced Photon Source injector linac have been made to allow for the production and characterization of high-brightness beams in support of fourth-generation light source research. In particular, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) free-electron laser (FEL). We describe the enhancements to the linac operational and diagnostic capabilities that enabled self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm. Electron beam measurement techniques and recent results will be discussed. Beam properties are measured under the same operational conditions as those used for FEL studies. The nominal FEL beam parameters are as follows: 217 MeV beam energy; less than 0.15 mm-mrad normalized emittance; 100 A peak current from a 0.7-nC charge at a 7-psec bunch. * Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38

  18. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  19. PLATO IV: First Year Report, Computerized Training System, Project ABACUS.

    ERIC Educational Resources Information Center

    Hinkle, Lawrence R.

    This report covers the PLATO IV activities during calendar year 1973 at the Computerized Training System. The work reported herein is supported by a program sponsored by the Advanced Research Projects Agency (ARPA) to evaluate the PLATO IV system for use in training, oriented to the needs of the Armed Services. The report presents a synopsis of…

  20. Next-generation sequencing in patients with advanced cancer: are we ready for widespread clinical use? A single institute's experience.

    PubMed

    Grenader, Tal; Tauber, Rachel; Shavit, Linda

    2016-10-01

    The next-generation sequencing (NGS) assay targeting cancer-relevant genes has been adopted widely for use in patients with advanced cancer. The primary aim of this study was to assess the clinical utility of commercially available NGS. We retrospectively collected demographic and clinicopathologic data, recommended therapy, and clinical outcomes of 30 patients with a variety of advanced solid tumors referred to Foundation Medicine NGS. The initial pathologic examination was performed at the pathology department of the referring hospital. The comprehensive clinical NSG assay was performed on paraffin-embedded tumor samples using the Clinical Laboratory Improvement Amendments-certified FoundationOne platform. The median number of genomic alterations was 3 (0-19). The median number of therapies with potential benefit was 2 (0-8). In 12 cases, a comprehensive clinical NGS assay did not indicate any therapy with potential benefit according to the genomic profile. Ten of the 30 patients received treatments recommended by genomic profile results. In six of the 10 cases, disease progressed within 2 months and four patients died within 3 months of treatment initiation. Three of the 30 patients benefited from a comprehensive clinical NGS assay and the subsequent recommended therapy. The median PFS was 12 weeks (95% confidence interval 10-57) in patients treated with molecularly targeted agents chosen on the basis of tumor genomic profiling versus 48 weeks (95% confidence interval 8-38) in the control group treated with physician choice therapy (P=0.12). Our study suggests that NGS can detect additional treatment targets in individual patients, but prospective medical research and appropriate clinical guidelines for proper clinical use are vital. PMID:27384593

  1. IV treatment at home

    MedlinePlus

    ... home; PICC line - home; Infusion therapy - home; Home health care - IV treatment ... Often, home health care nurses will come to your home to give you the medicine. Sometimes, a family member, a friend, or ...

  2. Differentiation of irradiation and cetuximab induced skin reactions in patients with locally advanced head and neck cancer undergoing radioimmunotherapy: the HICARE protocol (Head and neck cancer: ImmunoChemo and Radiotherapy with Erbitux) – a multicenter phase IV trial

    PubMed Central

    2013-01-01

    Background In order to improve the clinical outcome of patients with locally advanced squamous cell carcinoma of the head and neck (LASCCHN) not being capable to receive platinum-based chemoradiation, radiotherapy can be intensified by addition of cetuximab, a monoclonal antibody that blocks the epidermal growth factor receptor (EGFR). The radioimmunotherapy with cetuximab is a feasible treatment option showing a favourable toxicity profile. The most frequent side effect of radiotherapy is radiation dermatitis, the most common side effect of treatment with cetuximab is acneiform rash. Incidence and severity of these frequent, often overlapping and sometimes limiting skin reactions, however, are not well explored. A clinical and molecular differentiation between radiogenic skin reactions and skin reactions caused by cetuximab which may correlate with outcome, have never been described before. Methods/design The HICARE study is a national, multicenter, prospective phase IV study exploring the different types of skin reactions that occur in patients with LASCCHN undergoing radioimmun(chemo)therapy with the EGFR inhibitor cetuximab. 500 patients with LASCCHN will be enrolled in 40 participating sites in Germany. Primary endpoint is the rate of radiation dermatitis NCI CTCAE grade 3 and 4 (v. 4.02). Radioimmunotherapy will be applied according to SmPC, i.e. cetuximab will be administered as loading dose and then weekly during the radiotherapy. Irradiation will be applied as intensity-modulated radiation therapy (IMRT) or 3D-dimensional radiation therapy. Discussion The HICARE trial is expected to be one of the largest trials ever conducted in head and neck cancer patients. The goal of the HICARE trial is to differentiate skin reactions caused by radiation from those caused by the monoclonal antibody cetuximab, to evaluate the incidence and severity of these skin reactions and to correlate them with outcome parameters. Besides, the translational research program will

  3. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    PubMed

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements. PMID:27250375

  4. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  5. Exploiting in situ antigen generation and immune modulation to enhance chemotherapy response in advanced melanoma: A combination nanomedicine approach.

    PubMed

    Lu, Yao; Wang, Yuhua; Miao, Lei; Haynes, Matthew; Xiang, Guangya; Huang, Leaf

    2016-08-28

    Therapeutic anticancer vaccine development must address a number of barriers to achieve successful tumor specific killing, including effective antigen presentation and antigen-specific T-cell activation to mediate cytotoxic cellular effects, inhibition of an immune-suppressive tumor microenvironment in order to facilitate and enhance CTL activity, and induction of memory T-cells to prolong tumor rejection. While traditional as well as modern vaccines rely upon delivery of both antigen and adjuvant, a variety of clinically relevant cancers lack ideal immunogenic antigens. Building upon recent efforts, we instead chose to exploit chemotherapy-induced apoptosis to allow for in situ antigen generation in a combination, nanomedicine-based approach. Specifically, lipid-coated cisplatin nanoparticles (LPC) and CpG-encapsulated liposomes (CpG-Lipo) were prepared for the temporally-controlled and multifaceted treatment of an advanced in vivo model of melanoma. Such combination therapy established strong synergistic effects, both in apoptotic extent and subsequent abrogation of tumor growth, which were due largely to both an enhanced cytotoxic T-cell recruitment and a reduction of immune-suppressive mediators in the microenvironments of both spleens and tumor. These results underlie a prolonged host lifespan in the combination approach (45 days) as compared with control (25 days, p < 0.02), providing promise toward a personalized approach to nanomedicine by establishing effect synergy in host-specific immunotherapy following chemotherapy. PMID:27235608

  6. Discussing dying in the diaspora: attitudes towards advance care planning among first generation Dutch and Italian migrants in rural Australia.

    PubMed

    Sinclair, Craig; Smith, Jessica; Toussaint, Yann; Auret, Kirsten

    2014-01-01

    Western cultural practices and values have largely shaped advance care planning (ACP) policies across the world. Low uptake of ACP among ethnic minority groups in Western countries has been interpreted with reference to cultural differences. This paper adopts a life-history approach to explore attitudes towards ACP among older, first-generation Dutch-Australian and Italian-Australian migrants. Thirty people participated in extended ethnographic interviews (N = 17) and group discussions (N = 13) during 2012. Transcripts were thematically analyzed and interpreted using a Foucauldian perspective on knowledge and power. Migration experiences, ongoing contact with the native country and participation in migrant community support networks influenced attitudes towards ACP. Dutch participants framed ACP discussions with reference to euthanasia, and adopted a more individualist approach to medical decision-making. Italian participants often spoke of familial roles and emphasized a family-based decision making style. The importance of migrant identity has been neglected in previous discussions of cultural factors influencing ACP uptake among ethnic minority groups. The unique migration experience should be considered alongside culturally appropriate approaches to decision-making, in order to ensure equitable access to ACP among migrant groups. PMID:24560228

  7. InAs/GaSb type II superlattices for advanced 2nd and 3rd generation detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Fleissner, Joachim; Rutz, Frank; Kirste, Lutz; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2010-01-01

    InAs/GaSb short-period superlattices (SL) based on GaSb, InAs and AlSb have proven their great potential for high performance infrared detectors. Lots of interest is currently focused on the development of short-period InAs/GaSb SLs for advanced 2nd and 3rd generation infrared detectors between 3 - 30 μm. For the fabrication of mono- and bispectral thermal imaging systems in the mid-wavelength infrared region (MWIR) a manufacturable technology for high responsivity thermal imaging systems has been developed. InAs/GaSb short-period superlattices can be fabricated with up to 1000 periods in the intrinsic region without revealing diffusion limited behavior. This enables the fabrication of InAs/GaSb SL camera systems with high responsivity comparable to state of the art CdHgTe and InSb detectors. The material system is also ideally suited for the fabrication of dual-color MWIR/MWIR InAs/GaSb SL camera systems with high quantum efficiency for missile approach warning systems with simultaneous and spatially coincident detection in both spectral channels.

  8. Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-05-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any

  9. Effectiveness and safety of first-generation protease inhibitors in clinical practice: Hepatitis C virus patients with advanced fibrosis

    PubMed Central

    Salmerón, Javier; Vinaixa, Carmen; Berenguer, Rubén; Pascasio, Juan Manuel; Sánchez Ruano, Juan José; Serra, Miguel Ángel; Gila, Ana; Diago, Moisés; Romero-Gómez, Manuel; Navarro, José María; Testillano, Milagros; Fernández, Conrado; Espinosa, Dolores; Carmona, Isabel; Pons, José Antonio; Jorquera, Francisco; Rodriguez, Francisco Javier; Pérez, Ramón; Montero, José Luis; Granados, Rafael; Fernández, Miguel; Martín, Ana Belén; Muñoz de Rueda, Paloma; Quiles, Rosa

    2015-01-01

    AIM: To evaluates the effectiveness and safety of the first generation, NS3/4A protease inhibitors (PIs) in clinical practice against chronic C virus, especially in patients with advanced fibrosis. METHODS: Prospective study and non-experimental analysis of a multicentre cohort of 38 Spanish hospitals that includes patients with chronic hepatitis C genotype 1, treatment-naïve (TN) or treatment-experienced (TE), who underwent triple therapy with the first generation NS3/4A protease inhibitors, boceprevir (BOC) and telaprevir (TVR), in combination with pegylated interferon and ribavirin. The patients were treatment in routine practice settings. Data on the study population and on adverse clinical and virologic effects were compiled during the treatment period and during follow up. RESULTS: One thousand and fifty seven patients were included, 405 (38%) were treated with BOC and 652 (62%) with TVR. Of this total, 30% (n = 319) were TN and the remaining were TE: 28% (n = 298) relapsers, 12% (n = 123) partial responders (PR), 25% (n = 260) null-responders (NR) and for 5% (n = 57) with prior response unknown. The rate of sustained virologic response (SVR) by intention-to-treatment (ITT) was greater in those treated with TVR (65%) than in those treated with BOC (52%) (P < 0.0001), whereas by modified intention-to-treatment (mITT) no were found significant differences. By degree of fibrosis, 56% of patients were F4 and the highest SVR rates were recorded in the non-F4 patients, both TN and TE. In the analysis by groups, the TN patients treated with TVR by ITT showed a higher SVR (P = 0.005). However, by mITT there were no significant differences between BOC and TVR. In the multivariate analysis by mITT, the significant SVR factors were relapsers, IL28B CC and non-F4; the type of treatment (BOC or TVR) was not significant. The lowest SVR values were presented by the F4-NR patients, treated with BOC (46%) or with TVR (45%). 28% of the patients interrupted the treatment

  10. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  11. Can sample treatments based on advanced oxidation processes assisted by high-intensity focused ultrasound be used for toxic arsenic determination in human urine by flow-injection hydride-generation atomic absorption spectrometry?

    PubMed

    Correia, A; Galesio, M; Santos, H; Rial-Otero, R; Lodeiro, C; Oehmen, A; Conceição, Antonio C L; Capelo, J L

    2007-05-15

    Two advanced oxidation processes (AOPs), based on high-intensity focused ultrasound (HIFU), namely, KMnO(4)/HCl/HIFU and H(2)O(2)/HCl/HIFU are studied and compared for the determination of toxic arsenic in human urine [As(III)+As(V)+MMA+DMA] by flow-injection hydride-generation atomic absorption spectrometry (FI-HG-AAS). The KMnO(4)/HCl/HIFU procedure was found to be adequate for organic matter degradation in human urine. l-cysteine (letra minuscula) was used for As reduction to the trivalent state. The new procedure was assessed with seven urines certified in different As species. Results revealed that with KMnO(4)/HCl/HIFU plus l-cysteine the toxic arsenic can be accurately measured in human urine whilst the H(2)O(2)/HCl/HIFU procedure underestimates toxic As. DMA and MMA degradation in urine were observed, due to the effects of the ultrasonic field. Recoveries for As(III), As(V), MMA and DMA were within the certified ranges. Arsenobetaine was not degraded by the AOPs. The new procedure adheres well to the principles of analytical minimalism: (i) low reagent consumption, (ii) low reagent concentration, (iii) low waste production and (iv) low amount of time required for sample preparation and analysis. PMID:19071711

  12. Inland Treatment of the Brine Generated from Reverse Osmosis Advanced Membrane Wastewater Treatment Plant Using Epuvalisation System

    PubMed Central

    Qurie, Mohannad; Abbadi, Jehad; Scrano, Laura; Mecca, Gennaro; Bufo, Sabino A.; Khamis, Mustafa; Karaman, Rafik

    2013-01-01

    The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43−, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment. PMID:23823802

  13. Calendar-Life and Cycle-Life Studies of Advanced Technology Development Program Generation 1 Lithium-Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Ho, Chinh Dac; Richardson, Roger Allen; Bloom, I.; Jones, S. A.; Battaglia, Vincent S.; Henriksen, G. L.; Unkelhaeuser, T.; Ingersoll, D.; Case, H. L.; Rogers, S. A.; Sutula, R. A.

    2002-08-01

    This paper presents the test results and life modeling of special calendar- and cycle-life tests conducted on 18650-size generation 1 (Gen 1) lithium-ion battery cells (nominal capacity of 0.9 Ah; 3.0–4.1 V rating) developed to establish a baseline chemistry and performance for the Department of Energy sponsored advanced technology development (ATD) program. Electrical performance testing was conducted at the Argonne National Laboratory (ANL), Sandia National Laboratory (SNL) and the Idaho National Engineering and Environmental Laboratory (INEEL). As part of the electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once per day discharge and charge pulse designed to have minimal impact on the cell yet establish its performance over a period of time such that the calendar-life of the cell could be determined. The calendar-life test matrix included two states-of-charge (SOCs) (i.e. 60 and 80%) and four test temperatures (40, 50, 60 and 70 °C). Discharge and regen resistances were calculated from the test data. Results indicate that both the discharge and regen resistances increased non-linearly as a function of the test time. The magnitude of the resistances depended on the temperature and SOC at which the test was conducted. Both resistances had a non-linear increase with respect to time at test temperature. The discharge resistances are greater than the regen resistances at all of the test temperatures of 40, 50, 60 and 70 °C. For both the discharge and regen resistances, generally the higher the test temperature, the lower the resistance.

  14. PLATO IV Accountancy Index.

    ERIC Educational Resources Information Center

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  15. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan

    2013-01-01

    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  16. The PLATO IV Architecture.

    ERIC Educational Resources Information Center

    Stifle, Jack

    The PLATO IV computer-based instructional system consists of a large scale centrally located CDC 6400 computer and a large number of remote student terminals. This is a brief and general description of the proposed input/output hardware necessary to interface the student terminals with the computer's central processing unit (CPU) using available…

  17. Solving next generation (1x node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao; Snow, Patrick W.; Vaid, Alok; Solecky, Eric; Zhou, Hua; Ge, Zhenhua; Yasharzade, Shay; Shoval, Ori; Adan, Ofer; Schwarzband, Ishai; Bar-Zvi, Maayan

    2015-03-01

    Traditional metrology solutions are facing a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. Hybrid metrology offers promising new capabilities to address some of these challenges but it will take some time before fully realized. This paper explores new capabilities currently offered on the in-line Critical Dimension Scanning Electron Microscope (CD-SEM) to address these challenges and enable the CD-SEM to move beyond measuring bottom CD using top down imaging. Device performance is strongly correlated with Fin geometry causing an urgent need for 3D measurements. New beam tilting capabilities enhance the ability to make 3D measurements in the front-end-of-line (FEOL) of the metal gate FinFET process in manufacturing. We explore these new capabilities for measuring Fin height and build upon the work communicated last year at SPIE1. Furthermore, we extend the application of the tilt beam to the back-end-of-line (BEOL) trench depth measurement and demonstrate its capability in production targeting replacement of the existing Atomic Force Microscope (AFM) measurements by including the height measurement in the existing CDSEM recipe to reduce fab cycle time. In the BEOL, another increasingly challenging measurement for the traditional CD-SEM is the bottom CD of the self-aligned via (SAV) in a trench first via last (TFVL) process. Due to the extremely high aspect ratio of the structure secondary electron (SE) collection from the via bottom is significantly reduced requiring the use of backscatter electrons (BSE) to increase the relevant image quality. Even with this solution, the resulting images are difficult to measure with advanced technology nodes. We explore new methods to increase measurement robustness and combine this with novel segmentation-based measurement algorithm generated specifically for BSE

  18. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    conditions with geophysics. Borehole-based technologies include a novel geochemical two-phase reservoir sampler deployed at Otway, and thermal-based measurements at CO2SINK for coupled hydrologic-geochemical reservoir analyses. Seismic, geomechanical, hydrologic, geochemical, and core studies are used in a multidisciplinary approach to assess CO2 trapping and reservoir integrity at In Salah. With estimated lifetime storage of 17 MtCO2 at In Salah, this and other CCS demonstrations provide opportunities to gain commercial experience for advancing coal-based power generation-CCS for carbon management.

  19. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    EIA Publications

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  20. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  1. Synthesis and Characterization of Pt(IV) Fluorescein Conjugates to Investigate Pt(IV) Intracellular Transformations

    PubMed Central

    Song, Ying; Suntharalingam, Kogularamanan; Yeung, Jessica S.; Royzen, Maksim; Lippard, Stephen J.

    2013-01-01

    Pt(IV) anticancer compounds typically operate as prodrugs that are reduced in the hypoxic environment of cancer cells, losing two axial ligands in the process to generate active Pt(II) species. Here we report the synthesis of two fluorescent Pt(IV) prodrugs of cisplatin in order to image and evaluate the Pt(IV) reduction process in simulated and real biological environments. Treatment of the complexes dissolved in PBS buffer with reducing agents typically encountered in cells, glutathione or ascorbate, afforded a 3- to 5-fold fluorescence turn-on owing to reduction and loss of their fluorescein-based axial ligands, which are quenched when bound to platinum. Both Pt(IV) conjugates displayed moderate cytotoxicity against human cancer cell lines, with IC50 values higher than that of cisplatin. Immunoblotting and DNA flow cytometry analyses of one of the complexes, Pt(IV)FL2, revealed that it damages DNA, causing cell cycle arrest in S or G2/M depending on exposure time, with ultimately triggering of apoptotic cell death. Fluorescence microscopic studies prove that Pt(IV)FL2 enters cells intact and undergoes reduction intracellularly. The results are best interpreted in terms of a model in which the axial fluorescein ligands are expelled through lysosomes, with the platinum(II) moiety generated in the process binding to genomic DNA, which results in cell death. PMID:23957697

  2. Advanced properties of extended laser-produced plasmas for efficient generation of the high-order harmonics of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2015-04-01

    The review of the studies showing the advanced properties of extended plasma plumes (5 mm) for efficient high-order harmonic generation of laser radiation compared with the short lengths of plasmas (~0.3-0.5 mm) used in previous studies is presented. The harmonic conversion efficiency quadratically increased with the growth of plasma length at the optimal conditions of plasma formation. The studies of this process using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced harmonic generation, two-color pump, and extended nanoparticle plasma, are discussed.

  3. A sputnik IV saga

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.

    2009-12-01

    The Sputnik IV launch occurred on May 15, 1960. On May 19, an attempt to deorbit a 'space cabin' failed and the cabin went into a higher orbit. The orbit of the cabin was monitored and Moonwatch volunteer satellite tracking teams were alerted to watch for the vehicle demise. On September 5, 1962, several team members from Milwaukee, Wisconsin made observations starting at 4:49 a.m. of a fireball following the predicted orbit of Sputnik IV. Requests went out to report any objects found under the fireball path. An early morning police patrol in Manitowoc had noticed a metal object on a street and had moved it to the curb. Later the officers recovered the object and had it dropped off at the Milwaukee Journal. The Moonwarch team got the object and reported the situation to Moonwatch Headquarters at the Smithsonian Astrophysical Observatory. A team member flew to Cambridge with the object. It was a solid, 9.49 kg piece of steel with a slag-like layer attached to it. Subsequent analyses showed that it contained radioactive nuclei produced by cosmic ray exposure in space. The scientists at the Observatory quickly recognized that measurements of its induced radioactivity could serve as a calibration for similar measurements of recently fallen nickel-iron meteorites. Concurrently, the Observatory directorate informed government agencies that a fragment from Sputnik IV had been recovered. Coincidently, a debate in the UN Committee on Peaceful Uses of Outer Space involved the issue of liability for damage caused by falling satellite fragments. On September 12, the Observatory delivered the bulk of the fragment to the US Delegation to the UN. Two days later, the fragment was used by US Ambassador Francis Plimpton as an exhibit that the time had come to agree on liability for damage from satellite debris. He offered the Sputnik IV fragment to USSR Ambassador P.D. Morozov, who refused the offer. On October 23, Drs. Alla Massevitch and E.K. Federov of the USSR visited the

  4. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  5. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (External Review Draft)

    EPA Science Inventory

    Cover of the Next <span class=Generation of Risk Assessment (External Review Draft)" vspace = "5" hspace="5" align="right" border="1" /> EPA is releasing a draft report "Next Generation Risk Assessment: I...

  6. Utilizing Computer and Multimedia Technology in Generating Choreography for the Advanced Dance Student at the High School Level.

    ERIC Educational Resources Information Center

    Griffin, Irma Amado

    This study describes a pilot program utilizing various multimedia computer programs on a MacQuadra 840 AV. The target group consisted of six advanced dance students who participated in the pilot program within the dance curriculum by creating a database of dance movement using video and still photography. The students combined desktop publishing,…

  7. [Analysis of the risk factors for severe neutropenia in advanced non-small cell lung cancer after the first course of chemotherapy with third-generation agents].

    PubMed

    Shibuya, Midori; Kogo, Mari; Kurihara, Tatsuya; Shikama, Yusuke; Nakajima, Hiroaki; Yoneyama, Keiichiro; Kiuchi, Yuji

    2013-01-01

      We retrospectively evaluated clinical data before therapy to determine the risk factors for severe neutropenia in advanced non-small-cell lung cancer (NSCLC) patients treated with third-generation agents. We analyzed 100 patients who received such agents (paclitaxel, docetaxel, gemcitabine, irinotecan, or vinorelbine) for advanced NSCLC. The endpoint of the survey was the occurrence of severe neutropenia (grade 4). Risk factors significantly related to severe neutropenia were identified using logistic regression analysis. Of the 100 patients studied, the median age was 62.0 (32-81 years), and 77 (77.0%) were male. CEA 6.6 (0-2220) ng/dL and cytokeratin 19 fragment 21-1 (CYFRA) 4.8 (0.2-173.8) ng/dL before chemotherapy were higher than normal range. Severe neutropenia occurred in 36.0%, the incidence being highest in the first cycle (61.1%). In the univariate analysis, variables associated with severe neutropenia were sex, chest pain, absolute neutrophil count (ANC), Cr, CRP, and CYFRA. In the multivariate analysis, low CYFRA level was identified as a significant risk factor that contributed independently to chemotherapy-induced severe neutropenia (p<0.05). Our analysis suggests that low CYFRA level is the most important risk factor for severe neutropenia in advanced NSCLC patients after the first course of chemotherapy with third-generation agents. PMID:23728094

  8. A Review and Advance Technology in Multi-Area Automatic Generation Control by Using Minority Charge Carrier Inspired Algorithm

    NASA Astrophysics Data System (ADS)

    Madichetty, Sreedhar; Panda, Susmita; Mishra, Sambeet; Dasgupta, Abhijit

    2013-11-01

    This article deals with automatic generation control of a multi-area interconnected thermal system in different modes using intelligent integral and proportional-integral controllers. Appropriate generation rate constraint has been considered for the thermal generation plants. The two cumulated thermal areas are considered with reheat turbines. Performances of reheat turbine on dynamic responses have been investigated. Further, selection of suitable integral and proportional-integral controllers has been investigated with a minority charge carrier inspired algorithm. Cumulative system performance is examined considering with different load perturbation in both cumulative thermal areas. Further, system is investigated with different area control errors, and results are explored.

  9. PMD IVS Analysis Center

    NASA Technical Reports Server (NTRS)

    Tornatore, Vincenza

    2013-01-01

    The main activities carried out at the PMD (Politecnico di Milano DIIAR) IVS Analysis Center during 2012 are briefly higlighted, and future plans for 2013 are sketched out. We principally continued to process European VLBI sessions using different approaches to evaluate possible differences due to various processing choices. Then VLBI solutions were also compared to the GPS ones as well as the ones calculated at co-located sites. Concerning the observational aspect, several tests were performed to identify the most suitable method to achieve the highest possible accuracy in the determination of GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) satellite positions using the VLBI technique.

  10. Design study of an advanced gas generator. [which can be ignited during start-up period of turbine engines

    NASA Technical Reports Server (NTRS)

    Kim, S.; Trinh, H. P.

    1993-01-01

    A gas generator which can be ignited reliably during the initial start-up period and offers fairly uniform gas temperature at the exit was studied numerically. Various sizes and shapes of the mixing enhancement devices and their positions were examined to evaluate the uniformity of the exit gas temperature and the change of internal pressure drop incurred by introducing the mixing enhancement devices. By introducing a turbulence ring and a splash plate with an appropriate size and position, it was possible to obtain fairly uniform gas temperature distributions and a maximum gas temperature that is within the design limit temperature of 1600 R at the generator exit. However, with the geometry studied, the pressure drop across the generator was great, approximately 1150 psi, to satisfy the assigned design limit temperature. If the design limit temperature is increased to 1650 R, the pressure drop across the generator could be lowered by as much as 350 psi.

  11. A Mn(IV)/Fe(IV) Intermediate in Assembly of the Mn(IV)/Fe(III) Cofactor of Chlamydia trachomatis Ribonucleotide Reductase†

    PubMed Central

    Jiang, Wei; Hoffart, Lee M.; Krebs, Carsten; Bollinger, J. Martin

    2008-01-01

    We recently showed that the class Ic ribonucleotide reductase from the human pathogen, Chlamydia trachomatis, uses a MnIV/FeIII cofactor to generate protein and substrate radicals in its catalytic mechanism [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. Here, we have dissected the mechanism of formation of this novel heterobinuclear redox cofactor from the MnII/FeII cluster and O2. An intermediate with a g = 2 EPR signal that shows hyperfine coupling to both 55Mn and 57Fe accumulates almost quantitatively in a second order reaction between O2 and the reduced R2 complex. The otherwise slow decay of the intermediate to the active MnIV/FeIII-R2 complex is accelerated by the presence of the one-electron reductant, ascorbate, implying that the intermediate is more oxidized than MnIV/FeIII. Mössbauer spectra show that the intermediate contains a high-spin FeIV center. Its chemical and spectroscopic properties establish that the intermediate is a MnIV/FeIV-R2 complex with an S = 1/2 electronic ground state arising from antiferromagnetic coupling between the MnIV (SMn = 3/2) and high-spin FeIV (SFe = 2) sites. PMID:17616152

  12. Putting Integrated Systems Health Management Capabilities to Work: Development of an Advanced Caution and Warning System for Next-Generation Crewed Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene

    2013-01-01

    Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.

  13. [Modalities of use of ceritinib (Zykadia™), a 2nd generation ALK inhibitor, in advanced stage non-small cell lung cancer].

    PubMed

    Giroux Leprieur, Etienne; Fallet, Vincent; Wislez, Marie

    2015-12-01

    Around 4% of advanced non-small cell lung cancers (NSCLC) harbor a ALK rearrangement, with high sensitivity to ALK inhibitor as crizotinib. However, the vast majority of these tumors end with a tumor progression after several months of treatment with crizotinib. Ceritinib is a 2nd generation ALK inhibitor, which showed high efficiency in NSCLC with ALK rearrangement. Results from phase I trial showed a response rate at 58% in these tumors, with a similar rate for previously crizotinib-treated patients or crizotinib-naïve patients. Moreover, cerebral responses were observed with ceritinib. Preliminary date from a phase 2 trial confirmed these results. These promising results allowed a European marketing authorization (autorisation de mise sur le marché [AMM]) since May 2015 for the treatment of advanced NSCLC with ALK rearrangement and resistance or intolerance to crizotinib. PMID:26597476

  14. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer.

    PubMed

    Romanidou, Ourania; Landi, Lorenza; Cappuzzo, Federico; Califano, Raffaele

    2016-05-01

    Epidermal growth factor receptor (EGFR) activating mutations and anaplastic lymphoma kinase (ALK) gene rearrangement in advanced non-small cell lung cancer (NSCLC) represent the two oncogenic events with an impact on current clinical practice. EGFR tyrosine kinase inhibitors (TKIs) and crizotinib are the standard of care for the treatment of EGFR mutant and ALK gene rearranged advanced NSCLC patients. Unfortunately, despite initial clinical benefit, acquired resistance to EGFR-TKIs or crizotinib usually develops after an average of 10-12 months of treatment. The aim of this review is to describe the mechanisms of resistance to first/second generation EGFR-TKIs and crizotinib. In particular, we focus on strategies to overcome resistance due to secondary EGFR T790M mutation and mutations of the ALK domain. PMID:27239236

  15. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer

    PubMed Central

    Romanidou, Ourania; Landi, Lorenza; Cappuzzo, Federico; Califano, Raffaele

    2016-01-01

    Epidermal growth factor receptor (EGFR) activating mutations and anaplastic lymphoma kinase (ALK) gene rearrangement in advanced non-small cell lung cancer (NSCLC) represent the two oncogenic events with an impact on current clinical practice. EGFR tyrosine kinase inhibitors (TKIs) and crizotinib are the standard of care for the treatment of EGFR mutant and ALK gene rearranged advanced NSCLC patients. Unfortunately, despite initial clinical benefit, acquired resistance to EGFR-TKIs or crizotinib usually develops after an average of 10–12 months of treatment. The aim of this review is to describe the mechanisms of resistance to first/second generation EGFR-TKIs and crizotinib. In particular, we focus on strategies to overcome resistance due to secondary EGFR T790M mutation and mutations of the ALK domain. PMID:27239236

  16. IVS contribution to ITRF2014

    NASA Astrophysics Data System (ADS)

    Bachmann, Sabine; Thaller, Daniela; Roggenbuck, Ole; Lösler, Michael; Messerschmitt, Linda

    2016-07-01

    Every few years the International Terrestrial Reference System (ITRS) Center of the International Earth Rotation and Reference Systems Service (IERS) decides to generate a new version of the International Terrestrial Reference Frame (ITRF). For the upcoming ITRF2014 the official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) comprises 5796 combined sessions in SINEX file format from 1979.6 to 2015.0 containing 158 stations, overall. Nine AC contributions were included in the combination process, using five different software packages. Station coordinate time series of the combined solution show an overall repeatability of 3.3 mm for the north, 4.3 mm for the east and 7.5 mm for the height component over all stations. The minimum repeatabilities are 1.5 mm for north, 2.1 mm for east and 2.9 mm for height. One of the important differences between the IVS contribution to the ITRF2014 and the routine IVS combination is the omission of the correction for non-tidal atmospheric pressure loading (NTAL). Comparisons between the amplitudes of the annual signals derived by the VLBI observations and the annual signals from an NTAL model show that for some stations, NTAL has a high impact on station height variation. For other stations, the effect of NTAL is low. Occasionally other loading effects have a higher influence (e.g. continental water storage loading). External comparisons of the scale parameter between the VTRF2014 (a TRF based on combined VLBI solutions), DTRF2008 (DGFI-TUM realization of ITRS) and ITRF2008 revealed a significant difference in the scale. A scale difference of 0.11 ppb (i.e. 0.7 mm on the Earth's surface) has been detected between the VTRF2014 and the DTRF2008, and a scale difference of 0.44 ppb (i.e. 2.8 mm on the Earth's surface) between the VTRF2014 and ITRF2008. Internal comparisons between the EOP of the combined solution and the individual solutions from the AC contributions show a WRMS in X- and Y-Pole between

  17. IVS contribution to ITRF2014

    NASA Astrophysics Data System (ADS)

    Bachmann, Sabine; Thaller, Daniela; Roggenbuck, Ole; Lösler, Michael; Messerschmitt, Linda

    2016-04-01

    Every few years the International Terrestrial Reference System (ITRS) Center of the International Earth Rotation and Reference Systems Service (IERS) decides to generate a new version of the International Terrestrial Reference Frame (ITRF). For the upcoming ITRF2014 the official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) comprises 5796 combined sessions in SINEX file format from 1979.6 to 2015.0 containing 158 stations, overall. Nine AC contributions were included in the combination process, using five different software packages. Station coordinate time series of the combined solution show an overall repeatability of 3.3 mm for the north, 4.3 mm for the east and 7.5 mm for the height component over all stations. The minimum repeatabilities are 1.5 mm for north, 2.1 mm for east and 2.9 mm for height. One of the important differences between the IVS contribution to the ITRF2014 and the routine IVS combination is the omission of the correction for non-tidal atmospheric pressure loading (NTAL). Comparisons between the amplitudes of the annual signals derived by the VLBI observations and the annual signals from an NTAL model show that for some stations, NTAL has a high impact on station height variation. For other stations, the effect of NTAL is low. Occasionally other loading effects have a higher influence (e.g. continental water storage loading). External comparisons of the scale parameter between the VTRF2014 (a TRF based on combined VLBI solutions), DTRF2008 (DGFI-TUM realization of ITRS) and ITRF2008 revealed a significant difference in the scale. A scale difference of 0.11 ppb (i.e. 0.7 mm on the Earth's surface) has been detected between the VTRF2014 and the DTRF2008, and a scale difference of 0.44 ppb (i.e. 2.8 mm on the Earth's surface) between the VTRF2014 and ITRF2008. Internal comparisons between the EOP of the combined solution and the individual solutions from the AC contributions show a WRMS in X- and Y-Pole between

  18. 78 FR 2390 - CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Energy Regulatory Commission CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v. California Independent System Operator Corporation; Notice of Complaint Take notice... IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC and CSOLAR IV North, LLC...

  19. Giant piezoelectricity of monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M =Sn or Ge, X =Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique ``puckered'' C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  20. Development of Next Generation Energy Audit Protocols for the Rapid and Advanced Analysis of Building Energy Use

    NASA Astrophysics Data System (ADS)

    Hartley, Christopher Ahlvin

    Current building energy auditing techniques are outdated and lack targeted, actionable information. These analyses only use one year's worth of monthly electricity and gas bills to define energy conservation and efficiency measures. These limited data sets cannot provide robust, directed energy reduction recommendations. The need is apparent for an overhaul of existing energy audit protocols to utilize all data that is available from the building's utility provider, installed energy management system (EMS), and sub-metering devices. This thesis analyzed the current state-of-the-art in energy audits, generated a next generation energy audit protocol, and conducted both audits types on four case study buildings to find out what additional information can be obtained from additional data sources and increased data gathering resolutions. Energy data from each case study building were collected using a variety of means including utility meters, whole building energy meters, EMS systems, and sub-metering devices. In addition to conducting an energy analysis for each case study building using the current and next generation energy audit protocols, two building energy models were created using the programs eQuest and EnergyPlus. The current and next generation energy audit protocol results were compared to one another upon completion. The results show that using the current audit protocols, only variations in season are apparent. Results from the developed next generation energy audit protocols show that in addition to seasonal variations, building heating, ventilation and air conditioning (HVAC) schedules, occupancy schedules, baseline and peak energy demand levels, and malfunctioning equipment can be found. This new protocol may also be used to quickly generate accurate building models because of the increased resolution that yields scheduling information. The developed next generation energy auditing protocol is scalable and can work for many building types across the

  1. IVS contribution to the next ITRF

    NASA Astrophysics Data System (ADS)

    Bachmann, Sabine; Messerschmitt, Linda; Thaller, Daniela

    2015-04-01

    Generating the contribution of the International VLBI Service (IVS) to the next ITRF (ITRF2013 or ITRF2014) was the main task of the IVS Combination Center at the Federal Agency for Cartography and Geodesy (BKG, Germany) in 2014. Starting with the ITRF2005, the IVS contribution to the ITRF is an intra-technique combined solution using multiple individual contributions from different institutions. For the upcoming ITRF ten international institutions submitted data files for a combined solution. The data files contain 24h VLBI sessions from the late 1970s until the end of 2014 in SINEX file format containing datum free normal equations with station coordinates and Earth Orientation Parameters (EOP). All contributions have to meet the IVS standards for ITRF contribution in order to guarantee a consistent combined solution. In the course of the generation of the intra-technique combined solution, station coordinate time series for each station as well as a Terrestrial Reference Frame based on the contributed VLBI data (VTRF) were generated and analyzed. Preliminary results using data until the end of 2013 show a scaling factor of -0.47 ppb resulting from a 7-parameter Helmert transformation of the VTRF w.r.t. ITRF2008, which is comparable to the scaling factor that was determined in the precedent ITRF generation. An internal comparison of the EOPs between the combined solution and the individual contributions as well as external comparisons of the EOP series were carried out in order to assure a consistent quality of the EOPs. The data analyses, the combination procedure and results of the combined solution for station coordinates and EOP will be presented.

  2. Right Here, Right Now: Career Advancement of Generation X Female Mid-Level Administrators in Community Colleges in the Southeast

    ERIC Educational Resources Information Center

    Lee, Terri Suzanne Holston

    2012-01-01

    Community colleges in the United States are facing what some researchers are calling a "crisis" (Piland & Wolf, 2003; Shults, 2001). The current generation of community college leaders, those born to the birth cohort known as the Baby Boomers, are eligible to retire early in the 21st century. These retirements will leave a…

  3. Next Generation Online: Advancing Learning through Dynamic Design, Virtual and Web 2.0 Technologies, and Instructor "Attitude"

    ERIC Educational Resources Information Center

    O'Connor, Eileen

    2013-01-01

    With the advent of web 2.0 and virtual technologies and new understandings about learning within a global, networked environment, online course design has moved beyond the constraints of text readings, papers, and discussion boards. This next generation of online courses needs to dynamically and actively integrate the wide-ranging distribution of…

  4. Gen IV Materials Handbook Implementation Plan

    SciTech Connect

    Rittenhouse, P.; Ren, W.

    2005-03-29

    A Gen IV Materials Handbook is being developed to provide an authoritative single source of highly qualified structural materials information and materials properties data for use in design and analyses of all Generation IV Reactor Systems. The Handbook will be responsive to the needs expressed by all of the principal government, national laboratory, and private company stakeholders of Gen IV Reactor Systems. The Gen IV Materials Handbook Implementation Plan provided here addresses the purpose, rationale, attributes, and benefits of the Handbook and will detail its content, format, quality assurance, applicability, and access. Structural materials, both metallic and ceramic, for all Gen IV reactor types currently supported by the Department of Energy (DOE) will be included in the Gen IV Materials Handbook. However, initial emphasis will be on materials for the Very High Temperature Reactor (VHTR). Descriptive information (e.g., chemical composition and applicable technical specifications and codes) will be provided for each material along with an extensive presentation of mechanical and physical property data including consideration of temperature, irradiation, environment, etc. effects on properties. Access to the Gen IV Materials Handbook will be internet-based with appropriate levels of control. Information and data in the Handbook will be configured to allow search by material classes, specific materials, specific information or property class, specific property, data parameters, and individual data points identified with materials parameters, test conditions, and data source. Details on all of these as well as proposed applicability and consideration of data quality classes are provided in the Implementation Plan. Website development for the Handbook is divided into six phases including (1) detailed product analysis and specification, (2) simulation and design, (3) implementation and testing, (4) product release, (5) project/product evaluation, and (6) product

  5. Painlevé IV coherent states

    SciTech Connect

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  6. Industrial Waste Landfill IV upgrade package

    SciTech Connect

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  7. Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wright, R. B.; Motloch, C. G.; Belt, J. R.; Christophersen, J. P.; Ho, C. D.; Richardson, R. A.; Bloom, I.; Jones, S. A.; Battaglia, V. S.; Henriksen, G. L.; Unkelhaeuser, T.; Ingersoll, D.; Case, H. L.; Rogers, S. A.; Sutula, R. A.

    This paper presents the test results and life modeling of special calendar- and cycle-life tests conducted on 18650-size generation 1 (Gen 1) lithium-ion battery cells (nominal capacity of 0.9 Ah; 3.0-4.1 V rating) developed to establish a baseline chemistry and performance for the Department of Energy sponsored advanced technology development (ATD) program. Electrical performance testing was conducted at the Argonne National Laboratory (ANL), Sandia National Laboratory (SNL) and the Idaho National Engineering and Environmental Laboratory (INEEL). As part of the electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once per day discharge and charge pulse designed to have minimal impact on the cell yet establish its performance over a period of time such that the calendar-life of the cell could be determined. The calendar-life test matrix included two states-of-charge (SOCs) (i.e. 60 and 80%) and four test temperatures (40, 50, 60 and 70 °C). Discharge and regen resistances were calculated from the test data. Results indicate that both the discharge and regen resistances increased non-linearly as a function of the test time. The magnitude of the resistances depended on the temperature and SOC at which the test was conducted. Both resistances had a non-linear increase with respect to time at test temperature. The discharge resistances are greater than the regen resistances at all of the test temperatures of 40, 50, 60 and 70 °C. For both the discharge and regen resistances, generally the higher the test temperature, the lower the resistance. The measured resistances were then used to develop an empirical model that was used to predict the calendar-life of the cells. This model accounted for the time, temperature and SOC of the batteries during the calendar-life test. The functional form of the model is given by: R( t, T,SOC)= A( T, SOC) F( t)+ B( T, SOC), where t is the time at test temperature, T the test temperature

  8. New Materials for NGNP/Gen IV

    SciTech Connect

    Robert W. Swindeman; Douglas L. Marriott

    2009-12-18

    The bounding conditions were briefly summarized for the Next Generation Nuclear Plant (NGNP) that is the leading candidate in the Department of Energy Generation IV reactor program. Metallic materials essential to the successful development and proof of concept for the NGNP were identified. The literature bearing on the materials technology for high-temperature gas-cooled reactors was reviewed with emphasis on the needs identified for the NGNP. Several materials were identified for a more thorough study of their databases and behavioral features relative to the requirements ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH.

  9. Analysis of Metagenomics Next Generation Sequence Data for Fungal ITS Barcoding: Do You Need Advance Bioinformatics Experience?

    PubMed Central

    Ahmed, Abdalla

    2016-01-01

    During the last few decades, most of microbiology laboratories have become familiar in analyzing Sanger sequence data for ITS barcoding. However, with the availability of next-generation sequencing platforms in many centers, it has become important for medical mycologists to know how to make sense of the massive sequence data generated by these new sequencing technologies. In many reference laboratories, the analysis of such data is not a big deal, since suitable IT infrastructure and well-trained bioinformatics scientists are always available. However, in small research laboratories and clinical microbiology laboratories the availability of such resources are always lacking. In this report, simple and user-friendly bioinformatics work-flow is suggested for fast and reproducible ITS barcoding of fungi. PMID:27507959

  10. Advances in Modeling the Generation of the Geomagnetic Field by the Using of Massively Parallel Computers and Profound Optimization

    NASA Technical Reports Server (NTRS)

    Clune, Thomas; Katz, Daniel S.; Glatzmaier, Gary A.

    2000-01-01

    At the Earth's surface, the magnetic field that is observed is similar to that that would be generated by a simple bar magnet running through the Earth's axis. This idea (permanent magnetism) was commonly believed a century ago. Because the temperature of the core is so high, permanent magnetism is not possible. Therefore, the magnetic field should decay, over tens of thousands of years. Since it does not, the field must be regenerating. Since the turn of the century, the idea that the core is molten iron which by moving generates a magnetic field arose. The set of equations to describe this are extremely non-linear and complex. Only in the last five to ten years have computers been able to solve these equations.

  11. Planned Use of Pulsed Crab Cavities for Short X-Ray Pulse Generation at the Advanced Photon Source

    SciTech Connect

    Borland, Michael; Carwardine, J.; Chae, Y.; Emery, L.; Den Hartog, Patric; Harkay, K.C.; Lumpkin, A.H.; Nassiri, A.; Sajaev, V.; Sereno, Nicholas S.; Waldschmidt, G.; Yang, B.X.; Dolgashev, V.; /SLAC

    2007-11-06

    Recently, we have explored application to the Advanced Photon Source (APS) of Zholents'[1] crab cavity scheme for production of short x-ray pulses. We assumed use of superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made [2] for a pulsed system using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instabilities, and diagnostics plans.

  12. The Wakefield Effects of Pulsed Crab Cavities at the Advanced Photon Source for Short-X-ray Pulse Generation

    SciTech Connect

    Chae, Y.-C.; Waldschmidt, G.; Dolgashev, V.; /SLAC

    2007-11-07

    In recent years we have explored the application to the Advanced Photon Source (APS) of Zholents' crab-cavity based scheme for production of short x-ray pulses. As a near-term project, the APS has elected to pursue a pulsed system using room-temperature cavities. The cavity design has been optimized to heavily damp parasitic modes while maintaining large shunt impedance for the deflecting dipole mode. We evaluated a system consisting of three crab cavities as an impedance source and determined their effect on the single- and multi-bunch instabilities. In the single-bunch instability we used the APS impedance model as the reference system in order to predict the overall performance of the ring when the crab cavities are installed in the future. For multi-bunch instabilities we used a realistic fill pattern, including hybrid-fill, and tracked multiple bunches where each bunch was treated as soft in distribution.

  13. Superconducting Multi-Cell Deflecting Cavity for Short-Pulse X-Ray Generation at the Advanced Photon Source

    SciTech Connect

    G.J. Waldschmidt, L.H. Morrison, R. Nassiri, R.A. Rimmer, K. Tian, H. Wang

    2009-05-01

    A superconducting multi-cell cavity for the production of short x-ray pulses at the Advanced Photon Source (APS) has been explored as an alternative to a single-cell cavity design in order to improve the packing factor and potentially reduce the number of high-power RF systems and low-level RF controls required. The cavity will operate at 2815 MHz in the APS storage ring and will require heavy damping of parasitic modes to maintain stable beam operation. Novel on-cell dampers, attached directly to the cavity body, have been utilized by taking advantage of the magnetic field null on the equatorial plane in order to enhance damping. Design issues and simulation results will be discussed.

  14. Confirmatory Factor Analysis of the WAIS-IV/WMS-IV

    ERIC Educational Resources Information Center

    Holdnack, James A.; Zhou, Xiaobin; Larrabee, Glenn J.; Millis, Scott R.; Salthouse, Timothy A.

    2011-01-01

    The Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV) and the Wechsler Memory Scale-fourth edition (WMS-IV) were co-developed to be used individually or as a combined battery of tests. The independent factor structure of each of the tests has been identified; however, the combined factor structure has yet to be determined. Confirmatory…

  15. Advanced power generation systems for the 21st Century: Market survey and recommendations for a design philosophy

    SciTech Connect

    Andriulli, J.B.; Gates, A.E.; Haynes, H.D.; Klett, L.B.; Matthews, S.N.; Nawrocki, E.A.; Otaduy, P.J.; Scudiere, M.B.; Theiss, T.J.; Thomas, J.F.; Tolbert, L.M.; Yauss, M.L.; Voltz, C.A.

    1999-11-01

    The purpose of this report is to document the results of a study designed to enhance the performance of future military generator sets (gen-sets) in the medium power range. The study includes a market survey of the state of the art in several key component areas and recommendations comprising a design philosophy for future military gen-sets. The market survey revealed that the commercial market is in a state of flux, but it is currently or will soon be capable of providing the technologies recommended here in a cost-effective manner. The recommendations, if implemented, should result in future power generation systems that are much more functional than today's gen-sets. The number of differing units necessary (both family sizes and frequency modes) to cover the medium power range would be decreased significantly, while the weight and volume of each unit would decrease, improving the transportability of the power source. Improved fuel economy and overall performance would result from more effective utilization of the prime mover in the generator. The units would allow for more flexibility and control, improved reliability, and more effective power management in the field.

  16. Defining a sample preparation workflow for advanced virus detection and understanding sensitivity by next-generation sequencing.

    PubMed

    Wang, Christopher J; Feng, Szi Fei; Duncan, Paul

    2014-01-01

    The application of next-generation sequencing (also known as deep sequencing or massively parallel sequencing) for adventitious agent detection is an evolving field that is steadily gaining acceptance in the biopharmaceutical industry. In order for this technology to be successfully applied, a robust method that can isolate viral nucleic acids from a variety of biological samples (such as host cell substrates, cell-free culture fluids, viral vaccine harvests, and animal-derived raw materials) must be established by demonstrating recovery of model virus spikes. In this report, we implement the sample preparation workflow developed by Feng et. al. and assess the sensitivity of virus detection in a next-generation sequencing readout using the Illumina MiSeq platform. We describe a theoretical model to estimate the detection of a target virus in a cell lysate or viral vaccine harvest sample. We show that nuclease treatment can be used for samples that contain a high background of non-relevant nucleic acids (e.g., host cell DNA) in order to effectively increase the sensitivity of sequencing target viruses and reduce the complexity of data analysis. Finally, we demonstrate that at defined spike levels, nucleic acids from a panel of model viruses spiked into representative cell lysate and viral vaccine harvest samples can be confidently recovered by next-generation sequencing. PMID:25475632

  17. The soft, fluctuating UVB at z ˜ 6 as traced by C IV, Si IV, and C II

    NASA Astrophysics Data System (ADS)

    Finlator, Kristian; Oppenheimer, B. D.; Davé, Romeel; Zackrisson, E.; Thompson, Robert; Huang, Shuiyao

    2016-07-01

    The sources that drove cosmological reionization left clues regarding their identity in the slope and inhomogeneity of the ultraviolet ionizing background (UVB): bright quasars (QSOs) generate a hard UVB with predominantly large-scale fluctuations while Population II stars generate a softer one with smaller scale fluctuations. Metal absorbers probe the UVB's slope because different ions are sensitive to different energies. Likewise, they probe spatial fluctuations because they originate in regions where a galaxy-driven UVB is harder and more intense. We take a first step towards studying the reionization-epoch UVB's slope and inhomogeneity by comparing observations of 12 metal absorbers at z ˜ 6 versus predictions from a cosmological hydrodynamic simulation using three different UVBs: a soft, spatially inhomogeneous `galaxies+QSOs' UVB; a homogeneous `galaxies+QSOs' UVB, and a `QSOs-only' model. All UVBs reproduce the observed column density distributions of C II, Si IV, and C IV reasonably well although high-column, high-ionization absorbers are underproduced, reflecting numerical limitations. With upper limits treated as detections, only a soft, fluctuating UVB reproduces both the observed Si IV/C IV and C II/C IV distributions. The QSOs-only UVB overpredicts both C IV/C II and C IV/Si IV, indicating that it is too hard. The Haardt & Madau (2012) UVB underpredicts C IV/Si IV, suggesting that it lacks amplifications near galaxies. Hence current observations prefer a soft, fluctuating UVB as expected from a predominantly Population II background although they cannot rule out a harder one. Future observations probing a factor of 2 deeper in metal column density will distinguish between the soft, fluctuating and QSOs-only UVBs.

  18. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics.

    PubMed

    Hancock-Hanser, Brittany L; Frey, Amy; Leslie, Matthew S; Dutton, Peter H; Archer, Frederick I; Morin, Phillip A

    2013-03-01

    Next-generation sequencing (NGS) is emerging as an efficient and cost-effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi-genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross-species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low-coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species-level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles. PMID:23351075

  19. Next generation bioelectronics: Advances in fabrication coupled with clever chemistries enable the effective integration of biomaterials and organic conductors

    NASA Astrophysics Data System (ADS)

    Molino, Paul J.; Wallace, Gordon G.

    2015-01-01

    Organic bioelectronics is making an enormous impact in the field of tissue engineering, providing not just biocompatible, but biofunctional conducting material platforms. For their true potential to be reached, it is critical to integrate organic conductors with other biopolymers in a targeted manner, allowing the development of devices and scaffold architectures capable of delivering a number of physical, chemical, and electrical stimuli. Herein, we provide an overview of the methods currently being employed to tailor organic conductors for bioapplications, with a focus on the development of fabrication techniques vital to the development of the next generation of intelligent bionic devices.

  20. Type IV Pilin Proteins: Versatile Molecular Modules

    PubMed Central

    Giltner, Carmen L.; Nguyen, Ylan

    2012-01-01

    Summary: Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function. PMID:23204365

  1. NATIONAL COASTAL CONDITION REPORT IV

    EPA Science Inventory

    The National Coastal Condition Report IV (NCCR IV) is the fourth in a series of environmental assessments of U.S. coastal waters and the Great Lakes. The report includes assessments of all the nation’s estuaries in the contiguous 48 states and Puerto Rico, south-eastern Alaska, ...

  2. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    NASA Technical Reports Server (NTRS)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  3. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing

    PubMed Central

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-01-01

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles. PMID:26506038

  4. Advances with the new AIMS fab 193 2nd generation: a system for the 65 nm node including immersion

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Poortinga, E.; Doornmalen, H. v.; Schmid, R.; Scherubl, T.; Harnisch, W.

    2005-06-01

    The Aerial Image Measurement System, AIMS, for 193nm lithography emulation is established as a standard for the rapid prediction of wafer printability for critical structures including dense patterns and defects or repairs on masks. The main benefit of AIMS is to save expensive image qualification consisting of test wafer exposures followed by wafer CD-SEM resist or wafer analysis. By adjustment of numerical aperture (NA), illumination type and partial coherence (σ) to match any given stepper/ scanner, AIMS predicts the printability of 193nm reticles such as binary with, or without OPC and phase shifting. A new AIMS fab 193 second generation system with a maximum NA of 0.93 is now available. Improvements in field uniformity, stability over time, measurement automation and higher throughput meet the challenging requirements of the 65nm node. A new function, "Global CD Map" can be applied to automatically measure and analyse the global CD uniformity of repeating structures across a reticle. With the options of extended depth-of-focus (EDOF) software and the upcoming linear polarisation capability in the illumination the new AIMS fab 193 second generation system is able to cover both dry and immersion requirements for NA < 1. Rigorous simulations have been performed to study the effects of polarisation for imaging by comparing the aerial image of the AIMS to the resist image of the scanner.

  5. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  6. MONIFORMS as Authoring Aids for the PLATO IV CAI System.

    ERIC Educational Resources Information Center

    Schulz, Russel E.

    An analysis of portions of the HumRRO (Human Resources Research Organization) developed computer-assisted instruction (CAI) course in COBOL programing, and a survey of representatives from Advanced Research Project Agency (ARPA) PLATO IV installations indicated a need for authoring aids that could be prepared and programed easily and quickly. The…

  7. REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION

    SciTech Connect

    Regimbau, T.; Siellez, K.; Meacher, D.; Gendre, B.; Boër, M.

    2015-01-20

    We use realistic Monte Carlo simulations including both gravitational-wave (GW) and short gamma-ray burst (sGRB) selection effects to revisit the coincident rate of binary systems composed of two neutron stars or a neutron star and a black hole. We show that the fraction of GW triggers that can be observed in coincidence with sGRBs is proportional to the beaming factor at z = 0, but increases with the distance until it reaches 100% at the GW detector horizon distance. When this is taken into account the rate is improved by a factor of three compared to the simple beaming factor correction. We provide an estimate of the performance future GRB detectors should achieve in order to fully exploit the potentiality of the planned third-generation GW antenna Einstein Telescope, and we propose a simple method to constrain the beaming angle of sGRBs.

  8. An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets

    NASA Astrophysics Data System (ADS)

    Sonon, B.; François, B.; Massart, T. J.

    2015-08-01

    A general and widely tunable method for the generation of representative volume elements for cellular materials based on distance and level set functions is presented. The approach is based on random tessellations constructed from random inclusion packings. A general methodology to obtain arbitrary-shaped tessellations to produce disordered foams is presented and illustrated. These tessellations can degenerate either in classical Voronoï tessellations potentially additively weighted depending on properties of the initial inclusion packing used, or in Laguerre tessellations through a simple modification of the formulation. A versatile approach to control the particular morphology of the obtained foam is introduced. Specific local features such as concave triangular Plateau borders and non-constant thickness heterogeneous coatings can be built from the tessellation in a straightforward way and are tuned by a small set of parameters with a clear morphological interpretation.

  9. Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation DECISION POINT 1 UNDER PHASE 3

    SciTech Connect

    Anderson, Lori

    2013-08-01

    Air Products and the DOE have partnered over a number of years in the development of ITM Oxygen technology in support of gasification technology. Throughout this process, studies of application of the technology to IGCC and oxy-coal combustion have shown significant reduction in capital and operating costs compared to similar systems using conventional cryogenic air separation. Phase 3, the current phase of the program, focuses on the design, construction and operation of a 30- to 100-TPD pilot facility, the Intermediate Scale Test Unit (ISTU). Execution of this phase to date has resulted in significant advances in a number of areas including ceramic membrane material development, module design and production, ceramic-to-metal seal design, process control strategies, and engineering development of process cycles. Phase 3 will be complete upon successful operation of the ISTU in a series of tests making oxygen from ceramic membrane modules and producing power from a hot gas expander. Phase 3 work has extended beyond the planned schedule due to a delay in delivery of equipment from vendors. Air Products is currently managing the equipment delay by close involvement with the vendor to redesign the problematic equipment and oversee its fabrication. The result of these unforeseen challenges is that the ISTU project completion date has been delayed. Tight cost controls have been implemented both by DOE program management and APCI to meet budget constraints despite increased costs due to budget delays. Total project costs have increased in several areas. Increased costs in the ISTU project include purchased equipment, instruments, construction, and contractor engineering. Increased costs for other tasks include additional work in support of module production by Ceramatec, Inc, and increased Air Products labor for component testing. Air Products plans to complete testing as outlined in the SOPO and successfully complete all project objectives by the end of FY14.

  10. FY2001 Final Report Laboratory Directed Research and Development (LDRD) on Advanced Nuclear Fuel Design in the Future Nuclear Energy Market

    SciTech Connect

    Christensen, D.; Choi, J.-S.; DiSabatino, A.; Wirth, B.

    2001-09-30

    This study is to research the maturity of advanced nuclear fuel and cladding technology and to explore the suitability of existing technology for addressing the emerging requirements for Generation IV reactors and emerging thermal/fast spectrum reactors, while simultaneously addressing nuclear waste management, and proliferation resistance concerns.

  11. Impacts of Title IV in Maryland

    SciTech Connect

    Sherwell, J.; Ellis, H.; Corio, L.; Seinfelt, J.

    1995-12-31

    The Maryland Department of Natural Resources` Power Plant Research Program has evaluated the environmental effects of acid deposition on Maryland`s air, land, water (especially the Chesapeake Bay), and human resources since the mid-1980`s. Title IV of the Clean Air Act Amendments of 1990 (CAAA90) has focused much attention on the mandated reductions of nitrogen oxides (NO{sub x}) and sulfur dioxide (SO{sub 2}) to control acid deposition. Baseline data on acidic deposition and air emissions/pollution control for NO{sub x} and SO{sub 2} acquired through PPRP studies have proved useful in evaluating the impacts of Title IV on Maryland power plants and resources. Three example programs are discussed: The first is an evaluation of SO{sub 2} emissions on ecosystems through the use of critical loads--the amount of acid rain that an ecosystem can tolerate without continuing to acidify. Results support the use of broadly based emissions trading scenarios: The second study is an evaluation of the potential for reducing nitrate loading in the Chesapeake Bay by reducing NO{sub x} emissions. Results indicate substantial NO{sub x} emission reductions could offer significant reductions in nitrate deposition to the Bay: The final study is a review of the impacts of Title IV on the Maryland coal industry and the prospects for coal cleaning and advanced combustion technologies. Current results indicate that Maryland coal will meet Phase 2 SO{sub 2} emission standards using advanced combustion techniques, such as fluidized bed technologies, but that additional emissions controls, such as a scrubber would be required in a conventional boiler.

  12. Complete primary structure of the sixth chain of human basement membrane collagen, alpha 6(IV). Isolation of the cDNAs for alpha 6(IV) and comparison with five other type IV collagen chains.

    PubMed

    Zhou, J; Ding, M; Zhao, Z; Reeders, S T

    1994-05-01

    Basement membranes were previously believed to contain five distinct type IV collagen subunits. We have recently isolated part of the cDNA for a novel type IV collagen, alpha 6(IV), and shown that COL4A6, the gene encoding this new chain, is deleted in Alport syndrome-associated leiomyomatosis (Zhou, J., Mochizuki, T., Smeets, H., Antignac, C., Laurila, P., de Paepe, A., Tryggvason, K., and Reeders, S. T. (1993) Science 261, 1167-1169). Here, we describe the entire human alpha 6(IV) cDNA and show that the gene encodes a classical type IV collagen with homology throughout its length to all the other five chains. There is a 21-residue signal peptide, a 1417-residue collagenous domain interrupted at 25 points, and a 228-residue carboxyl-terminal non-collagenous domain. When the complete primary structure of this new chain was compared with all the other known chains, it became clear that alpha 6(IV) has the most resemblance to alpha 2(IV) and alpha 4(IV). The evolution of the six chains was deduced, allowing a new classification of the type IV collagen family. The alpha 6(IV) chain is a candidate gene for X-linked Alport syndrome; knowledge of the complete structure of the chain will permit us to screen systematically for mutations in patients and to generate recombinant proteins and synthetic peptides for further study of cell-matrix interactions involving the alpha 6(IV) chain. PMID:8175748

  13. Challenges in the Development of Advanced Reactors

    SciTech Connect

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  14. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  15. Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation

    NASA Astrophysics Data System (ADS)

    Rupich, Martin W.; Li, Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James

    2010-01-01

    The RABiTS™/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa2Cu3O7-δ) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cmwidth-1 at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R&D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R&D improvements.

  16. Capabilities and Facilities Available at the Advanced Test Reactor to Support Development of the Next Generation Reactors

    SciTech Connect

    S. Blaine Grover; Raymond V. Furstenau

    2005-10-01

    The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. It is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The Irradiation Test Vehicle (ITV) installed in 1999 enhanced these capabilities by providing a built in experiment monitoring and control system for instrumented and/or temperature controlled experiments. This built in control system significantly reduces the cost for an actively monitored/temperature controlled experiments by providing the thermocouple connections, temperature control system, and temperature control gas supply and exhaust systems already in place at the irradiation position. Although the ITV in-core hardware was removed from the ATR during the last core replacement completed in early 2005, it (or a similar facility) could be re-installed for an irradiation program when the need arises. The proposed Gas Test Loop currently being designed for installation in the ATR will provide additional capability for testing of not only gas reactor materials and fuels but will also include enhanced fast flux rates for testing of materials and fuels for other next generation reactors including preliminary testing for fast reactor fuels and materials. This paper discusses the different irradiation capabilities available and the cost benefit issues related to each capability.

  17. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    PubMed

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal. PMID:22738207

  18. ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT[S

    PubMed Central

    Duka, Adelina; Fotakis, Panagiotis; Georgiadou, Dimitra; Kateifides, Andreas; Tzavlaki, Kalliopi; von Eckardstein, Leonard; Stratikos, Efstratios; Kardassis, Dimitris; Zannis, Vassilis I.

    2013-01-01

    The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I−/− mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I−/− × apoE−/− mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1−/− or LCAT−/− mice. Coexpression of apoA-IV and LCAT in apoA-I−/− mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV. PMID:23132909

  19. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  20. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL

    SciTech Connect

    Moriarty, Tom; France, Ryan; Steiner, Myles

    2015-06-14

    Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

  1. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

    SciTech Connect

    Moriarty, Tom; France, Ryan; Steiner, Myles

    2015-09-15

    Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

  2. Integrated protein production and electricity generation using renewable alfalfa feedstock in a combination advanced IGCC and feed processing arrangement

    SciTech Connect

    DeLong, M.M.; Oelke, E.A.; Hanson, C.

    1999-07-01

    A feasibility study was conducted to determine the viability of a co-production concept of alfalfa leaf meal as a concentrated protein animal feed and the generation of electricity from the remaining stem material. Alfalfa is a well-known and widely-planted crop that offers environmental and soil conservation advantages when grown as a 4-year segment in a 7-year rotation with corn and soybeans. Alfalfa fixes nitrogen from the air, thereby enhancing soil nitrogen and decreasing the need for manufactured nitrogen fertilizer. With alfalfa yields of 8.96 metric tonnes/hectare (4 dry tons per acre) per year and with separated alfalfa leaves being sold as a high-value animal feed, separated alfalfa stems can be economically viable fuel feedstock for a gasifier/combined cycle power plant. This paper reports on a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is coupled to a processing plant and a power plant (integrated gasification combined cycle with hot gas cleanup) in a way that benefits the joint venture of an alfalfa producers cooperative and a utility entity. The sale of a mid-level protein animal feed-co-product and electricity both support the production cost of alfalfa. The co-product/fuel processing operation uses a common train of equipment, thereby requiring neither product to carry the total cost. The power plant provides an important continuous demand for the feedstock and results in continuous supply of leaf product to provide a reliable supply needed for the leaf meal product. This concept provides a means for rural economic development with a sustainable approach to production agriculture.

  3. Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities

    PubMed Central

    2011-01-01

    Background A new-generation low-energy linear accelerator (UNIQUE) was introduced in the clinical arena during 2009 by Varian Medical Systems. The world's first UNIQUE was installed at Oncology Institute of Southern Switzerland and put into clinical operation in June 2010. The aim of the present contribution was to report experience about its commissioning and first year results from clinical operation. Methods Commissioning data, beam characteristics and the modeling into the treatment planning system were summarized. Imaging system of UNIQUE included a 2D-2D matching capability and tests were performed to identify system repositioning capability. Finally, since the system is capable of delivering volumetric modulated arc therapy with RapidArc, a summary of the tests performed for such modality to assess its performance in preclinical settings and during clinical usage was included. Results Isocenter virtual diameter was measured as less than 0.2 mm. Observed accuracy of isocenter determination and repositioning for 2D-2D matching procedures in image guidance was <1.2 mm. Concerning reproducibility and stability over a period of 1 year, deviations from reference were found <0.3 ± 0.2% for linac output, <0.1% for homogeneity, similarly to symmetry. Rotational accuracy of the entire gantry-portal imager system showed a maximum deviation from nominal 0.0 of <1.2 mm. Pre treatment quality assurance of RapidArc plans resulted with a Gamma Agreement Index (fraction of points passing the gamma criteria) of 97.0 ± 1.6% on the first 182 arcs verified. Conclusions The results of the commissioning tests and of the first period of clinical operation, resulted meeting specifications and having good margins respect to tolerances. UNIQUE was put into operation for all delivery techniques; in particular, as shown by the pre-treatment quality assurance results, it enabled accurate and safe delivery of RapidArc plans. PMID:21961830

  4. EVALUATION OF THE PILLS IV

    EPA Science Inventory

    The report gives results of theoretical and experimental investigations of the operating characteristics of the PILLS IV (Particulate Instrumentation by Laser Light Scattering) in situ particle sizing instrument. Results of both investigations show large errors in sizing particle...

  5. General Point-Depletion and Fission Product Code System and Four-Group Fission Product Neutron Absorption Chain Data Library Generated from ENDF/B-IV for Thermal Reactors

    1981-12-01

    EPRI-CINDER calculates, for any specified initial fuel (actinide) description and flux or power history, the fuel and fission-product nuclide concentrations and associated properties. Other nuclide chains can also be computed with user-supplied libraries. The EPRI-CINDER Data Library (incorporating ENDF/B-IV fission-product processed 4-group cross sections, decay constants, absorption and decay branching fractions, and effective fission yields) is used in each constant-flux time step calculation and in time step summaries of nuclide decay rates and macroscopic absorptionmore » and barns-per-fission (b/f) absorption cross sections (by neutron group). User-supplied nuclide decay energy and multigroup-spectra data libraries may be attached to permit decay heating and decay-spectra calculations. An additional 12-chain library, explicitly including 27 major fission-product neutron absorbers and 4 fictitious nuclides, may be used to accurately calculate the aggregate macroscopic absorption buildup in fission products.« less

  6. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  7. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  8. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect

    Djokic, Denia; Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R.

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  9. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  10. Synthesis and Evaluation of [(18)F]RAGER: A First Generation Small-Molecule PET Radioligand Targeting the Receptor for Advanced Glycation Endproducts.

    PubMed

    Cary, Brian P; Brooks, Allen F; Fawaz, Maria V; Drake, Lindsey R; Desmond, Timothy J; Sherman, Phillip; Quesada, Carole A; Scott, Peter J H

    2016-03-16

    The receptor for advanced glycation endproducts (RAGE) is a 35 kDa transmembrane receptor that belongs to the immunoglobulin superfamily of cell surface molecules. Its role in Alzheimer's disease (AD) is complex, but it is thought to mediate influx of circulating amyloid-β into the brain as well as amplify Aβ-induced pathogenic responses. RAGE is therefore of considerable interest as both a diagnostic and a therapeutic target in AD. Herein we report the synthesis and preliminary preclinical evaluation of [(18)F]RAGER, the first small molecule PET radiotracer for RAGE (Kd = 15 nM). Docking studies proposed a likely binding interaction between RAGE and RAGER, [(18)F]RAGER autoradiography showed colocalization with RAGE identified by immunohistochemistry in AD brain samples, and [(18)F]RAGER microPET confirmed CNS penetration and increased uptake in areas of the brain known to express RAGE. This first generation radiotracer represents initial proof-of-concept and a promising first step toward quantifying CNS RAGE activity using PET. However, there were high levels of nonspecific [(18)F]RAGER binding in vitro, likely due to its high log P (experimental log P = 3.5), and rapid metabolism of [(18)F]RAGER in rat liver microsome studies. Therefore, development of second generation ligands with improved imaging properties would be advantageous prior to anticipated translation into clinical PET imaging studies. PMID:26771209

  11. Advanced beamline automation for biological crystallography experiments.

    PubMed

    Cork, Carl; O'Neill, James; Taylor, John; Earnest, Thomas

    2006-08-01

    An automated crystal-mounting/alignment system has been developed at Lawrence Berkeley National Laboratory and has been installed on three of the protein-crystallography experimental stations at the Advanced Light Source (ALS); it is currently being implemented at synchrotron crystallography beamlines at CHESS, NSLS and the APS. The benefits to using an automounter system include (i) optimization of the use of synchrotron beam time, (ii) facilitation of advanced data-collection techniques, (iii) collection of higher quality data, (iv) reduction of the risk to crystals and (v) exploration of systematic studies of experimental protocols. Developments on the next-generation automounter with improvements in robustness, automated alignment and sample tracking are under way, with an end-to-end data-flow process being developed to allow remote data collection and monitoring. PMID:16855300

  12. Advanced processing methods to introduce and preserve dipole orientation in organic electro-optic materials for next generation photonic devices

    NASA Astrophysics Data System (ADS)

    Huang, Su

    Organic electro-optic (E-O) materials have attracted considerable research attention in the past 20 years due to their rising potentials in a lot of novel photonic applications, such as high-speed telecommunication, terahertz generation and ultra-fast optical interconnections. Chapter 2 of this dissertation focuses on a barrier layer approach to improve the poling efficiency of electro-optic polymers. First of all, high conduction current from excessive charge injection is identified as a fundamental challenge of effective poling. After analyzing the conduction mechanism, we introduce a sol-gel derived thin titanium dioxide (TiO2) layer that can significantly block excessive charge injection and reduce the leakage current during high field poling. Ultralarge E-O coefficients, up to 160-350 pm/V at 1310 nm have been achieved by poling with such a barrier, which are 26%-40% higher than the results poled without such a TiO2 layer. This enhancement is explained by the suppressed charge injection and space charge accumulation by the insertion of the high injection barrier from the TiO2 barrier layer. In Chapter 3, the impact of the inserted barrier layer on the temporal alignment stability of E-O polymers is discussed. Considerable stability enhancement is confirmed using both standard 500-hour temporal alignment stability test at 85 °C and thermally stimulated discharge method. We suggest that the enhancement comes from improved stability of the screening charge. During poling the additional barrier layer helps to lower the injection and thus the space charge accumulation. And this reduced space charge accumulation further helps to replace the space charge part in the total formulation of screening charge with more stable interface trapped charge. We thus expand this knowledge to a group of other materials that can also block excessive charge injection and suppressed space charge accumulation, including dielectric polymers polyvinyl alcohol (PVA), poly(4-vinylphenol

  13. Driver for solar cell I-V characteristic plots

    NASA Technical Reports Server (NTRS)

    Turner, G. B. (Inventor)

    1980-01-01

    A bipolar voltage ramp generator which applies a linear voltage through a resistor to a solar cell for plotting its current versus voltage (I-V) characteristic between short circuit and open circuit conditions is disclosed. The generator has automatic stops at the end points. The resistor serves the multiple purpose of providing a current sensing resistor, setting the full-scale current value, and providing a load line with a slope approximately equal to one, such that it will pass through the origin and the approximate center of the I-V curve with about equal distance from that center to each of the end points.

  14. Biomedical Applications of the APPS-IV Analytical Plotter

    PubMed Central

    Passauer, James L.; Niedzwiadek, Harry A.; Molander, Craig W.

    1980-01-01

    Photogrammetry, the science of extracting information from photography and imagery, offers the biomedical field virtually unlimited aid in the quantitative, non-contact evaluation of body form, function, and detail. The APPS-IV Analytical Plotter, developed by Autometric, Inc., can serve as a mensuration tool in the extraction of detail from photography. The APPS-IV is a microprocessor-controlled, cost-effective photogrammetric instrument which places few demands on a modest host computer. The use of analytical techniques provides a significant advance over traditional analog methods in speed and accuracy of measurement.

  15. Preliminary Results From High Temperature Scoping Irradiation Experiments Of Selected Gen IV Structural Metallic Materials

    SciTech Connect

    Nanstad, Randy K; McClintock, David A; Hoelzer, David T

    2007-01-01

    The performance of Generation IV reactors as a class will be determined by the behavior of advanced engineering materials. In the case of materials utilized for reactor internals and pressure vessels, the effects of irradiation are major issues. The environmental conditions for most of the Gen IV reactors are generally beyond present day reactor technology, especially as regards the combinations of operating temperatures, reactor coolant characteristics, and neutron spectra. In some of the applications, the conditions lay well beyond advanced research programs in radiation effects on materials. Therefore, new experimental data as well as analytical predictions of expected behavior of candidate materials at conditions for which there are no experimental data will be required. In the Gen IV Materials Program cross-cutting task, plans are being developed and irradiations and testing are being carried out to address the issues described above. This paper provides preliminary results for the first series of scoping irradiation experiments with selected metallic alloys, some of which are considered candidate materials for current Gen IV reactor applications, while others are considered as potential future candidate materials. The material classes represented are (1) nickel-base alloys (alloy 800H and Inconel 617; (2) advanced oxide-dispersion strengthened steels (14WT and 14YWT); and (3) commercial ferritic-martensitic steels (9Cr-1MoV). The results presented are from tensile tests using small flat tensile specimens (SS-3) in both the unirradiated and irradiated conditions. Specimens were irradiated in so-called rabbit capsules in the High-Flux Isotope Reactor (HFIR) at temperatures from 550 to 750 C and to irradiation doses from about 1.28 to 1.61 dpa. For the preliminary results from the first phase of this study, the annealed 9Cr-1MoV shows small amounts of irradiation-induced hardening. For the Alloy 800H, however, the hardening resulting from the 580 C irradiation

  16. INFLUENCE OF NATURAL AND SYNTHETIC ORGANIC LIGANDS ON THE STABILITY AND MOBILITY OF REDUCED TC(IV)

    SciTech Connect

    Nathalie A. Wall; Baohua Gu

    2012-12-20

    The primary objectives were (1) to quantify the interactions of organic ligands with Tc(IV) through the generation of thermodynamic (complexation) and kinetic parameters needed to assess and predict the mobility of reduced Tc(IV) at DOE contaminated sites; and (2) to determine the impact of organic ligands on the mobility and fate of reduced Tc(IV) under field geochemical conditions.

  17. Foreign Trip Report MATGEN-IV Sep 24- Oct 26, 2007

    SciTech Connect

    de Caro, M S

    2007-10-30

    Gen-IV activities in France, Japan and US focus on the development of new structural materials for Gen-IV nuclear reactors. Oxide dispersion strengthened (ODS) F/M steels have raised considerable interest in nuclear applications. Promising collaborations can be established seeking fundamental knowledge of relevant Gen-IV ODS steel properties (see attached travel report on MATGEN- IV 'Materials for Generation IV Nuclear Reactors'). Major highlights refer to results on future Ferritic/Martensitic steel cladding candidates (relevant to Gen-IV materials properties for LFR Materials Program) and on thermodynamic and mechanic behavior of metallic FeCr binary alloys, base matrix for future candidate steels (for the LLNL-LDRD project on Critical Issues on Materials for Gen-IV Reactors).

  18. Characterization of Caramel Colour IV.

    PubMed

    Licht, B H; Shaw, K; Smith, C; Mendoza, M; Orr, J; Myers, D V

    1992-05-01

    A large number of commercial Caramel Colour IV samples were characterized in order to assess the uniformity of the class and to provide data to be used in specifications development. Owing to the chemical and physical complexity of caramel colour it was not feasible to perform detailed analysis of all constituents for assessment of uniformity. Instead, selected parameters were evaluated and judgements were made with respect to compositional uniformity based on the similarities of these parameters among the various samples. As Caramel Colour IV is required by the food industry in a range of colour intensities, there must be a range of properties that differ from sample to sample, but that are sufficiently similar for the material to still be considered as part of the Caramel Colour IV class. Fractions as well as whole caramel were analysed using selected spectrophotometric, chromatographic and chemical techniques. Samples were fractionated based on molecular weight and polarity. The data presented here provide evidence for the uniformity in composition of Caramel Colour IV with respect to molecular weight distribution, to nitrogen and sulphur content and their distribution throughout the fractions, to absorbance properties and to specific low molecular weight compounds. Thus, it can be concluded that Caramel Colour IV exhibits compositional uniformity within the range of colour intensity required by the food industry worldwide. PMID:1644377

  19. Hadronic event generation for hadron cascade calculations and detector simulation, Part IV: The application of the intranuclear cascade model to reactions of pions, nucleons, kaons, and their antiparticles with nuclei below 6 GeV/c

    SciTech Connect

    Haenbssgen, K.

    1987-02-01

    An extension of the intranuclear cascade model is described. The primary hadrons may be pions, kaons, nucleons, and their antiparticles. Secondary particles produced include hyperons or antihyperons. A large amount of experimental data is described by the model. The model is constructed via the Monte Carlo generation of complete events, based on a model of the nucleus structure and the hadron/nucleon interaction inside the nucleus. Calculated average multiplicities and single and double differential cross sections are compared with experimental data.

  20. Styrene Aziridination by Iron(IV) Nitrides.

    PubMed

    Muñoz, Salvador B; Lee, Wei-Tsung; Dickie, Diane A; Scepaniak, Jeremiah J; Subedi, Deepak; Pink, Maren; Johnson, Michael D; Smith, Jeremy M

    2015-09-01

    Thermolysis of the iron(IV) nitride complex [PhB(tBuIm)3Fe≡N] with styrene leads to formation of the high-spin iron(II) aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)]. Similar aziridination occurs with both electron-rich and electron-poor styrenes, while bulky styrenes hinder the reaction. The aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)] acts as a nitride synthon, reacting with electron-poor styrenes to generate their corresponding aziridino complexes, that is, aziridine cross-metathesis. Reaction of [PhB(tBuIm)3Fe-N(CH2CHPh)] with Me3SiCl releases the N-functionalized aziridine Me3SiN(CH2CHPh) while simultaneously generating [PhB(tBuIm)3FeCl]. This closes a synthetic cycle for styrene azirdination by a nitride complex. While the less hindered iron(IV) nitride complex [PhB(MesIm)3Fe≡N] reacts with styrenes below room temperature, only bulky styrenes lead to tractable aziridino products. PMID:26179563

  1. Using SpaceClaim/TD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    NASA Technical Reports Server (NTRS)

    Fabanich, William

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.

  2. Using SpaceClaimTD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    NASA Technical Reports Server (NTRS)

    Fabanich, William A., Jr.

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.

  3. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.

    PubMed

    Guinea, Elena; Arias, Conchita; Cabot, Pere Lluís; Garrido, José Antonio; Rodríguez, Rosa María; Centellas, Francesc; Brillas, Enric

    2008-01-01

    Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed. PMID:17692891

  4. Parenteral Nutrition for Patients Treated for Locally Advanced Inoperable Tumors of the Head and Neck

    ClinicalTrials.gov

    2016-08-10

    Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Laryngeal Squamous Cell Carcinoma Stage III; Laryngeal Squamous Cell Carcinoma Stage IV; Oropharyngeal Squamous Cell Carcinoma Stage III; Oropharyngeal Squamous Cell Carcinoma Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV; Locally Advanced Malignant Neoplasm

  5. Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells.

    PubMed

    Bittencourt, Leonardo da Silva; Zeidán-Chuliá, Fares; Yatsu, Francini Kiyono Jorge; Schnorr, Carlos Eduardo; Moresco, Karla Suzana; Kolling, Eduardo Antônio; Gelain, Daniel Pens; Bassani, Valquiria Linck; Moreira, José Cláudio Fonseca

    2014-11-01

    Advanced glycation end-products (AGEs) are considered potent molecules capable of promoting neuronal cell death and participating in the development of neurodegenerative disorders such as Alzheimer's disease (AD). Previous studies have shown that AGEs exacerbate β-amyloid (Aβ) aggregation and AGE-related cross-links are also detected in senile plaques. Acrolein (ACR) is an α, β-unsaturated aldehyde found in the environment and thermally processed foods, which can additionally be generated through endogenous metabolism. The role of ACR in AD is widely accepted in the literature. Guarana (Paullinia cupana Mart.) is popularly consumed by the population in Brazil, mainly for its stimulant activity. In the present study, we showed that guarana (10, 100, and 1000 µg/mL) is able to prevent protein glycation, β-amyloid aggregation, in vitro methylglyoxal, glyoxal, and ACR (20 μM)-induced toxicity on neuronal-like cells (SH-SY5Y). Since these are considered typical AD pathological hallmarks, we propose that guarana may deserve further research as a potential therapeutic agent in such a neurodegenerative disease. PMID:24840232

  6. Second generation advanced reburning for high efficiency NO{sub x} control. Quaterly progress report No. 1, October 1--December 31, 1995

    SciTech Connect

    Zamansky, V.M.; Maly, P.M.

    1996-01-22

    Title 1 of the Clean Air Act Amendment (CAAA) of 1990 requires NO{sub x} controls in ozone non- attainment areas. The initial Title 1 regulations, implemented over the last few years, required Reasonably Available Control Technologies (RACT). In most areas, the NO{sub x} levels for RACT are based on Low NO{sub x} Burners (LNB) and are in the range of 0.4 to 0.5 lb/10{sup 6} Btu. As a result, there has been little industry demand for higher efficiency and more expensive NO{sub x} controls such as reburning, Selective Non-Catalytic Reduction (SNCR), and Selective Catalytic Reduction (SCR). However, the current RACT requirements will not be the end of NO{sub x} regulations. Much more stringent NO{sub x} control will be required to bring many of the ozone non-attainment areas into compliance, particularly in the Northeast. This paper describes second generation advanced reburning for nitrogen oxides control.

  7. Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.).

    PubMed

    Sallam, Ahmed; Martsch, Regina

    2015-08-01

    A multi-parent advanced generation inter-cross (MAGIC) derived from 11 founder lines in faba bean was used in this study to identify quantitative trait loci (QTL) for frost tolerance traits using the association mapping method with 156 SNP markers. This MAGIC population consists of a set of 189 genotypes from the Göttingen Winter Bean Population. The association panel was tested in two different experiments, i.e. a frost and a hardening experiment. Six morphological traits, leaf fatty acid composition, relative water content in shoots were scored in this study. The genotypes presented a large genetic variation for all traits that were highly heritable after frost and after hardening. High phenotypic significant correlations were established between traits. The principal coordinates analysis resulted in no clear structure in the current population. Association mapping was performed using a general linear model and mixed linear model with kinship. A False discovery rate of 0.20 (and 0.05) was used to test the significance of marker-trait association. As a result, many putative QTLs for 13 morphological and physiological traits were detected using both models. The results reveal that QTL mapping by association analysis is a powerful method of detecting the alleles associated with frost tolerance in the winter faba bean which can be used in accelerating breeding programs. PMID:26041397

  8. Dipeptidyl Peptidase IV-Inhibitory Peptides Derived from Silver Carp (Hypophthalmichthys molitrix Val.) Proteins.

    PubMed

    Zhang, Ying; Chen, Ran; Chen, Xiling; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2016-02-01

    The dipeptidyl peptidase IV (DPP-IV)-inhibitory bioactivity of silver carp protein (SCP) hydrolysates were investigated, and their containing efficacious DPP-IV-inhibitory peptides were explored by in silico hydrolysis analysis, peptide separation combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and chemical synthesis. SCP hydrolysates generated by six proteases all showed efficient DPP-IV-inhibitory activities, and Neutrase-generated hydrolysates had the greatest DPP-IV inhibition (IC50 of 1.12 mg/mL). In silico Neutrase hydrolysis revealed hundreds of fragments released from myosin, actin, and collagen of SCPs, which include different Pro-motif peptides but only three reported peptidic DPP-IV inhibitors with moderate or weak bioactivity. In addition, three new DPP-IV-inhibitory peptides were identified using LC-MS/MS; in particular, LPIIDI and APGPAGP showed high DPP-IV-inhibitory activity with IC50 of 105.44 and 229.14 μM, respectively, and behaved in competitive/non-competitive mixed-type DPP-IV inhibition mode. The results indicate that the SCP-derived DPP-IV-inhibitory peptides could be potential functional ingredients in the diabetic diet. PMID:26758401

  9. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    SciTech Connect

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  10. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    SciTech Connect

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  11. The PLATO IV Communications System.

    ERIC Educational Resources Information Center

    Sherwood, Bruce Arne; Stifle, Jack

    The PLATO IV computer-based educational system contains its own communications hardware and software for operating plasma-panel graphics terminals. Key echoing is performed by the central processing unit: every key pressed at a terminal passes through the entire system before anything appears on the terminal's screen. Each terminal is guaranteed…

  12. Title IV: Improving Indian Education.

    ERIC Educational Resources Information Center

    Barker, Kipp A.

    The Indian Education Act of 1972, Title IV, has improved Native American education by emphasizing Native American control; it comes after 400 years of Euro-American involvement in Indian education during which assimilation was the primary goal. In 1568 Jesuit priests began "civilizing" and Christianizing the "savage" Indians; in 1794 the first…

  13. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  14. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray;

    2013-04-19

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  15. Advanced Photon Source Upgrade Project - Materials

    SciTech Connect

    Gibbson, Murray

    2011-01-01

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  16. Evaluation of the PLATO IV Computer-based Education System in the Community College. Final Report.

    ERIC Educational Resources Information Center

    Murphy, Richard T.; Appel, Lola Rhea

    PLATO IV (Programmed Logic for Automatic Teaching Operations) is the fourth generation of a computer assisted instructional system developed at the University of Illinois. The use of PLATO IV at five community colleges, and an evaluation of its educational impact on participating students, instructors, and colleges are described. The PLATO system…

  17. Advanced computing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Advanced concepts in hardware, software and algorithms are being pursued for application in next generation space computers and for ground based analysis of space data. The research program focuses on massively parallel computation and neural networks, as well as optical processing and optical networking which are discussed under photonics. Also included are theoretical programs in neural and nonlinear science, and device development for magnetic and ferroelectric memories.

  18. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    SciTech Connect

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  19. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks

    SciTech Connect

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

  20. Complex oscillator and Painlevé IV equation

    SciTech Connect

    Fernández C, David J. González, J.C.

    2015-08-15

    Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. In this article the first- and second-order supersymmetric transformations will be used to obtain new exactly solvable potentials departing from the complex oscillator. The corresponding Hamiltonians turn out to be ruled by polynomial Heisenberg algebras. By applying a mechanism to reduce to second the order of these algebras, the connection with the Painlevé IV equation is achieved, thus giving place to new solutions for the Painlevé IV equation.

  1. Facile Routes to Th(IV), U(IV), and Np(IV) Phosphites and Phosphates

    SciTech Connect

    Villa, Eric M.; Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-08-05

    Three actinide(IV) phosphites and a NpIV phosphate, AnIV(HPO₃)₂(H₂O)₂ (An = Th, U, Np) and Cs[Np(H1.5PO₄)(PO₄)]₂, respectively, were synthesized using mild hydrothermal conditions. The first three phases are isotypic and were obtained using similar reaction conditions. Cs[Np(H1.5PO₄)(PO₄)]₂ was synthesized using an analogous method to that of Np(HPO₃)₂(H₂O)₂. However, this fourth phase is quite different in comparison to the other phases in both composition and structure. The structure of Cs[Np(H1.5PO₄)(PO₄)]₂ is constructed from double layers of neptunium(IV) phosphate with caesium cations in the interlayer region. In contrast, An(HPO₃)₂(H₂O)₂ (An = Th, U, Np) form dense 3D networks. The actinide contraction is detected in variety of metrics obtained from single-crystal X-ray diffraction data. Changes in the oxidation state of the neptunium starting materials yield different products.

  2. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.

    PubMed

    Varshney, Rajeev K; Kudapa, Himabindu; Roorkiwal, Manish; Thudi, Mahendar; Pandey, Manish K; Saxena, Rachit K; Chamarthi, Siva K; Mohan, S Murali; Mallikarjuna, Nalini; Upadhyaya, Hari; Gaur, Pooran M; Krishnamurthy, L; Saxena, K B; Nigam, Shyam N; Pande, Suresh

    2012-11-01

    Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided more than 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance

  3. FluxSuite: a New Scientific Tool for Advanced Network Management and Cross-Sharing of Next-Generation Flux Stations

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Johnson, D.; Velgersdyk, M.; Beaty, K.; Forgione, A.; Begashaw, I.; Allyn, D.

    2015-12-01

    Significant increases in data generation and computing power in recent years have greatly improved spatial and temporal flux data coverage on multiple scales, from a single station to continental flux networks. At the same time, operating budgets for flux teams and stations infrastructure are getting ever more difficult to acquire and sustain. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are needed to effectively and efficiently handle the entire process. This would help maximize time dedicated to answering research questions, and minimize time and expenses spent on data processing, quality control and station management. Cross-sharing the stations with external institutions may also help leverage available funding, increase scientific collaboration, and promote data analyses and publications. FluxSuite, a new advanced tool combining hardware, software and web-service, was developed to address these specific demands. It automates key stages of flux workflow, minimizes day-to-day site management, and modernizes the handling of data flows: Each next-generation station measures all parameters needed for flux computations Field microcomputer calculates final fully-corrected flux rates in real time, including computation-intensive Fourier transforms, spectra, co-spectra, multiple rotations, stationarity, footprint, etc. Final fluxes, radiation, weather and soil data are merged into a single quality-controlled file Multiple flux stations are linked into an automated time-synchronized network Flux network manager, or PI, can see all stations in real time, including fluxes, supporting data, automated reports, and email alerts PI can assign rights, allow or restrict access to stations and data: selected stations can be shared via rights-managed access internally or with external institutions Researchers without stations could form "virtual networks" for specific projects by collaborating with PIs from

  4. A multireader diagnostic performance study of low-contrast detectability on a third-generation dual-source CT scanner: filtered back projection versus advanced modeled iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Samei, Ehsan

    2015-03-01

    The purpose of this work was to compare CT low-contrast detectability between two reconstruction algorithms, filtered back-projection (FBP) and advanced modeled iterative reconstruction (ADMIRE). A phantom was designed with a range of low-contrast circular inserts representing 5 contrast levels and 3 sizes. The phantom was imaged on a third-generation dual-source CT scanner (SOMATOM Definition Force, Siemens Healthcare) under various dose levels (0.74 - 5.8 mGy CTDIVol). Images were reconstructed using different settings of slice thickness (0.6 - 5 mm) and reconstruction algorithms (FBP and ADMIRE with strength of 3-5) and were assessed by eleven blinded and independent readers using a two alternative forced choice (2AFC) detection experiment. A second observer experiment was further performed in which observers scored the images based on the total number of visible object groups. Detection performance increased with increasing contrast, size, dose, with accuracy ranging from 50% (i.e., guessing) to 87% with an average inter-observer variability of ±7%. The use of ADMIRE-3 increased performance by 5.2% resulting in an estimated dose reduction potential of 56-60%. The results from the second experiment also showed increased number of visible object groups for increasing dose, slice thickness, and ADMIRE strength. The score difference between FBP and ADMIRE was 0.9, 1.3, and 2.1 for ADMIRE strengths of 3, 4, and 5, respectively, resulting in estimated dose reduction potentials between 4-80%. Overall, the data indicated potential to image at reduced doses while maintaining comparable image quality when using ADMIRE compared to FBP.

  5. Simulation of reconfigurable multifunctional continuous logic devices as advanced components of the next generation high-performance MIMO-systems for the processing and interconnection

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.

    2013-12-01

    We consider design and modeling of hardware realizations of reconfigurable multifunctional continuous logic devices (R MCL D) as advanced components of the next generation high-performance MIMO-systems for the processing and interconnection. The R MCL D realize function of two-valued and continuous logics with current inputs and current outputs on the basis of CMOS current mirrors and circuits which realize the limited difference functions. We show advantages of such elements consisting in encoding of variables by the photocurrent levels, that allows easily providing optical inputs (by photo-detectors (PD)) and optical outputs (by LED). The conception of construction of R MCL D consists in the use of a current mirrors realized on 1.5μm technology CMOS transistors. Presence of 55÷65 transistors, 1 PD and 1 LED makes the offered circuits quite compact and allows their integration in 1D and 2D arrays. In the presentation we consider the capabilities of the offered circuits, show the simulation results and possible prospects of application of the circuits in particular for time-pulse coding for multivalued, continuous, neuro-fuzzy and matrix logics. The simulation results of NOT, MIN, MAX, equivalence (EQ) and other functions, that implemented R MCL D, showed that the level of logical variables can change from 1 μA to 10 μA for low-power consumption variants. The base cell of the R MCL D have low power consumption <1mW and processing time about 1÷11μS at supply voltage 2.4÷3.3V. Modeling of such cells in OrCad is made.

  6. Spray generator of singlet oxygen with a centrifugal separation of liquid

    NASA Astrophysics Data System (ADS)

    Špalek, Otomar; Jirásek, Vít; Censký, Miroslav; Kodymová, Jarmila; Picková, Irena

    2008-10-01

    A new spray-type generator of singlet oxygen, O2(1Δ), with a following centrifugal separation of depleted liquid was studied. This generator was developed to fulfill following requirements suitable for an advanced Chemical Oxygen- Iodine Laser (COIL): (i) a high-pressure operation, (ii) a single pass of reaction liquid, (iii) an efficient disengagement of gas/liquid mixture, and (iv) a scalability for airborne and mobile application. The generator design takes advantage of very high g/l interfacial surface area of a fine spray produced by a two-phase nozzle and a very fast liquid separation by applying a high centrifugal force.

  7. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.

  8. Excitation of heliumlike B IV

    NASA Astrophysics Data System (ADS)

    Kolk, K.-H.; Koenig, R.; Kunze, H.-J.

    1986-01-01

    Measurements are reported for line-intensity ratios emitted from heliumlike B IV ions in a plasma with electron density, N(e) = 1.5 x 10 to the 16th/cu cm and electron temperature, kT(e) = 175 eV. The plasma was produced in a theta-pinch discharge. The analysis supports theoretical excitation rates calculated in the distorted-wave approximation, which include the effect of resonances.

  9. Ratchet model for type IV pilus retraction

    NASA Astrophysics Data System (ADS)

    Lindén, Martin; Tuohimaa, Tomi; Jonsson, Ann-Beth; Wallin, Mats

    2004-03-01

    Type IV pilus rectraction is required for twitching motility in a wide range of bacteriae, including Neisseria gonorrhoeae, Myxococcus xanthus and Pseudomonas aeruginosa. The mechanism of retraction is believed to be filament disassembly mediated by PilT, a member of the AAA family of motor proteins. Recent laser tweezer measurements of the force-velocity relation of PilT in N. gonorrhoeae, reveal that single PilT complexes generate forces of over 100 pN. We assume that PilT forms a cyclic ATPase surrounding the base of the pilus and formulate a model of retraction in terms of coupled flashing ratchets. We obtain a force-velocity relation by numerical simulation of the model which is in qualitative agreement with the experimental results.

  10. Characterization of a Grape Class IV Chitinase

    PubMed Central

    2015-01-01

    A chitinase was purified from Vitis vinifera Manzoni Bianco grape juice and characterized. On the basis of proteomic analysis of tryptic peptides, a significant match identified the enzyme as a type IV grape chitinase previously found in juices of other V. vinifera varieties. The optimal pH and temperature for activity toward colloidal chitin were found to be 6 and 30 °C, respectively. The enzyme was found to hydrolyze chitin and oligomers of N-acetylglucosamine, generating N,N′-diacetylchitobiose and N-acetylglucosamine as products, but was inactive toward N,N′-diacetylchitobiose. The enzyme exhibited both endo- and exochitinase activities. Because yeast contains a small amount of chitin in the cell wall, the possibility of growth inhibition was tested. At a concentration and pH expected in ripe grapes, no inhibition of wine yeast growth by the chitinase was observed. PMID:24845689

  11. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2016-05-02

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Pleural Mesothelioma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Pleural Mesothelioma

  12. Endonuclease IV of Escherichia coli is induced by paraquat

    SciTech Connect

    Chan, E.; Weiss, B.

    1987-05-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H/sub 2/O/sub 2/ produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, ..gamma.. rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O/sub 2/. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H/sub 2/O/sub 2/-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.

  13. Dabrafenib Alone and in Combination With Trametinib Before Surgery in Treating Patients With Locally or Regionally Advanced Melanoma That Can Be Removed By Surgery

    ClinicalTrials.gov

    2013-03-29

    Recurrent Melanoma; Stage IIB Melanoma (Locally Advanced); Stage IIC Melanoma (Locally Advanced); Stage IIIA Melanoma; Stage IIIB Melanoma; Stage IIIC Melanoma; Stage IV Melanoma (Limited, Resectable)

  14. Wind Generators

    NASA Technical Reports Server (NTRS)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  15. Archaeal type IV pili and their involvement in biofilm formation

    PubMed Central

    Pohlschroder, Mechthild; Esquivel, Rianne N.

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation. PMID:25852657

  16. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    NASA Technical Reports Server (NTRS)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  17. Stage IV-S neuroblastoma. Results with definitive therapy

    SciTech Connect

    Stokes, S.H.; Thomas, P.R.; Perez, C.A.; Vietti, T.J.

    1984-05-15

    The results of management of 14 patients with Stage IV-S neuroblastoma are reported. The treatment policy, although not consistent over this time span, in general used a combination of radiotherapy and chemotherapy or infrequently one modality alone. Twelve of 14 (86%) survived more than 6 years. One patient, with a solitary mediastinal primary tumor, died of rapidly progressive disease at three months. The other death occurred in a 4.5-year-old presenting with hepatomegaly at diagnosis followed by skeletal dissemination 2.5 years later. Thirteen of the patients were younger than 1 year of age. Of the 11 patients that received radiotherapy, 4 experienced mild asymptomatic scoliosis or kyphoscoliosis at 3 to 12 years after initial therapy. A review of the literature indicates that spontaneous regression in this tumor is very frequent; therefore, it is recommended that for the common presentation of massive hepatomegaly in an infant, close observation is warranted, unless life threatening complications occur. However, initial therapeutic intervention may be indicated in those patients with life threatening presentations. This data did not substantiate the necessity for complete surgical excision of the primary tumor, as has been suggested by others.

  18. Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin.

    PubMed

    Nongonierma, Alice B; Le Maux, Solène; Hamayon, Joël; FitzGerald, Richard J

    2016-08-10

    Bovine α-lactalbumin (α-La) contains numerous dipeptidyl peptidase IV (DPP-IV) inhibitory peptide sequences within its primary structure. In silico analysis indicated that the targeted hydrolysis of α-La with elastase should release DPP-IV inhibitory peptides. An α-La isolate was hydrolysed with elastase under different conditions using an experimental design approach incorporating 3 factors (temperature, pH and enzyme to substrate ratio (E : S) ratio) at 2 levels. The hydrolyzate generated at pH 8.5, 50 °C, E : S 2.0% (w/w) (H9) displayed the highest mean DPP-IV inhibition value at 3.1 mg mL(-1) of 75.8 ± 3.7% and had a half maximal DPP-IV inhibitory concentration (IC50) value of 1.20 ± 0.12 mg mL(-1). Five α-La-derived DPP-IV inhibitory peptides (GY, GL, GI, NY and WL) predicted to be released in silico were identified by liquid-chromatography tandem mass spectrometry (LC-MS/MS) within H9 and its simulated gastrointestinal digestion (SGID) sample. This preliminary study demonstrated the benefit of using a targeted approach combined with an experimental design in the generation of dietary protein hydrolyzates with DPP-IV inhibitory properties. PMID:27410260

  19. Naval threat countermeasure simulator and the IR_CRUISE_missiles models for the generation of infrared (IR) videos of maritime targets and background for input into advanced imaging IR seekers

    NASA Astrophysics Data System (ADS)

    Taczak, Thomas M.; Dries, John W.; Gover, Robert E.; Snapp, Mary Ann; Williams, Elmer F.; Cahill, Colin P.

    2002-07-01

    A new hardware-in-the-loop modeling technique was developed at the US Naval Research Laboratory (NRL) for the evaluation of IR countermeasures against advanced IR imaging anti-ship cruise missiles. The research efforts involved the creation of tools to generate accurate IR imagery and synthesize video to inject in to real-world threat simulators. A validation study was conducted to verify the accuracy and limitations of the techniques that were developed.

  20. A Spectrum of IV and V Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Heimdahl, Mats; Owen, David

    2004-01-01

    The aerospace industry in general and NASA in particular is using more (semi-formal) model-based software development. Model-based development produces a collection of artifacts, for example, state diagrams, module diagrams (such as class diagrams), control-block diagrams, etc. These artifacts may than be used as a basis for auto code generation for production use. Therefore, these models must be properly evaluated in the IV and V process. IV and V practitioners know how assess standard procedural systems. But what can we du about IV and V of model-based systems? The goal of the work outlined in this proposal is to use cost effective automated techniques to the largest extent possible during the IV and V process. Our working hypotheses are: 1. There exists a range of validation techniques that can assess models built using a range of modeling techniques of increasing cost and complexity. Specifically, we hypotesize that the "cheaper" techniques can find faults cheaply and early in a project. These early results are then used to predict if this is a problem system and if a more elaborate and expensive IV and V effort is justified. 2. There exists a set of migration procedures that let us seamlessly move from simple models using cheaper techniques into more elaborate models suitable for a more expensive and detailed analysis. 3. We further hypothesize that this migration process is much cheaper than simply remodeling the system under investigation from scratch when moving to models needed for the more detailed and expensive IV and V assessments.