Science.gov

Sample records for advanced geothermal drilling

  1. Recommendations of the workshop on advanced geothermal drilling systems

    SciTech Connect

    Glowka, D.A.

    1997-12-01

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  2. Geothermal drilling research overview

    SciTech Connect

    Glowka, D.A.

    1996-04-10

    Sandia conducts a comprehensive geothermal drilling research program for the US Department of Energy. The program currently consists of eight program areas: lost circulation technology; advanced synthetic-diamond drill bit technology, high-temperature logging technology; acoustic technology; slimhole drilling technology; drilling systems studies; Geothermal Drilling Organization projects; and geothermal heat pump technology. This paper provides justification and describes the projects underway in each program area.

  3. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    SciTech Connect

    Staller, George E.; Whitlow, Gary

    1999-04-27

    about 30 days. Several other Sandia instruments being developed for geothermal drilling are also being evaluated during this operation, Successful performance of these instruments on this important drilling job will reinforce our efforts to commercialize this technology for the geothermal and oil and gas drilling industries. Sandia's Rolling Float Meter was developed through the Lost Circulation Technology Program sponsored by the U. S. Department of Energy, Office of Geothermal Technologies. It monitors drilling fluid returns to rapidly detect loss of circulation during geothermal drilling. Lost circulation is particularly prevalent in geothermal wells, and can add as much as 10% to the total cost of drilling the well. Consequently, rapid detection and treatment of lost circulation is necessary for cost- effective geothermal drilling. Sandia has been evaluating and demonstrating the capabilities of the RFM to the geothermal industry for several years. In addition to lost circulation, the RFM is also useful for accurately detecting well kicks. Contacts have been made with mud logging companies that are involved with both geothermal and oil and gas drilling operations.

  4. Geothermal drilling technology update

    SciTech Connect

    Glowka, D.A.

    1997-04-01

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  5. Geothermal drilling research in the United States

    SciTech Connect

    Varnado, S.G.; Maish, A.B.

    1980-01-01

    The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

  6. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  7. Advanced geothermal foam drilling systems (AFS) -- Phase 1 final report, Part 1

    SciTech Connect

    W. C. Maurer

    1999-06-30

    An advanced coiled-tubing foam drilling system is being developed where two concentric strings of coiled tubing are used to convey water and air to the hole bottom where they are mixed together to produce foam for underbalanced drilling. This system has the potential to significantly reduce drilling costs by increasing drilling rates (due to the motor being powered by water), and reducing compressor and nitrogen costs (due to lower gas pressures and volumes).

  8. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  9. Advanced Geothermal Turbodrill

    SciTech Connect

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  10. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    SciTech Connect

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi; Pan, Lehua; Dobson, Parick; Mohan, Ram; Shoham, Ovadia; Felber, Betty; Rychel, Dwight

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  11. Slimhole drilling for geothermal exploration

    SciTech Connect

    Finger, J.T.

    1994-07-01

    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration, made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research. Sandia negotiated an agreement with Far West Capital, which operates the Steamboat Hills geothermal field, to drill and test an exploratory slimhole on their lease. The principal objectives for the slimhole were development of slimhole testing methods, comparison of slimhole data with that from adjacent production-size wells, and definition of possible higher-temperature production zones lying deeper than the existing wells.

  12. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  13. Geothermal drilling in Cerro Prieto

    SciTech Connect

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  14. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  15. Near-Term Developments in Geothermal Drilling

    SciTech Connect

    Dunn, James C.

    1989-03-21

    The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

  16. Geothermal Drilling in Cerro Prieto

    SciTech Connect

    Aguirre, B. D.; Garcia, G. S.

    1981-01-01

    To date, 71 geothermal wells have been drilled in Cerro Prieto. The activity has been divided into several stages, and, in each stage, attempts have been made to correct deficiencies that were gradually detected. Some of these problems have been solved; others, such as those pertaining to well casing, cement, and cementing jobs, have persisted. The procedures for well completion--the most important aspect for the success of a well--that were based on conventional oil well criteria have been improved to meet the conditions of the geothermal reservoir. Several technical aspects that have improved should be further optimized, even though the resolutions are considered to be reasonably satisfactory. Particular attention has been given to the development of a high-temperature drilling fluid capable of being used in drilling through lost circulation zones. Conventional oil well drilling techniques have been used except where hole-sloughing is a problem. Sulfonate lignitic mud systems have been used with good results. When temperatures exceed 300 C (572 F), it has been necessary to use an organic polymer to stabilize the mud properties.

  17. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981

    SciTech Connect

    Kelsey, J.R.

    1981-06-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

  18. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect

    Kelsey, J.R.

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  19. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real time

  20. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  1. Investigation of percussion drills for geothermal applications

    SciTech Connect

    Finger, J.T.

    1981-01-01

    A series of tests was conducted to provide data for an economic evaluation of percussion drilling in geothermal reservoirs. Penetration rate, operation on aqueous foam, and high temperature vulnerabilities of downhole percussion tools are described.

  2. Slim-hole drilling for geothermal exploration

    SciTech Connect

    Finger, J.T.

    1993-06-01

    Drilling production-size holes for geothermal exploration puts a large expense at the beginning of the project, and thus requires a long period of debt service before those costs can be recaptured from power sales. If a reservoir can be adequately defined and proved by drilling smaller, cheaper slim-holes, production well drilling can be delayed until the power plant is under construction, saving years of interest payments. In the broadest terms, this project`s objective is to demonstrate that a geothermal resevoir can be identified and evaluated with data collected in slim holes. We have assembled a coordinated working group, including personnel from Sandia, Lawrence Berkeley Lab, University of Utah Research Institute, US Geological Survey, independent consultants, and geothermal operators, to focus on the development of this project. This group is involved to a greater or lesser extent in all decisions affecting the direction of the research. Specific tasks being pursued include: Correlation of fluid flow and injection tests between slim-holes and production size wells. Transfer of slim-hole exploration drilling and reservoir assessment to industry so that slim-hole drilling becomes an accepted method for geothermal exploration.Development and validation of a coupled wellbore-reservoir flow simulator which can be used for reservoir evaluation from slim-hole flow data. Collection of applicable data from commercial wells in existing geothermal fields. Drilling of at least one new slim-hole and use it to evaluate a geothermal reservoir.

  3. Slim-hole drilling for geothermal exploration

    SciTech Connect

    Finger, J.T. )

    1993-01-01

    Drilling production-size holes for geothermal exploration puts a large expense at the beginning of the project, and thus requires a long period of debt service before those costs can be recaptured from power sales. If a reservoir can be adequately defined and proved by drilling smaller, cheaper slim-holes, production well drilling can be delayed until the power plant is under construction, saving years of interest payments. In the broadest terms, this project's objective is to demonstrate that a geothermal reservoir can be identified and evaluated with data collected in slim holes. A coordinated working group, including personnel from Sandia, Lawrence Berkeley Lab, University of Utah Research Institute, US Geological Survey, independent consultants, and geothermal operators, has been assembled to focus on the development of this project. This group is involved to a greater or lesser extent in all decisions affecting the direction of the research. Specific tasks being pursued include: (1) Correlation of fluid flow and injection tests between slim-holes and production size wells. (2) Transfer of slim-hole exploration drilling and reservoir assessment to industry so that slim-hole drilling becomes an accepted method for geothermal exploration. (3) Development and validation of a coupled wellbore-reservoir flow simulator which can be used for reservoir evaluation from slim-hole flow data. (4) Collection of applicable data from commercial wells in existing geothermal fields. (5) Drilling of at least one new slim-hole and use it to evaluate a geothermal reservoir.

  4. Slim-hole drilling for geothermal exploration

    SciTech Connect

    Finger, J.T.

    1993-01-01

    Drilling production-size holes for geothermal exploration puts a large expense at the beginning of the project, and thus requires a long period of debt service before those costs can be recaptured from power sales. If a reservoir can be adequately defined and proved by drilling smaller, cheaper slim-holes, production well drilling can be delayed until the power plant is under construction, saving years of interest payments. In the broadest terms, this project's objective is to demonstrate that a geothermal resevoir can be identified and evaluated with data collected in slim holes. We have assembled a coordinated working group, including personnel from Sandia, Lawrence Berkeley Lab, University of Utah Research Institute, US Geological Survey, independent consultants, and geothermal operators, to focus on the development of this project. This group is involved to a greater or lesser extent in all decisions affecting the direction of the research. Specific tasks being pursued include: Correlation of fluid flow and injection tests between slim-holes and production size wells. Transfer of slim-hole exploration drilling and reservoir assessment to industry so that slim-hole drilling becomes an accepted method for geothermal exploration.Development and validation of a coupled wellbore-reservoir flow simulator which can be used for reservoir evaluation from slim-hole flow data. Collection of applicable data from commercial wells in existing geothermal fields. Drilling of at least one new slim-hole and use it to evaluate a geothermal reservoir.

  5. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  6. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect

    Varnado, S.G.

    1980-05-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  7. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  8. Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980

    SciTech Connect

    Varnado, S.G.

    1980-04-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  9. Handbook of Best Practices for Geothermal Drilling

    SciTech Connect

    Finger, John Travis; Blankenship, Douglas A.

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  10. Deep drilling for geothermal energy in Finland

    NASA Astrophysics Data System (ADS)

    Kukkonen, Ilmo

    2016-04-01

    There is a societal request to find renewable CO2-free energy resources. One of the biggest such resources is provided by geothermal energy. In addition to shallow ground heat already extensively used in Finland, deep geothermal energy provides an alternative so far not exploited. Temperatures are high at depth, but the challenge is, how to mine the heat? In this presentation, the geological and geophysical conditions for deep geothermal energy production in Finland are discussed as well as challenges for drilling and conditions at depth for geothermal energy production. Finland is located on ancient bedrock with much lower temperatures than geologically younger volcanically and tectonically active areas. In order to reach sufficiently high temperatures drilling to depths of several kilometres are needed. Further, mining of the heat with, e.g., the principle of Enhanced Geothermal System (EGS) requires high hydraulic conductivity for efficient circulation of fluid in natural or artificial fractures of the rock. There are many issues that must be solved and/or improved: Drilling technology, the EGS concept, rock stress and hydraulic fracturing, scale formation, induced seismicity and ground movements, possible microbial activity, etc. An industry-funded pilot project currently in progress in southern Finland is shortly introduced.

  11. Recent Developments in Geothermal Drilling Fluids

    SciTech Connect

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

    1981-01-01

    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  12. Development of drilling foams for geothermal applications

    SciTech Connect

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  13. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  14. Rock melting technology and geothermal drilling

    NASA Technical Reports Server (NTRS)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  15. Advanced geothermal hydraulics model -- Phase 1 final report, Part 2

    SciTech Connect

    W. Zheng; J. Fu; W. C. Maurer

    1999-07-01

    An advanced geothermal well hydraulics model (GEODRIL) is being developed to accurately calculate bottom-hole conditions in these hot wells. In Phase 1, real-time monitoring and other improvements were added to GEODRIL. In Phase 2, GEODRIL will be integrated into Marconi's Intelligent Drilling Monitor (IDM) that will use artificial intelligence to detect lost circulation, fluid influxes and other circulation problems in geothermal wells. This software platform has potential for significantly reducing geothermal drilling costs.

  16. Advanced geothermal technologies

    NASA Astrophysics Data System (ADS)

    Whetten, J. T.; Murphy, H. D.; Hanold, R. J.; Myers, C. W.; Dunn, J. C.

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the U.S. Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico was producing 10 MW thermal, and still climbing, proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction was demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive.

  17. Advances in core drilling technology

    NASA Astrophysics Data System (ADS)

    Holdsworth, G.

    Some notable technical advances in drill design were reported at the meeting, held in Canada August 30-September 1, 1982, at the University of Calgary. Chief amongst these was a battery powered, computer assisted electromechanical core drill which has recently been used by the Danes in Greenland to continuously core to the base of the ice sheet at 2038 m. This is the deepest coring operation so far on the Greenland ice sheet. (The record for deep glacier drilling is held by the U.S. Army Cold Regions Research and Engineering Laboratory for the continuous coring through 2164 m of ice to bedrock at Byrd Station, Antarctica, in 1968). In early 1982, a current Soviet core drilling operation was reported to be at a depth of 2000 m at Vostok station, Antarctica, where the total ice thickness is about 4000 m; the goal of core drilling the entire ice thickness there could be achieved before the end of 1983.

  18. A study of geothermal drilling and the production of electricity from geothermal energy

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  19. National Advanced Drilling and Excavation Technologies Program

    SciTech Connect

    1993-06-15

    The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

  20. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What types of geothermal drilling... MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.10 What types of geothermal drilling operations are covered by these regulations? (a) The regulations in subparts 3260...

  1. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What types of geothermal drilling... MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.10 What types of geothermal drilling operations are covered by these regulations? (a) The regulations in subparts 3260...

  2. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What types of geothermal drilling... MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.10 What types of geothermal drilling operations are covered by these regulations? (a) The regulations in subparts 3260...

  3. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What types of geothermal drilling... MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.10 What types of geothermal drilling operations are covered by these regulations? (a) The regulations in subparts 3260...

  4. Recent developments in geothermal drilling fluids

    SciTech Connect

    Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

    1981-01-01

    Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

  5. National Advanced Drilling and Excavation Technologies Institute. Status report, March 1997

    SciTech Connect

    Peterson, C.

    1997-12-31

    The National Advanced Drilling and Excavation Technologies (NADET) program is intended to pool support, talent, and technologies of the industries dependent upon drilling and excavation technologies to initiate, coordinate, and sustain programs capable of developing substantial technological advances. The NADET Institute has been funded by the DOE Office of Geothermal Technologies and is now supporting seven projects aimed at advanced geothermal drilling technologies. The Institute seeks to broaden its base of funding and technological support from both government and industry sources. Encouraging progress has been made with the support of dues-paying industrial members and industrial sponsorship of a substantial drilling research study.

  6. Geothermal gradient drilling, north-central Cascades of Oregon, 1979

    SciTech Connect

    Youngquist, W.

    1980-01-01

    A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

  7. Cascade geothermal drilling/corehole N-1

    SciTech Connect

    Swanberg, C.A.; Combs, J. ); Walkey, W.C. )

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table. 28 refs., 15 figs., 2 tabs.

  8. Cascade geothermal drilling/corehole N-3

    SciTech Connect

    Swanberg, C.A.

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

  9. Geothermal well drilling manual at Cerro Prieto

    SciTech Connect

    Fernandez P., A.; Flores S., M.

    1982-08-10

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimize hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.

  10. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  11. European Geothermal Drilling Experience-Problem Areas and Case Studies

    SciTech Connect

    Baron, G.; Ungemach, P.

    1981-01-01

    Geothermal drilling has long been restricted in Western Europe to the sole dry steam field of Larderello in Italy. In the last few years, a wider experience is building up as a consequence of intensified exploration and development programs carried out for evaluation and production of both low- and high-enthalpy geothermal resources. A sample of some 40 boreholes indicates the problem areas which are given.

  12. Geothermal corehole drilling and operations, Platanares, Honduras, Central America

    SciTech Connect

    Goff, S.; Rufenacht, H.D.; Laughlin, A.W.; Adams, A.; Planner, H.; Ramos, N.

    1987-01-01

    Two slim exploration coreholes to depths of 650 m and 428 m, respectively, have been completed at the Platanares geothermal site, Honduras, Central America. A third corehole is now being drilled. These boreholes have provided information on the stratigraphy, temperature variation with depth, nature and compositions of fluids, fracturing, permeability, and hydrothermal alterations associated with the geothermal reservoir. Eruptions of hot water occurred during the drilling of both the first and third boreholes. Recovery of >98% core has been obtained even under difficult superheated conditions.

  13. Seal/lubricant systems for geothermal drilling equipment

    SciTech Connect

    Hendrickson, R.R.; Winzenried, R.W.

    1980-07-01

    The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

  14. Drill stem steels for use in geothermal environments

    SciTech Connect

    Salzbrenner, R.

    1980-01-01

    Steels which are used in drill stem for conventional drilling have been selected primarily to satisfy certain static strength requirements and cost considerations. As the environments in which drilling is performed become more severe (e.g., in geothermal fluids) additional considerations must be given to the design of alloys which are resistant to general corrosion, stress corrosion, and corrosion fatigue. General design considerations for steel alloys which should provide an enhanced resistance to geothermal drilling operations are presented. These considerations include discussion of the chemistry and metallurgical substructure, and how their variation affects the mechanical and corrosion properties of steel used for drill stem applications. A duplex ferritic-martensitic steel has an advantageous combination of compositional and microstructural features which should lead to improved chemical resistance (particularly to hydrogen sulfide) as well as provide a good combination of strength and toughness properties. This duplex steel is based on the iron-2.0 weight percent silicon-0.1 weight percent carbon system, and offers the potential of enhanced performance in geothermal drilling as well as low alloy cost.

  15. Italian Experience and Problems in Deep Geothermal Drilling

    SciTech Connect

    Cigni, U.; Del Gaudio, P.; Fabbri, F.

    1981-01-01

    Geothermal exploration at depth is being conducted in the Larderello area of Italy, in order to ascertain whether it is possible to extract geothermal fluids from the layers which underlie the reservoir now being exploited. The main operating problems are caused by the high thermality and the chemical corrosiveness of the fluids encountered; and by the practical problems involved in drilling without circulation to the surface in mainly hard but anhomogeneous fractured formations. The technology employed for deep geothermal well drilling plays an important role in this research. In deep geothermal well drilling it is essential that the equipment and the materials employed are suitable for use in areas which are characterized by high thermality and chemical corrosiveness. The results of the experiences gained in Italy concerning the materials and tools employed in deep geothermal exploration are presented. The various problems involved are described in detail and particular mention is made of drift control, fishing operations, cementation of the deep casing, control of the circulation fluid, and choice of the tubular materials.

  16. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  17. Geothermal Gradient Drilling and Measurements Ascension Island, South Atlantic Ocean

    SciTech Connect

    Sibbett, B.S.; Nielson, D.L.; Adams, M.C.

    1984-07-01

    This technical report on the Phase II geothermal exploration of Ascension Island documents the data collected during thermal gradient drilling and the subsequent thermal and fluid chemical investigations. It also documents the completion of the Phase II exploration strategy which was proposed at the end of the Phase I--Preliminary Examination of Ascension Island. The thermal gradient drilling resulted in seven holes which range from 206 to 1750 ft (53-533 m) deep, with a cumulative footage of 6563 ft (2000 m). The drilling procedure and the problems encountered during the drilling have been explained in detail to provide information valuable for any subsequent drilling program on the island. In addition, the subsurface geology encountered in the holes has been documented and, where possible, correlated with other holes or the geology mapped on the surface of the island. Temperatures measured in the holes reach a maximum of 130 F (54.4 C) at 1285 ft (391.7 m) in hole GH-6. When the temperatures of all holes are plotted against elevation, the holes can be classed into three distinct groups, those which have no thermal manifestations, those with definite geothermal affinities, and one hole which is intermediate between the other two. From consideration of this information, it is clear that the highest geothermal potential on the island is in the Donkey Flat area extending beneath Middleton Ridge, and in the Cricket Valley area. Because of the greater drilling depths and the remote nature of the Cricket Valley area, it is recommended that future exploration concentrate in the area around Middleton Ridge.

  18. Self-Advancing Step-Tap Drills

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Penner, Ronald K.; Franklin, Larry D.

    2007-01-01

    Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of

  19. Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; Keith, Terry E.

    1999-01-01

    Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.

  20. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  1. Evaluation of aqueous-foam surfactants for geothermal drilling fluids

    SciTech Connect

    Rand, P.B.; Montoya, O.J.

    1983-07-01

    Aqueous foams are potentially useful drilling and cleanout fluids for geothermal applications. Successful use of foams requires surfactants (foaming agents) that can survive in the high-temperature geothermal environment. In this study, solutions of aqueous-foam-forming surfactants have been exposed to 260/sup 0/C (500/sup 0/F) and 310/sup 0/C (590/sup 0/F) in various chemical environments to determine if they can survive and make foams after exposure. Comparison of foams before and after exposure and the change in solution pH were used to evaluate their performance. Controlled liquid-volume-fraction foams, made in a packed-bed foam generator, were used for all tests. These tests have shown that many commercially available surfactants can survive short high-temperature cycles in mild acids, mild bases, and salt solutions as evidenced by their ability to make foams after exposure to high temperatures.

  2. Aqueous foam surfactants for geothermal drilling fluids: 1. Screening

    SciTech Connect

    Rand, P.B.

    1980-01-01

    Aqueous foam is a promising drilling fluid for geothermal wells because it will minimize damage to the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. The procedures developed to generate and test aqueous foams and the effects of a 260/sup 0/C temperature cycle on aqueous surfactant solutions are presented. More than fifty selected surfactants were evaluated with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics.

  3. Drilling of a 2000-metre (6562-FT) Borehole for Geothermal Steam in Iceland

    SciTech Connect

    Ragnars, K.; Benediktsson, S.

    1981-01-01

    Drilling for geothermal heat has been carried out in Iceland since 1928, when hot water was obtained for district heating in Reykjavik. From that time, in particular in the sixties, extensive drilling has resulted in the annual utilization of 54 million tons of water and 2 million tons of steam. Five drilling rigs are used for geothermal drilling, with depth capacity ranging from 400 to 3,600 meters (1,312 to 11,812 feet). Drilling procedures vary extensively and depend on whether a high- or low-temperature field is being drilled, the main difference being the well-casing program and the blowout equipment used.

  4. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  5. The role of R and D in geothermal drilling cost reduction

    SciTech Connect

    Glowka, D.A.

    1997-07-01

    The role that drilling technology development can play in reducing the cost of geothermal power is examined. Factors contributing to the relatively high cost of geothermal drilling are discussed, and potential technology improvements that could reduce those costs are identified. Projects under way at Sandia National Laboratories to address these technology needs are summarized, and estimates are made of the potential drilling cost savings resulting from these projects.

  6. Evaluating candidate lost circulation materials for geothermal drilling

    SciTech Connect

    Loeppke, G.

    1986-01-01

    Sandia National Laboratories' Geothermal Technology Development Division is working to advance the state of the art of lost circulation prevention and control. For this purpose, a large-scale lost Circulation Test Facility was designed and built. This paper addresses the evaluation of candidate lost circulation materisl using this facility and also using the recommended practice of API RP 131. Test results from these facilities are compared and discussed for the materials tested.

  7. Systems study of drilling for installation of geothermal heat pumps

    SciTech Connect

    Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

    1997-09-01

    Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

  8. Diamond-Cutter Drill Bits

    SciTech Connect

    1995-11-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Diamond-Cutter Drill Bits Diamond-cutter drill bits cut through tough rock quicker, reducing the cost of drilling for energy resources The U.S. Department of Energy (DOE) contributed markedly to the geothermal, oil, and gas industries through the development of the advanced polycrystalline diamond compact (PDC) drill bit. Introduced in the 1970s by General Electric Company (GE), the PDC bit uses thin, diamond layers bonded to t

  9. Effects of contamination by geothermal drilling mud on laboratory determinations of sandstone pore properties: an evaluation

    SciTech Connect

    Arenas, A.; Iglesias, E.; Izquierdo, G.; Guevara, M.; Oliver, R.; Santoyo, S.

    1982-01-01

    Research to evaluate formation damage related to drilling fluids used in Mexican geothermal fields was initiated. The initial work has been done on Berea sandstone for two reasons: (1) to save valuable reservoir drill cores while developing and turning experimental techniques, and (2) for comparison with results from other investigations, since Berea sandstone has been extensively studied and used in permeability impairment research. The magnitudes of permeability reductions associated with high-temperature rock/geothermal drilling fluid interactions, the possibility of restoring the unperturbed permeability to reservoir drill cores for its measurement in the laboratory were emphasized.

  10. Results of the 1988 geothermal gradient test drilling project for the State of Washington

    SciTech Connect

    Barnett, D.B.; Korosec, M.A.

    1989-05-01

    During late summer and early fall of 1988, the Washington Department of Natural Resources, Division of Geology and Earth Resources (DGER) completed drilling eight shallow geothermal gradient test wells in the southern Washington Cascade Range. This report describes the preliminary results of the 1988 drilling and gradient measuring, and summarizes our current perspectives on distribution and magnitude of the geothermal resource potential in the southern Washington Cascades. 18 refs., 11 figs., 11 tabs.

  11. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  12. Research drilling in an active geothermal system: Salton Sea Scientific Drilling Project (SSSDP)

    SciTech Connect

    Elders, W.A.

    1987-05-01

    In March 1986 a research borehole, designed to study the processes occurring in an active, high-temperature, magmatically driven hydrothermal system, reached a depth of 3.22 km in the Salton Sea geothermal field at the northern end of the Gulf of California. Only 10% of the borehole was cored; however, an integrated set of drill cuttings, wireline logs, and downhole measurements were obtained using high-temperature tools and cables. Similarly, downhole VSP, gravity, and fluid sampling tools were successfully deployed. The borehole penetrates Pleistocene and upper Pliocene lake and delta sediments with minor extrusive and intrusive igneous rocks, all of which are being progressively altered to greenschist facies hornfelses. A flow test of a zone at 1865 m with a temperature of 305/sup 0/C, produced Na, Ca, and K chloride brines containing 24% of dissolved salts. Flows of up to 200 tons/hr of steam and brine were obtained. An even more productive zone, the deepest tested at 3215 m where the temperature was 355/sup 0/C, briefly attained a peak flow of 400 tons/hr during a 48-hour test. However, this test was marred by interference from other flow zones. Although the borehole was shut in after the 7-in. (17.78-cm) diameter liner parted, a comprehensive program of laboratory studies is underway in about 40 different institutions. Results to date have more than met their original goals. In the summer of 1987, field operations will resume and will include extensive reservoir engineering. However, drilling deeper to penetrate the magmatic rocks that underlie the explored hydrothermal system must await future funding.

  13. Secondary mineralogy of core from geothermal drill hole CTGH-1, High Cascade Range, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.

    1988-01-01

    Geothermal drill hole CTGH-1, located near Breitenbush Hot Springs in the Cascade Mountains of northwest Oregon, was drilled to a depth of 1463 m. The maximum reported temperature at the bottom of the drill hole was 96.4??C. The drill core consists predominantly of basalt to basaltic andesite lava flows, tuffs, and volcanic breccia. Red to orange iron-oxide stained tuffs are at least partly altered to smectite. Vesicles, fractures, and open spaces between breccia fragments are partly to completely filled by secondary minerals. All of the minerals are compatible with the present low-temperature conditions.

  14. Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America

    SciTech Connect

    Goff, S.J.; Goff, F.E.; Heiken, G.H.; Duffield, W.A.; Janik, C.J.

    1994-04-01

    Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

  15. Drilling of hot-dry-rock geothermal-energy extraction well EE-3

    SciTech Connect

    Rowley, J.C.; Carden, R.S.

    1982-08-01

    The drilling of EE-3, the production well of the hot dry rock geothermal energy-extraction engineering system at the Fenton Hill site, was finished August 25, 1981. EE-3 was designed to be directionally drilled in the inclined reservoir section to be parallel to and spaced vertically 370 m (1200 ft) above EE-2, the injection well, which was drilled at 35/sup 0/ to the vertical. The reservoir heat transfer area will be formed by creating and extending several vertical parallel hydraulic fractures from EE-2 to EE-3. EE-3 required precision directional drilling because the borehole trajectory had to be drilled within specified tolerances with respect to EE-2. Well EE-2 was drilled with a packed (stiff) bottom-hole assembly that held the 35/sup 0/ inclination, but permitted the borehole to turn in azimuth. Directional drilling experience in EE-2 provided the basis to optimize the directional trajectory of EE-3 to within the desired tolerances. The EE-3 well was drilled into hot granite reservoir rock to total depth of 370 m (1200 ft) parallel and above EE-2 at a measured (drill-string) depth of 4.25 km (13,933 ft), with a maximum lateral deviation of about 60 m (180 ft). A bottom-hole static temperature of 280/sup 0/C (550/sup 0/F) is estimated. Two severe drill-pipe twist-offs extended the drilling time of EE-3 to 461 days. These, and other drilling problems, are recorded and solution approaches are discussed. Drilling costs of EE-2/EE-3 are shown to be comparable to commercial drilling of hydrothermal wells and to the US Department of Energy sponsored geothermal projects when these cost trends are extrapolated to 4.5-km (15,000-ft) depths.

  16. Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells

    SciTech Connect

    Huttrer, G.W.

    1997-11-01

    This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

  17. Comments on some of the drilling and completion problems in Cerro Prieto geothermal wells

    SciTech Connect

    Dominguez A, B.; Sanchez G, G.

    1981-01-01

    From 1960 to the present, 85 wells with a total drilling length exceeding 160,000 m have been constructed at Cerro Prieto, a modest figure compared to an oil field. This activity took place in five stages, each characterized by changes and modifications required by various drilling and well-completion problems. Initially, the technical procedures followed were similar to those used in the oil industry. However, several problems emerged as a result of the relatively high temperatures found in the geothermal reservoir. The various problems that have been encountered can be considered to be related to drilling fluids, cements and cementing operations, lithology, geothermal fluid characteristics, and casings and their accessories. As the importance of high temperatures and the characteristics of the geothermal reservoir fluids were better understood, the criteria were modified to optimize well-completion operations, and satisfactory results have been achieved to date.

  18. Advanced materials for geothermal energy processes

    SciTech Connect

    Kukacka, L.E.

    1985-08-01

    The primary goal of the geothermal materials program is to ensure that the private sector development of geothermal energy resources is not constrained by the availability of technologically and economically viable materials of construction. This requires the performance of long-term high risk GHTD-sponsored materials R and D. Ongoing programs described include high temperature elastomers for dynamic sealing applications, advanced materials for lost circulation control, waste utilization and disposal, corrosion resistant elastomeric liners for well casing, and non-metallic heat exchangers. 9 refs.

  19. Decreasing geothermal energy conversion costs with advanced materials

    SciTech Connect

    Kukacka, L.E.

    1988-03-01

    If the Geothermal Technology Division (GTD) is to meet its programmatic objectives in hydrothermal fluid production and energy conversion, it is essential that new materials of construction be available. Level III Program Objectives include (1) reducing the costs associated with lost circulation episodes by 30% by 1992, (2) reducing the costs of deep wells and directionally dried wells by 10% by 1992, (3) reducing well-cementing problems for typical hydrothermal wells by 20% by 1991, and (4) the development of a corrosion-resistant and low-fouling heat exchanger tube material costing no more than three times the cost of carbon steel tubes by 1991. The Brookhaven National Laboratory (BNL) materials program is focused on meeting these objectives. Currently, work is in progress on (1) high temperature chemical systems for lost circulation control, (2) advanced high temperature (300/sup 0/C), lightweight (approx. 1.1 g/cc), CO/sub 2/-resistant well cementing materials, (3) thermally conductive composites for heat exchanger tubing, and (4) ultra high temperature (600/sup 0/C) cements for magma wells. In addition, high temperature elastomer technology developed earlier in the program is being transferred for use in the Geothermal Drilling Organization programs on drill pipe protectors, rotating head seals, and blow-out preventors. Recent accomplishments and the current status of work in each subtask are summarized in the paper.

  20. Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report

    SciTech Connect

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal, resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project -- Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential ''discovery.''

  1. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  2. Advanced Geothermal Optical Transducer (AGOT)

    SciTech Connect

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full scale. Employing a pair of identical, low

  3. Thermal limitations on the use of PDC bits in geothermal drilling

    SciTech Connect

    Glowka, D.A.

    1984-08-01

    Factors affecting the potential for using polycrystalline diamond compact (PDC) drill bits in geothermal drilling are discussed. Pertinent results from previous laboratory and field tests are reviewed. The two predominant failure mechanisms, abrasive cutter wear and catastrophic loss of cutters, are discussed. A temperature activated mechanism for accelerating cutter wear is identified, and the implications for hard-rock drilling are investigated. An upper bound on drillable rock strength without causing thermally-accelerated wear is established for a variety of operating and environmental conditions.

  4. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  5. A History of Geothermal Energy Research and Development in the United States. Drilling 1976-2006

    SciTech Connect

    none,

    2010-09-01

    This report, the second in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in drilling and to make generation of electricity from geothermal resources more cost-competitive.

  6. Design, Development and Testing of a Drillable Straddle Packer for Lost Circulation Control in Geothermal Drilling

    SciTech Connect

    Gabaldon, J.; Glowka, D.A.; Gronewald, P.; Knudsen, S.D.; Raymond, D.W.; Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wise, J.L.; Wright, E.K.

    1999-04-01

    Lost Circulation is a widespread problem encountered when drilling geothermal wells, and often represents a substantial portion of the cost of drilling a well. The U.S. Department of Energy sponsors research and development work at Sandia National Laboratories in an effort to reduce these lost circulation expenditures. Sandia has developed a down hole tool that improves the effectiveness and reduces th cost of lost circulation cement treatment while drilling geothermal wells. This tool, the Drillable Straddle Packer, is a low-cost disposable device that is used to isolate the loss zone and emplace the cement treatment directly into the region of concern. This report documents the design and development of the Drillabe Straddle Packer, the laboratory and field test results, and the design package that is available to transfer this technology to industry users.

  7. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and

  8. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  9. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  10. Exploration and drilling for geothermal heat in the Capital District, New York

    NASA Astrophysics Data System (ADS)

    Sneeringer, M. R.; Crist, W. K.; Dunn, J. R.

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of sub-surface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Eight wells about 400-feet deep, one 600-foot well and one 2232-foot well were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  11. Failure mechanisms of polycrystalline diamond compact drill bits in geothermal environments

    SciTech Connect

    Hoover, E.R.; Pope, L.E.

    1981-09-01

    Over the past few years the interest in polycrystalline diamond compact (PDC) drill bits has grown proportionately with their successful use in drilling oil and gas wells in the North Sea and the United States. This keen interest led to a research program at Sandia to develop PDC drill bits suitable for the severe drilling conditions encountered in geothermal fields. Recently, three different PDC drill bits were tested using either air or mud drilling fluids: one in the laboratory with hot air, one in the Geysers field with air, and one in the Geysers field with mud. All three tests were unsuccessful due to failure of the braze joint used to attach the PDC drill blanks to the tungsten carbide studs. A post-mortem failure analysis of the defective cutters identified three major failure mechanisms: peripheral nonbonding caused by braze oxidation during the brazing step, nonbonding between PDC drill blanks and the braze due to contamination prior to brazing, and hot shortness. No evidence was found to suggest that the braze failures in the Geysers field tests were caused by frictional heating. In addition, inspection of the PDC/stud cutter assemblies using ultrasonic techniques was found to be ineffective for detecting the presence of hot shortness in the braze joint.

  12. Diagnostics-while drilling: Reducing the cost of geothermal-produced electricity

    SciTech Connect

    PRAIRIE,MICHAEL R.; GLOWKA,DAVID A.

    2000-01-26

    The goal of this document is to estimate the potential impact of proposed new Diagnostics-While-Drilling technology on the cost of electricity (COE) produced with geothermal energy. A cost model that predicts the COE was developed and exercised over the range of conditions found for geothermal plants in flashed-steam, binary, and enhanced-reservoir (e.g., Hot Dry Rock) applications. The calculations were repeated assuming that DWD technology is available to reduce well costs and improve well productivity. The results indicate that DWD technology would reduce the geothermal COE by 2--31%, depending on well depth, well productivity, and the type of geothermal reservoir. For instance, for a typical 50-MW, flashed-steam geothermal power plant employing 3-MW wells, 6,000-ft deep, the model predicts an electricity cost of 4.9 cents/kwh. With the DWD technology envisioned, the electricity cost could be reduced by nearly 20%, to less than 4 cents/kwh. Such a reduction in the cost of electricity would give geothermal power a competitive edge over other types of power at many locations across the US and around the world. It is thus believed that DWD technology could significantly expand the role of geothermal energy in providing efficient, environment-friendly electric generating capacity.

  13. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  14. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  15. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  16. Drilling, logging and preliminary well testing of geothermal well Susan 1, Susanville, Lassen County, California

    SciTech Connect

    McNitt, J.R.; Petersen, C.A.; Sanyal, S.K.

    1981-03-01

    Susan 1, a hot water production well, was drilled late in 1980 for the City of Susanville, California, as part of its geothermal space-heating project. A history of drilling, logging, completion and pump testing of this well is presented. Susan 1 was drilled to 930 feet using local river water with a 17-1/2-inch bit from 50 to 540 feet and a 12-1/2-inch bit from 540 to 927 feet. A 12-3/4-inch solid casing was set from surface to 350 feet, a slotted casing from 350 to 538 feet, and a 8-5/8-inch slotted casing from 520 to 925 feet. Interpretations of the following logs and test data from this well are presented: drilling logs (penetration rate, water loss and gain, return temperatures); formation logs (description of well cuttings, caliper, spontaneous potential, electrical resistivity, gamma ray, neutron); production logs (temperature, spinner); and pump test data.

  17. Hotspot: the Snake River Geothermal Drilling Project--initial report

    USGS Publications Warehouse

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  18. Drilling fluids and lost circulation in hot-dry-rock geothermal wells at Fenton Hill

    SciTech Connect

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.

    1981-01-01

    Geothermal hot dry rock drilling at Fenton Hill in northern New Mexico encountered problems of catastrophic lost circulation in cavernous areas of limestones in the Sandia Formation, severe corrosion due to temperatures of up to 320/sup 0/C, and torque problems caused by 35/sup 0/ hole angle and the abrasiveness of Precambrian crystalline rock. The use of polymeric flocculated bentonite fluid, clear water, fibrous material, dry drilling, oxygen scavengers, a biodegradable lubricant mixture of modified triglicerides and alcohol, and maintenance of a high pH, were some of the approaches taken toward solving these problems.

  19. Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report

    SciTech Connect

    Hibbs, L.E. Jr.; Sogoian, G.C.

    1983-05-01

    The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

  20. A drillable straddle packer for lost circulation control in geothermal drilling

    SciTech Connect

    Glowka, D.A.

    1995-12-31

    Lost circulation is a persistent problem in geothermal drilling and often accounts for a significant fraction of the cost of drilling a typical geothermal well. The US Department of Energy sponsors work at Sandia National Laboratories to develop technology for reducing lost circulation costs. This paper describes a downhole tool that has been developed at Sandia for improving the effectiveness and reducing the cost of cementing operations used to treat lost circulation zones. This tool, known as the drillable straddle packer, is a low-cost, disposable assembly used for isolating a loss zone and directing the flow of cement into the zone. This paper describes the tool concept, hardware design, deployment procedure, laboratory testing, and technical issues addressed during the development process.

  1. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  2. Siting and drilling recommendations for a geothermal exploration well, Wendel-Amedee KGRA, Lassen County, California

    SciTech Connect

    McNitt, J.R.; Wilde, W.R.

    1980-12-01

    All available exploration data relevant to the GeoProducts leasehold in the Wendel-Amedee KGRA are reviewed and interpreted. On the basis of this interpretation, locations and procedures are recommended for drilling geothermal production wells capable of supplying fluid at a temperature of 250/sup 0/F or greater. The following are covered: stratigraphy and geological history, geologic structure, geochemistry, geophysics, temperature-gradient data, and fluid quality. (MHR)

  3. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  4. Drilling Fluids and Lost Circulation in Hot Dry Rock Geothermal Wells at Fenton Hill

    SciTech Connect

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G. Friddle, H.; Simpson, G.

    1981-01-01

    Geothermal hot dry rock drilling activities at Fenton Hill in the Jemez Mountains of northern New Mexico encountered problems in designing drilling fluids that will reduce catastrophic lost circulation. Four wells (GT-2, EE-1, EE-2, and EE-3) penetrated 733 m (2405 ft) of Cenozoic and Paleozoic sediments and Precambrian crystalline rock units to +4572 m (+15,000 ft). The Cenozoic rocks consist of volcanics (rhyolite, tuff, and pumice) and volcaniclastic sediments. Paleozoic strata include Permian red beds (Abo formation) and the Pennsylvanian Madera and Sandia Formations, which consist of massive limestones and shales. Beneath the Sandia Formation are igneous and metamorphic rocks of Precambrian age. The drilling fluid used for the upper sedimentary formations was a polymeric flocculated bentonite drilling fluid. Severe loss of circulation occurred in the cavernous portions of the Sandia limestones. The resultant loss of hydrostatic head caused sloughing of the Abo and of some beds within the Madera Formation. Stuck pipe, repetitive reaming, poor casing cement jobs and costly damage to the intermediate casing resulted. The Precambrian crystalline portion of the EE-2 and EE-3 wells were directionally drilled at a high angle, and drilled with water as the primary circulating fluid. Due to high temperatures (approximately 320 C (608 F) BHT) and extreme abrasiveness of the deeper part of the Precambrian crystalline rocks, special problems of corrosion inhibition and of torque friction were incurred. Several techniques were attempted to solve these problems but have met with varying degrees of success.

  5. Drilling fluids and lost circulation in hot dry rock geothermal wells at Fenton Hill

    SciTech Connect

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.; Baroid, N.L.

    1981-01-01

    Geothermal hot dry rock drilling activities at Fenton Hill in the Jemez Mountains of northern New Mexico encountered problems in designing drilling fluids that will reduce catastrophic lost circulation. Four wells (GT-2, EE-1, EE-2, and EE-3) penetrated 733 m (2405 ft) of Cenozoic and Paleozoic sediments and Precambrian crystalline rock units to +4572 m (+15,000 ft). The Cenozoic rocks consist of volcanics (rhyolite, tuff, and pumice) and volcaniclastic sediments. Paleozoic strata include Permian red beds (Abo Formation) and the Pennsylvanian Madera and Sandia Formations, which consist of massive limestones and shales. Beneath the Sandia Formation are igneous and metamorphic rocks of Precambrian age. The drilling fluid used for the upper sedimentary formations was a polymeric flocculated bentonite drilling fluid. Severe loss of circulation occurred in the cavernous portions of the Sandia limestones. The resultant loss of hydrostatic head caused sloughing of the Abo and of some beds within the Madera Formation. Stuck pipe, repetitive reaming, poor casing cement jobs and costly damage to the intermediate casing resulted. The Precambrian crystalline portion of the EE-2 and EE-3 wells were directionally drilled at a high angle, and drilled with water as the primary circulating fluid. Due to high temperatures (approximately 320/sup 0/C (608/sup 0/F) BHT) and extreme abrasiveness of the deeper part of the Precambrian crystalline rocks, special problems of corrosion inhibition and of torque friction were incurred.

  6. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  7. Advances in drilling covered at conference in Southeast Asia

    SciTech Connect

    Not Available

    1993-02-01

    Recent advances in drilling technology include new applications for various polymer-based drilling fluids, an analytical evaluation of certain gas control additives for light cement slurries, the use of a new wellhead connector, and the development of a unique completion tool for slim hole wells. This paper reports on these topics which were covered in several papers prepared for the Offshore South East Asia 9th Conference and Exhibition held Dec. 1-4, 1992, in Singapore. Drilling fluids formulated with partially hydrolyzed polyacrylamide were used successfully and economically to control well bore problems in a development drilling program in southeast Asia. Another paper presented results on the use of various cationic and anionic materials to control shale stability problems common to areas offshore western Australia. Another paper presented results of an evaluation of five common additives used to control gas migration problems in light-weight cements. In addition to these fluid topics, recent mechanical developments were covered.

  8. Geopressured-geothermal well report. Volume I. Drilling and completion

    SciTech Connect

    Not Available

    1982-01-01

    Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

  9. The Advancement of Geothermal Energy Production through Improved Exploration Methods

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, H.; Klein, K.

    2010-12-01

    Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy’s Geothermal Technologies Program invested $98 million in the geothermal exploration industry, and continues to encourage further research, development and demonstration in this field. The continued development of innovative exploration technologies is essential for wide adoption of geothermal resources. In 2008, the United States Geological Survey estimated that there are approximately 30,000 MW of undiscovered hydrothermal resources in the western United States alone. Improvements in exploration technologies are necessary to discover and define these hidden resources and to reduce up-front risk and cost through more accurate and efficient exploration. Currently, the surface and subsurface are characterized through combinations of ground-based and airborne geophysical surveys, geochemical surveys, satellite imaging and drilling. However, to increase geothermal exploration well success rates, development of improved and new exploration techniques is required.

  10. Progress in the Advanced Synthetic-Diamond Drill Bit Program

    SciTech Connect

    Glowka, D.A.; Dennis, T.; Le, Phi; Cohen, J.; Chow, J.

    1995-11-01

    Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

  11. Geothermal Energy for New Mexico: Assessment of Potential and Exploratory Drilling

    SciTech Connect

    Mark Person, Lara Owens, James Witcher

    2010-02-17

    This report summarizes the drilling operations and subsequent interpretation of thermal and geochemical data from the New Mexico Tech NMT-2GT (OSE RG- 05276 POD) test well. This slim hole was drilled along an elongate heat-flow anomaly at the base of the Socorro Mountains to better assess the geothermal resource potential (Socorro Peak geothermal system) on the western side of the New Mexico Tech campus in Socorro, New Mexico. The reservoir depth, hydraulic properties, temperature and chemistry were unknown prior to drilling. The purpose of the NMT-2GT (OSE RG-05276 POD) well was to explore the feasibility of providing geothermal fluids for a proposed district space heating system on the New Mexico Tech campus. With DOE cost over runs funds we completed NMT-2GT to a depth of 1102 feet at the Woods Tunnel drill site. Temperatures were nearly constant (41 oC ) between a depth of 1102 feet. Above this isothermal zone, a strong temperature gradient was observed (210 oC /km) beneath the water table consistent with vertical convective heat transfer. The existence of a groundwater upflow zone was further supported by measured vertical hydraulic head measurements which varied between about 258 feet at the water table to 155 feet at a depth of 1102 feet yielding a vertical hydraulic a gradient of about 0.1. If the upflow zone is 1 km deep, then a vertical flow rate is about 0.6 m/yr could have produced the observed curvature in the thermal profile. This would suggest that the deep bedrock permeability is about 20 mD. This is much lower than the permeability measured in a specific capacity aquifer test completed in 2009 within fracture Paleozoic sandstones near the water table (3000 D). Flow rates measured during drilling were measured using a v-notch weir. Flow rates were consistently around 1000 gpm. While the temperatures are lower than we had anticipated, this geothermal resource can still be developed to heat the NM Tech campus using heat pump technology.

  12. Old Maid Flat geothermal exploratory hole No. 7A drilling and completion report

    SciTech Connect

    Not Available

    1981-02-01

    Drilling and testing efforts for a 6000-foot geothermal exploratory hole on the western approaches to Mount Hood, near Portland, Oregon were completed. The intent of the drilling was to encounter a hydrothermal reservoir in a postulated fracture system and confirm the existence of a moderate-temperature (200/sup 0/F) geothermal resource in the Old Main Flat (OMF) vicinity of Mount Hood. The exploratory hole, OMF No. 7A, was completed to a total depth of 6027 feet in 54 days using conventional rotary drilling techniques. The hole was found to be incapable of producing fluids with the desired temperatures. A maximum hole temperature of about 235/sup 0/F was recorded at total depth and a temperature gradient of about 3.3/sup 0/F/100 feet was exhibited over the lower 1000 feet of hole. A variety of technical data, including physical samples such as cores, cuttings, and borehole fluids, plus geophysical well logs were acquired. Data analyses are continuing, with results to be made available through future separate reports.

  13. Geological Results from Drilling in the Poihipi (Western) Sector of the Wairakei Geothermal Field, NZ

    SciTech Connect

    Bogie, I.; Lawless, J.V.; MacKenzie, K.M.

    1995-01-01

    Four wells drilled into the Poihipi Sector on the Western margin of the Wairakei geothermal field have found a similar lithostratigraphy to that encountered in wells previously drilled in the general area. Young pumice breccias overly the Huka Falls Formation, with the latter containing intercalations of the Rautehuia Breccia. This in turn overlies ignimbrites and tuffaceous sediments of the Waiora Formation, which contains flows of Haparangi Rhyolite. This sequence is cut by steeply dipping normal faults which strike to the northeast and for the most part dip towards the northwest. Hydrothermal alteration is virtually limited to the Waiora and Haparangi units where a sequence of interlayered illite-smectite and illite clays are found along with chlorite, quartz, pyrite and calcite. There is a minor occurrence of zeolites. Despite large changes in the area's hydrology in response to exploitation, changes in alteration are limited to a comparatively deep occurrence of kaolinite and minor overprinting of epidote by illitic clay.

  14. Utility of drill-stem tests in determination of the geothermal regime of Railroad Valley, Nye County, Nevada

    SciTech Connect

    French, D.E.

    1995-06-01

    Accurate representation of geothermal conditions is necessary to determine generation potential of source rocks buried in Railroad Valley. Boreholes, provide the best source of geothermal information, but formation temperature data must be screened for variations caused by drilling. Bottomhole temperatures from wireline logs are affected by initial formation conditions, drilling fluid that moves into the formation while drilling, and lag time between cessation of drilling fluid circulation and acquisition of logs. More accurate indicators of formation conditions are temperatures recorded during drill-stem tests, especially for tests that recovered large amounts of fluid. Over 130 drill-stem tests were examined to establish the viability of this source of data and to determine the geothermal conditions of the Railroad Valley basin. Results indicate that 500 feet or more of fluid recovery on a test is necessary to get a temperature recorded that is not influenced by drilling perturbations. The formation temperature data collected for Railroad Valley indicate the possibility of 2 thermal regimes. A low-temperature gradient regime is probably influenced by meteoric water. The high-temperature gradient regime probably reflects the regional heat flow associated with the thin crust of the Great Basin.

  15. Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:

    SciTech Connect

    Satrape, J.V.

    1987-11-24

    The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

  16. Geothermal program overview: Fiscal years 1993--1994

    SciTech Connect

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  17. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  18. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  19. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field

    NASA Astrophysics Data System (ADS)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

    2013-12-01

    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25

  20. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  1. Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field

    SciTech Connect

    Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

    2005-10-27

    During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and

  2. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    SciTech Connect

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites were selected on the basis of (1

  3. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    SciTech Connect

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert; Livesay, Bill

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  4. Geothermal Drilling In The Aleutians Reveals New Insights On Volcanic History Of Akutan Volcano

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.

    2013-12-01

    In 2010, two thermal gradient wells were drilled in the Hot Springs Bay Valley geothermal resource area on Akutan Island, Alaska. Well TG-2 was drilled in the region of hot springs occurrence near the mouth of the valley and reached a depth of 253 m (833'). Well TG-4 was drilled near the head of the valley, closer to the current volcano, and reached a depth of 457 m (1500'). The core recovered from these wells represent the only drill core extracted from an Aleutian volcano to date and reveals an important missing piece of the surficial eruptive and erosional history of the volcano that cannot be determined from surface evaluation of recent eruptive deposits laid down on 500 ka bedrock outcrops. No intrusive rocks were encountered, indicating a rich history of surficial activity. The core is dominated (46% of recovered core) by basaltic lava flow deposits (49-52 wt% SiO2), consistent with other observed deposits on the island. These flows are interspersed with andesite lava flows (20% of core, ranging from 53-58 wt% SiO2), abundant mass wasting deposits (27% of core) and a series of ash and ash tuff layers that are some of the most silicic deposits identified at Akutan (up to 66 wt% SiO2). Ash deposits are restricted to the upper 125 m in both wells, are significantly thicker in TG-4, and are difficult to correlate between the two wells. Mass wasting deposits are diverse, including a subset characterized by matrix-supported heterolithologic breccias enclosed in a crystalline basaltic lava host. A shell-rich zone at 273 meters depth indicates that the transition between sub-marine and sub-aerial activity may be recorded in the core.

  5. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  6. Results from shallow research drilling at Inyo Domes, Long Valley Caldera, California and Salton Sea geothermal field, Salton Trough, California

    SciTech Connect

    Younker, L.W.; Eichelberger, J.C.; Kasameyer, P.W.; Newmark, R.L.; Vogel, T.A.

    1987-09-01

    This report reviews the results from two shallow drilling programs recently completed as part of the United States Department of Energy Continental Scientific Drilling Program. The purpose is to provide a broad overview of the objectives and results of the projects, and to analyze these results in the context of the promise and potential of research drilling in crustal thermal regimes. The Inyo Domes drilling project has involved drilling 4 shallow research holes into the 600-year-old Inyo Domes chain, the youngest rhyolitic event in the coterminous United States and the youngest volcanic event in Long Valley Caldera, California. The purpose of the drilling at Inyo was to understand the thermal, chemical and mechanical behavior of silicic magma as it intrudes the upper crust. This behavior, which involves the response of magma to decompression and cooling, is closely related to both eruptive phenomena and the establishment of hydrothermal circulation. The Salton Sea shallow research drilling project involved drilling 19 shallow research holes into the Salton Sea geothermal field, California. The purpose of this drilling was to bound the thermal anomaly, constrain hydrothermal flow pathways, and assess the thermal budget of the field. Constraints on the thermal budget links the local hydrothermal system to the general processes of crustal rifting in the Salton Trough.

  7. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  8. Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland

    USGS Publications Warehouse

    Elders, W.A.; Fridleifsson, G.O.; Zierenberg, R.A.; Pope, E.C.; Mortensen, A.K.; Gudmundsson, A.; Lowenstern, J. B.; Marks, N.E.; Owens, L.; Bird, D.K.; Reed, M.; Olsen, N.J.; Schiffman, P.

    2011-01-01

    Magma flowed into an exploratory geothermal well at 2.1 km depth being drilled in the Krafla central volcano in Iceland, creating a unique opportunity to study rhyolite magma in situ in a basaltic environment. The quenched magma is a partly vesicular, sparsely phyric, glass containing ~1.8% of dissolved volatiles. Based on calculated H2O-CO2 saturation pressures, it degassed at a pressure intermediate between hydrostatic and lithostatic, and geothermometry indicates that the crystals in the melt formed at ~900 ??C. The glass shows no signs of hydrothermal alteration, but its hydrogen and oxygen isotopic ratios are much lower than those of typical mantle-derived magmas, indicating that this rhyolite originated by anhydrous mantle-derived magma assimilating partially melted hydrothermally altered basalts. ?? 2011 Geological Society of America.

  9. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  10. Salton Sea Geothermal Field, Imperial Valley, California as a site for continental scientific drilling. [Abstract only

    SciTech Connect

    Elders, W.A.; Cohen, L.H.

    1983-03-01

    The Salton Trough, where seafloor spreading systems of the East Pacific Rise transition into the San Andreas transform fault system, is the site of such continental rifting and basin formation today. The largest thermal anomaly in the trough, the Salton Sea Geothermal Field (SSGF), is of interest to both thermal regimes and mineral resources investigators. At this site, temperatures >350/sup 0/C and metal-rich brines with 250,000 mg/L TDS have been encountered at <2 km depth. Republic Geothermal Inc. will drill a new well to 3.7 km in the SSGF early in 1983; we propose add-on experiments in it. If funded, we will obtain selective water and core samples and a large-diameter casing installed to 3.7 km will permit later deepening. In Phase 2, the well would be continuously cored to 5.5 km and be available for scientific studies until July 1985. The deepened well would encounter hydrothermal regimes of temperature and pressure never before sampled.

  11. Tecuamburro Volcano, Guatemala geothermal gradient core hole drilling, operations, and preliminary results

    SciTech Connect

    Goff, S.; Heiken, G.; Goff, F.; Gardner, J. ); Duffield, W. ); Martinelli, L.; Aycinena, S. ); Castaneda, O. . Inst. Nacional de Electrificacion)

    1990-01-01

    A geothermal gradient core hole (TCB-1) was drilled to a depth of 700+ m at the Tecuamburro geothermal site, Guatemala during February and March, 1990. The core hole is located low on the northern flank of the Tecuamburro Volcano complex. Preliminary analysis of cores (>98% core recovery) indicates that the hydrothermal system may be centered in the 4-km-diameter Chupadero Crater, which has been proposed as the source of pyroxene pumice deposits in the Tecuamburro area. TCB-1 is located 300 m south of a 300-m-diameter phreatic crater, Laguna Ixpaco; the core hole penetrates the thin edge of a tuff ring surrounding Ixpaco and zones of hydrothermal brecciation within the upper 150 m may be related to the phreatic blast, dated at 2,910 {sup 14}C years. At the time of this writing, the unequilibrated temperature at a depth of 570m was 180{degree}C. Data on fracturing, permeability, hydrothermal alteration, and temperature will be presented. 3 refs., 3 figs.

  12. Exploration drilling and reservoir model of the Platanares geothermal system, Honduras, Central America

    USGS Publications Warehouse

    Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.

    1991-01-01

    Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.

  13. Update on geothermal exploration and drilling in the capital district of New York

    SciTech Connect

    Sneeringer, M.R.; Dunn, J.R.; Ruscetta, C.A.

    1982-07-01

    Exploration in the Capital District area of New York has provided both direct and indirect evidence of anomalous geothermal heat. Previous work has included water sampling programs for geochemical analyses, thermal gradient measurements in abandoned water wells, a micro-seismic monitoring program, and a small scale gravity survey. The current exploration program includes an expanded water sampling program for silica analyses, designed to improve coverage for a regional evaluation and to check previous work. Additional work is being done with major and trace element data for water samples from last year's program in an effort to unravel the complex mixing taking place between several water types, and to reevaluate the spatial relationships of compositional variations. The thermal gradient measurement program has also continued, both making new measurements and monitoring certain wells. The New York State Geological Survey is continuing to operate the seismic monitoring network established last year, and are reevaluating data previously collected. In addition, the major effort of this program is drilling several shallow (400 to 500 feet) wells and one deep (2000 feet) well for thermal gradient measurements. Results of the silica sampling program and drilling to date are discussed.

  14. Drilling, completion, and testing of geothermal wells CD-1 and CD-2, Caliente, Nevada

    SciTech Connect

    Larson, K.; Flynn, T.

    1982-01-01

    Two geothermal test wells were drilled in January 1983, in Antelope Canyon to access the potential for resource utilization by the City of Caliente's proposed space heating district. Both holes, drilled into bedrock at 220 feet, encountered hot water in the upper part of the hole (40 to 100 feet) and cooler water below (100 to 210 feet). A series of pumping tests were completed in February 1983, including pump-efficiency tests, stepped draw-down tests, and 1-, 2-, and 3-day sustained pumping tests. The test results indicated that the transmissivity of the thermal aquifer is very, very high. Five water samples were collected for chemical analyses during the course of CD-1 pump tests. The samples were collected to determine the water quality for the proposed space heating district and possible reinjection, and to establish a water chemistry base-line for comparative analysis of fluid chemistry during the course of the pumping and from subsequent development. 7 refs., 18 figs., 3 tabs.

  15. Pervasive, high temperature hydrothermal alteration in the RN-17B drill core, Reykjanes Geothermal System-Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Reed, M. H.; Elders, W. A.; Fridleifsson, G. O.

    2010-12-01

    burial at T<300 is replaced by more calcic plagioclase at higher temperature. Texturally, hydrothermal anorthite (An90-98) and pargasite (up to 13.5 wt % Al2O3) appear to have grown at the expense of earlier formed epidote + chlorite + actinolite. Measured downhole temperature at 2800m in RN-17B following reequilibration was 320°C, although amphibole-plagioclase geothermometry imply that anorthite + pargasite, if in equilibrium, should have formed at much higher temperatures. The differences in extent and intensity of alteration inferred from examination of cuttings compared to drill core indicate that selective recovery and mixing of cuttings from multiple depths may be a larger problem than presently appreciated. Previous work has shown that the Reykjanes geothermal system has evolved from a meteoric water-dominated system to higher salinity system dominated by seawater-recharge. The paragenetic relationships that are discernible in the core hopefully will allow us to quantify the alteration processes related to the change in salinity.

  16. Advanced Rock Drilling Technologies Using High Laser Power

    NASA Astrophysics Data System (ADS)

    Buckstegge, Frederik; Michel, Theresa; Zimmermann, Maik; Roth, Stephan; Schmidt, Michael

    Drilling through hard rock formations causes high mechanical wear and most often environmental disturbance. For the realization of an Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) power plant a new and efficient method for tunneling utilising laser technology to support mechanical ablation of rock formations will be developed. Laser irradiation of inhomogeneous rock surfaces causes irregular thermal expansion leading to the formation of cracks and splintering as well as melting and slag-formation. This study focuses on the interaction of laser irradiation with calcite, porphyrite and siderite rock formations. A high power disc laser system at 1030nm wavelength is used to investigate the specific energy necessary to remove a unit volume depending on interaction times and applied power. Specific energies have been measured and an increase of fragility and brittleness of the rock surface has been observed.

  17. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

    USGS Publications Warehouse

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.

    2013-01-01

    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of

  18. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  19. Research on geothermal chemistry and advanced instrumentation

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Shannon, D. W.; Sullivan, R. G.; Kindle, C. H.; Pool, K. H.

    1985-09-01

    Research at the Pacific Northwest Laboratory (PNL) focuses on long-term geothermal power plant reliability. Past work concentrated on development of continuous high-temperature probes for monitoring process variables. PNL also completed a comprehensive handbook of brine treatment processes as they relate to injection well longevity. A recently completed study analyzed corrosion in the hydrocarbon system of a binary cycle plant. Over the two-year monitoring period, corrosion rates were less than 1 MPY in any part of the hydrocarbon system. The system was kept completely dry so the rates seem reasonable. Present projects include: (1) determination of gas breakout conditions at the Herber Binary Demonstration Plant operated by San Diego Gas and Electric Company; (2) generation of water mixing solubility data; (3) installation of prototype leak detectors at the Herber Plant; and (4) evaluation of state-of-the-art particle counters.

  20. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10

  1. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other...

  2. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other...

  3. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other...

  4. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other...

  5. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other...

  6. Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications

    NASA Astrophysics Data System (ADS)

    Kukkonen, Ilmo T.; Rath, Volker; Kivekäs, Liisa; Šafanda, Jan; Čermak, Vladimir

    2011-09-01

    Detailed geothermal studies of deep drill holes provide insights to heat transfer processes in the crust, and allow separation of different factors involved, such as palaeoclimatic and structural conductive effects as well as advective fluid flow effects. We present high resolution geothermal results of the 2516 m deep Outokumpu Deep Drill Hole in eastern Finland drilled in 2004-2005 into a Palaeoproterozoic formation with metasedimentary rocks, ophiolite-derived altered ultramafic rocks and pegmatitic granite. The down-hole temperatures have been logged five times after end of drilling and extend to day 948 after drilling. The hole is completely cored (79% core coverage) and thermal conductivity measurements were done at 1 m intervals. The geothermal results on temperature gradient, thermal conductivity and heat flow density yield an exceptionally detailed data set and indicate a significant vertical variation in gradient and heat flow density. Heat flow density increases from about 28 - 32 mW m -2 in the uppermost 1000 m to 40-45 mW m -2 at depths exceeding 2000 m. The estimated undisturbed surface heat flow value is 42 mW m -2. We present results on forward and inverse transient conductive models which suggest that the vertical variation in heat flow can mostly be attributed to a palaeoclimatic effect due to ground surface temperature (GST) variations during the last 100,000 years. The modeling suggests that the average GST was about -3 to -4 °C during the Weichselian glaciation. Holocene GST values are within ±2° from the present average GST in Outokumpu (5 °C). The topographic hydraulic heads and hydraulic conductivity of crystalline rocks are low which suggests that advective heat transfer in the formation is not significant. The slow replacement of fresh flushing water by saline formation fluids is observed in the hole, but it does not generate significant thermal disturbances in the logs. On the other hand, free sluggish thermal convection is present in

  7. Geothermal Studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications

    NASA Astrophysics Data System (ADS)

    Kukkonen, I. T.; Rath, V.; Kivekäs, L.; Šafanda, J.; Čermak, V.

    2012-04-01

    Detailed geothermal studies of deep drill holes provide insights to heat transfer processes in the crust, and allow separation of different factors involved, such as palaeoclimatic and structural conductive effects as well as advective fluid flow effects. We present high resolution geothermal results of the 2,516 m deep Outokumpu Deep Drill Hole in eastern Finland drilled in 2004-2005 into a Palaeoproterozoic formation with metasedimentary rocks, ophiolite-derived altered ultramafic rocks and pegmatitic granite. The down-hole temperatures have been logged five times after end of drilling and extend to day 948 after drilling. The hole is completely cored (79% core coverage) and thermal conductivity measurements were done at 1 m intervals. The geothermal results on temperature gradient, thermal conductivity and heat flow density yield an exceptionally detailed data set and indicate a significant vertical variation in gradient and heat flow density. Heat flow density increases from about 28-32 mW m-2 in the uppermost 1000 m to 40-45 mW m-2 at depths exceeding 2000 m. The estimated undisturbed surface heat flow value is 42 mWm-2. We present results on forward and inverse transient conductive models which suggest that the vertical variation in heat flow can mostly be attributed to a palaeoclimatic effect due to ground surface temperature (GST) variations during the last 100,000 years. The modelling suggests that the average GST was about -3…-4°C during the Weichselian glaciation. Holocene GST values are within ±2 degree from the present average GST in Outokumpu (5°C). The topographic hydraulic heads and hydraulic conductivity of crystalline rocks are low which suggests that advective heat transfer in the formation is not significant. The slow replacement of fresh flushing water by saline formation fluids is observed in the hole, but it does not generate significant thermal disturbances in the logs. On the other hand, free sluggish thermal convection is present in

  8. Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho

    SciTech Connect

    Nathenson, M.; Urban, T.C.; Diment, W.H.; Nehring, N.L.

    1980-01-01

    The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150/sup 0/C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 ..mu..cal/cm/sup 2/ sec or slightly higher and that temperature gradients range from 50/sup 0/ to 60/sup 0/C/km in the sediments, tuffs, and volcanic debris that fill the valley. Within and close to the geothermal system, temperature gradients in intermediate-depth drill holes (100 to 350 m) range from 120/sup 0/ to more than 600/sup 0/C/km, the latter value found close to an artesian hot well that was once a hot spring. Temperatures measured in three deep wells (1 to 2 km) within the geothermal area indicate that two wells are in or near an active upflow zone, whereas one well shows a temperature reversal. Assuming that the upflow is fault controlled, the flow is estimated to be 6 liter/sec per kilometer of fault length. From shut-in pressure data and the estimated flow, the permeability times thickness of the fault is calculated to be 2.4 darcy m. Chemical analyses of water samples from old flowing wells, recently completed intermediate-depth drill holes, and deep wells show a confused pattern. Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

  9. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  10. Pre-drilling calculation of geomechanical parameters for safe geothermal wells based on outcrop analogue samples

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja

    2014-05-01

    It is desirable to enlarge the profit margin of geothermal projects by reducing the total drilling costs considerably. Substantiated assumptions on uniaxial compressive strengths and failure criteria are important to avoid borehole instabilities and adapt the drilling plan to rock mechanical conditions to minimise non-productive time. Because core material is rare we aim at predicting in situ rock properties from outcrop analogue samples which are easy and cheap to provide. The comparability of properties determined from analogue samples with samples from depths is analysed by performing physical characterisation (P-wave velocities, densities), conventional triaxial tests, and uniaxial compressive strength tests of both quarry and equivalent core samples. "Equivalent" means that the quarry sample is of the same stratigraphic age and of comparable sedimentary facies and composition as the correspondent core sample. We determined the parameters uniaxial compressive strength (UCS) and Young's modulus for 35 rock samples from quarries and 14 equivalent core samples from the North German Basin. A subgroup of these samples was used for triaxial tests. For UCS versus Young's modulus, density and P-wave velocity, linear- and non-linear regression analyses were performed. We repeated regression separately for clastic rock samples or carbonate rock samples only as well as for quarry samples or core samples only. Empirical relations were used to calculate UCS values from existing logs of sampled wellbore. Calculated UCS values were then compared with measured UCS of core samples of the same wellbore. With triaxial tests we determined linearized Mohr-Coulomb failure criteria, expressed in both principal stresses and shear and normal stresses, for quarry samples. Comparison with samples from larger depths shows that it is possible to apply the obtained principal stress failure criteria to clastic and volcanic rocks, but less so for carbonates. Carbonate core samples have higher

  11. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  12. Planning and drilling geothermal energy extraction hole EE-2: a precisely oriented and deviated hole in hot granitic rock

    SciTech Connect

    Helmick, C.; Koczan, S.; Pettitt, R.

    1982-04-01

    During the preceding work (Phase I) of the Hot Dry Rock (HDR) Geothermal Energy Project at Fenton Hill, two holes were drilled to a depth of nearly 3048 m (10,000 ft) and connected by a vertical hydraulic fracture. In this phase, water was pumped through the underground reservoir for approximately 417 days, producing an energy equivalent of 3 to 5 MW(t). Energy Extraction Hole No. 2 (EE-2) is the first of two deep holes that will be used in the Engineering-Resource Development System (Phase II) of the ongoing HDR Project of the Los Alamos National Laboratory. This phase of the work consists of drilling two parallel boreholes, inclined in their lower, open-hole sections at 35/sup 0/ to the vertical and separated by a vertical distance of 366 m (1200 ft) between the inclined parts of the drill holes. The holes will be connected by a series of vertical, hydraulically produced fractures in the Precambrian granitic rock complex. EE-2 was drilled to a depth of 4660 m (15,289 ft), where the bottom-hole temperature is approximately 320/sup 0/C (608/sup 0/F). Directional drilling techniques were used to control the azimuth and deviation of the hole. Upgrading of the temperature capability of existing hardware, and development of new equipment was necessary to complete the drilling of the hole in the extremely hot, hard, and abrasive granitic formation. The drilling history and the problems with bits, directional tools, tubular goods, cementing, and logging are described. A discussion of the problems and recommendations for overcoming them are also presented.

  13. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Gordon Tibbitts; Arnis Judzis

    2001-10-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2001 through September 2001. Accomplishments to date include the following: TerraTek highlighted DOE's National Energy Technology Laboratory effort on Mud Hammer Optimization at the recent Annual Conference and Exhibition for the Society of Petroleum Engineers. The original exhibit scheduled by NETL was canceled due to events surrounding the September tragedies in the US. TerraTek has completed analysis of drilling performance (rates of penetration, hydraulics, etc.) for the Phase One testing which was completed at the beginning of July. TerraTek jointly with the Industry Advisory Board for this project and DOE/NETL conducted a lessons learned meeting to transfer technology vital for the next series of performance tests. Both hammer suppliers benefited from the testing program and are committed to pursue equipment improvements and ''optimization'' in accordance with the scope of work. An abstract for a proposed publication by the society of Petroleum Engineers/International Association of Drilling Contractors jointly sponsored Drilling Conference was accepted as an alternate paper. Technology transfer is encouraged by the DOE in this program, thus plans are underway to prepare the paper for this prestigious venue.

  14. National advanced drilling and excavation technologies program: Summary of third meeting of interested Federal agencies

    SciTech Connect

    1993-12-07

    The purpose of the meeting was: (1) to discuss a proposal by the Massachusetts Institute of Technology (MIT) outlining a National Advanced Drilling and Excavation Technologies Program, (2) to brief participants on events since the last meeting, and (3) to hear about drilling research activities funded by the Department of Energy. The meeting agenda is included as Attachment B.

  15. Increasing Geothermal Energy Demand: The Need for Urbanization of the Drilling Industry

    ERIC Educational Resources Information Center

    Teodoriu, Catalin; Falcone, Gioia

    2008-01-01

    Drilling wells in urban spaces requires special types of rigs that do not conflict with the surrounding environment. For this, a mutation of the current drilling equipment is necessary into what can be defined as an "urbanized drilling rig." Noise reduction, small footprint, and "good looking" rigs all help persuade the general public to accept…

  16. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Gordon Tibbitts; Arnis Judzis

    2002-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2002 through March 2002. Accomplishments include the following: In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: (1) IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance at Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002.

  17. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Gordon Tibbitts; Arnis Judzis

    2001-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2001 through March 2001. Accomplishments to date include the following: (1) On January 9th of 2001, details of the Mud Hammer Drilling Performance Testing Project were presented at a ''kick-off'' meeting held in Morgantown. (2) A preliminary test program was formulated and prepared for presentation at a meeting of the advisory board in Houston on the 8th of February. (3) The meeting was held with the advisory board reviewing the test program in detail. (4) Consensus was achieved and the approved test program was initiated after thorough discussion. (5) This new program outlined the details of the drilling tests as well as scheduling the test program for the weeks of 14th and 21st of May 2001. (6) All the tasks were initiated for a completion to coincide with the test schedule. (7) By the end of March the hardware had been designed and the majority was either being fabricated or completed. (8) The rock was received and cored into cylinders.

  18. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  19. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  20. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2000-11-01

    The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in

  1. Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

    2009-01-01

    From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

  2. Canmar's berm-supported SSDC drilling advances arctic technology

    SciTech Connect

    Hewitt, K.J.; Berzins, W.E.; Fitzpatrick, J.P.; Hogeboom, H.G.

    1985-07-01

    This report describes design, installation and performance of the single steel drilling caisson (SSDC) on a subsea berm. It details key points learned from the $100-million project by Canadian Marine Drilling Ltd. installed in the Beaufort Sea. Unitized construction allows for permanent installation and hookup of the drilling rig package. Mobilization and demobilization is much simpler, resulting in quicker and safer operation than that required with a multi-caisson system. The high freeboard achieved with the SSDC unit gives much greater protection with respect to wave run-up and ice ride-up, resulting in significant operational improvements. The relatively low elevation of the submerged berm at 9 m below sea level results in improved berm stability and erosion resistance.

  3. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  4. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Gordon Tibbitts; Arniz Judzis

    2001-07-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting April 2001 through June 2001. Accomplishments to date include the following: (1) DOE's National Energy Technology Laboratory highlighted the Mud Hammer Project at an exhibit at the Offshore Technology Conference April 30 through May 3. TerraTek assisted NETL personnel with presentation materials appropriate for the project and a demonstration sample of ''hard rock'' drilled in TerraTek's wellbore simulator. (2) TerraTek has completed 13 drilling tests in Carthage Marble and hard Crab Orchard Sandstone with the SDS Digger Tool, Novatek tool, and a conventional rock bit. After some initial mud pump and flow line problems at TerraTek, we completed the testing matrix for the SDS Digger Tool and the Novatek hammer on 27 June 2001. Overall the hammers functioned properly at ''borehole'' pressures up to 3,000 psi with weighted water based mud. The Department of Energy goals to determine hammer benchmark rates of penetration and ability to function at depth are being met. Additionally data on drilling intervals and rates of penetration specific to flow rates, pressure drops, rotary speed, and weights-on-bit have been given to the Industry Partners for detailed analysis. SDS and Novatek have gained considerable experience on the operation of their tools at simulated depth conditions. Some optimization has already started and has been identified as a result of these first tests.

  5. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

  6. Advanced binary geothermal power plants: Limits of performance

    NASA Astrophysics Data System (ADS)

    Bliem, C. J.; Mines, G. L.

    1991-01-01

    The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. The feasible limits on efficiency of a plant given practical limits on equipment performance is explored and the methods used in these advanced concept plants to achieve the maximum possible efficiency are discussed. (Here feasible is intended to mean reasonably achievable and not cost effective.) No direct economic analysis was made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, a standard is presented of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies.

  7. Preliminary Fracture Description from Core, Lithological Logs, and Borehole Geophysical Data in Slimhole Wells Drilled for Project Hotspot: the Snake River Geothermal Drilling Project

    NASA Astrophysics Data System (ADS)

    Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.

    2011-12-01

    The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at

  8. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    SciTech Connect

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  9. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Arnis Judzis

    2003-07-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is not necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.

  10. Clackamas 4800-foot thermal gradient hole: Cascade geothermal drilling: Final technical report

    SciTech Connect

    Iovenitti, J.L.; D'Olier, W.L.

    1987-09-30

    Thermal Power Company (Thermal) completed a thermal gradient hole to about 5000 feet (1524 m) total depth in Section 28, Township 8 South, Range 8 East, Willamette Meridian, Marion County, Oregon. The objective was to obtain data for the characterization of the deep hydrothermal regime in the Cascades volcanic region in order to better define its geothermal resource potential. The depth and location of the thermal gradient hole were designed by Thermal to test the basis of the Clackamas geothermal system exploration model developed by Chevron Resources Company.

  11. Program plan for the development of advanced synthetic-diamond drill bits for hard-rock drilling

    SciTech Connect

    Glowka, D.A.; Schafer, D.M.

    1993-09-01

    Eight companys have teamed with Sandia Labs to work on five projects as part of a cooperative effort to advance the state of the ar in synthetic-diamond drill bit design and manufacture. DBS (a Baroid Company), Dennis Tool Company, Hughes Christensen Company, Maurer Engineering, Megadiamond, Security Diamond Products, Slimdril International, and Smith International. Objective of each project is to develop advanced bit technology that results in new commercial products with longer bit life and higher penetration rates in hard formations. Each project explores a different approach to synthetic-diamond cutter and bit design and, consequently, uses different approaches to developing the technology. Each of these approaches builds or the respective companies` capabilities and current product interests. Sandia`s role is to assure integration of the individual projects into a coherent program and tc provide unique testing and analytical capabilities where needed. One additional company, Amoco Production Research, will provide synthetic-diamond drill bit research expertise and field testing services for each project in the program.

  12. Conductive heat flow and nonlinear geothermal gradients in marine sediments—observations from Ocean Drilling Program boreholes

    NASA Astrophysics Data System (ADS)

    Stranne, Christian; O'Regan, Matt

    2016-02-01

    A basic premise in marine heat flow studies is that the temperature gradient varies with depth as a function of the bulk thermal conductivity of the sediments. As sediments become more deeply buried, compaction reduces the porosity and causes an increase in the bulk thermal conductivity. Therefore, while the heat flow may remain constant with depth, the thermal gradient is not necessarily linear. However, it has been argued that measurements showing increased sediment thermal conductivity with burial depth may be caused by a horizontal measurement bias generated by increasing anisotropy in sediments during consolidation. This study reanalyses a synthesis of Ocean Drilling Program data from 186 boreholes, and investigates the occurrence of nonlinear geothermal gradients in marine sediments. The aim is to identify whether observed downhole changes in thermal conductivity influence the measured temperature gradient, and to investigate potential errors in the prediction of in-situ temperatures derived from the extrapolation of near-surface thermal gradients. The results indicate that the measured thermal conductivity does influence the geothermal gradient. Furthermore, comparisons between shallow measurements (<10 m) from surface heat flow surveys and the deeply constrained temperature data from 98 ODP boreholes indicate that the shallow gradients are consistently higher by on average 19 °C km-1. This is consistent with higher porosity and generally lower thermal conductivity in near-seafloor sediments, and highlights the need to develop robust porosity-thermal conductivity models to accurately predict temperatures at depth from shallow heat flow surveys.

  13. Field drilling tests on improved geothermal unsealed roller-cone bits. Final report

    SciTech Connect

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-05-01

    The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  14. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  15. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Arnis Judzis

    2004-07-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammer provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.

  16. Direct contact condensers: Advanced designs for geothermal power plants

    SciTech Connect

    Baharathan, D.

    1995-02-01

    America`s geothermal resources-the reservoirs of steam and hot water that lie below the earth`s surface-have the potential to supply large amounts of clean, inexpensive energy. For example, The Geyser-a dry-steam geothermal field-supplies 7% of California`s electricity. With a 750-megawatt output from 14 units, The Geysers is the largest production of geothermal power in the world.

  17. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Arnis Judzis

    2002-10-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2002 through September 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Smith International agreed to participate in the DOE Mud Hammer program. (2) Smith International chromed collars for upcoming benchmark tests at TerraTek, now scheduled for 4Q 2002. (3) ConocoPhillips had a field trial of the Smith fluid hammer offshore Vietnam. The hammer functioned properly, though the well encountered hole conditions and reaming problems. ConocoPhillips plan another field trial as a result. (4) DOE/NETL extended the contract for the fluid hammer program to allow Novatek to ''optimize'' their much delayed tool to 2003 and to allow Smith International to add ''benchmarking'' tests in light of SDS Digger Tools' current financial inability to participate. (5) ConocoPhillips joined the Industry Advisors for the mud hammer program. (6) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to complete the optimizations.

  18. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Arnis Judzis

    2004-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2004 through March 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 3Q 2004. Smith International's hammer will be tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek presented a paper for publication in conjunction with a peer review at the GTI Natural Gas Technologies Conference February 10, 2004. Manuscripts and associated presentation material were delivered on schedule. The paper was entitled ''Mud Hammer Performance Optimization''. (2) Shell Exploration and Production continued to express high interest in the ''cutter impact'' testing program Task 8. Hughes Christensen supplied inserts for this testing program. (3) TerraTek hosted an Industry/DOE planning meeting to finalize a testing program for ''Cutter Impact Testing--Understanding Rock Breakage with Bits'' on February 13, 2004. (4) Formal dialogue with Terralog was initiated. Terralog has recently been awarded a DOE contract to model hammer mechanics with TerraTek as a sub-contractor. (5) Novatek provided the DOE with a schedule to complete their new fluid hammer and test it at TerraTek.

  19. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Arnis Judzis

    2003-01-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting October 2002 through December 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments included the following: (1) Smith International participated in the DOE Mud Hammer program through full scale benchmarking testing during the week of 4 November 2003. (2) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to add to the benchmarking testing program. (3) Following the benchmark testing of the Smith International hammer, representatives from DOE/NETL, TerraTek, Smith International and PDVSA met at TerraTek in Salt Lake City to review observations, performance and views on the optimization step for 2003. (4) The December 2002 issue of Journal of Petroleum Technology (Society of Petroleum Engineers) highlighted the DOE fluid hammer testing program and reviewed last years paper on the benchmark performance of the SDS Digger and Novatek hammers. (5) TerraTek's Sid Green presented a technical review for DOE/NETL personnel in Morgantown on ''Impact Rock Breakage'' and its importance on improving fluid hammer performance. Much discussion has taken place on the issues surrounding mud hammer performance at depth conditions.

  20. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

  1. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  2. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. Temporary Bridging Agents for use in Drilling and Completion of Enhanced Geothermal Systems

    SciTech Connect

    Watters, Larry; Watters, Jeff; Sutton, Joy; Combs, Kyle; Bour, Daniel; Petty, Susan; Rose, Peter; Mella, Michael

    2011-12-21

    CSI Technologies, in conjunction with Alta Rock Energy and the University of Utah have undergone a study investigating materials and mechanisms with potential for use in Enhanced Geothermal Systems wells as temporary diverters or lost circulation materials. Studies were also conducted with regards to particle size distribution and sealing effectiveness using a lab-scale slot testing apparatus to simulate fractures. From the slot testing a numerical correlation was developed to determine the optimal PSD for a given fracture size. Field trials conducted using materials from this study were also successful.

  4. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Gordon Tibbitts; Arnis Judzis

    2002-07-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting April 2002 through June 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Presentation material was provided to the DOE/NETL project manager (Dr. John Rogers) for the DOE exhibit at the 2002 Offshore Technology Conference. (2) Two meeting at Smith International and one at Andergauge in Houston were held to investigate their interest in joining the Mud Hammer Performance study. (3) SDS Digger Tools (Task 3 Benchmarking participant) apparently has not negotiated a commercial deal with Halliburton on the supply of fluid hammers to the oil and gas business. (4) TerraTek is awaiting progress by Novatek (a DOE contractor) on the redesign and development of their next hammer tool. Their delay will require an extension to TerraTek's contracted program. (5) Smith International has sufficient interest in the program to start engineering and chroming of collars for testing at TerraTek. (6) Shell's Brian Tarr has agreed to join the Industry Advisory Group for the DOE project. The addition of Brian Tarr is welcomed as he has numerous years of experience with the Novatek tool and was involved in the early tests in Europe while with Mobil Oil. (7) Conoco's field trial of the Smith fluid hammer for an application in Vietnam was organized and has contributed to the increased interest in their tool.

  5. Evaluation of saponite and saponite/sepiolite fluids for geothermal drilling

    SciTech Connect

    Guven, N.; Panfil, D.J.; Carney, L.L. . Dept. of Geosciences)

    1991-02-01

    The rheology and other properties of drilling fluids containing saponite and a saponite-sepiolite mixture as the main vicosifier have been systematically evaluated in the temperature range of 300-600{degree}F under appropriate confining pressures up to 16,000 psi. Saponite represents the magnesium analog of the clay mineral montmorillonite, which is the main constituent in conventional bentonite-based fluids. The fluid with 6% saponite exhibits a prominent viscosity enhancement at temperatures above 250{degree}F. This viscosity enhancement is easily controlled by salts and hydroxides of Na and K. The addition of Na-polyacrylates (low- and high-molecular weight polymers) eliminates the viscosity anomaly of pure saponite fluids. These polymers also increase the filtration control of saponite. The anomalous viscosity enhancement of saponite is significantly reduced by the addition of sepiolite (a clay mineral with a fibrous morphology). 12 refs., 31 figs., 26 tabs.

  6. Reverse trade mission on the drilling and completion of geothermal wells

    SciTech Connect

    Not Available

    1989-09-09

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  7. Analyzing the dynamic behavior of downhole equipment during drilling

    SciTech Connect

    Baird, J.A.; Caskey, B.C.

    1984-01-01

    Advanced geothermal drilling systems will require a bottom hole assembly (BHA) which utilizes sophisticated electronic and mechanical equipment to accomplish faster, more trouble free, smarter drilling. The bit-drill string/formation interaction during drilling imposes complex, intermittent dynamic loading on the downhole equipment. A finite element computer code, GEODYN, is being developed to allow analysis of the structural response of the downhole equipment during drilling and to simulate the drilling phenomena (i.e. penetration, direction, etc.). Phase 1 GEODYN, completed early in 1984, provides the capability to model the dynamic response of a polycrystalline diamond compact (PDC) bit interacting with a non-homogeneous formation. Succeeding development phases will allow inclusion of stabilizers and, eventually, the entire drill string in addition to facilitating drill ahead simulation.

  8. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    SciTech Connect

    Holmes, Forest Howard

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  9. Geothermal COMPAX drill bit development. Final technical report, July 1, 1976-September 30, 1982

    SciTech Connect

    Hibbs, L.E. Jr.; Sogoian, G.C.; Flom, D.G.

    1984-04-01

    The objective was to develop and demonstrate the performance of new drill bit designs utilizing sintered polycrystalline diamond compacts for the cutting edges. The scope included instrumented rock cutting experiments under ambient conditions and at elevated temperature and pressure, diamond compact wear and failure mode analysis, rock removal modeling, bit design and fabrication, full-scale laboratory bit testing, field tests, and performance evaluation. A model was developed relating rock cutting forces to independent variables, using a statistical test design and regression analysis. Experiments on six rock types, covering a range of compressive strengths from 8 x 10/sup 3/ psi to 51 x 10/sup 3/ psi, provided a satisfactory test of the model. Results of the single cutter experiments showed that the cutting and thrust (penetration) forces, and the angle of the resultant force, are markedly affected by rake angle, depth of cut, and speed. No unusual force excursions were detected in interrupted cutting. Wear tests on two types of diamond compacts cutting Jack Fork Sandstone yielded wear rates equivalent at high cutting speeds, where thermal effects are probably operative. At speeds below approx. 400 surface feet per minute (sfm), the coarser sintered diamond product was superior. 28 refs., 235 figs., 55 tabs.

  10. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  11. Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field

    SciTech Connect

    Iglesias, E.R.; Contreras L., E.; Garcia G., A.; Dominquez A., Bernardo

    1987-01-20

    For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributions of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.

  12. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    SciTech Connect

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Åžtefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-03-30

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Lastly, several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal

  13. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania.

    PubMed

    Coman, Cristian; Chiriac, Cecilia M; Robeson, Michael S; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and

  14. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    PubMed Central

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and

  15. The Campi Flegrei Deep Drilling Project: using borehole measurements to discriminate magmatic and geothermal effects in caldera unrest

    NASA Astrophysics Data System (ADS)

    De Natale, Giuseppe; Troise, Claudia; Carlino, Stefano; Troiano, Antonio; Giulia Di Giuseppe, Maria; Piochi, Monica; Somma, Renato; Tramelli, Anna; Kilburn, Christopher

    2015-04-01

    Large calderas are potentially the most risky volcanic areas in the world since they are capable of producing huge eruptions whose major effects can involve human life and activities from regional to global scale. Calderas worldwide are characterized by frequent episodes of unrest which, only in few cases, culminate with eruptions. This ambiguous behavior is generally explained in terms of magma intrusion or disturbance of geothermal fluids in the shallow crust, which are both source of ground deformations and seismicity. A major goal is to determine the relative contribution of each process, because the potential for eruptions significantly enhanced if magma movements emerge as the primary component. A very important case study is the active Campi Flegrei caldera, hosting part of the large city of Naples (Southern Italy). In the framework of the Campi Flegrei Deep Drilling Project new filed data from pilot borehole have been recorded (permeability and in situ stress) by using a novel procedure of Leak Off Test. These new data, particularly the actual permeability, are fundamental to calibrate the caldera unrest models at Campi Flegrei and, , to put constrains to forecast the maximum future eruptive scenario. We show here that these new data, integrated by fluid-dynamical modeling, allow to assess that only about a third of the maximum uplift recorded in 1982-1984 may be due to shallow aquifer perturbation, so that the remaining part should be due to magma inflow, corresponding to about 0.05 Km3 of new magma if we assume a sill-like reservoir located at 4 km of depth. Considering an almost equivalent magma inflow for the 1969-1972 unrest, which showed a similar uplift, we got a total magma inflow of 0.1 Km3. It is then very important to assess the times for cooling of such accumulated magma, in order to assess the eruption hazard.

  16. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania.

    PubMed

    Coman, Cristian; Chiriac, Cecilia M; Robeson, Michael S; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and

  17. Introduction to drilling research

    SciTech Connect

    Hamblin, J. )

    1993-01-01

    This paper is a brief introduction to research projects in the area of drilling technology. A technical panel, composed of representatives of geothermal operators, drilling contractors, and service companies, met in Albuquerque, and heard presentations on various drilling related projects which are ongoing or planned. These projects are fairly small scale, partially funded by DOE, administered through Sandia National Laboratory, and generally cooperative in nature between industry and the laboratory. The author briefly discusses the seven highest rated projects, both by the researchers and the conferees. They are: hard rock bits, slimhole drilling, memory logging tools, lost circulation, the Geothermal Drilling Organization, the Long Valley Exploratory Well, and acoustic telemetry.

  18. Evaluation of the solute geothermometry of thermal springs and drilled wells of La Primavera (Cerritos Colorados) geothermal field, Mexico: A geochemometrics approach

    NASA Astrophysics Data System (ADS)

    Pandarinath, Kailasa; Domínguez-Domínguez, Humberto

    2015-10-01

    A detailed study on the solute geothermometry of thermal water (18 springs and 8 drilled wells) of La Primavera geothermal field (LPGF) in Mexico has been carried out by employing a geochemical database compiled from the literature and by applying all the available solute geothermometers. The performance of these geothermometers in predicting the reservoir temperatures has been evaluated by applying a geochemometrics (geochemical and statistical) method. The springs of the LPGF are of bicarbonate type and the majority have attained partial-equilibrium chemical conditions and the remaining have shown non-equilibrium conditions. In the case of geothermal wells, water is dominantly of chloride-type and, among the studied eight geothermal wells, four have shown full-equilibrium chemical conditions and another four have indicated partial-equilibrium conditions. All springs of HCO3-​ type water have provided unreliable reservoir temperatures, whereas the only one available spring of SO42- type water has provided the reservoir temperature nearer to the average BHT of the wells. Contrary to the general expected behavior, spring water of non-equilibrium and geothermal well water of partial-equilibrium chemical conditions have indicated more reliable reservoir temperatures than those of partially-equilibrated and fully-equilibrated water, respectively. Among the chemical concentration data, Li and SiO2 of two springs, SO42- and Mg of four springs, and HCO3 and Na concentrations of two geothermal wells were identified as outliers and this has been reflected in very low reservoir temperatures predicted by the geothermometers associated with them (Li-Mg, Na-Li, Na-K-Mg, SiO2 etc.). Identification of the outlier data points may be useful in differentiating the chemical characteristics, lithology and the physico-chemical and geological processes at the sample locations of the study area. In general, the solute geothermometry of the spring waters of LPGF indicated a dominantly

  19. Evolution of fluid-rock interaction in the Reykjanes geothermal system, Iceland: Evidence from Iceland Deep Drilling Project core RN-17B

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Zierenberg, Robert A.; Schiffman, Peter; Marks, Naomi; Friðleifsson, Guðmundur Ómar

    2015-09-01

    We describe the lithology and present spatially resolved geochemical analyses of samples from the hydrothermally altered Iceland Deep Drilling Project (IDDP) drill core RN-17B. The 9.3 m long RN-17B core was collected from the seawater-dominated Reykjanes geothermal system, located on the Reykjanes Peninsula, Iceland. The nature of fluids and the location of the Reykjanes geothermal system make it a useful analog for seafloor hydrothermal processes, although there are important differences. The recovery of drill core from the Reykjanes geothermal system, as opposed to drill cuttings, has provided the opportunity to investigate evolving geothermal conditions by utilizing in-situ geochemical techniques in the context of observed paragenetic and spatial relationships of alteration minerals. The RN-17B core was returned from a vertical depth of ~ 2560 m and an in-situ temperature of ~ 345 °C. The primary lithologies are basaltic in composition and include hyaloclastite breccia, fine-grained volcanic sandstone, lithic breccia, and crystalline basalt. Primary igneous phases have been entirely pseudomorphed by calcic plagioclase + magnesium hornblende + chlorite + titanite + albitized plagioclase + vein epidote and sulfides. Despite the extensive hydrothermal metasomatism, original textures including hyaloclastite glass shards, lithic clasts, chilled margins, and shell-fragment molds are superbly preserved. Multi-collector LA-ICP-MS strontium isotope ratio (87Sr/86Sr) measurements of vein epidote from the core are consistent with seawater as the dominant recharge fluid. Epidote-hosted fluid inclusion homogenization temperature and freezing point depression measurements suggest that the RN-17B core records cooling through the two-phase boundary for seawater over time to current in-situ measured temperatures. Electron microprobe analyses of hydrothermal hornblende and hydrothermal plagioclase confirm that while alteration is of amphibolite-grade, it is in disequilibrium

  20. Geothermal test-well drilling program for the Village of Jemez Springs, New Mexico. Final technical report, January 1, 1979-June 30, 1981

    SciTech Connect

    Armenta, E.; Icerman, L.; Starkey, A.H.

    1981-09-01

    The geothermal resources located during test drilling at Jemez Springs, New Mexico are described and the feasibility of utilizing this low-temperature resource for a space heating demonstration project at the Town Hall and Fire Department Building is discussed. A test well was drilled to a depth of 824 feet that penetrated water-producing zones at 80 feet with a water temperature of approximately 150 to 155/sup 0/F and at 500 feet with waters of approximately 120 to 125/sup 0/F. After a number of repairs to the Jemez Springs Well Number 1, the project was ended having completed a well capable of producing a flow of approximately 20 gpm at 150 to 155/sup 0/F. A follow-up demonstration heating project is planned.

  1. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  2. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect

    Alan Black; Arnis Judzis

    2003-01-01

    Progress during current reporting year 2002 by quarter--Progress during Q1 2002: (1) In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance at Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002. Progress during Q2 2002: (1) Presentation material was provided to the DOE/NETL project manager (Dr. John Rogers) for the DOE exhibit at the 2002 Offshore Technology Conference. (2) Two meeting at Smith International and one at Andergauge in Houston were held to investigate their interest in joining the Mud Hammer Performance study. (3) SDS Digger Tools (Task 3 Benchmarking participant) apparently has not negotiated a

  3. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    DOE PAGES

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Åžtefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-03-30

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbialmore » mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Lastly, several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along

  4. Geothermal materials development activities

    SciTech Connect

    Kukacka, L.E.

    1993-06-01

    This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

  5. InSAR Time Series Analysis and Geophysical Modeling of City Uplift Associated with Geothermal Drillings in Staufen im Breisgau, Germany

    NASA Astrophysics Data System (ADS)

    Motagh, M.; Lubitz, C.

    2014-12-01

    Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to

  6. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    SciTech Connect

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

  7. Development of advanced drilling, completion, and stimulation systems for minimum formation damage and improved efficiency: A program overview

    SciTech Connect

    Layne, A.W.; Yost, A.B. II

    1994-07-01

    The Department of Energy`s (DOE) Natural Gas Resource and Extraction Program consists of industry/government co-sponsored research, development, and demonstration (RD&D) projects, which focus on gas recovery from both conventional and nonconventional resources. The Drilling, Completion, and Stimulation (DCS) Project focuses on advanced, non-damaging technology systems and equipment for improving gas recovery from conventional and nonconventional reservoirs. As operators move from development of current day economically attractive gas-field development to the lower permeability geologic regions of domestic onshore plays, increasing the emphasis on minimum formation damage DCS will permit economic development of gas reserves. The objective of the Project is to develop and demonstrate cost-effective, advanced technology to accelerate widespread use and acceptance of minimum formation damage DCS systems. The goal of this product development effort is to reduce costs and improve the overall efficiency of vertical, directional, and horizontally drilled wells in gas formations throughout the US. The current focus of the Project is on the development of underbalanced drilling technology and minimum formation damage stimulation technology concurrently with the appropriate completion hardware to improve the economics of domestic natural gas field development. Ongoing drilling technology projects to be discussed include development of an electromagnetic measurement while drilling system for directional and horizontal drilling in underbalanced drilling applications and the development of a steerable air percussion drilling system for hard formation drilling and improved penetration rates. Ongoing stimulation technology projects to be discussed include introduction of carbon dioxide/sand fracturing technology for minimal formation damage.

  8. Drilling cost-cutting

    SciTech Connect

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  9. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  10. Update on slimhole drilling

    SciTech Connect

    Finger, J.T.

    1996-01-01

    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

  11. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  12. Geothermal well cost sensitivity analysis: current status

    SciTech Connect

    Carson, C.C.; Lin, Y.T.

    1980-01-01

    The geothermal well-cost model developed by Sandia National Laboratories is being used to analyze the sensitivity of well costs to improvements in geothermal drilling technology. Three interim results from this modeling effort are discussed. The sensitivity of well costs to bit parameters, rig parameters, and material costs; an analysis of the cost reduction potential of an advanced bit; and a consideration of breakeven costs for new cementing technology. All three results illustrate that the well-cost savings arising from any new technology will be highly site-dependent but that in specific wells the advances considered can result in significant cost reductions.

  13. Critique of Drilling Research

    SciTech Connect

    Hamblin, Jerry

    1992-03-24

    For a number of years the Department of Energy has been funding research to reduce the cost of drilling geothermal wells. Generally that research has been effective and helped to make geothermal energy economically attractive to developers. With the increased competition for the electrical market, geothermal energy needs every advantage it can acquire to allow it to continue as a viable force in the marketplace. In drilling related research, there is essentially continuous dialogue between industry and the national laboratories. Therefore, the projects presented in the Program Review are focused on subjects that were previously recommended or approved by industry.

  14. Geothermal brine well: Mile-deep drill hole may tap ore-bearing magmatic water and rocks Undergoing Metamorphism

    USGS Publications Warehouse

    White, D.E.; Anderson, E.T.; Grubbs, D.K.

    1963-01-01

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  15. Geothermal Brine Well: Mile-Deep Drill Hole May Tap Ore-Bearing Magmatic Water and Rocks Undergoing Metamorphism.

    PubMed

    White, D E; Anderson, E T; Grubbs, D K

    1963-03-01

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  16. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  17. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  18. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  19. Materials for geothermal production

    SciTech Connect

    Kukacka, L.E.

    1992-01-01

    Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

  20. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    USGS Publications Warehouse

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  1. Compositional, Order/Disorder, and Stable Isotope Characteristics of Al-Fe Epidote, State 2-14 Drill Hole, Salton Sea Geothermal System

    NASA Astrophysics Data System (ADS)

    Bird, D. K.; Cho, M.; Janik, C. J.; Liou, J. G.; Caruso, L. J.

    1988-11-01

    Epidote (Ca2Fe3Si3O12(OH)-Ca2Al3Si3O12(OH)) is a common hydrothermal mineral in metasediments and veins at depths >900 m in the State 2-14 drill hole of the Salton Sea geothermal system. The mole fraction of Ca2Fe3Si3O12(OH) in epidotes (Xps) from this drill hole ranges from 0.11 to 0.42, and complex compositional zoning of octahedral Fe3+ and Al is typical within single grains. With increasing depth there is an overall, but irregular, decrease in the Fe3+ content of epidotes in metasandstones. In most samples, vein epidotes are more Fe3+ -rich and exhibit a wider compositional range than metasandstone epidotes from the same depth. Octahedral Fe3+ in the M(1) sites in four epidotes, evaluated by 57Fe Mössbauer spectroscopy, ranges from 7.5 ± 1.7% to 11.4 ± 1.5% of the total iron. The most ordered epidote formed in veins at 2618 m in the biotite zone. This epidote has an ordering parameter (σ = 1-2XFe3+,M(1)) of 0.85 ± 0.03 which corresponds to a calculated state of equilibrium order/disorder at ˜390° ± 60°C, in close agreement with the probable downhole temperature of ˜340°C, Two epidote samples from the chlorite + calcite zone (1420 m, ˜265°C; 1867 m, ˜300°C) are more disordered, corresponding to calculated states of equilibrium order/disorder of >450°C, These data suggest that the analyzed epidotes from the chlorite + calcite zone are in a metastable state of substitutional order/disorder. The measured value of δDepidote from 1420 m is -96‰, which is 5-6‰ lighter than epidotes from 1867 m (δDepidote = -90‰), 2227 m (δDepidote = -91‰), and 2618 m (δDepidote = -90 ‰). When compared to the reservoir fluid from the December 1985 flow test, the derived fractionation of hydrogen isotopes between epidote and the geothermal brine is -19‰ at 1867 m and ˜340°C. This value is in accord with published experimental hydrogen isotope fractionations between iron-rich epidote and aqueous electrolyte solutions. Therefore, considering the

  2. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    SciTech Connect

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  3. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  4. Geothermal modelling of faulted metamorphic crystalline crust: a new model of the Continental Deep Drilling Site KTB (Germany)

    NASA Astrophysics Data System (ADS)

    Szalaiová, Eva; Rabbel, Wolfgang; Marquart, Gabriele; Vogt, Christian

    2015-11-01

    The area of the 9.1-km-deep Continental Deep Drillhole (KTB) in Germany is used as a case study for a geothermal reservoir situated in folded and faulted metamorphic crystalline crust. The presented approach is based on the analysis of 3-D seismic reflection data combined with borehole data and hydrothermal numerical modelling. The KTB location exemplarily contains all elements that make seismic prospecting in crystalline environment often more difficult than in sedimentary units, basically complicated tectonics and fracturing and low-coherent strata. In a first step major rock units including two known nearly parallel fault zones are identified down to a depth of 12 km. These units form the basis of a gridded 3-D numerical model for investigating temperature and fluid flow. Conductive and advective heat transport takes place mainly in a metamorphic block composed of gneisses and metabasites that show considerable differences in thermal conductivity and heat production. Therefore, in a second step, the structure of this unit is investigated by seismic waveform modelling. The third step of interpretation consists of applying wavenumber filtering and log-Gabor-filtering for locating fractures. Since fracture networks are the major fluid pathways in the crystalline, we associate the fracture density distribution with distributions of relative porosity and permeability that can be calibrated by logging data and forward modelling of the temperature field. The resulting permeability distribution shows values between 10-16 and 10-19 m2 and does not correlate with particular rock units. Once thermohydraulic rock properties are attributed to the numerical model, the differential equations for heat and fluid transport in porous media are solved numerically based on a finite difference approach. The hydraulic potential caused by topography and a heat flux of 54 mW m-2 were applied as boundary conditions at the top and bottom of the model. Fluid flow is generally slow and

  5. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  6. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  7. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  8. Geothermal Progress Monitor. Report No. 18

    SciTech Connect

    1996-12-31

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  9. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  10. Chemical logging of geothermal wells

    DOEpatents

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  11. Chemical logging of geothermal wells

    DOEpatents

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  12. Location of Geothermal Resources

    SciTech Connect

    2004-07-01

    Geothermal resources, which utilize the heat of the earth, are located throughout the plant's crust. Those closer to the surface are most commonly used because geothermal drilling costs are currently prohibitive below depths of between 10,000 and 15,000 feet.

  13. The Marysville, Montana Geothermal Project

    NASA Technical Reports Server (NTRS)

    Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.

    1974-01-01

    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.

  14. Geothermal Today - 1999

    SciTech Connect

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  15. Geothermal Today - 2001

    SciTech Connect

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  16. The thermal spallation drilling process

    SciTech Connect

    Williams, R.E.

    1986-01-01

    Holes can be produced in very hard rock more easily and less expensively by thermal spallation than by conventional means. This drilling process has been used for producing blast holes in the taconite iron mines and for quarrying granite. It is potentially valuable for drilling holes in very hard rock for the exploitation of geothermal energy and the storage of various commodities. However, investigation and development of the thermal spallation drilling process is proceeding slowly.

  17. Washington: a guide to geothermal energy development

    SciTech Connect

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  18. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud

  19. Linking Across Institutional Repositories: Recent Advances with Ocean Drilling Sample Data

    NASA Astrophysics Data System (ADS)

    Fils, D.; Arko, R. A.; Moore, C.; Lehnert, K. A.; Song, L.

    2013-12-01

    Links across institutional data collections have historically been difficult to maintain. The brittle nature of hard coding links across institutions and thus across governance practices results in stale, or worse, erroneous or broken connections. Emerging practices around the use of structured and embedded structured data in Web sites following schema.org, RDFa Lite, and JSON-LD patterns provide a means to expose hooks in data. These hooks are locally maintained and thus more reliably relevant to the associated data. The Semantic nature of these data and associated vocabularies make it possible to programmatically maintain connections across a collection of associated sites. This can be done dynamically by client processes or by a periodic process of selective indexing of the sites. The results of this indexing can then be exposed as precomputed links or graph style representations. Examples of connecting data from the Integrated Ocean Drilling Program (IODP), Integrated Earth Data Applications (IEDA) facility, and Index to Marine and Lacustrine Geological Samples (IMLGS) associated with ocean drilling sample information, core images, geochemical analyses, and lithology data will be demonstrated. Structured data embedded in resources and exposed by Linked Open Data and other Semantic methods are used as a foundation, with the International Geo Sample Number (IGSN) as a shared/persistent identifier. This foundation allows discovery of resources (such as core images), which then expose sufficient structured data to allow other associated content (such as samples or lithologies) to be discovered. This approach is demonstrated dynamically via both Web applications and computed indexes.

  20. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  1. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  2. Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana

    SciTech Connect

    Not Available

    1980-07-01

    The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

  3. Geothermal innovative technologies catalog

    SciTech Connect

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  4. Geothermal wells drilled in Transcarpathians

    NASA Astrophysics Data System (ADS)

    Kuzma, A.

    1984-12-01

    The lion's share of the Earth's electric power is known to be produced by thermal electric power plants wwich burn coal and gas. New storehouses of energy must be sought. It became known that the main reserves of heat in the Earth's interior are concentrated in rock. In simple terms, the technology of delivering the Earth's heat to the surface is as follows: water injected under high pressure from a river into one well comes in contact with hot beds situated at enormous depth, after which it returns by a second well in the form of a steam-water mixture, which then operates turbines of an electric power plant. The water would be used many times over in a closed cycle. This method promises many advantages. It will provide a possibility for generating cheap electric power while excluding all pollution of the environment.

  5. Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress

    SciTech Connect

    Lippmann, M.J.

    1988-09-01

    This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

  6. Development of advanced drilling, completion, and stimulation systems for minimum formation damage and improved efficiency: A program overview

    SciTech Connect

    Layne, A.W.; Yost, A.B. II

    1994-12-31

    The Department of Energy`s (DOE) Natural Gas Resource and Extraction Program consists of industry/government co-sponsored research, development, and demonstration (RD and D) projects, which focus on gas recovery from both conventional and nonconventional resources. The current focus of the Project is on the development of underbalanced drilling technology and minimum formation damage stimulation technology concurrently with the appropriate completion hardware to improve the economics of domestic natural gas field development. Ongoing drilling technology projects to be discussed include development of an electromagnetic measurement while drilling system for directional and horizontal drilling in underbalanced drilling applications and the development of a steerable air percussion drilling system for hard formation drilling and improved penetration rates. Ongoing stimulation technology projects to be discussed include introduction of carbon dioxide/sand fracturing technology for minimal formation damage.

  7. Recent advances in biochemical technology for the processing of geothermal byproducts

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Lian, L.

    1996-04-01

    Laboratory studies has shown the biochemical technology for treating brines/sludges generated in geothermal electric powerproduction to be promising, cost-efficient, and environmentally acceptable. For scaled-up field use, the new technology depends on the chemistry of the geothermal resources which influences choice of plant design and operating strategy. Latter has to be adaptable to high/low salinity, temperatures, quantity to be processed, and chemistry of brines and byproducts. These variables are of critical and economic importance in areas such as the Geysers and Salton Sea. The brines/sludges can also be converted into useful products. In a joint effort between industrial collaborators and BNL, several engineered processes for treating secondary and other byproducts from geothermal power production are being tested. In terms of field applications, there are several options. Some of these options are presented and discussed.

  8. Geothermal progress monitor. Progress report No. 7

    SciTech Connect

    Not Available

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  9. Advanced biochemical processes for geothermal brines: Annual operating plan, FY 1995

    SciTech Connect

    Premuzic, E.T.

    1995-02-01

    An R and D program to identify methods for the utilization and/or low cost of environmentally acceptable disposal of toxic geothermal residues has been established at the Brookhaven National Laboratory (BNL). Laboratory work has shown that a biochemical process developed at BNL, would meet regulatory costs and environmental requirements. In this work, microorganisms which can convert insoluble species of toxic metals, including radionuclides, into soluble species, have been identified. These organisms serve as models in the development of a biochemical process in which toxic metals present in geothermal residual sludges are converted into water soluble species. The produced solution can be reinjected or processed further to concentrate and recover commercially valuable metals. After the biochemical detoxification of geothermal residual sludges, the end-products are non-toxic and meet regulatory requirements. The overall process is a technically and environmentally acceptable cost-efficient process. It is anticipated that the new biotechnology will reduce the cost of surface disposal of sludges derived from geothermal brines by 25% or better.

  10. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  11. Geothermal materials development

    NASA Astrophysics Data System (ADS)

    Kukacka, L. E.

    1991-12-01

    Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY-91, utility company sponsored 'full cost' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY-91, the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO2-resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

  12. Advanced InSAR techniques for the management and characterization of geothermal resources

    NASA Astrophysics Data System (ADS)

    Bellotti, F.; Falorni, G.; Morgan, J.; Rucci, A.; Ferretti, A.

    2012-04-01

    InSAR is a remote sensing tool that has applications in both geothermal exploitation and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in different stages of development. SqueeSAR™, which represents the latest breakthrough in InSAR technology, provides a significant increase in the spatial density of measurement points by exploiting signal returns from both point-like and distributed scatterers. Furthermore, recent satellite radar sensors have a higher spatial resolution (down to 1 m), as well as a higher temporal frequency of image acquisitions (down to a few days). The coupling of the new algorithm with this new generation of satellites provides a valuable tool for monitoring the different phases of geothermal production and in support of the decision making process. Some examples from the US are presented here: the first case study involves the use of InSAR within a suite of tools for exploration of the San Emidio geothermal field in Nevada. This project aimed to develop geophysical techniques to identify and map large aperture fractures for the placement of new production/exploration wells. The second and third examples examine two zones in California: the Salton Sea area, where multi-interferogram InSAR provided an overview of surface deformation at a producing geothermal reservoir. Surface deformation in this area was complex, and the added detail provided insight into the interplay of tectonics and production activities. Additional InSAR studies have also been carried out at the Geysers field in order to evaluate the behavior of an Enhanced Geothermal System (EGS) in

  13. Geothermal Direct Heat Applications Program Summary

    SciTech Connect

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for district

  14. High Temperature 300°C Directional Drilling System

    SciTech Connect

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  15. Geothermal development plan: Yuma county

    SciTech Connect

    White, D.H.

    1981-01-01

    One hot spring and 33 wells drilled in the county discharge water at temperatures sufficient for direct-use geothermal applications such as process heat and space heating and cooling. Currently, one industry within the county has been identified which may be able to use geothermal energy for its process heat requirements. Also, a computer simulation model was used to predict geothermal energy on line as a function of time under both private and city-owned utility development of the resource.

  16. Hydrogeologic and geothermal investigation of Pagosa Springs, Colorado

    SciTech Connect

    Galloway, M.J.

    1980-01-01

    The following topics are covered: geology; geophysical surveys; geothermal wells, springs, and heat flow; hydrology; drilling program, well testing, and mineralogical and petrographic studies of samples from geothermal wells. (MHR)

  17. Future Technologies to Enhance Geothermal Energy Recovery

    SciTech Connect

    Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

    2008-07-25

    Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

  18. Longhole drilling

    SciTech Connect

    Not Available

    1993-10-01

    This paper describes new drilling equipment used to drill blasting holes for underground mining operations. Although this method was originally designed for caving or stopping, it is now suitable for all highly mechanized mining operations. It describes the automated methods to monitor drilling progress, align drill holes, and handling of drill rods. It also gives some case examples of the use of this equipment showing the reduction in mining costs, increase in safety, and increase in productivity at an Australian gold mine.

  19. Turbodrilling in the Geothermal Environment

    SciTech Connect

    Herbert, P.

    1981-01-01

    Geothermal drilling, historically, has presented what seemed to be insurmountable barriers to the efficient and extended use of downhole drilling motors, especially those containing elastomeric bearing or motor components. In addition to being damaging to rubber, the typical temperatures of 177 to 371 C (350 to 700 F) create other operating problems as well. Recent innovations, specifically in turbodrill design, have opened heretofore unrealized potentials and allowed, for the first time, extended downhole drilling of geothermal wells. A considerable amount of experience has been obtained both in The Geysers and Imperial County areas of California primarily in directional drilling applications using insert, diamond, and polycrystallines diamond compact bits. Other hot-hole applications are currently being drilled successfully or planned in other states, both onshore and offshore. The turbodrill is devoid of any elastomers or other temperature-sensitive materials, hence, its capabilities are closely matched to the requirements of the industry. The bearing assembly can withstand the rigors found in the drilling of typical geothermal formations and provide the performance necessary to stay in the hole, thus providing increased penetration rates and, hence, more economical drilling. This paper presents case histories of recent turbodrill performances in all areas where used. Furthermore, data will be presented showing the performance of insert, diamond, and polycrystalline diamond bits as they relate to the turbodrill, together with forecasts as to the potential that turbodrills have to offer in accelerating and controlling the drilling of geothermal wells.

  20. Scientific drilling technologies for hostile environments

    SciTech Connect

    Traeger, R.K.

    1988-01-01

    This paper briefly reviews the current United States Department of Energy Continental Scientific Drilling Program for Thermal Regimes and the related technologies being developed for geothermal drilling. Plans for penetrating into a molten magma body at temperatures from 800 to 1000{degree}C are also reviewed. 7 refs., 3 figs., 1 tab.

  1. PDC Bit Testing at Sandia Reveals Influence of Chatter in Hard-Rock Drilling

    SciTech Connect

    RAYMOND,DAVID W.

    1999-10-14

    Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratory testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.

  2. Oregon: a guide to geothermal energy development. [Includes glossary

    SciTech Connect

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    The following subjects are covered: Oregons' geothermal potential, exploration methods and costs, drilling, utilization methods, economic factors of direct use projects, and legal and institutional setting. (MHR)

  3. Value analysis of advanced heat rejection systems for geothermal power plants

    SciTech Connect

    Bliem, C.; Zangrando, F.; Hassani, V.

    1996-12-31

    A computer model and a methodology has been developed to perform value analysis for small, low-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized energy cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work has been on evaluating different types of heat rejection systems.

  4. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  5. Vale exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  6. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  7. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What is a drilling program and how do I apply for drilling program approval? 3261.13 Section 3261.13 Public Lands: Interior Regulations Relating... (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.13 What is a...

  8. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16...

  9. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What is a drilling program and how do I apply for drilling program approval? 3261.13 Section 3261.13 Public Lands: Interior Regulations Relating... (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.13 What is a...

  10. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What is a drilling program and how do I apply for drilling program approval? 3261.13 Section 3261.13 Public Lands: Interior Regulations Relating... (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.13 What is a...

  11. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16...

  12. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16...

  13. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What is a drilling program and how do I apply for drilling program approval? 3261.13 Section 3261.13 Public Lands: Interior Regulations Relating... (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.13 What is a...

  14. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16...

  15. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    SciTech Connect

    Seebauer, Christian J.; Bail, Hermann J.; Rump, Jens C. Walter, Thula Teichgraeber, Ulf K. M.

    2010-12-15

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesions of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.

  16. Geothermal development plan: Pinal county

    SciTech Connect

    White, D.H.

    1981-01-01

    Wells drilled in the county provide evidence of geothermal energy sufficient for process heat and space heating and cooling applications. Annual energy consumption was estimated for industries whose process heat requirements are less than 105/sup 0/C (221/sup 0/F). This information was then used to model the introduction of geothermal energy into the process heat market. Also, agriculture and agribusiness industries were identified. Many of these are located on or near a geothermal resource and might be able to utilize geothermal energy in their operations.

  17. Drilling techniques for osteochondritis dissecans.

    PubMed

    Heyworth, Benton E; Edmonds, Eric W; Murnaghan, M Lucas; Kocher, Mininder S

    2014-04-01

    Although the advanced stages of osteochondritis dissecans remain challenging to treat, most early-stage lesions in skeletally immature patients, if managed appropriately, can be stimulated to heal. For stable lesions that do not demonstrate adequate healing with nonoperative measures, such as activity modification, weight-bearing protection, or bracing, drilling of the subchondral bone has emerged as the gold standard of management. Several techniques of drilling exist, including transarticular drilling, retroarticular drilling, and notch drilling. Although each technique has been shown to be effective in small retrospective studies, higher-powered prospective comparative studies are needed to better elucidate their relative advantages and disadvantages.

  18. Three dimensional conductivity model of the Tendaho High Enthalpy Geothermal Field, NE Ethiopia

    NASA Astrophysics Data System (ADS)

    Didana, Y. L.; Thiel, S.; Heinson, G.

    2015-01-01

    Tendaho is one of the high enthalpy geothermal fields at advanced stage of exploration which is located in the Afar Depression in north eastern Ethiopia. Six deep and shallow geothermal wells were drilled in the field between 1993 and 1998. Here we present the first 3D conductivity model of the Tendaho high enthalpy geothermal field obtained from 3D inversion of magnetotelluric (MT) data. MT data from 116 sites at 24 selected periods in the period range from 0.003 s to 1000 s were used for the 3D inversion. The 3D conductivity model reveals three main resistivity structures to a depth of 20 km. The surface conductive structure (≤ 10 Ωm and > 1 km thick) is interpreted as sediments, geothermal fluids or hydrothermally altered clay cap. The underlying high resistivity structure in the Afar Stratiod basalts is associated with the deep geothermal reservoir. At a depth > 5 km, a high conductivity is observed across the whole of the Tendaho geothermal field. This structure is inferred to be the partial melt (heat source) of the geothermal system. The most striking feature in the 3D model is a fracture zone (upflow zone) in the Afar Stratoid basalts at the Dubti area, which acts as a pathway for geothermal fluids. Targeting the inferred fracture zone by directional drilling will likely increase the permeability and temperature of the deep reservoir in the basalts. Hence, the inferred presence of a fracture zone and shallow magma reservoir suggest that there is a huge potential (with temperature exceeding 270 °C at 2 km depth) at Tendaho for conventional hydrothermal geothermal energy development.

  19. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA

    SciTech Connect

    Simmons, Stuart F; Spycher, Nicolas; Sonnenthal, Eric; Dobson, Patrick

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  20. Corrosion reference for geothermal downhole materials selection

    SciTech Connect

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  1. Alternative energy sources II; Proceedings of the Second Miami International Conference, Miami Beach, Fla., December 10-13, 1979. Volume 5 - Geothermal power/energy program

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    This volume examines the geothermal resource and geothermal energy utilization, and surveys regional energy programs worldwide. The particular papers presented on geothermal energy include those on the temperature indicators for geothermal use, geothermal drilling research in the United States, and geothermal energy and biofuel production in agriculture. Energy programs from India, Egypt, Turkey, Greece and Puerto Rico are reviewed.

  2. Geothermal District Heating Economics

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  3. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential

  4. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  5. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  6. The geothermal power organization

    SciTech Connect

    Scholl, K.L.

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  7. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  8. Lockdown Drills

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2011

    2011-01-01

    As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

  9. Disaster Drill.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1998-01-01

    Bus disaster drills have been held all over country for years. A drill in Blairsville, Pennsylvania, taught officials important lessons: (1) keep roster of students and stops in designated area on bus, and ensure emergency workers know where location; (2) send at least three school officials to accident scene; (3) provide school officials with…

  10. Evaluation of direct-use-project drilling costs

    SciTech Connect

    Dolenc, M.R.; Childs, F.W.; Allman, D.W.; Sanders, R.D.

    1983-01-01

    This study evaluates drilling and completion costs from eleven low-to-moderate temperature geothermal projects carried out under the Program Opportunity Notice (PON) and User-Coupled Confirmation Drilling Programs. Several studies have evaluated geothermal drilling costs, particularly with respect to high-temperature-system drilling costs. This study evaluates drilling costs and individual cost elements for low-to-moderate temperature projects. It considers the effect of drilling depth, rock types, remoteness of location, rig size, and unique operating and subsurface conditions on the total drilling cost. This detailed evaluation should provide the investor in direct-use projects with approximate cost projections by which the economics of such projects can be evaluated.

  11. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  12. Geothermal technology development at Sandia

    SciTech Connect

    Dunn, J.C.

    1987-04-01

    Geothermal technology development at Sandia consists of work in two major project areas - Hard Rock Penetration and Magma Energy Extraction. The Hard Rock Penetration Program is directed at reducing drilling costs for geothermal wells. Current activities are focused in three areas: borehole mechanics, rock penetration mechanics, and industry cost-shared research. The Magma Energy Extraction Program is investigating the engineering feasibility of utilizing crustal magma bodies as a source of energy. Work is divided into four major areas: geophysics, geochemistry/materials, drilling, and energy extraction.

  13. Geothermal progress monitor. Progress report No. 4

    SciTech Connect

    Not Available

    1980-09-01

    The following are included: geothermal power plants proposed and on-line; direct heat applications proposed and operational; trends in drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guaranty program; research and development activities; legal, institutional, and regulatory activities; environmental activities; reports and publications; and a directory. (MHR)

  14. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    SciTech Connect

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  15. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  16. Fort Bliss exploratory slimholes: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.

    1997-12-01

    During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

  17. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  18. Geothermal Energy Program overview

    SciTech Connect

    Not Available

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  19. Drilling reorganizes

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  20. Oil field slim hole drilling technology improving

    SciTech Connect

    Not Available

    1992-11-23

    Recent advances in slim hole drilling technology have improved the application of this drilling technique to oil and gas exploration and development wells. These advancements include Optimization of slim hole drilling hydraulics, Application of a small particle weighing agent to improve well control and coring operations, Use of slim hole techniques to drill horizontal wells, Use of a new polycrystalline diamond compact cutter to allow economical re-entry of small diameter wells in hard rock. Slim hole continuous coring and drilling is becoming more accepted as a viable drilling method, especially as exploration budgets become smaller. Typical applications for slim hole equipment include drilling in frontier areas where logistics can be a problem and reentry operations in which the existing well has a small diameter. Typically, slim hole drilling operations use technology borrowed from the mining industry. The rigs are smaller and drill with much higher rotational speeds. Definitions of slim holes vary from a well with 90% drilled, with a diameter of less than 7 in. To a well with 70% drilled with less than 5 in. A goal of slim hole, however it is defined, is the drilling of a well with a diameter smaller than that used on conventional wells in the area. The reduced diameter helps cut rig time and cost and reduces the cost of the tubulars. Another goal of slim hole drilling is the ability to retrieve cores from the entire well during drilling.

  1. Microbial Community Stratification Controlled by the Subseafloor Fluid Flow and Geothermal Gradient at the Iheya North Hydrothermal Field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331)

    PubMed Central

    Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-01-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666

  2. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331).

    PubMed

    Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-10-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments.

  3. GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM

    SciTech Connect

    Witcher, James

    2006-08-01

    This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

  4. Geothermal Energy Program Overview: Fiscal Year 1991

    SciTech Connect

    Not Available

    1991-12-01

    In FY 1990-1991, the Geothermal Energy Program made significant strides in hydrothermal, geopressured brine, hot dry rock, and magma research, continuing a 20-year tradition of advances in geothermal technology.

  5. Drilling fluids

    SciTech Connect

    Swanson, B.L.

    1984-01-10

    Polyethylene glycols in combination with at least one water-dispersible polymeric viscosifier comprising cellulose ethers, cellulose sulfate esters, polyacrylamides, guar gum, or heteropolysaccharides improve the water loss properties of water-based drilling fluids, particularly in hard brine environments.

  6. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  7. Geothermal heating for Caliente, Nevada

    SciTech Connect

    Wallis, F.; Schaper, J.

    1981-02-01

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  8. Production drilling

    SciTech Connect

    Not Available

    1993-03-01

    This paper is actually a composite of two papers dealing with automation and computerized control of underground mining equipment. The paper primarily discusses drills, haulage equipment, and tunneling machines. It compares performance and cost benefits of conventional equipment to the new automated methods. The company involved are iron ore mining companies in Scandinavia. The papers also discusses the different equipment using air power, water power, hydraulic power, and computer power. The different drill rigs are compared for performance and cost.

  9. DAME: planetary-prototype drilling automation.

    PubMed

    Glass, B; Cannon, H; Branson, M; Hanagud, S; Paulsen, G

    2008-06-01

    We describe results from the Drilling Automation for Mars Exploration (DAME) project, including those of the summer 2006 tests from an Arctic analog site. The drill hardware is a hardened, evolved version of the Advanced Deep Drill by Honeybee Robotics. DAME has developed diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The DAME drill automation tested from 2004 through 2006 included adaptively controlled drilling operations and the downhole diagnosis of drilling faults. It also included dynamic recovery capabilities when unexpected failures or drilling conditions were discovered. DAME has developed and tested drill automation software and hardware under stressful operating conditions during its Arctic field testing campaigns at a Mars analog site.

  10. Environmental Report Utah State Prison Geothermal Project

    SciTech Connect

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  11. Geothermal Progress Monitor report No. 8. Progress report

    SciTech Connect

    Not Available

    1983-11-01

    Geothermal Progress Monitor (GPM) Report Number 8 presents information concerning ongoing technology transfer activities and the mechanisms used to support these activities within geothermal R and D programs. A state-by-state review of major geothermal development activities for the reporting period 1 February 1983 through 31 July 1983 is provided. Recent drilling and exploration efforts and the current status of geothermal electric power plant development in the United States are summarized.

  12. Lost Circulation Experience in Geothermal Wells

    SciTech Connect

    Goodman, M. A.

    1981-01-01

    Lost circulation during drilling and cementing in geothermal wells is a problem common to most geothermal areas. Material and rig time costs due to lost circulation often represent one fourth or more of the total well cost. Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported in the paper. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

  13. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  14. Volcanology and geothermal energy

    SciTech Connect

    Wohletz, K.; Heiken, G.

    1992-01-01

    The aim of this book is to demonstrate how volcanological concepts can be applied to the evaluation and exploration of geothermal energy resources. In regard to the geothermal content of the book, some of the information comes from the first-hand experience gained during the authors' exploration work in Middle America and with the Los Alamos Hot Dry Rock program. Other cases discussed come from classic geothermal systems in many regions and settings. The book begins with a summary of recent practical advances in volcanology, and then moves on to describe the considerable importance of pyroclastic rocks as a took to evaluate geothermal systems, including an in-depth treatment of hydrovolcanism. Following chapters deal with surface manifestations of geothermal systems, and systems associated with calderas, silicic lava domes, and basaltic volcanoes. The last chapter is on geothermal systems in maturing composite volcanoes. The Appendices include a broad overview of field methods in volcanic regions, volcanic rock classifications and properties, thermodynamic properties of water vapor (steam tables), and the use of cuttings in geothermal well logs. A two-dimensional heat flow code used for estimating geothermal resources is also given. The book makes two significant contributions: first, in its treatment of eruption dynamics, focusing on quantitative and theoretical analysis of volcanic processes, and second, in its comprehensive treatment of the fundamentals of hydrovolcanism, including fuel-coolant interactions and hydrofracturing.

  15. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  16. Geothermal reservoir technology research at the DOE Idaho Operations Office

    SciTech Connect

    Creed, Bob

    1996-01-24

    Geothermal reservoir technology research projects managed at the Department of Energy Idaho Falls Operations office (DOE-ID) account for a large portion of the Department of Energy funding for reservoir technology research (approximately 7 million dollars in FY-95). DOE-ID managed projects include industry coupled geothermal exploration drilling, cooperative research projects initiated through the Geothermal Technology Organization (GTO), and other geothermal reservoir technology research projects. A solicitation for cost-shared industry coupled drilling has been completed and one zward has been made in FY-95. Another solicitation for industry coupled drilling may be conducted in the spring of 1996. A separate geothermal research technology research, development and demonstration solicitation will result in multiple year awards over the next 2 years. The goals of these solicitations are to ensure competition for federal money and to get the Government and the geothermal industry the most useful information for their research dollars.

  17. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  18. Steamboat Hills exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

    1994-10-01

    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  19. Drilling side holes from a borehole

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.

  20. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    SciTech Connect

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor

  1. Drilling to Supercritical Conditions: the Iceland Deep Drilling Project (IDDP).

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Saito, S.

    2001-05-01

    Geothermal wells produce mixtures of water and steam in the range 200-350 C, however the high cost of drilling and completing these wells relative to the cost of oil and gas wells is a hindrance to the geothermal industry worldwide. Rather than trying only to reduce this cost, the Icelandic Deep Drilling Project (IDDP) is trying the approach of increasing the power output per well. Funded by a consortium of energy companies in Iceland, the IDDP plans to drill a series of boreholes, to depths greater than 4 to 5 km. The aim is to produce hydrothermal fluids systems at temperatures of 400-500 C, and to investigate the technical and economic aspects of producing supercritical fluids for use in power generation and other energy intensive processes, such as mineral recovery. The first phase feasibility and site selection study began in March 2001 and drilling of the first deep well is expected to begin in 2003. The IDDP faces difficult technical challenges to drill, complete, sample and maintain wells under hot, and potentially acid, conditions. However the IDDP also presents the opportunity to investigate very high-temperature hydrothermal regimes that have rarely been available for direct study. It will address important scientific issues, ranging from the coupling of magmatic and hydrothermal systems, supercritical phenomena, the transition from brittle to ductile behavior at relatively shallow depths, to land based analogues of submarine hot springs, the black smokers of the mid-ocean ridges. Fortunately, the IDDP industrial consortium is willing, or even anxious, to integrate its engineering activities with scientific investigations. The consortium will seek international participation by scientists and engineers to formulate a strategy to achieve both the engineering and scientific goals of the IDDP.

  2. 43 CFR 3217.14 - When will BLM approve my drilling or development contract?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When will BLM approve my drilling or... RESOURCE LEASING Cooperative Agreements § 3217.14 When will BLM approve my drilling or development contract? BLM may approve a drilling or development contract when: (a) One or more geothermal lessees enter...

  3. 43 CFR 3217.14 - When will BLM approve my drilling or development contract?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When will BLM approve my drilling or... RESOURCE LEASING Cooperative Agreements § 3217.14 When will BLM approve my drilling or development contract? BLM may approve a drilling or development contract when: (a) One or more geothermal lessees enter...

  4. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  5. Geothermal Development and the Use of Categorical Exclusions (Poster)

    SciTech Connect

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental

  6. Geothermal resources assessed in Honduras

    SciTech Connect

    Not Available

    1986-01-01

    The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Several wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.

  7. Stinger Enhanced Drill Bits For EGS

    SciTech Connect

    Durrand, Christopher J.; Skeem, Marcus R.; Crockett, Ron B.; Hall, David R.

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  8. Federal Geothermal Research Program Update - Fiscal Year 2004

    SciTech Connect

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  9. Federal Geothermal Research Program Update Fiscal Year 2004

    SciTech Connect

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  10. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  11. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    SciTech Connect

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  12. Slimhole Drilling, Logging, and Completion Technology - An Update

    SciTech Connect

    FINGER,JOHN T.; JACOBSON,RONALD D.

    1999-10-07

    Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

  13. Geothermal direct use engineering and design guidebook

    SciTech Connect

    Lienau, P.J.; Lunis, B.C.

    1990-01-01

    The use of low- and moderate-temperature (50 to 300{degree}F) geothermal resources for direct use applications has increased significantly since the late 1970s. As a result of this growth, and the need for state-of-the-art information on geothermal direct use project development, the Geothermal Direct Use Engineering and Design Guidebook was published. The book contains 20 chapters titled: Introduction; Demonstration projects lessons learned; Nature of geothermal resources; Exploration for direct heat resources; Geothermal fluid sampling techniques; Drilling and well construction; Well testing and reservoir evaluation; Materials selection guidelines; Well pumps; Piping geothermal fluids; Heat exchangers; Space heating equipment; Heat pumps; Absorption refrigeration; Greenhouses; Aquaculture; Industrial applications; Engineering cost analysis; Regulatory and commercial aspects; and Environmental considerations.

  14. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  15. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  16. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  17. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  18. Geothermal pipeline: Progress and development update from the geothermal progress monitor

    SciTech Connect

    1996-11-01

    This document is a progress and development update from the Geothermal Progress Monitor prepared by the Geo-Heat Center at the Oregon Institute of Technology in Klamath Falls, Oregon. Several upcoming meetings and workshops in the field of geothermal energy and resource development are announced. Geothermal exploration and development projects in several areas are described in this document: New San Luis Valley Training Program, Fish and Alligator Ranching in Idaho, the geothermal drilling operation at Newberry Volcanic Crater near Bend, Oregon, and Australian Red Claw Lobster raised in aquaculture ponds at Belmont Hot Springs, Utah.

  19. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  20. Drilling of bone: A comprehensive review

    PubMed Central

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  1. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    SciTech Connect

    Shervais, John W.; Evans, James P.; Liberty, Lee M.; Schmitt, Douglas R.; Blackwell, David D.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements.

  2. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    SciTech Connect

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  3. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  4. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  5. Salton Sea Scientific Drilling Program

    SciTech Connect

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S. Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activities enabled the U.S. Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. The SSSDP exceeded its target depth of 10,000 feet, and a comprehensive set of cuttings, cores, and downhole logs was obtained. Two flow tests at different depths were successfully completed. Hydrologic connection between the different producing horizons, however, made the data from the deeper test difficult to interpret. Temperature logging by the Geological Survey and Sandia National Laboratories to establish the equilibrium profile continued until August of 1987. The SSSDP provides a model for scientific cooperation among government agencies, universities, and private industry.

  6. Salton Sea Scientific Drilling Program

    USGS Publications Warehouse

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths  (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation. 

  7. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  8. Thermo-physical rock properties and the impact of advancing hydrothermal alteration - A case study from the Tauhara geothermal field, New Zealand

    NASA Astrophysics Data System (ADS)

    Mielke, Philipp; Nehler, Mathias; Bignall, Greg; Sass, Ingo

    2015-08-01

    The thermo-physical rock properties density, porosity, matrix permeability, thermal conductivity and specific heat capacity of 418 orientated rock plugs cut from 233 cores recovered from geothermal investigation wells THM12, THM13, THM14, THM17, THM18, THM19, and TH18 at the Tauhara geothermal field, New Zealand were measured and a statistical database was set up. The lithotype of each sample was classified, and the hydrothermal alteration rank and intensity was determined by optical microscopy. The hydrothermal clays (typically smectite, smectite-illite, illite) were analysed by the methylene blue dye adsorption test and short wave infrared spectroscopy. Investigated stratigraphic units are the Huka Falls Formation with its sub members upper, middle and lower Huka Falls Formation, the Wairora Formation, Spa Andesite and its associated breccias, and Racetrack rhyolite and its associated breccias. Lithotypes are clay-altered tuff and intercalated mudstone/siltstone (cap rock for the Tauhara geothermal system); tuffaceous sandstones, sedimentary and pyroclastic breccias and pumiceous ash tuff (reservoir-hosting units); and rhyolitic and andesitic lavas, and their associated breccias. The obtained rock property data indicate a common porosity range of 30% to 45% for sediments, volcaniclastics and lava breccias, an average of 10% for andesite lava, and 39% for rhyolite lava. Matrix permeability of mudstone, siltstone, breccias and lavas is commonly < 1 mD, while sandstone, tuff and brecciated lavas have two to three orders of magnitude higher permeabilities. Both porosity and permeability decrease with depth. Thermal conductivity decreases with increasing porosity, and is similar for most lithotypes (0.7 W m- 1 K- 1 to 1 W m- 1 K- 1), while lavas have higher values (0.9 W m- 1 K- 1 to 1.4 W m- 1 K- 1). Specific heat capacity is similar for all lithotypes (0.6 kJ kg- 1 K- 1 to 0.8 kJ kg- 1 K- 1). Advancing hydrothermal alteration decreases the porosity of sandstone and

  9. MWD tools improve drilling performance

    SciTech Connect

    Moore, S.D.

    1986-02-01

    Downhole measurement while drilling technology is changing the way many wells are drilled. The capability to understand what is occurring at the drill bit as it actually happens is improving drilling performance, safety, and ultimately cost effectiveness. MWD evolved because of the need to acquire real-time data at the well site. The technology was not developed by vendors as simply an ''add-on'' tool - something an operator didn't realize he needed. MWD, with state-of-the-art, rugged, electronic downhole tools, is the closest thing the petroleum industry has to aerospace engineering. The constraints placed on MWD tools are greater than any other downhole tool-including wireline electric logs - because they are in the hole for long durations, operating under severe hole conditions. MWD tools were first used to monitor directional drilling operations on a real-time basis, More recently vendors have developed formation capabilities for MWD. Tools capable of measuring other drilling parameters such as weight on bit and downhole torque and pressure are also available. MWD technology continues to advance rapidly as the second and third generation of tools and equipment are introduced. Improvements are coming in many areas, but the biggest change will be in the development of new surface equipment to analyze retrieved data. For several years, MWD has been providing a reliable and accurate stream of real-time data from downhole. New software packages for surface equipment will allow the data to be analyzed in new ways to improve drilling efficiencies.

  10. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  11. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    SciTech Connect

    Not Available

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  12. Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems

    SciTech Connect

    McLarty, Lynn; Entingh, Daniel

    2000-09-29

    This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

  13. Geothermal energy geopressure subprogram

    SciTech Connect

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  14. Honey Lake Geothermal Project, Lassen County, California. Final technical report

    SciTech Connect

    Not Available

    1984-11-01

    This report discusses the drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel. The project is located within the Wendel-Amedee Known Geothermal Resource Area. (ACR)

  15. Representative well models for eight geothermal-resource areas

    SciTech Connect

    Carson, C.C.; Lin, Y.T.; Livesay, B.J.

    1983-02-01

    Representative well models have been constructed for eight major geothermal-resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. The models were made for and have been used to evaluate the impacts of potential new technologies. The nature, construction, and validation of the models are presented.

  16. Geometry and material choices govern hard-rock drilling performance of PDC drag cutters.

    SciTech Connect

    Wise, Jack LeRoy

    2005-06-01

    Sandia National Laboratories has partnered with industry on a multifaceted, baseline experimental study that supports the development of improved drag cutters for advanced drill bits. Different nonstandard cutter lots were produced and subjected to laboratory tests that evaluated the influence of selected design and processing parameters on cutter loads, wear, and durability pertinent to the penetration of hard rock with mechanical properties representative of formations encountered in geothermal or deep oil/gas drilling environments. The focus was on cutters incorporating ultrahard PDC (polycrystalline diamond compact) overlays (i.e., diamond tables) on tungsten-carbide substrates. Parameter variations included changes in cutter geometry, material composition, and processing conditions. Geometric variables were the diamond-table thickness, the cutting-edge profile, and the PDC/substrate interface configuration. Material and processing variables for the diamond table were, respectively, the diamond particle size and the sintering pressure applied during cutter fabrication. Complementary drop-impact, granite-log abrasion, linear cutting-force, and rotary-drilling tests examined the response of cutters from each lot. Substantial changes in behavior were observed from lot to lot, allowing the identification of features contributing major (factor of 10+) improvements in cutting performance for hard-rock applications. Recent field demonstrations highlight the advantages of employing enhanced cutter technology during challenging drilling operations.

  17. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  18. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  19. WRITING ORAL DRILLS.

    ERIC Educational Resources Information Center

    NEY, JAMES W.

    ALL ORAL LANGUAGE DRILLS MAY BE SEPARATED INTO TWO TYPES--(1) MIM-MEM OR MIMICRY MEMORIZATION DRILLS OR (2) PATTERN PRACTICE DRILLS. THESE TWO LARGER CATEGORIES CAN BE SUB-DIVIDED INTO A NUMBER OF OTHER TYPES, SUCH AS TRANSFORMATION AND SUBSTITUTION DRILLS. THE USE OF ANY PARTICULAR TYPE DEPENDS ON THE PURPOSE TO WHICH THE DRILL IS PUT. IN ANY…

  20. Alphine 1/Federal: Drilling report. Final report, Part 1

    SciTech Connect

    Witcher, J.C.; Pisto, L.; Hahman, W.R.; Swanberg, C.A.

    1994-06-01

    Regional geologic and geophysical surveys, shallow temperature-gradient drilling, and published reconnaissance geothermal studies infer possible hot dry rock (HDR) geothermal resources in the Alpine-Springerville area. This report discusses the results of a State of Arizona and US Department of Energy funded drilling project designed to gather the deep temperature and stratigraphic data necessary to determine if near-term HDR geothermal potential actually exists in this portion of the White Mountains region of Arizona. A 4505 feet deep slim-hole exploratory well, Alpiner/Federal, was drilled within the Apache-Sitgreaves National Forest at Alpine Divide near the Alpine Divide Camp Ground about 5 miles north of Alpine, Arizona in Apache County (Figure 1).

  1. Deep geothermal resources and energy: Current research and developments

    NASA Astrophysics Data System (ADS)

    Manzella, A.; Milsch, H.; Hahne, B.; van Wees, J. D.; Bruhn, D.

    2012-04-01

    Energy from deep geothermal resources plays an increasing role in many European countries in their efforts to increase the proportion of renewables in their energy portfolio. Deep geothermal heat and electric power have a high load factor, are sustainable and environmentally friendly. However, the safe, sustainable, and economic development of deep geothermal resources, also in less favourable regions, faces a number of issues requiring substantial research efforts: (1) The probability of finding an unknown geothermal reservoir has to be improved. (2) Drilling methods have to be better adapted and developed to the specific needs of geothermal development. (3) The assessment of the geothermal potential should provide more reliable and clear guidelines for the development. (4) Stimulation methods for enhanced geothermal systems (EGS) have to be refined to increase the success rate and reduce the risk associated with induced seismicity. (5) Operation and maintenance in aggressive geothermal environments require specific solutions for corrosion and scaling problems. (6) Last but not least, emerging activities to harness energy from supercritical reservoirs would make significant progress with qualified input from research. In particular, sedimentary basins like e.g. the North German and Polish Basin, the Pannonian Basin, the Po Valley, the Bavarian Molasse Basin or the Upper Rhine Graben have a high geothermal potential, even if geothermal gradients are moderate. We will highlight projects that aim at optimizing exploration, characterization, and modeling prior to drilling and at a better understanding of physical, hydraulic and chemical processes during operation of a geothermal power plant. This includes geophysical, geological and geochemical investigations regarding potential geothermal reservoirs in sedimentary basins, as well as modelling of geothermally relevant reservoir parameters that influence the potential performance and long-term behavior of a future

  2. Geothermal-resource verification for Air Force bases

    SciTech Connect

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  3. FY 1983 Funding for ocean drilling

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Proposed funding for scientific ocean drilling within the National Science Foundation (NSF) in fiscal 1983 totals $14 million, $6 million less than the current fiscal 1982 plan and about half of the original FY 1982 budget request of $26 million. However, there is more to these numbers than simple subtraction: Additional funding for scientific ocean drilling programs is on hold while decisions are being made about a future drilling program called Advanced Ocean Drilling (AOD).With the demise of the Ocean Margin Drilling Program (OMDP) when industry withdrew its support (Eos, October 20, 1981, p. 705) and with the Deep Sea Drilling Project (DSDP) long ago scheduled to end in fiscal 1983, the future for scientific ocean drilling within NSF was uncertain. To steer ocean drilling toward scientific objectives for the decade, the Conference on Scientific Ocean Drilling (COSOD) (Eos, December 22, 1981, p. 1197) examined four ocean drilling options and decided that the Glomar Explorer, converted to the current capabilities of the DSDP mainstay Glomar Challenger (i.e., without riser and well-control technologies), would meet scientific objectives through the decade. In December, the National Research Council's Committee on Ocean Margin Drilling came to the identical conclusion in its interim report. Both of these decisions were based solely on scientific merit and did not consider costs.

  4. Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979

    SciTech Connect

    LeFebre, V.; Miller, A.

    1980-01-01

    An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

  5. Southwest Alaska Regional Geothermal Energy Projec

    SciTech Connect

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  6. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  7. Shaft drilling rig

    SciTech Connect

    Wada, M.; Ajiro, S.

    1986-06-17

    A shaft drilling rig is described which consists of: a supporting structure for a drill string having a plurality of components for drilling a shaft into the earth by imparting a turning and thrust for drilling at least to a drill bit on the drill string, the drilling being down to a predetermined depth, and then a further drill string component having at least at the bottom end thereof an inner wall extending substantially in the axial direction of the component being newly added to the drill string for further drilling; means for receiving at least the bottom end of the further drill string component and for supporting it, and having a member with the outer circumference engageable with the inner wall of the further component, the receiving means supporting the further drill string component in a free standing position; means for supporting the receiving means and having a guiding device for guiding the receiving means between a position where the further drill string component is to be added to the drill string and a parking position spaced laterally of the drill string from the first mentioned position; and means for holding a lower part of the drill string which has been separated from the upper part of the drill string preparatory to adding the further drill string component so that the axis of the lower part is substantially aligned with the drilling direction.

  8. UCSD Geothermal Chemical Modeling Project: DOE Advanced Brine Chemistry Program. [University of California at San Diego (UCSD)

    SciTech Connect

    Moeller, N.; Weare, J.H.

    1992-04-01

    DOE funding to the UCSD Chemical Modeling Group supports research to provide computer models which will reliably characterize the equilibrium chemistry of geothermal brines (solution, solid and gas phases) under variable thermodynamic conditions. With this technology, it will be possible to rapidly and inexpensively predict the chemical behavior of geothermal brines during various resource recovery stages; exploration, production, plant energy extraction and rejection as well as in ancillary programs such as mineral recovery. Our modeling technology is based on recent progress in the physical chemistry of concentrated aqueous solutions. The behavior of these fluids has not been predicted from first principle theories. However, because of the importance of concentrated brines to many industrial and natural processes, there have been numerous efforts to develop accurate phenomenological expressions for predicting the chemical behavior of these brines. One of the most successful of these efforts is that of Pitzer and coworkers. Incorporating the semiempirical equations of Pitzer, we have shown at UCSD that we can create highly accurate models of brine-solid-gas chemistry.

  9. Washington: a guide to geothermal energy development

    SciTech Connect

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  10. Oregon: a guide to geothermal energy development

    SciTech Connect

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  11. Alaska: a guide to geothermal energy development

    SciTech Connect

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  12. Drilling equipment to shrink

    SciTech Connect

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  13. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  14. Worldwide drilling: Drilling improves in eastern hemisphere

    SciTech Connect

    1996-02-01

    This paper provides forecast drilling information for oil and gas producing countries excluding the US. It provides a forecast on the number of wells expected to be drilled and contrasts that to actual figures of wells drilled during 1995. Major countries have narratives to explain the causes of any significant changes, including geopolitical and economic issues.

  15. A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY

    SciTech Connect

    Takahashi, P.; Seki, A.; Chen, B.

    1985-01-22

    The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

  16. Gas Analysis of Geothermal Fluid Inclusions: A New Technology For Geothermal Exploration

    SciTech Connect

    David I. Norman; Joseph Moore

    2004-03-09

    To increase our knowledge of gaseous species in geothermal systems by fluid inclusion analysis in order to facilitate the use of gas analysis in geothermal exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal production. Knowledge of the gas contents in reservoir fluids can be applied to fluid inclusion gas analysis of drill chip cuttings in a similar fashion as used in the petroleum industry. Thus the results of this project may lower exploration costs both in the initial phase and lower drill hole completion costs. Commercial costs for fluid inclusion analysis done on at 20 feet intervals on chip samples for 10,000 ft oil wells is about $6,000, and the turn around time is a few weeks.

  17. Northwest Geothermal Corp. 's (NGC) plan of exploration, Mt. Hood Area, Clackamas County, Oregon

    SciTech Connect

    Not Available

    1980-05-01

    The Area Geothermal Supervisor (AGS) received a Plan of Operations (POO) from Northwest Geothermal Corporation (NGC) on 2/12/80. In the POO, NGC proposed two operations: testing and abandoning an existing 1219 meter (m) geothermal temperature gradient hole, designated as OMF No. 1, and drilling and testing a new 1524 m geothermal exploratory hole, to be designated as OMF No. 7A. The POO was amended on 5/6/80, to provide for the use of an imp

  18. Defining Structure and Stress in Deep, High Temperature Geothermal Wells

    NASA Astrophysics Data System (ADS)

    Lawrence, M. J.; McNamara, D. D.; Massiot, C.; Bignall, G.

    2010-12-01

    Extreme T-P (temperature - pressure) environments associated with deep geothermal drilling in the Taupo Volcanic Zone (TVZ), New Zealand have limited the use of conventional geophysical borehole logging tools, and interpretation of fracture character and controls on permeability in the geothermal systems. Development of AFIT logging tools with high temperature capabilities has enabled detailed determination of structure (fractures and faults) and variations in the in-situ stress orientations in hot (up to 300 °C) and deep (to 3 km TVD) TVZ geothermal wells, as presented here. Recent surveys at Wairakei, Kawerau, Rotokawa and Ngatamariki have provided detailed information of fracture controlled permeability in these fields, and positively impacted production and injection well drilling strategies. Current application of high temperature tools by geothermal developers is a precursor to the detailed structural investigation that will be undertaken for a proposed deeper (to 5 km depth) science-exploration well, planned to be drilled in the TVZ in 2013-14.

  19. Directional drilling system with eccentric mounted motor and biaxial sensor and method

    SciTech Connect

    Gibson, P.N.; Barbera, L.J.

    1992-07-28

    This patent describes a directional drilling system of the type which includes a drill string having a plurality of drill stems joined together for drilling a bore through the earth in a prescribed direction. It comprises: a drilling platform having two spaced apart end walls carried by the platform; a frame carried by the platform; a carriage carried by the frame; a drill string drive motor carried by the carriage for rotating the drill string; coupling means for coupling one of the drill stems to the drill string drive motor; and carriage advance means for moving the carriage longitudinally along the frame and platform as the drill string drive motor rotates the drill sting. This patent also describes a method of drilling a bore through the earth in a desired direction using a directional drilling device having a drill sting with a drilling head carried at an outer end. It comprises: excavating a pit in the earth at a starting point of the drill sting; placing a form in the earth pit at a prescribed inclination corresponding to a desired reference entry angle of the drilling string and drilling head; pouring concrete in the earth pit between the form and the earth; placing a drilling platform having a shape generally conforming to the shape of the form in the pit opening of the concrete pit; and assembling the drilling head and drill string on the platform so that the drilling head is oriented in the direction of the reference entry angle.

  20. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  1. 43 CFR 3260.11 - What general standards apply to my drilling operations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.11 What general standards apply to my...; (b) Prevent unnecessary impacts on surface and subsurface resources; (c) Conserve...

  2. 43 CFR 3260.11 - What general standards apply to my drilling operations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.11 What general standards apply to my...; (b) Prevent unnecessary impacts on surface and subsurface resources; (c) Conserve...

  3. 43 CFR 3260.11 - What general standards apply to my drilling operations?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.11 What general standards apply to my...; (b) Prevent unnecessary impacts on surface and subsurface resources; (c) Conserve...

  4. 43 CFR 3260.11 - What general standards apply to my drilling operations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.11 What general standards apply to my...; (b) Prevent unnecessary impacts on surface and subsurface resources; (c) Conserve...

  5. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  6. Characterization of the geothermal resource at Lackland AFB, San Antonio, Texas. Phase I report

    SciTech Connect

    Lawford, T.W.; Malone, C.R.; Allman, D.W.; Zeisloft, J.; Foley, D.

    1983-06-01

    The geothermal resource under Lackland Air Force Base (AFB), San Antonio, Texas was studied. It is the conclusion of the investigators that a geothermal well drilled at the site recommended by this study has a high probability of delivering geothermal fluids in sufficient quantity and at adequate temperatures to support a projected space and domestic hot water heating system. An exploratory production well location is recommended in the southwest sector of the base, based upon geologic conditions and the availability of sufficient open space to support the drilling operation. It is projected that a production well drilled at the recommended location would produce geothermal fluid of 130 to 145/sup 0/F at a rate of approximately 1000 gpm with reasonable fluid drawdowns. The Environmental Assessment for the drilling portion of the project has been completed, and no irreversible or irretrievable impacts are anticipated as a result of this drilling program. The permitting process is proceeding smoothly.

  7. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  8. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  9. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect

    Not Available

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  10. Geothermal progress monitor: Report No. 10

    SciTech Connect

    Not Available

    1987-07-01

    This issue synthesizes information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this source of energy. The contents include: (1) the Federal Beat; (2) The Industry Scene; (3) Financing; (4) Development Status; (5) Leasing and Drilling; (6) State and Local; (7) International; and (8) Technology Transfer. (ACR)

  11. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  12. Drill hole logging with infrared spectroscopy

    USGS Publications Warehouse

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  13. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  14. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  15. 26 CFR 1.612-5 - Charges to capital and to expense in case of geothermal wells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... geothermal wells. 1.612-5 Section 1.612-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... capital and to expense in case of geothermal wells. (a) Option with respect to intangible drilling and... rights) in the development of a geothermal deposit (as defined in section 613(e)(3) and the...

  16. 26 CFR 1.612-5 - Charges to capital and to expense in case of geothermal wells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... geothermal wells. 1.612-5 Section 1.612-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... capital and to expense in case of geothermal wells. (a) Option with respect to intangible drilling and... rights) in the development of a geothermal deposit (as defined in section 613(e)(3) and the...

  17. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    SciTech Connect

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  18. Microwave drilling of bones.

    PubMed

    Eshet, Yael; Mann, Ronit Rachel; Anaton, Abby; Yacoby, Tomer; Gefen, Amit; Jerby, Eli

    2006-06-01

    This paper presents a feasibility study of drilling in fresh wet bone tissue in vitro using the microwave drill method [Jerby et al, 2002], toward testing its applicability in orthopaedic surgery. The microwave drill uses a near-field focused energy (typically, power under approximately 200 W at 2.45-GHz frequency) in order to penetrate bone in a drilling speed of approximately 1 mm/s. The effect of microwave drilling on mechanical properties of whole ovine tibial and chicken femoral bones drilled in vitro was studied using three-point-bending strength and fatigue tests. Properties were compared to those of geometrically similar bones that were equivalently drilled using the currently accepted mechanical rotary drilling method. Strength of mid-shaft, elastic moduli, and cycles to failure in fatigue were statistically indistinguishable between specimen groups assigned for microwave and mechanical drilling. Carbonized margins around the microwave-drilled hole were approximately 15% the hole diameter. Optical and scanning electron microscopy studies showed that the microwave drill produces substantially smoother holes in cortical bone than those produced by a mechanical drill. The hot spot produced by the microwave drill has the potential for overcoming two major problems presently associated with mechanical drilling in cortical and trabecular bone during orthopaedic surgeries: formation of debris and rupture of bone vasculature during drilling.

  19. Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia

    SciTech Connect

    Sulasdi, Didi

    1996-01-26

    This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E) Ulumbu mini geothermal power plant.

  20. The geothermal program at Lawrence Berkeley Laboratory

    SciTech Connect

    Lippmann, M.J.

    1987-06-01

    The main purpose of the geothermal program at Lawrence Berkeley Laboratory is to develop, improve and validate methods and instrumentation to: (1) determine geothermal reservoir parameters; (2) detect and characterize reservoir fractures and boundaries; and (3) identify and evaluate the importance of reservoir processes. The ultimate objective of the program, which includes field, theoretical and modeling activities, is to advance the state-of-the-art for characterizing geothermal systems and evaluating their productive capacity and longevity under commercial exploitation.

  1. Drilling technology -- 1994. PD-Volume 56

    SciTech Connect

    Vizniak, J.P.

    1994-12-31

    The drilling technology division of the ASME focuses on various aspects of drilling technology under research and development that is advanced in nature and may not yet have reached the commercial stage. Tools or processes that have reached commercialization are still in a proving stage but have shown promising results to date which can expand the state of the art in the oil and gas industry. The 1994 Conference consists of papers on a wide variety of topics ranging from drilling bits to slim-hole and coiled tubing drilling. Advanced topics such as laser water jet drilling, rock melting drilling, and automatic closed-loop steering for directional drilling will be presented. A new session on Environmental Drilling will be held for the first time this year. The authors belong to academia as well as industry and come from the US, France, Brazil, and China. The papers will provide a forum for discussion of a good mix of both fundamental and applied research. Thirty papers from this conference have been prepared for inclusion on the data base.

  2. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  3. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  4. Materials for Geothermal Production

    SciTech Connect

    Kukacka, Lawrence E.

    1992-03-24

    Advances in the development of new materials continue to be made in the Geothermal Materials Project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved. Laboratory testing of BNL-developed phosphate modified calcium aluminate cements confirmed their hydrolytic stability in 300 C brine and their resistance to chemical attack by CO{sub 2}. Specimens were found to be >20 times more resistant to carbonation than Class H cement and twice as resistant as unmodified calcium aluminate cements. Testing of thermally conductive polymer cements as potential corrosion resistant liner materials for use in heat exchanger applications was continued. Field test were conducted in flowing hypersaline brine and the results indicated scale deposition rates lower than those on a high alloy steel. Additional tests for bottoming cycle heat exchange use are planned for FY 1992. Progress was also made with chemical systems for lost circulation control. If materials placement is to be performed by pumping through an open drillpipe or through a drillable straddle packer, a bentonite-ammonium polyphosphate-borax-magnesium oxide formulation, containing fibers or particulates when large fissures are encountered, can be used. This system was ready for demonstration in FY 1991, but a suitable test site did not become available. Optimization of this and three other formulations for use with other Sandia National Laboratories

  5. The Socorro Geothermal System: A Low Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Owens, L. B.

    2009-12-01

    The State of New Mexico is endowed with relatively high background heat flow and permeable, fractured crystalline and sedimentary rocks. This combination has given rise to numerous low temperature geothermal systems throughout the state. In many instances, hot springs associated with these systems are located within gaps in regional confining units (a.k.a. hydrologic windows) caused either by fault block rotation or the emplacement of volcanic dikes. The Socorro Geothermal Area (SGA) is a prime example of this type of a forced convection geothermal system. The Socorro geothermal area (SGA) lies 2 miles to the west of the NM Tech Campus near the base of the Socorro Mountain Block and will be assessed for production by drilling a 1500ft test well in September 2009. Published shallow temperature gradient measurements in fractured, permeable (3000 Darcy) granites indicate peak heat flow values as high as 490 mW/m^2 but decreases to 25 mW/m^2 about 10 km to the west within the La Jencia Basin near the foothills of the Magdalena Mountains. Silica and Cation based geothermometers suggest that deep geothermal reservoir reaches temperatures of 80 to 112 deg. C. Carbon14 age dating of shallow groundwater within the discharge area are about 20,000 years old. Hydrothermal models we constructed indicates that Mountain front recharge penetrates to depths of 4.5 km below the La Jencia Basin sedimentary pile into fractured, crystalline rocks. Discharge occurs through a hydrologic window to the east within a breached playa deposit at the western edge of the Socorro Basin. The hydrologic window was caused by fault block rotation. Warm springs which produce several hundred gpm of 32 deg. C water at the surface several miles to the south of the proposed drilling area also attest to the presence of a significant hydrothermal system. This low temperature resource could potentially heat the Campus of NM Tech.

  6. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  7. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities.

  8. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. PMID:25922212

  9. Design of a diesel exhaust-gas purification system for inert-gas drilling

    SciTech Connect

    Caskey, B.C.

    1982-01-01

    To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

  10. Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well

    SciTech Connect

    Rodgers, R.W.

    1982-06-01

    The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

  11. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results. Final report

    SciTech Connect

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California`s Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  12. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  13. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  14. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  15. Designer drilling increases recovery

    SciTech Connect

    Eck-Olsen, J.; Drevdal, K.E.

    1995-04-01

    Implementation of a new designer-well profile has resulted in increased recovery and production rates. The geologically complex Gullfaks field, located in the Norwegian sector of the North Sea, required a new type of well profile to increase total recovery and production rates from Gullfaks A, B and C platforms. Advances in steerable technology and directional drilling performance enabled a 3-D horizontal, extended-reach well profile, now designated as a designer well, to penetrate multiple targets. This article presents the concept, implementation and conclusions drawn from designer well application. Gullfaks field, in Norwegian North Sea Block 34/10, is the first license ever run by a fully Norwegian joint venture corporation. The license group consists of Statoil (operator), Norsk Hydro and Saga Petroleum. The field currently produces more than 535,000 bopd from three main Jurassic reservoirs.

  16. Development of a geothermal acoustic borehole televiewer

    SciTech Connect

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  17. Geothermal Brief: Market and Policy Impacts Update

    SciTech Connect

    Speer, B.

    2012-10-01

    Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

  18. Geothermal direct use engineering and design guidebook

    SciTech Connect

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  19. Geothermal direct use engineering and design guidebook

    SciTech Connect

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  20. Geothermal direct use engineering and design guidebook

    NASA Astrophysics Data System (ADS)

    Lienau, P. J.; Lunis, B. C.

    1991-09-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  1. Deep drilling technology for hot crystalline rock

    SciTech Connect

    Rowley, J.C.

    1984-01-01

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  2. Geothermal Fields on the Volcanic Axis of Mexico

    SciTech Connect

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  3. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  4. Plug and drill template

    NASA Technical Reports Server (NTRS)

    Orella, S.

    1979-01-01

    Device installs plugs and then drills them after sandwich face sheets are in place. Template guides drill bit into center of each concealed plug thereby saving considerable time and fostering weight reduction with usage of smaller plugs.

  5. Binary Cycle Geothermal Demonstration Power Plant New Developments

    SciTech Connect

    Lacy, Robert G.; Jacobson, William O.

    1980-12-01

    San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

  6. Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

  7. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  8. Geothermal technology publications and related reports: A bibliography, January 1986 through December 1987

    SciTech Connect

    Tolendino, C.D.

    1988-08-01

    Sandia publications resulting from DOE programs in Geothermal Technologies, Magma Energy and Continental Scientific Drilling are listed for reference. The RandD includes borehole-related technologies, in situ processes, and wellbore diagnostics.

  9. Discovery and geology of the Desert Peak geothermal field: a case history. Bulletin 97

    SciTech Connect

    Benoit, W.R.; Hiner, J.E.; Forest, R.T.

    1982-09-01

    A case history of the exploration, development (through 1980), and geology of the Desert Peak geothermal field is presented. Sections on geochemistry, geophysics, and temperature-gradient drilling are included.

  10. New drilling/operating methods boost efficiency

    SciTech Connect

    Not Available

    1994-03-01

    The industry has not had viable alternatives for solving several major operating problems in areas of downhole and surface drilling operations, and facility and equipment maintenance. However, recent introductions and proven application of innovative problem solving techniques have removed these dilemmas for many operators. Four such technology advances are shown here. These include: (1) novel, clear protectors and compound that allow visual pipe thread inspection, (2) foam-core insulation for preserving Arctic ice drill pads, (3) a mobile system for producing multiple stripper wells, (4) a tool to retrieve data from a stuck logging recorder, and (5) a complete surface/downhole slimhole drilling system.

  11. Geothermal Exploration of Newberry Volcano, Oregon

    SciTech Connect

    Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  12. Parcperdue geopressure-geothermal project. Study a geopressured reservoir by drilling and producing a well in a limited geopressured water sand. Final technical report, September 28, 1979-December 31, 1983

    SciTech Connect

    Hamilton, J.R.; Stanley, J.G.

    1984-01-15

    The behavior of geopressured reservoirs was investigated by drilling and producing a well in small, well defined, geopressured reservoir; and performing detailed pressure transient analysis together with geological, geophysical, chemical, and physical studies. The Dow-DOE L. R. Sweezy No. 1 well was drilled to a depth of 13,600 feet in Parcperdue field, just south of Lafayette, Louisiana, and began production in April, 1982. The production zone was a poorly consolidated sandstone which constantly produced sand into the well stream, causing damage to equipment and causing other problems. The amount of sand production was kept manageable by limiting the flow rate to below 10,000 barrels per day. Reservoir properties of size, thickness, depth, temperature, pressure, salinity, porosity, and permeability were close to predicted values. The reservoir brine was undersaturated with respect to gas, containing approximately 20 standard cubic feet of gas per barrel of brine. Shale dewatering either did not occur or was insignificant as a drive mechanism. Production terminated when the gravel-pack completion failed and the production well totally sanded in, February, 1983. Total production up to the sanding incident was 1.94 million barrels brine and 31.5 million standard cubic feet gas.

  13. Federal Geothermal Research Program Update Fiscal Year 2000

    SciTech Connect

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  14. Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA

    SciTech Connect

    Siler, Drew L; Faulds, James E

    2013-10-27

    Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas with a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.

  15. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  16. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  17. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  18. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  19. Lost circulation experience in geothermal wells

    SciTech Connect

    Goodman, M.A.

    1981-01-01

    Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported. Lost circulation in geothermal wells is generally very different from lost circulation in petroleum wells. Conventional lost circulation materials and squeeze cementing are not always successful in the cavernous and vugular low-pressure formations encountered in geothermal reservoirs. Special completion methods, such as liner and tieback string, are often used to improve cement placement and setting in lost circulation zones. High wellbore temperatures during geothermal cementing magnify the lost circulation problem. Cement retarders may be needed to prevent premature setting at the higher temperatures, yet too much retarder may lead to an unsuccessful completion, particularly because of the large volume of cement that may be required to seal a lost circulation zone. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

  20. Session: Geopressured-Geothermal

    SciTech Connect

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  1. Preliminary plan for the development of geothermal energy in the town of Hawthorne, Nevada

    SciTech Connect

    Not Available

    1981-11-04

    Site characteristics pertinent to the geothermal development are described, including: physiography, demography, economy, and goals and objectives of the citizens as they relate to geothermal development. The geothermal reservoir is characterized on the basis of available information. The probable drilling depth to the reservoir, anticipated water production rates, water quality, and resource temperature are indicated. Uses of the energy that seem appropriate to the situation both now and in the near future at Hawthorne are described. The essential institutional requirements for geothermal energy development are discussed, including the financial, environmental, and legal and regulatory aspects. The various steps that are necessary to accomplish the construction of the geothermal district heating system are described.

  2. Leasing of federal geothermal resources

    NASA Technical Reports Server (NTRS)

    Stone, R. T.

    1974-01-01

    Pursuant to the Geothermal Steam Act of 1970 and the regulations published on December 21, 1973, the first Federal geothermal competitive lease sale was held on January 22, 1974, by the Department of the Interior, offering 33 tracts totalling over 50,000 acres in three Known Geothermal Resource Areas in California. On January 1, 1974, Federal lands outside Known Geothermal Resource Areas were opened to noncompetitive lease applications, of which, 3,763 had been received by June 1, 1974. During fiscal year 1974, a total of 22 competitive leases had been issued in California and Oregon. The principal components in the Department involved in the leasing program are the Geological Survey and the Bureau of Land Management. The former has jurisdiction over drilling and production operations and other activities in the immediate area of operations. The latter receives applications and issues leases and is responsible for managing leased lands under its jurisdiction outside the area of operations. The interrelationships of the above agencies and the procedures in the leasing program are discussed.

  3. The Tiwi geothermal reservoir: Geology, geochemistry, and response to production

    SciTech Connect

    Hoagland, J.R.; Bodell, J.M. )

    1990-06-01

    The Tiwi geothermal field is located on the Bicol Peninsula of Southern Luzon in the Philippines. The field is associated with the extinct Quaternary stratovolcano Mt. Malinao, one of a chain of volcanos formed as a result of crustal subduction along the Philippine Trench to the east. The geothermal reservoir is contained within a sequence of interlayered andesite flows and pyroclastic deposits that unconformably overlie a basement complex of marine sediments, metamorphic, and intrusive rocks. In its initial state, the Tiwi reservoir was an overpressured liquid-filled system containing near-neutral sodium chloride water at temperatures exceeding 260{degree}C. The reservoir is partially sealed at its top and sides by hydrothermal argillic alteration products and calcite deposition. Isolated portions of the reservoir contain a corrosive acid chloride-sulfate water associated with a distinctive advanced argillic mineral assemblage. Withdrawal of fluid for electricity generation has caused widespread boiling in the reservoir and the formation of steam zones. The resultant solids deposition in wellbores and near-wellbore formation has been mitigated by a combination of mechanical and chemical well stimulation. Mass withdrawal from the reservoir has also caused invasion of cold groundwater into the reservoir through former fluid outflow channels. During 1983-1987, several wells were flooded with cold water and ceased flowing. In response, PGI moved development drilling west to largely unaffected areas and undertook recompletion and stimulation programs. These programs effectively halted the decline in generation by 1988.

  4. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    SciTech Connect

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  5. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  6. Overview of the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    SciTech Connect

    Mock, John E.; Budraja, Vikram; Jaros, Richard; Yamaguchi, Tsutomu; Hinrichs, Thomas C.

    1992-01-01

    This overview at the Geothermal Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market'' by John E. Mock; ''Geothermal Energy Market in Southern California: Past, Present and Future'' by Vikram Budraja; ''Taking the High Ground: Geothermal's Place in the Revolving Energy Market'' by Richard Jaros; ''Recent Developments in Japan's Hot Dry Rock Program'' by Tsutomu Yamaguchi; and ''Options in the Eleventh Year for Interim Standard Offer Number Four Contracts'' by Thomas C. Hinrichs.

  7. Online drilling mud gas monitoring and sampling during drilling the Scandinavian Caledonides (COSC)

    NASA Astrophysics Data System (ADS)

    Wiersberg, Thomas; Almqvist, Bjarne; Klonowska, Iwona; Lorenz, Henning

    2015-04-01

    The COSC project (Collisional Orogeny in the Scandinavian Caledonides) drilled a 2496 m deep hole in Åre (Sweden) to deliver insights into mid-Palaeozoic mountain building processes from continent-continent collision, to improve our understanding of the hydrogeological-hydrochemical state and geothermal gradient of the mountain belt and to study the deep biosphere in the metamorphic rocks and crystalline basement. COSC was the first slimhole drilling project where online gasmonitoring of drilling mud was conducted during continuous wireline coring. Gas was continuously extracted at the surface from the circulating drilling mud with a gas-water separator, pumped in a nearby laboratory container and analysed in real-time with a quadrupole mass spectrometer for argon, methane, helium, carbon dioxide, nitrogen, oxygen, hydrogen, and krypton. Gas samples were taken from the gas line for laboratory studies on chemical composition of hydrocarbons, noble gas isotopes and stable isotopes. Every drill core created a gas peak identified in the drilling mud ~20-30 min after core arrival at the surface. With known core depth and surface arrival time, these gas peaks could be attributed to depth. As a result, nearly complete gas depth profiles at three meter intervals were obtained from 662 m (installation of the gas-water separator) to 2490 m depth. Maximum concentrations of non-atmospheric gasses in drilling mud were ~200 ppmv helium, ~300 ppmv methane and ~2 vol-% hydrogen. Helium peaks between ~900 m and 1000 m and correlates with enhanced concentrations of methane. Methane and hydrogen exhibit maximum concentrations below 1630 m depth where helium concentrations remain low. Integration of the drilling mud gas monitoring dataset with data from geophysical downhole logging and core analysis is ongoing to help clarifying provenances and origin of gasses.

  8. Hawaii's geothermal program

    SciTech Connect

    Zorpette, G.

    1992-02-01

    This paper reports that in a forest on the island of Hawaii, legal and regulatory activity has postponed the start-up of a small new power plant and imperilled the design and construction of several facilities like it. The same old story Hardly. The power plants at stake are not nuclear or coal- or even oil-fired, but geothermal, widely considered one of the more environmentally benign ways of generating electricity. In a further twist, the opposition is coming not only from the usual citizens; and environmental groups, but also from worshippers of a native good and, it has been alleged, growers of marijuana, a lucrative local crop. The clash occurs just as geothermal power sources have finally proven commercially viable, experts say, adding that technological advances and industry trends in the United States and elsewhere seem to factor great expansion in its use.

  9. Data from geothermal test wells near Mount Hood, Oregon

    USGS Publications Warehouse

    Robison, J.H.; Forcella, L.S.; Gannett, Marshall W.

    1981-01-01

    This report includes well specifications, drillers ' logs, and temperature logs of geothermal test wells drilled at 7 sites near Mt. Hood, Oreg. The wells were drilled in 1979 and 1980 under contract to the U.S. Geological Survey. The project, funded by the U.S. Department of Energy, was part of an interagency effort to determine the geothermal potential of Mt. Hood. The agencies involved were, U.S. Department of Energy, U.S. Forest Service, U.S. Geological Survey, and Oregon Department of Geology and Mineral Industries. (USGS)

  10. The Oregon Geothermal Planning Conference

    SciTech Connect

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development plans. (5) Formulation and

  11. Beowawe Geothermal Area evaluation program. Final report

    SciTech Connect

    Iovenitti, J. L

    1981-03-01

    Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

  12. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  13. The objectives for deep scientific drilling in Yellowstone National Park

    SciTech Connect

    Not Available

    1987-01-01

    The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

  14. 43 CFR 3261.11 - How do I apply for approval of drilling operations and well pad construction?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How do I apply for approval of drilling operations and well pad construction? 3261.11 Section 3261.11 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.11 How do I apply for approval...

  15. 43 CFR 3261.11 - How do I apply for approval of drilling operations and well pad construction?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How do I apply for approval of drilling operations and well pad construction? 3261.11 Section 3261.11 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.11 How do I apply for approval...

  16. 43 CFR 3261.11 - How do I apply for approval of drilling operations and well pad construction?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How do I apply for approval of drilling operations and well pad construction? 3261.11 Section 3261.11 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.11 How do I apply for approval...

  17. 43 CFR 3261.11 - How do I apply for approval of drilling operations and well pad construction?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How do I apply for approval of drilling operations and well pad construction? 3261.11 Section 3261.11 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.11 How do I apply for approval...

  18. The Auto-Gopher Deep Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  19. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  20. 8. annual international energy week conference and exhibition: Conference papers. Book 3: Drilling and production operations

    SciTech Connect

    1997-07-01

    The three volumes within this book are subdivided as follows: (1) Drilling Technology -- underbalanced drilling; field and laboratory testing; drilling systems and dynamics; advances in drill bits; coiled tubing and tubulars; advances in drilling fluids; novel/scientific drilling; and drillstrings; (2) Petroleum Production Technology -- environmental health and safety issues; production technology for deepwater; disposal methods for production waste; and offshore facility abandonment; and (3) Offshore Engineering and Operations -- floating production systems; strategic service alliance; offshore facility abandonment; offshore development economics; heavy construction, transportation, and installation for offshore fields; and subsea technology. Papers have been processed separately for inclusion on the data base.

  1. Geothermal Progress Monitor report No. 5. Progress report, June 1981

    SciTech Connect

    Not Available

    1981-01-01

    Updated information is presented on activities and progress in the areas of electric power plants, direct heat applications, deep well drilling, leasing of federal lands, legislative and regulatory actions, research and development, and others. Special attention is given in this report to 1980 highlights, particularly in the areas of electric and direct heat uses, drilling, and the Federal lands leasing program. This report also includes a summary of the DOE FY 1982 geothermal budget request to Congress.

  2. Geothermal development of the Madison group aquifer: a case study

    SciTech Connect

    Martinez, J.A.

    1981-01-01

    A geothermal well has been drilled at the St. Mary's Hospital in Pierre, South Dakota. The well is 2176 feet deep and artesian flows 375 gpm at 106/sup 0/F. The well is producing fluids from the Mississippian Madison Group, a sequence of carbonate rocks deposited over several western states. The project was funded to demonstrate the goethermal potential of this widespread aquifer. This case study describes the development of the project through geology, drilling, stimulation, and testing.

  3. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    USGS Publications Warehouse

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth.  Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data.  Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes.  Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes.  In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient.  Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.

  4. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  5. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  6. Hydraulic hammer drilling technology: Developments and capabilities

    SciTech Connect

    Melamed, Y.; Kiselev, A.; Gelfgat, M.; Dreesen, D.; Blacic, J.

    1996-12-31

    Percussion drilling technology was considered many years ago as one of the best approaches for hard rock drilling. Unfortunately the efficiency of most hydraulic hammer (HH) designs was very low (8% maximum), so they were successfully used in shallow boreholes only. Thirty years of research and field drilling experience with HH application in Former Soviet Union (FSU) countries led to the development of a new generation of HH designs with a proven efficiency of 40%. That advance achieved good operational results in hard rock at depths up to 2,000 m and more. The most recent research has shown that there are opportunities to increase HH efficiency up to 70%. This paper presents HH basic design principles and operational features. The advantages of HH technology for coiled-tubing drilling is shown on the basis of test results recently conducted in the US.

  7. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  8. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  9. Geology of Platanares geothermal area, Copan, Honduras

    SciTech Connect

    Heiken, G.; Duffield, W.; Wohletz, K.; Priest, S.; Ramos, N.; Flores, W.; Eppler, D.; Ritchie, A.; Escobar, C.

    1987-05-01

    The Platanares, Copan (Honduras) geothermal area is located in a highly faulted terrain of Paleozoic(.) metamorphic rocks, Cretaceous clastic sedimentary rocks, and Tertiary volcanic rocks. All thermal manifestations are located along faults. The volcanic rocks are probably too old to represent the surface expression of an active crustal magma body. Thus, the thermal water is interpreted to be heated during deep circulation in a regime of elevated heat flow. The water chemistry suggests that the geothermal reservoir originates within the Cretaceous sedimentary sequence and that the reservoir temperature may be as high as 240/sup 0/ C. Two exploration coreholes penetrated the volcanic sequence and bottomed within Cretaceous redbeds. Well PLTG-1 is 650 m deep and flows at 3 Mw thermal from a 160/sup 0/ C permeable zone. Well PLTG-2 is 401 m deep and has a thermal gradient of 139/sup 0/ C/km. Exploration drilling is continuing, with a third corehole to be drilled in May, 1987.

  10. Geothermal Technologies Program: Utah

    SciTech Connect

    Not Available

    2005-06-01

    Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

  11. Geothermal tomorrow 2008

    SciTech Connect

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  12. Horizontal drilling developments

    SciTech Connect

    Gust, D.

    1997-05-01

    The advantages of horizontal drilling are discussed. Use of horizontal drilling has climbed in the past half decade as technology and familiarity offset higher costs with higher production rates and greater recoveries from new and existing wells. In essence, all types of horizontal wells expose a larger section of the reservoir to the wellbore with a resulting increase in flow rates. (A horizontal well may also be drilled to provide coning control or to intersect vertical fractures.) Thus, drilling horizontally, both onshore and offshore, reduces the number of wells necessary to develop a field.

  13. Remote drill bit loader

    SciTech Connect

    Dokos, James A.

    1997-01-01

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

  14. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  15. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    SciTech Connect

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental

  16. Status of GEA review of DOE geothermal research program

    SciTech Connect

    Wright, P.M.

    1996-12-31

    The Geothermal Energy Association (GEA) will be conducting a series of workshops related to the DOE Research and Development (R&D) program, the first of which will take place tomorrow and the next day. This workshop will be focussing on drilling research and development. The objective of these workshops is to provide information and recommendations to DOE on the R&D needs and priorities of the geothermal industry. As a GEA officer, I will be conducting these workshops and it is something you might guess I am interested in. I have been interested in geothermal R&D for 20 years now.

  17. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  18. Geothermal probabilistic cost study

    NASA Astrophysics Data System (ADS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  19. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  20. Geothermal probabilistic cost study

    SciTech Connect

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  1. The Colorado School of Mines Nevada geothermal study

    NASA Technical Reports Server (NTRS)

    Keller, G. V.; Grose, L. T.; Crewpson, R. A.

    1974-01-01

    Geothermal systems in the Basin and Range Province of the western United States probably differ in many respects from geothermal systems already discovered in other parts of the world because of the unique tectonic setting. To investigate this, a study of the geothermal occurrences at Fly Ranch, approximately 100 miles north of Reno, Nevada, has been undertaken. Ample evidence for a geothermal system exists in this area, including the surface expression of heat flow in the form of hot springs, an extensive area of low electrical resistivity, and a high level of seismicity along faults bounding the thermal area. However, geophysical and geological studies have not yet provided evidence for a local heat source at depth. Additional detailed geophysical and geological studies, as well as drilling, must be completed before the geothermal system can be described fully.

  2. Interactive Maps from the Great Basin Center for Geothermal Energy

    DOE Data Explorer

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

  3. Geothermal FIT Design: International Experience and U.S. Considerations

    SciTech Connect

    Rickerson, W.; Gifford, J.; Grace, R.; Cory, K.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date, a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).

  4. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  5. Technologies for measurement while drilling

    SciTech Connect

    Not Available

    1982-01-01

    Technology for measurement while drilling in the ocean margin drilling program is discussed. Mud pulse telemetry, hardwire telemetry, detection needs for well control, pressure measurements downhole while drilling, and continuous wave mud telemetry are considered. Data utilization from measurement while drilling in seismic calibrations, drilling efficiency measurements, directional control with regard to telemetry, and measurement while coring are also reviewed.

  6. Geothermal Exploration Policy Mechanisms: Lessons for the United States from International Applications

    SciTech Connect

    Speer, B.; Economy, R.; Lowder, T.; Schwabe, P.; Regenthal, S.

    2014-05-01

    This report focuses on five of the policy types that are most relevant to the U.S. market and political context for the exploration and confirmation of conventional hydrothermal (geothermal) resources in the United States: (1) drilling failure insurance, (2) loan guarantees, (3) subsidized loans, (4) capital subsidies, and (5) government-led exploration. It describes each policy type and its application in other countries and regions. It offers policymakers a guide for drafting future geothermal support mechanisms for the exploration-drilling phase of geothermal development.

  7. Lost circulation in geothermal wells: survey and evaluation of industry experience

    SciTech Connect

    Goodman, M.A.

    1981-07-01

    Lost circulation during drilling and completion of geothermal wells can be a severe problem, particularly in naturally fractured and/or vugular formations. Geothermal and petroleum operators, drilling service companies, and independent consultants were interviewed to assess the lost circulation problem in geothermal wells and to determine general practices for preventing lost circulation. This report documents the results and conclusions from the interviews and presents recommendations for needed research. In addition, a survey was also made of the lost circulation literature, of currently available lost circulation materials, and of existing lost circulation test equipment.

  8. Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

    SciTech Connect

    Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

    1990-03-30

    The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

  9. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    SciTech Connect

    Hooker, Matthew; Fabian, Paul

    2013-05-01

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

  10. Logging technology for high-temperature geothermal boreholes

    SciTech Connect

    Dennis, B.R.

    1984-05-01

    Research in materials, equipment, and instrument development was required in the Hot Dry Rock Energy Extraction Demonstration at Fenton Hill located in northern New Mexico. Results of this extensive development advanced the logging technology in geothermal boreholes to present state-of-the art. The new Phase II Energy Extraction System at the Fenton Hill Test Site will consist of two wellbores drilled to a depth of about 4570 m (15,000 ft) and then connected by a series of hydraulic-induced fractures. The first borehole (EE-2) was completed in May of 1980 at a depth of 4633 m (15,200 ft) of which approximately 3960 m (13,000 ft) is in Precambrian granitic rock. Starting at a depth of approximately 2930 m (9600 ft), the borehole was inclined up to 35/sup 0/ from vertical. Bottom-hole temperature in EE-2 is 320/sup 0/C. The EE-3 borehole was then drilled to a depth of 4236 m (13,900 ft). Its inclined part is positioned directly over the EE-2 wellbore with a vertical separation of about 450 m (1500 ft) between them. Many of the geophysical measurements needed to develop the hot dry rock concept are unique. Most of the routine instruments used in petroleum drilling fail in the hot and abrasive environment. New equipment developed includes not only the downhole sonde that houses the transducer and associated line driving electronics, but modifications also were needed on the entire data retrieval systems and associated data analysis technology. Successful performance of wellbore surveys in the EE-2 and EE-3 boreholes depended upon the capacity of the sensors, instrument sonde, cablehead, and armored logging cable to work in this severe environment. The major areas of materials development for surveying the boreholes in the high-temperature environment were on elastomeric seals, electrical insulation for logging cables, downhole sensors, and associated downhole electronic and electro-mechanical components.

  11. Geothermal exploration in a cost-competitive international energy market

    SciTech Connect

    Combs, J.

    1997-12-31

    The cost of exploration for, and confirmation of, an economic geothermal reservoir can be reduced by at least fifty percent (50%) with the use of diagnostic exploration surveys and slimhole technology. Although many technical papers and text-books on geothermal exploration have been published during the past twenty-five years, the goal of the present paper is to present the elements of a cost effective exploration paradigm for the identification, delineation and verification of economically viable geothermal reservoirs. The high cost of drilling large-diameter geothermal wells will usually justify the use, on a given prospect, of basically all of the exploration tools that will be discussed. Furthermore, with the use of slim holes in geothermal exploration to identify and evaluate the productive capacity of the geothermal reservoir, the high cost of large-diameter exploration wells will also be eliminated. However, in nearly every case, the cost of geothermal exploration represents a minor share of the total geothermal power project costs and the elimination of one non-productive geothermal well will almost always offset the exploration budget.

  12. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  13. Pacific Northwest geothermal - Review and outlook

    NASA Astrophysics Data System (ADS)

    Youngquist, W.

    1980-11-01

    Activities associated with geothermal exploration and development in the states of Idaho, Oregon, and Washington are reviewed. A geothermal electric plant on the Raft River is almost operational. Tests for space heating projects at Rexburg and in the City of Boise continue. The State of Oregon conducts its regional temperature gradient drilling program, and a number of shallow wells were drilled in 1979 and 1980. Deep well drilling (projected to 5,000 to 7,000 ft.) is pursued at Mount Hood. The eruption of Mount St. Helens has increased interest in the geothermal resources in Washington. A study of the warm and hot water potential on the northwest flank of Mount Ranier is negotiated. Possible space heating sources in 22 cities, towns, and hamlets in the Columbia Basin have been identified. Deleterious environmental impact on the forest regions of the Pacific Northwest is one reason for the Federal leasing problems. The electric power situation will be critical in the Northwest in 1983, as no additional power will probably be available to utilities from the Bonneville Power Administration. Indigenous U.S. energy sources can be developed and exploration activity can be increased if federal lease processing is greatly expedited.

  14. Reservoir assessment of The Geysers Geothermal field

    SciTech Connect

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  15. Geothermal systems of the Cascade Range

    USGS Publications Warehouse

    Muffler, L.J.; Bacon, Charles R.; Duffield, W.A.

    1982-01-01

    In the central and southern Cascade Range, plate convergence is oblique, and Quaternary volcanism produces mostly basalt and mafic andesite; large andesite-dacite composite volcanoes and silicic dome fields occur in restricted areas of long-lived igneous activity. To the north, plate convergence is normal, producing widely spaced centers in which mafic lavas are minor. Most Cascade volcanoes are short-lived and unlikely to be underlain at shallow levels by large magma bodies that could support high-temperature geothermal systems. Such systems are known, however, near Meager Mountain, at Newberry Volcano, and near Lassen Peak. Persistent fumaroles occur on several major composite volcanoes, but drilling to date has been insufficient to determine whether exploitable geothermal reservoirs occur at depth. Thermal springs away from the major volcanic centers are few and generally inconspicuous. However, significant geothermal systems along and west of the Cascade Range may well be masked by abundant cold ground water.

  16. Built-up edge investigation in vibration drilling of Al2024-T6.

    PubMed

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling.

  17. Built-up edge investigation in vibration drilling of Al2024-T6.

    PubMed

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling. PMID:24582556

  18. The Geysers Geothermal Field Update1990/2010

    SciTech Connect

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across

  19. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  20. Drilling Square Holes.

    ERIC Educational Resources Information Center

    Smith, Scott G.

    1993-01-01

    A Reuleaux triangle is constructed by drawing an arc connecting each pair of vertices of an equilateral triangle with radius equal to the side of the triangle. Investigates the application of drilling a square hole using a drill bit in the shape of a Reuleaux triangle. (MDH)