Science.gov

Sample records for advanced global atmospheric

  1. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Kurylo, Michael (Technical Monitor)

    2004-01-01

    We seek funding from NASA for the third year (2005) of the four-year period January 1, 2003 - December 31, 2006 for continued support of the MIT contributions to the multi-national global atmospheric trace species measurement program entitled Advanced Global Atmospheric Gases Experiment (AGAGE). The case for real-time high-frequency measurement networks like AGAGE is very strong and the observations and their interpretation are widely recognized for their importance to ozone depletion and climate change studies and to verification issues arising from the Montreal Protocol (ozone) and Kyoto Protocol (climate). The proposed AGAGE program is distinguished by its capability to measure over the globe at high frequency almost all of the important species in the Montreal Protocol and almost all of the significant non-CO2 gases in the Kyoto Protocol.

  2. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Weiss, R. F.

    1998-01-01

    The Advanced Global Atmospheric Gases Experiment (AGAGE) is an ongoing research project, for which the work carried out by the Scripps Institution of Oceanography. Due to the need to complete AGAGE activities specifically funded under NAGW-2034 that had been delayed, a no-cost extension to this grant was obtained, creating an overlap period between the two grants. Because the AGAGE project is continuing, and a Final Project Report is required only because of the change in grant numbers, it is most appropriate to submit for this report the Introduction and Accomplishments sections which appear on pages 1-62 of the October 1998 AGAGE renewal proposal. A copy of the complete proposal is attached.

  3. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2001-01-01

    AGAGE comprises continuous high frequency in-situ gas chromatographic FID/ECD measurements of two biogenic/anthropogenic gases (CH4, N2O) and five anthropogenic gases (CFCl3, CF2Cl2, CH3CCl3, CF2ClCFCl2, CCl4) which are carried out at five globally distributed sites (Ireland, California, Barbados, Samoa, Tasmania). Also, high frequency in-situ gas-chromatographic mass spectrometric measurements of about 30 species including chlorofluorocarbon replacements and many natural halocarbons are made at two sites (Ireland, Tasmania), and will soon begin at the other three sites. Finally, high frequency in-situ gas chromatographic HgO-RD measurements of CO and H2 are performed at two sites (Ireland, Tasmania). The goal is quantitative determination of the sources, sinks, and circulation of these environmentally important gases.

  4. Advanced Global Atmospheric Gases Experiment (AGAGE): MIT Contribution

    NASA Technical Reports Server (NTRS)

    Kurylo, Michael

    2003-01-01

    We describe in detail the instrumentation and calibrations used in the ALE, GAGE and AGAGE experiments and present a history of the majority of the anthropogenic ozone- depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high frequency in-situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past twenty years, and show both the evolution of latitudinal gradients and the high frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long- lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past sixty years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are: (a) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels, (b) Mole fractions of total chlorine contained in long-lived halocarbons (CCl2F2, CCl3F, CH3CCl3, CCl4, CHClF2, CCl2FCClF2, CH3Cl, CH2Cl2, CHCl3, CCl2=CCl2) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere, (c) The chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism, (d) Multi-annual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALUGAGWAGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where

  5. Joint IAMAS/IAHS Symposium J1 on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Aoki, T.; Halpern D.; Henderson-Sellers, A.; Charlock, T.; Joseph, J.; Labitzke, K.; Raschke, E.; Smith, W.

    1994-01-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS). Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  6. Joint IAMAS/IAHS symposium J1 on global monitoring and advanced observing techniques in the atmosphere and hydrosphere

    SciTech Connect

    Ohring, G. ); Aoki, T. ); Halpern, D. ); Henderson-Sellers, A. ); Charlock, T. ); Joseph, J. ); Labitzke, K. ); Raschke, E. ); Smith, W. )

    1994-04-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS) and took place in Yokohama, Japan, 13-15 July 1993, as part of the IAMAS/IAHS Join Assembly. Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  7. Recent advances in satellite observations of solar variability and global atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1974-01-01

    The launch of Nimbus 4 in April 1974 has made possible simultaneous measurements of the ultraviolet solar irradiance and the global distribution of atmospheric ozone by the monitor of ultraviolet solar energy (MUSE) and backscatter ultraviolet (BUV) experiments respectively. Two long lived ultraviolet active solar regions which are about 180 deg apart in solar longitude were observed to be associated with central meridian passages of solar magnetic sector boundaries. The boundaries may be significant in the evaluation of correlations between solar magnetic sector structure and atmospheric circulation.

  8. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  9. Global atmospheric changes.

    PubMed Central

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation. PMID:1820255

  10. Global Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Wallen, Carl C.

    1975-01-01

    The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…

  11. Global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Lezberg, E. A.; Perkins, P. J.; Englund, D. R.; Gauntner, D. J.; Holdeman, J. D.

    1977-01-01

    Automated instruments were installed on a commercial B-747 aircraft, during the program, to obtain baseline data and to monitor key atmospheric constituents associated with emissions of aircraft engines in order to determine if aircraft are contributing to pollution of the upper atmosphere. Data thus acquired on a global basis over the commercial air routes for 5 to 10 years will be analyzed. Ozone measurements in the 29,000 to 45,000 foot altitude were expanded over what has been available from ozonesondes. Limited aerosol composition measurements from filter samples show low levels of sulfates and nitrates in the upper troposphere. Recently installed instruments for measurement of carbon monoxide and condensation nuclei are beginning to return data.

  12. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Woodrum, A. W.

    1989-01-01

    GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.

  13. (Chemistry of the global atmosphere)

    SciTech Connect

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  14. Global distribution of Pluto's atmosphere

    SciTech Connect

    Trafton, L.; Stern, S.A.

    1983-04-15

    Pluto's volatile atmosphere currently extends essentially uniformly around the globe and has nearly uniform thickness, discounting topographic elevation differences and tidal effects. Although in equilibrium with the surface ice, the atmosphere does not noticeably freeze out on the night side, during eclipses of the Sun by Charon, or at the poles during Pluto's present season near perihelion. The bulk thermal tide is negligible. The rotational and tidal deformations of the atmosphere affect the atmospheric thickness of 0.6--2% for a pure CH/sub 4/ atmosphere, depending on the unknown mass of Charon, and up to 15% for an atmosphere with high mean molecular weight. An important consequence of the global uniformity of Pluto's atmosphere and the observed CH/sub 4/ column abundance of 27 +- 7 m--Am is that Pluto's surface is close to 58 K over the entire globe. This compares with the value approx.43 K expected on the basis of insolation and blackbody radiation. We suggest that the explanation for Pluto's elevated surface temperature is the low thermal emissivity of solid CH/sub 4/, expected on the basis of the absence of a rotational spectrum in the gas. Solid CH/sub 4/, which covers an appreciable portion of Pluto's surface, can absorb sunlight in the visible and near-infrared bands but lacks opacity at thermal wavelengths to radiate the absorbed energy efficiently.

  15. GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.

  16. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  17. Energy, atmospheric chemistry, and global climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  18. Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Worley, B. A. (Editor); Peslen, C. A. (Editor)

    1984-01-01

    Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.

  19. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  20. Ozone, Climate, and Global Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1992-01-01

    The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.

  1. Global Measurements of Atmospheric Sulfuryl Fluoride

    NASA Astrophysics Data System (ADS)

    Mühle, J.; Harth, C. M.; Salameh, P.; Miller, B. R.; Weiss, R. F.; Porter, L. W.; Fraser, P. J.; Greally, B. R.; O'Doherty, S.

    2006-12-01

    Sulfuryl fluoride (SO2F2) is used increasingly as a fumigant, but information about its emissions to the atmosphere is limited. Its atmospheric fate and lifetime are uncertain, with hydrolysis in the basic surface waters of the oceans a likely dominant sink, and its roles as a greenhouse gas and as a sulfur source to the stratosphere are unknown. We present here the first results of two years of high-frequency high-precision in situ observations of sulfuryl fluoride in the AGAGE (Advanced Global Atmospheric Gases Experiment) global measurement program. At La Jolla, California, baseline conditions are rarely achieved, and pollution events of up to 1.7 ppb (the exposure limit is 5 ppm) from nearby structural fumigation are common. At the Mace Head, Ireland, and Cape Grim, Tasmania, AGAGE stations, baseline conditions are observed with mixing ratios at the beginning of 2005 of ~1.0 ppt and ~0.9 ppt, respectively. Measured growth rates at these stations are ~0.06 ppt per year and ~0.04 ppt per year, respectively. Using these preliminary results and assuming no significant emissions in the southern hemisphere, a simple 2-box model can be used to estimate the tropospheric lifetime of sulfuryl fluoride as about one and a half decades, which is substantially longer than previous industry estimates. The corresponding modeled sulfuryl fluoride flux to the troposphere is ~2 x 109 g per year. Based on these initial measurements, the current global warming contribution of sulfuryl fluoride is likely small. Although the lifetime of sulfuryl fluoride is longer than that of carbonyl sulfide, sulfuryl fluoride is likely less important as source of sulfur to the stratosphere, due to its low atmospheric mixing ratio.

  2. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Blocker, Rhonda; Justus, C. G.

    1993-01-01

    4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.

  3. Global changes to atmospheric chemistry

    SciTech Connect

    Brasseur, G.P.; Holland, E.A.

    1995-06-01

    Changes in atmospheric concentrations of trace gases provided early evidence of widespread changes within the biosphere. Trace gas production by plants and in soils increased in response to human pressures. Long lived trace gases like nitrous oxide and methane are greenhouse gases and play an important role in stratospheric chemistry. Photochemically active compounds, isoprene, nitric oxide, and carbon monoxide, are determinants of tropospheric ozone concentrations and thus regulate the oxidizing capacity of the troposphere. Inclusion of isoprene produced by plants in 3-D chemical transport models increases atmospheric concentrations of ozone and carbon monoxide substantially. In return, terrestrial ecosystems are sensitive to atmospheric composition, responding to increased N deposition with increased C uptake, and soil acidification, and responding to increased ozone concentrations and UV-B with decreased plant production.

  4. Global Atmospheric Heat Distributions Observed from Space

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Fan, Tai-Fang

    2009-01-01

    This study focuses on the observations of global atmospheric heat distributions using satellite measurements. Major heat components such as radiation energy, latent heat and sensible heat are considered. The uncertainties and error sources are assessed. Results show that the atmospheric heat is basically balanced, and the observed patterns of radiation and latent heat from precipitation are clearly related to general circulation.

  5. Global emissions inventories to aid atmospheric modelers

    NASA Astrophysics Data System (ADS)

    Graedel, T. E.

    Computer projections of changes in global atmospheric chemistry could become more accurate and more easily compared with the availability of standard global emissions inventories. Starting in 1994, the Global Emissions Inventory Activity (GEIA) began to finalize gridded global emissions inventories and distribute them to atmospheric scientists. GEIA operates under the auspices of the International Global Atmospheric Chemistry (IGAC) Project, a cooperative effort of several hundred atmospheric scientists from more than 30 countries. The purpose of the IGAC Project is to measure, understand, and predict changes in global atmospheric chemistry, particularly those contributing to global problems such as acid rain, depletion of stratospheric ozone, greenhouse warming, and increased oxidant levels that damage biota.A 1992 survey by participants in the GEIA project [Graedel et al., 1993] showed that suitable emissions inventories are rarely available. The chlorofluorocarbon inventory, regarded as well quantified, was unavailable in gridded form. Inventories for CO2, CH4, NOx, SO2, reduced sulfur, and radon were regarded as having excess uncertainty, inadequate spatial resolution, or both; inventories for other chemical species were sketchy or nonexistent. Temporal resolution was almost uniformly poor. The survey made it clear that internally consistent, rigorously developed, gridded inventories with adequate spatial and temporal resolution would be valuable.

  6. The global atmosphere watch of the WMO

    SciTech Connect

    Miller, J.M.

    1996-12-31

    Many urgent global environmental problems confronting society, such as climate change, depletion of the stratospheric ozone layer, and acid rain, are connected with the man-made changes in the state and composition of the atmosphere and its interactions with other environmental media. Within the United Nations system the World Meteorological Organization (WMO) has a continuing responsibility to coordinate global activities related to the state and behavior of the earth`s atmosphere and climate using a number of its operational observation networks, one of which is the Global Atmosphere Watch (GAW). The data collected at the GAW monitoring stations are particularly essential in two ways: (1) To understand the relationship between changing atmospheric composition and changes of global and regional climate (2) To describe the regional and long-range atmospheric transport and deposition of potentially harmful substances. The purpose of this presentation is two-fold. One is to give a description of overall programme of the GAW system and to show the different aspects of the global monitoring which is coordinated through the WMO. The second is to describe the activities of the GAW Regional network and air quality measurements.

  7. PNNL's 'PEGASUS' Advances Atmospheric Chemistry

    SciTech Connect

    Berkowitz, Carl M.; Eades, Robert A.

    2001-04-16

    Presented an overview of software design to maximize computational efficiency on a massively parallel computing system. Also gave highlights of scientific results from this code, focusing primarily on how we can distinguish between stratospheric ozone in remote atmospheres and ozone generated from NOx/VOC chemical mechanisms.

  8. An online educational atmospheric global circulation model

    NASA Astrophysics Data System (ADS)

    Navarro, T.; Schott, C.; Forget, F.

    2015-10-01

    As part of online courses on exoplanets of Observatoire de Paris, an online tool designed to vizualise outputs of the Laboratoire de Métérologie Dynamique (LMD) Global Circulation Model (GCM) for various atmospheric circulation regimes has been developed. It includes the possibility for students to visualize 1D and 2D plots along with animations of atmospheric quantities such as temperature, winds, surface pressure, mass flux, etc... from a state-of-the-art model.

  9. Advances In Atmospheric Acoustic Sounding

    NASA Astrophysics Data System (ADS)

    Bradley, S. G.; von Hunerbein, S.

    Acoustic sounders (SODAR) have developed as a useful and reliable operational tool for atmospheric boundary layer studies. This means that the effort in SODAR design can now be directed toward extended range, more compact design, use in more dif- ficult environments, and into extracting more information content from the scattered signals. We describe leading-edge developments and approaches in each of these ar- eas, but particularly with reference to the work by the Salford UK team. Specifically, we discuss: new hardware implementations using pulse-coding; progress and the pro- jected use of a suitcase-SODAR; baffle/beam requirements for use in urban environ- ments; multi-frequency methods of separating observables; use of multiple-SODAR arrays; multi-phase precipitation measurements; and inverse-method techniques for systematic optimization of data retrievals.

  10. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  11. Global Change in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Qian, L.; Solomon, S. C.; Lastovicka, J.; Roble, R. G.

    2011-12-01

    Anthropogenic increases of greenhouse gases warm the troposphere but have a cooling effect in the middle and upper atmosphere. The steady increase of CO2 is the dominant cause of upper atmosphere trends. Long-term changes of other radiatively active trace gases such as CH4, O3, and H2O, long-term changes of geomagnetic and solar activity, and other possible drivers also play a role. Observational and model studies have confirmed that in the past several decades, global cooling has occurred in the mesosphere and thermosphere; the cooling and contraction of the upper atmosphere has lowered the ionosphere, increased electron density in the lower ionosphere, but slightly decreased electron density in the upper ionosphere. Limited observations have suggested long-term changes in the occurrence rate of major stratospheric warming, mesosphere and lower thermosphere dynamics, wave activities and turbulence in the mesosphere and lower thermosphere, and occurrence of noctilucent clouds or polar mesospheric clouds. However, possible long-term changes of these parameters remain to be open questions due to lack of measurements. We will review recent progress in observations and simulations of global change in the upper atmosphere, and discuss future investigations with a focus on how measurements by commercial reusable suborbital vehicles can help resolve the open questions.

  12. Global atmospheric methane: budget, changes and dangers.

    PubMed

    Dlugokencky, Edward J; Nisbet, Euan G; Fisher, Rebecca; Lowry, David

    2011-05-28

    A factor of 2.5 increase in the global abundance of atmospheric methane (CH(4)) since 1750 contributes 0.5 Wm(-2) to total direct radiative forcing by long-lived greenhouse gases (2.77 Wm(-2) in 2009), while its role in atmospheric chemistry adds another approximately 0.2 Wm(-2) of indirect forcing. Since CH(4) has a relatively short lifetime and it is very close to a steady state, reductions in its emissions would quickly benefit climate. Sensible emission mitigation strategies require quantitative understanding of CH(4)'s budget of emissions and sinks. Atmospheric observations of CH(4) abundance and its rate of increase, combined with an estimate of the CH(4) lifetime, constrain total global CH(4) emissions to between 500 and 600 Tg CH(4) yr(-1). While total global emissions are constrained reasonably well, estimates of emissions by source sector vary by up to a factor of 2. Current observation networks are suitable to constrain emissions at large scales (e.g. global) but not at the regional to national scales necessary to verify emission reductions under emissions trading schemes. Improved constraints on the global CH(4) budget and its break down of emissions by source sector and country will come from an enhanced observation network for CH(4) abundance and its isotopic composition (δ(13)C, δD(D=(2)H) and δ(14)C). Isotopic measurements are a valuable tool in distinguishing among various sources that contribute emissions to an air parcel, once fractionation by loss processes is accounted for. Isotopic measurements are especially useful at regional scales where signals are larger. Reducing emissions from many anthropogenic source sectors is cost-effective, but these gains may be cancelled, in part, by increasing emissions related to economic development in many parts of the world. An observation network that can quantitatively assess these changing emissions, both positive and negative, is required, especially in the context of emissions trading schemes. PMID

  13. Global Reference Atmospheric Model and Trace Constituents

    NASA Technical Reports Server (NTRS)

    Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of the Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR Intemationa1 Reference Atmosphere (CIRA). MAP data in GRAM are augmented by a specially-derived longitude variation climatology. Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH, and CO2. Water vapor in GRAM is based on a combination of GUACA, Air Force Geophysics Laboratory (AFGL), and NASA Langley Research Center climatologies. Other constituents below 120 km are based on a combination of AFGL and h4AP/CIRA climatologies. This report presents results of comparisons between GRAM Constituent concentrations and those provided by the Naval Research Laboratory (NRL) climatology of Summers (NRL,/MR/7641-93-7416, 1993). GRAM and NRL concentrations were compared for seven species (CH4, CO, CO2, H2O, N2O, O2, and O3) for months January, April, July, and October, over height range 0-115 km, and latitudes -90deg to + 90deg at 10deg increments. Average GRAM-NRL correlations range from 0.878 (for CO) to 0.975 (for O3), with an average over all seven species of 0.936 (standard deviation 0.049).

  14. Interannual variation of global atmospheric angular momentum

    SciTech Connect

    Chen, Tsing-Chang; Yen, Ming-Cheng; Tribbia, J.J.

    1996-10-01

    The relative atmospheric angular momentum (RAM) integrated over the globe is an explicit variable representing the state of the atmospheric general circulation. After removing the annual, semiannual, and higher-frequency components, the filtered global RAM time series for the past 14 years (1979-92) is highly correlated with both the Southern Oscillation index and the tropical Pacific sea surface temperature averaged over Area NINO-3 (5{degrees}S-5{degrees}N, 150{degrees}W-90{degrees}W). The interannual variation of global RAM is coherent with the poleward propagation of RAM anomalies. The global RAM anomalies reach their minimum values when westerly anomalies emerge in the Tropics and higher latitudes during a cold El Nino-Southern Oscillation (ENSO) event. On the other hand, global RAM anomalies attain their maximum values when westerly anomalies arrive at the subtropics of both hemispheres during a warm ENSO event. It is demonstrated that the poleward propagation of RAM anomalies results from the flip-flop oscillation of the anomalous circulation between cold and warm ENSO events. 11 refs., 3 figs.

  15. Global health diplomacy: advancing foreign policy and global health interests.

    PubMed

    Michaud, Josh; Kates, Jennifer

    2013-03-01

    Attention to global health diplomacy has been rising but the future holds challenges, including a difficult budgetary environment. Going forward, both global health and foreign policy practitioners would benefit from working more closely together to achieve greater mutual understanding and to advance respective mutual goals. PMID:25276514

  16. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  17. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  18. ATLAS-1 and middle atmosphere global change

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.

    1994-01-01

    To understand the extent and trends of middle atmosphere change, it is necessary to establish the baseline of atmospheric behavior and its response to changes in solar irradiance over at least a solar cycle. An element in NASA's global change program is the ATLAS shuttle series. The international payload includes several instruments intended to make precise, absolute measurements of solar irradiance, each being calibrated before and after each shuttle flight. These instruments, in addition to obtaining an 11-year database, will also intercalibrate solar instruments on the Earth Radiation Budget (ERB) and Upper Atmosphere Research (UARS) satellites. Other instruments will measure the atmospheric composition and temperature, also intercalibrating instruments on Television and Infrared Observation Satellite (TIROS)-N and UARS. Some have flown on shuttle missions dating back to 1983 and it is hoped that the ATLAS series will provide a capability until the turn of the century. This paper reviews the early results of the ATLAS-1 mission, which flew between March 24 and April 2, 1992.

  19. Relating Global Precipitation to Atmospheric Fronts

    NASA Astrophysics Data System (ADS)

    Catto, J. L.; Jakob, C.; Nicholls, N.

    2012-12-01

    Atmospheric fronts are important for the day-to-day variability of weather in the midlatitudes, particularly during winter when extratropical storm-tracks are at their maximum intensity. Fronts are often associated with heavy rain, and strongly affect the local space-time distribution of rainfall. Although global climate models should be expected to represent the baroclinic systems within which the fronts are embedded, the fronts themselves and precipitation processes within them are of much smaller scale. As a consequence, models with the typical horizontal resolution of contemporary climate models do not necessarily accurately capture these features. A recently developed objective front identification method applied to reanalysis data is combined with global rainfall data to investigate how precipitation and extremes of precipitation around the globe are associated with atmospheric fronts. Having established the observed distribution of fronts and their role in producing precipitation and extremes, the occurrence of fronts and the associated precipitation can then be evaluated in state-of-the-art climate models. This provides a process-oriented method of model evaluation where the errors in the model can be decomposed into contributions from errors in front frequency and errors in frontal and non-frontal precipitation intensity. Finally, how fronts and their associated precipitation, may change in the future, especially the extremes, can be investigated.

  20. Midlatitudes precipitation and the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Pauluis, O.; Czaja, A.; Korty, R.; Laliberte, F.

    2008-12-01

    The global atmospheric circulation transports energy from the equatorial regions to higher latitudes. Due to the turbulent nature of the flow, describing a 'mean' circulation depends strongly on the averaging method and coordinates system. When averaged in isentropic coordinates, the circulation appears as a single overturning cell with a poleward flow of high entropy air and return flow at lower entropy. However, the entropy of a parcel of moist air is not uniquely defined, and different expression for the entropy yield different mean circulations. Here, the global circulation in the NCEP/NCAR Reanalysis is computed on surfaces of constant potential temperature, or dry isentropes, and on surfaces of constant equivalent potential temperature, or moist isentropes. The two analyses are qualitatively similar but differ quantitatively in that the circulation on moist isentropes is between 1.5 and 3 times larger than the circulation on dry isentropes. It is shown that the additional mass transport on moist isentropes corresponds to a poleward flow of warm, moist air near the Earth's surface that moves from the subtropics into the midlatitudes and rises in the upper troposphere within the stormtracks. In the subtropics, this flow is characterized by a low potential temperature but a much higher equivalent potential temperature. It does not appear in the circulation on dry isentropes, as it is hidden by the presence of a larger equatorward flow of drier air at same potential temperature. However, as the equivalent potential temperature in this low-level poleward flow is close to the potential temperature of the air near the tropopause, it is included in the total circulation on moist isentropes. The thermodynamic properties of this low-level poleward flow indicates that these poleward moving air parcels should ascend into the upper troposphere within the midlatitude stormtracks. Based on these findings, we propose a revised version of the global circulation. We argue that

  1. Global deforestation: contribution to atmospheric carbon dioxide.

    PubMed

    Woodwell, G M; Hobbie, J E; Houghton, R A; Melillo, J M; Moore, B; Peterson, B J; Shaver, G R

    1983-12-01

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed. PMID:17747369

  2. Global deforestation: contribution to atmospheric carbon dioxide

    SciTech Connect

    Woodwell, G.M.; Hobbie, J.E.; Houghton, R.A.; Melillo, J.M.; Moore, B.; Peterson, B.J.; Shaver, G.R.

    1983-12-09

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1960 and 1980 was between 135 X 10/sup 15/ and 228 X 10/sup 15/ grams. Between 1.8 X 10/sup 15/ and 4.7 X 10/sup 15/ grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the releases from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 X 10/sup 15/ grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.

  3. The Wmo Global Atmosphere Watch Programme: Global Framework for Atmospheric Composition Observations and Analysis

    NASA Astrophysics Data System (ADS)

    Tarasova, O. A.; Jalkanen, L.

    2010-12-01

    The WMO Global Atmosphere Watch (GAW) Programme is the only existing long-term international global programme providing an international coordinated framework for observations and analysis of the chemical composition of the atmosphere. GAW is a partnership involving contributors from about 80 countries. It includes a coordinated global network of observing stations along with supporting facilities (Central Facilities) and expert groups (Scientific Advisory Groups, SAGs and Expert Teams, ETs). Currently GAW coordinates activities and data from 27 Global Stations and a substantial number of Regional and Contributing Stations. Station information is available through the GAW Station Information System GAWSIS (http://gaw.empa.ch/gawsis/). There are six key groups of variables which are addressed by the GAW Programme, namely: ozone, reactive gases, greenhouse gases, aerosols, UV radiation and precipitation chemistry. GAW works to implement integrated observations unifying measurements from different platforms (ground based in situ and remote, balloons, aircraft and satellite) supported by modeling activities. GAW provides data for ozone assessments, Greenhouse Gas Bulletins, Ozone Bulletins and precipitation chemistry assessments published on a regular basis and for early warnings of changes in the chemical composition and related physical characteristics of the atmosphere. To ensure that observations can be used for global assessments, the GAW Programme has developed a Quality Assurance system. Five types of Central Facilities dedicated to the six groups of measurement variables are operated by WMO Members and form the basis of quality assurance and data archiving for the GAW global monitoring network. They include Central Calibration Laboratories (CCLs) that host primary standards (PS), Quality Assurance/Science Activity Centres (QA/SACs), World Calibration Centers (WCCs), Regional Calibration Centers (RCCs), and World Data Centers (WDCs) with responsibility for

  4. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  5. Aeras: A next generation global atmosphere model

    SciTech Connect

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  6. Aeras: A next generation global atmosphere model

    DOE PAGESBeta

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  7. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  8. Global atmospheric circulation statistics: Four year averages

    NASA Technical Reports Server (NTRS)

    Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.

    1987-01-01

    Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.

  9. EDITORIAL: The global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lennart

    2010-06-01

    Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes. Water on planet Earth The total amount of available water on the Earth amounts to some 1.5 x 109 km3. The dominant part of this, 1.4 x 109 km3, resides in the oceans. About 29 x 106 km3 are locked up in land ice and glaciers and some 15 x 106 km3 are estimated to exist as groundwater. If all land ice and glaciers were to melt the sea level would rise some 80 m (Baumgartner and Reichel 1975). 13 x 103 km3 of water vapour are found in the

  10. The Global Distribution of Atmospheric Ice Nucleating Particles

    NASA Astrophysics Data System (ADS)

    Vergara Temprado, J.; Wilson, T. W.; Burrows, S. M.; Murray, B. J.; Carslaw, K. S.

    2015-12-01

    Ice nucleating particles (INP) affect the amount of ice in clouds, changing many of their properties. However, the relevance of different aerosol species towards causing atmospheric ice nucleation in different contexts is not well-understood. In this presentation, I will show the simulated spatial and seasonal distributions of ice nucleating particles from K-feldspar (the ice-active component of desert dust), marine organics (from sea spray) and black carbon (from combustion). The global distribution of these materials is simulated using two global aerosol model (GLOMAP-mode and EMAC). The contribution of each aerosol species to the INP distribution is calculated using parameterizations of their ice nucleating ability developed from laboratory studies of the materials involved, founding good agreement with INP observations. We found that K-feldspar dominates the atmospheric distribution of ice nucleating particles; however, marine organic INPs and black carbon are important regionally in some seasons. This study advances our understanding of which aerosol species have to be included in order to adequately describe the global and regional distribution of INPs in models.

  11. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  12. Neutral polyfluoroalkyl substances in the global atmosphere.

    PubMed

    Gawor, A; Shunthirasingham, C; Hayward, S J; Lei, Y D; Gouin, T; Mmereki, B T; Masamba, W; Ruepert, C; Castillo, L E; Shoeib, M; Lee, S C; Harner, T; Wania, F

    2014-03-01

    Concentrations of neutral per- and polyfluoroalkyl substances (nPFAS) in the atmosphere are of interest because nPFAS are highly mobile percursors for perfluoroalkyl acids. Two calibration studies in Ontario, Canada and Costa Rica established the feasibility of using XAD 2-resin based passive air samplers (XAD-PAS) to reliably determine long term average air concentrations of nPFAS under temperate and tropical climatic conditions. The temporal and spatial distribution of nPFAS was investigated by analyzing XAD-PAS deployed for one year at between 17 and 46 sites on six continents between 2006 and 2011 as part of the Global Atmospheric Passive Sampling (GAPS) study. Higher levels of fluorotelomer alcohols (FTOHs) compared to fluorinated sulfonamides (FOSAs), and fluorinated sulfonamidoethanols (FOSEs) were observed at all sites. Urban sites had the highest levels of nPFAS compared to rural and remote sites, which is also apparent in a positive correlation of nPFAS levels with the proximity of a sampling site to areas of high population density. Levels of FOSAs and FOSEs tended to decrease during the six years of measurements, whereas an initial decline in the concentrations of FTOHs from 2006 to 2008 did not continue in 2009 to 2011. A comparison of nPFAS levels measured in national XAD-PAS networks in Costa Rica and Botswana revealed that the GAPS sites in Tapanti and the Kalahari are representative of the more remote regions in those countries. XAD-PAS derived absolute nPFAS levels at GAPS sites are lower than those measured using another PAS, but are within the range of levels measured with active air samplers. Agreement of relative nPFAS composition is better between samplers, suggesting that the discrepancy is due to uncertain sampling rates. PMID:24232015

  13. Advanced Subsetter Capabilities for Atmospheric Science Datasets

    NASA Astrophysics Data System (ADS)

    Baskin, W. E.; Perez, J.

    2012-12-01

    Within the last three years, the NASA Atmospheric Sciences Data Center (ASDC) has developed and deployed production provider-specific search and subset web applications for the CALIPSO, CERES, and TES missions. ASDC is now collaborating with the MOPITT science team to provide tailored subsetting for their level 2 satellite datasets leveraging the architecture of the recently deployed subsetting systems. This presentation explores the challenges encountered by the ASDC's development team and discusses solutions implemented for the following advanced subsetter capabilities: - On-the-fly conversion of subsetted HDF data granules to NetCDF - Generation of CF-Compliant subset results for non-gridded data (level2 swaths) - Parameter-specific filtering - Multi-dimensional spatial subsetting - Complex temporal subsetting (temporal filtering)

  14. Advances in spacecraft atmospheric entry guidance

    NASA Astrophysics Data System (ADS)

    Benito Manrique, Joel

    In order to advance entry guidance technology two different research areas have been explored with the objective of increasing the reachable landing area and the landing accuracy for future Mars missions. Currently only the northern hemisphere of Mars is available for landing due to its low elevation. Only low elevation landing sites have the necessary atmospheric density to allow landing using current Entry, Descent and Landing (EDL) technology. In order to reach most of the Ancient Highlands, the majority of the southern hemisphere, advanced EDL technology is needed in multiple fields, including entry guidance. The first research area is the definition and applications of reachable and controllable sets for entry. The definition of the reachable and controllable sets provides a framework for the study of the capabilities of an entry vehicle in a given planet. Reachable and controllable sets can be used to comprehensively characterize the envelope of trajectories that a vehicle can fly, the sites it can reach and the entry states that can be accommodated. The sets can also be used for the evaluation of trajectory planning algorithms and to assist in the selection of the entry or landing sites. In essence, the reachable and controllable sets offer a powerful vehicle and trajectory analysis and design framework that allows for better mission design choices. In order to illustrate the use of the sets, they are computed for a representative Mars mission using two different vehicle configurations. The sets characterize the impact of the vehicle configuration on the entry capability. Furthermore, the sets are used to find the best skip-entry trajectory for a return from the Moon mission, highlighting the utility of the sets in atmospheric maneuvers other than entry. The second research area is the development of the components of an entry guidance algorithm that allow high elevation landing and provide as well high landing accuracy. The approach taken follows the

  15. Global controversies and advances in skin cancer.

    PubMed

    Baldwin, Louise; Dunn, Jeff

    2013-01-01

    Advances and controversies of skin cancer prevention in the Asian-Pacific region are to be examined the world's first Global Controversies and Advances in Skin Cancer Conference to be held in Brisbane, Australia this November. APOCP Members are cordially invited to register early for the opportunity to contribute to the debate on a cancer which continues to be a prominent issue in the Asia Pacific and indeed worldwide. We need answers to the questions of why a cancer that is so preventable and easily detectable is still shrouded in controversy. Primary focuses will be on issues like viral involvement, vaccines and novel clinical approaches. PMID:23725105

  16. Recent advances in ecosystem-atmosphere interactions: an ecological perspective.

    PubMed Central

    Moorcroft, P R

    2003-01-01

    The atmosphere and terrestrial ecosystems are fundamentally coupled on a variety of time-scales. On short time-scales, this bi-directional interaction is dominated by the rapid exchange of CO(2), water and energy between the atmosphere and the land surface; on long time-scales, the interaction involves changes in ecosystem structure and composition in response to changes in climate that feed back through biophysical and biogeochemical mechanisms to influence climate over decades and centuries. After briefly describing some early pioneering work, I focus this review on recent advances in understanding long-term ecosystem-atmosphere interactions through a discussion of three case studies. I then examine how efforts to assess the stability and resilience of ecosystem-atmosphere interactions over these long time-scales using Dynamic Global Vegetation Models are hampered by the presence of important functional diversity and heterogeneity within plant communities. Recent work illustrates how this issue can be addressed through the use of Structured Ecosystem Models that more accurately scale between the short-term physiological responses of individual plants and the long-term, large-scale dynamics of heterogeneous, functionally diverse ecosystems. PMID:12816634

  17. EDITORIAL: The global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lennart

    2010-06-01

    Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes. Water on planet Earth The total amount of available water on the Earth amounts to some 1.5 x 109 km3. The dominant part of this, 1.4 x 109 km3, resides in the oceans. About 29 x 106 km3 are locked up in land ice and glaciers and some 15 x 106 km3 are estimated to exist as groundwater. If all land ice and glaciers were to melt the sea level would rise some 80 m (Baumgartner and Reichel 1975). 13 x 103 km3 of water vapour are found in the

  18. Four-Dimensional Global Reference-Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Johnson, Dale; Blocker, Rhonda S.

    1988-01-01

    Four-Dimensional Global Reference Atmosphere Model (GRAM) computer program developed from empirical atmospheric model generating values for pressure, density, temperature, and winds, from ground to orbital altitudes. Is amalgamation of two empirical atmospheric models for low and high atmosphere with newly-developed latitude-and longitude-dependent model for middle atmosphere. UNIVAC version written in UNIVAC FORTRAN. DEC VAX version of GRAM written in FORTRAN 77. Applications include simulation of reentry trajectories of external tanks, studies of global circulation and diffusion and generation of plots or data for comparison.

  19. Supermodeling With A Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Wiegerinck, Wim; Burgers, Willem; Selten, Frank

    2013-04-01

    In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra

  20. Atmospheric General Circulation Changes under Global Warming

    NASA Astrophysics Data System (ADS)

    Palipane, Erool

    The work in this thesis is mainly two-fold. First we study the internal variability of the general circulation and focus our study on the annular modes and how important it is to simulate the subsynoptic scales in the circulation. In the next major section we will try to understand the mechanisms of the forced response and the mechanisms leading towards the jet shift from transient evolution in Atmospheric general circulation models. In the first part, in an attempt to assess the benefit of resolving the sub-synoptic to mesoscale processes, the spatial and temporal characteristics of the Annular Modes (AMs), in particular those related to the troposphere-stratosphere interaction, are evaluated for moderate- and high-horizontal resolution simulations with a global atmospheric general circulation model (AGCM), in comparison with the ERA40 re- analysis. Relative to the CMIP-type climate models, the IFS AGCM demonstrates notable improvement in capturing the key characteristics of the AMs. Notably, the performance with the high horizontal resolution version of the model is systematically superior to the moderate resolution on all metrics examined, including the variance of the AMs at different seasons of the year, the intrinsic e-folding time scales of the AMs, and the downward influence from the stratosphere to troposphere in the AMs. Moreover, the high-resolution simulation with a greater persistence in the intrinsic variability of the SAM projects an appreciably larger shift of the surface westerly wind during the Southern Hemisphere summer under climate change. In the second part, the response of the atmospheric circulation to greenhouse gas-induced SST warming is investigated using large ensemble experiments with two AGCMs, with a focus on the robust feature of the poleward shift of the eddy driven jet. In these experiments, large ensembles of simulations are conducted by abruptly switching the SST forcing on from January 1st to focus on the wintertime circulation

  1. Advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Lü, Daren; Yi, Fan; Xu, Jiyao

    2004-06-01

    Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for middle and upper atmosphere observation; (2) Analyses and observation of middle and upper atmosphere; (3) Theoretical and modeling studies of planetary wave and gravity wave activities in the middle atmosphere and their relation to lower atmospheric processes; (4) Study on the coupling between the stratosphere and the troposphere.

  2. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  3. Understanding and Portraying the Global Atmospheric Circulation.

    ERIC Educational Resources Information Center

    Harrington, John, Jr.; Oliver, John E.

    2000-01-01

    Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)

  4. The atmospheric electric global circuit. [thunderstorm activity

    NASA Technical Reports Server (NTRS)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  5. Global biomass burning - Atmospheric, climatic and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Changes in the trace gas composition of the atmosphere due to global biomass burning are examined. The environmental consequences of those changes which have become areas of international concern are discussed.

  6. The biosphere as a driver of global atmospheric change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The effects of the biosphere on the evolution of atmospheric oxygen and ozone, and the consequences of that development for global atmospheric change, are discussed. Attention is given to the impact of oxygen and ozone on atmospheric photolysis rates, the effect of oxygen on the biogenic production of nitrous oxide and nitric oxide, and the effects of the evolution of atmospheric oxygen on fires and biomass burning. The influence of the latter on atmospheric processes, particularly the production of methane, carbon dioxide, and carbon monoxide, is considered.

  7. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  8. Mars global atmospheric oscillations: Transients and dust storm relations

    NASA Technical Reports Server (NTRS)

    Tillman, James E.

    1987-01-01

    It is showed that periods of enhanced quasitidal pressure oscillations occur during the season preceding the global dust storm season during every Martian year. Periods of these oscillations often differ slightly from the diurnal and semidiurnal, and the oscillations may correspond to atmospheric normal modes excited by solar heating. They may also contribute to the initiation of some global dust storms.

  9. Emission Database for Global Atmospheric Research (EDGAR).

    ERIC Educational Resources Information Center

    Olivier, J. G. J.; And Others

    1994-01-01

    Presents the objective and methodology chosen for the construction of a global emissions source database called EDGAR and the structural design of the database system. The database estimates on a regional and grid basis, 1990 annual emissions of greenhouse gases, and of ozone depleting compounds from all known sources. (LZ)

  10. Global Atmospheric Transport and Source-Receptor Relationships for Arsenic.

    PubMed

    Wai, Ka-Ming; Wu, Shiliang; Li, Xueling; Jaffe, Daniel A; Perry, Kevin D

    2016-04-01

    Arsenic and many of its compounds are toxic pollutants in the global environment. They can be transported long distances in the atmosphere before depositing to the surface, but the global source-receptor relationships between various regions have not yet been assessed. We develop the first global model for atmospheric arsenic to better understand and quantify its intercontinental transport. Our model reproduces the observed arsenic concentrations in surface air over various sites around the world. Arsenic emissions from Asia and South America are found to be the dominant sources for atmospheric arsenic in the Northern and Southern Hemispheres, respectively. Asian emissions are found to contribute 39% and 38% of the total arsenic deposition over the Arctic and Northern America, respectively. Another 14% of the arsenic deposition to the Arctic region is attributed to European emissions. Our results indicate that the reduction of anthropogenic arsenic emissions in Asia and South America can significantly reduce arsenic pollution not only locally but also globally. PMID:26906891

  11. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.

    2008-03-01

    A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.

  12. Challenges in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    ") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  13. Stochastic resonance on a global atmospheric circulation model

    NASA Astrophysics Data System (ADS)

    Perez-Munuzuri, V.; Deza, R.; Fraedrich, K.; Kirk, E.; Lunkeit, F.

    2003-04-01

    Seeking for alternative sources of the observed climatic variability, and in the spirit of both classic (Nicolis, 1982; Benzi et al., 1982) and recent work (Ganopolski and Rahmstorg, 2002; Vélez-Belch&{acute;i} et al., 2001), we have added a space-independent, Gaussian and uncorrelated stochastic perturbation with amplitude eta, to the temperature equation of a simplified atmospheric global circulation model, the so-called PUMA (Portable University Model of the Atmosphere) (Frisius et al., 1998; Pérez-Muñuzuri et al., 2003). In the latter model, diabatic processes are parameterized by a Newtonian cooling term with typical timescale τ_c, whose reference temperature profile T_R(λ,μ,σ;t) (representing the ``equilibrium'' profile induced by solar heating) is given by T_R=overline{T}_R(λ,μ,σ)+ hat{T}_R \\cos[(2pi/Tac)t+Pac]. We show that the time averages of several forecasting magnitudes (like temperature and horizontal vorticity) at a point on the 300 hPa surface, undergo a non-monotonic behavior with regard to eta. Moreover, the normalized variance R=sqrt{-^2}/ of the interval t_p between the passage at the point of cyclonic and anticyclonic circulation regions exhibits an ``anticoherence resonance'' effect, thus maximizing climatic variability for some intermediate value of eta. A theoretical explanation is advanced in terms of activated processes with competing time scales. begin{itemize} C. Nicolis, Tellus 34, 1 (1982); Benzi et al., Tellus 34, 10 (1982). A. Ganopolski and S. Rahmstorg, Phys. Rev. Lett. 88, 038501 (2002); P. Vélez-Belch&{acute;i} et al., Geophys. Res. Lett. 28, 2053 (2001). T. Frisius, F. Lunkeit, K. Fraedrich and I.N. James. Q.J.R. Meteorol. Soc. 124, 1019 (1998); V. Pérez-Muñuzuri et al. Nonlin. Proc. Geophys. (submitted) (2003).

  14. Advanced Numerical Modeling of Turbulent Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Dörnbrack, Andreas; Gerz, Thomas

    The present chapter introduces the method of computational simulation to predict and study turbulent atmospheric flows. This includes a description of the fundamental approach to computational simulation and the practical implementation using the technique of large-eddy simulation. In addition, selected contributions from IPA scientists to computational model development and various examples for applications are given. These examples include homogeneous turbulence, convective boundary layers, heated forest canopy, buoyant thermals, and large-scale flows with baroclinic wave instability.

  15. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  16. Assessment of global annual atmospheric energy balance from satellite observations

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Stackhouse, Paul W.; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang; Hinkelman, Laura M.

    2008-08-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface as well as latent and sensible heat over the oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimates. Global annual means of the TOA net radiation obtained from both satellite direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 W/m2, respectively. The estimated atmospheric and surface heat imbalances are about -8 and 9 W/m2, respectively, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and the likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget: the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements has significantly reduced the bias errors in the observed global energy budgets of the climate system.

  17. Global biomass burning. Atmospheric, climatic, and biospheric implications

    SciTech Connect

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases.

  18. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?

    NASA Astrophysics Data System (ADS)

    Brahney, Janice; Mahowald, Natalie; Ward, Daniel S.; Ballantyne, Ashley P.; Neff, Jason C.

    2015-09-01

    Anthropogenic activities have significantly altered atmospheric chemistry and changed the global mobility of key macronutrients. Here we show that contemporary global patterns in nitrogen (N) and phosphorus (P) emissions drive large hemispheric variation in precipitation chemistry. These global patterns of nutrient emission and deposition (N:P) are in turn closely reflected in the water chemistry of naturally oligotrophic lakes (r2 = 0.81, p < 0.0001). Observed increases in anthropogenic N deposition play a role in nutrient concentrations (r2 = 0.20, p < 0.05) however, atmospheric deposition of P appears to be major contributor to this pattern (r2 = 0.65, p < 0.0001). Atmospheric simulations indicate a global increase in P deposition by 1.4 times the preindustrial rate largely due to increased dust and biomass burning emissions. Although changes in the mass flux of global P deposition are smaller than for N, the impacts on primary productivity may be greater because, on average, one unit of increased P deposition has 16 times the influence of one unit of N deposition. These stoichiometric considerations, combined with the evidence presented here, suggest that increases in P deposition may be a major driver of alpine Lake trophic status, particularly in the Southern Hemisphere. These results underscore the need for the broader scientific community to consider the impact of atmospheric phosphorus deposition on the water quality of naturally oligotrophic lakes.

  19. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  20. Multiscale Simulation of Moist Global Atmospheric Flows

    SciTech Connect

    Grabowski, Wojciech W.; Smolarkiewicz, P. K.

    2015-04-13

    The overarching goal of this award was to include phase changes of the water substance and accompanying latent heating and precipitation processes into the all-scale nonhydrostatic atmospheric dynamics EUlerian/LAGrangian (EULAG) model. The model includes fluid flow solver that is based on either an unabbreviated set of the governing equations (i.e., compressible dynamics) or a simplified set of equations without sound waves (i.e., sound-proof, either anelastic or pseudo-incompressible). The latter set has been used in small-scale dynamics for decades, but its application to the all-scale dynamics (from small-scale to planetary) has never been studied in practical implementations. The highlight of the project is the development of the moist implicit compressible model that can be run by applying time steps, as long as the anelastic model is limited only by the computational stability of the fluid flow and not by the speed of sound waves that limit the stability of explicit compressible models. Applying various versions of the EULAG model within the same numerical framework allows for an unprecedented comparison of solutions obtained with various sets of the governing equations and straightforward evaluation of the impact of various physical parameterizations on the model solutions. The main outcomes of this study are reported in three papers, two published and one currently under review. These papers include comparisons between model solutions for idealized moist problems across the range of scales from small to planetary. These tests include: moist thermals rising in the stable-stratified environment (following Grabowski and Clark, J. Atmos. Sci. 1991) and in the moist-neutral environment (after Bryan and Fritsch, Mon. Wea. Rev. 2002), moist flows over a mesoscale topography (as in Grabowski and Smolarkiewicz, Mon. Wea. Rev. 2002), deep convection in a sheared environment (following Weisman and Klemp, Mon. Wea. Rev. 1982), moist extension of the baroclinic wave on

  1. Global simulation of UV atmospheric emissions on Mars

    NASA Astrophysics Data System (ADS)

    González-Galindo, Francisco; Ángel López-Valverde, Miguel; Forget, Francois; Montmessin, Franck; Stiepen, Arnaud

    2016-04-01

    Mars UV atmospheric emissions such as the CO2+ UV doublet, the CO Cameron bands (both in the dayside) and the NO bands (in the nightside) are systematically observed by SPICAM on board Mars Express and IUVS on board MAVEN. The study of these atmospheric emissions allows the determination of the temperature and density in the Martian upper atmosphere, and helps to constrain the thermospheric circulation. While different models have been developed to study these atmospheric emissions, most of them are one dimensional and make a number of assumptions concerning the underlying neutral atmosphere and ionosphere. Within the H2020 project UPWARDS we aim at including models of these atmospheric emissions into a state-of-the-art Global Climate Model for the Martian atmosphere, the LMD-MGCM. This will allow for a self-consistent description of these atmospheric emissions and for the characterizion of their different variability sources. Comparisons with observations will allow to retrieve information about the temperature and density in the Martian upper atmosphere. Here we will present the first results concerning the simulation of these UV emissions and the first comparisons with observations. Acknowledgemnt: This work is supported by the European Union's Horizon 2020 Programme under grant agreement UPWARDS-633127

  2. Advances in Global Flood Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Thielen-del Pozo, J.; Pappenberger, F.; Burek, P.; Alfieri, L.; Kreminski, B.; Muraro, D.

    2012-12-01

    -meteorological processes are not fully captured and calibration is necessary. Critical thresholds are computed from long-term simulations where the coupled HTESSEL/LISFLOOD model is driven with ERA-Interim data for a period of 21 years.From the longterm runs return periods are estimated against which each flood forecasts are compared. Results are displayed as maps and time series on a web-interface providing global overviews as well as local quantitative information. Major floods such as the ones in South East Asia in September-October 2010 in Thailand, Cambodia and Vietnam were well captured by the system: for the lower Mekong River, probabilistic forecasts from the global simulations on the 18th September 2011 showed a probability higher than 40% of exceeding the high alert level from 2nd-4th October, hence 14 days in advance. Collaborations exist between the EU and Brazil to further the system for Brazilian rivers. Next steps include further research and development, rigorous testing and adaptations. calibration of the system with available data, and work on selected case studies for quantitative improvements.

  3. Volatile Organic Compounds in the Global Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Bottenheim, J. W.; Galbally, I.; Lewis, A. C.; Masarie, K.; Milton, M.; Penkett, S.; Plass-Duelmer, C.; Reimann, S.; Steinbrecher, R.; Tans, P. P.; Thiel, S.

    2010-12-01

    The World Meteorological Organization (WMO) - Global Atmospheric Watch (GAW) has been guiding the implementation of a global program for the monitoring of atmospheric volatile organic compounds (VOC). Essential features are 1. regular, in-situ, high temporal resolution measurements of VOC at surface stations, 2. VOC analyses in samples collected within flask sampling networks for wide geographical coverage, and 3. a concerted calibration and data quality control effort. A centerpiece of the flask sampling component builds upon the US NOAA Earth System Research Laboratory - Global Cooperative Air Sampling Network. Nine non-methane hydrocarbon species (NMHC; ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, isoprene, benzene, toluene) are currently analyzed by an automated gas chromatography system at the University of Colorado’s Institute of Arctic and Alpine Research (INSTAAR) in pairs of samples collected bi-weekly at 41 global background monitoring sites. Since the implementation of this program in 2004 more than 7000 measurements have been obtained. The obtained data allow elucidating the geographical and seasonal behavior of atmospheric NMHC, as well as interannual variations. Results show a wide dynamic range of mixing ratio changes. Concentration maxima and seasonal cycles are most pronounced in regions of highest emission sources and highest changes in the seasonal OH radical sink, i.e. the northern high and mid-latitudes. Seasonal southern hemisphere (SH) maxima are ~7 times and ~20 times lower for ethane and propane than in the northern hemisphere, which mainly reflects the smaller source strength of these gases in the SH. The richness of information in these data will help constraining the variability in global atmospheric oxidation chemistry and regional budgets of greenhouse gases, such as of methane and CO2, and most certainly stimulate further interests and applications in many fields of atmospheric chemistry and climate research

  4. Chemistry of the atmosphere: Its impact on global change

    SciTech Connect

    Birks, J.W.; Calvert, J.G.; Sievers, R.E.

    1993-12-31

    This book is a summary of the plenary lectures of the CHEMRAWN VII Conference held in Baltimore, Maryland, 2-7 December 1991. The book draws together some interesting perspectives relating to global change from the atmospheric chemistry community from more of a chemist`s point of view than a meteorologist`s. In fact, Chemical Research Applied to World Needs (CHEMRAWN) illustrates how the international atmospheric chemistry community (the meeting was cosponsored by the International Union of Pure and Applied Chemistry and the American Chemical Society) has traditionally put forth a considerable effort to understand the global environmental impact of dumping chemicals into the atmosphere. The primary benefit of this book is the concise summary of the research issues confronting the atmospheric science community regarding global change. Being a summary of plenary lectures, the technical depth of the papers is not great. Therefore the book offers a good presentation of material to the nonspecialist who seeks to understand the issues around which the global change research community has focused.

  5. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Rhee, Tae Siek; Rigby, Matt; Hofstetter, Doris; Hill, Matthias; Schoenenberger, Fabian; Reimann, Stefan

    2015-03-01

    Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097ppt, 0.30ppt, and 0.13ppt (parts per trillion, 10-12, in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ± 0.6 million t CO2 equivalent in 2014 of which ≈80% stems from desflurane. We also report on halothane, a previously widely used anesthetic. Its global mean mole fraction has declined to 9.2ppq (parts per quadrillion, 10-15) by 2014. However, the inferred present usage is still 280 ±120t yr-1.

  6. Atmospheric methyl bromide: Trends and global mass balance

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A.; Gunawardena, R. )

    1993-02-20

    Atmospheric methyl bromide is of considerable environmental importance as the largest reservoir of gaseous bromine in the atmosphere. Bromine gases can catalytically destroy stratospheric ozone. Since agricultural activities, automobiles, biomass burning, and other human activities produce CH[sub 3]Br, it is of interest to know its global mass balance and particularly the specific sources and sinks. In this paper the authors provide a decadal time series of global CH[sub 3]Br concentrations in the Earth's atmosphere. The data show that average concentrations are about 10 pptv and during the last 4 years may be increasing at 0.3 [plus minus] 0.1 pptv/yr (3%/yr [plus minus] 1%/yr). They estimate that the atmospheric lifetime of CH[sub 3]Br that is due to reaction with OH, is about 2 years, resulting in a calculated global emission rate of about 100 Gy/yr. Ocean supersaturations of 140-180% are observed, and atmospheric concentrations over the open oceans are higher than at comparably located coastal sites. The ocean source is estimated to be about 35 Gg/yr. The remaining emissions must come from other natural sources and anthropogenic activities. The results are based on some 2,200 samples obtained over more than a decade. Mass balance calculations explain most aspects of the present data but other implications are not easily reconciled, leaving open the possibility of undiscovered sources and sinks. 20 refs., 5 figs., 4 tabs.

  7. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  8. Global-scale teleconnections in the Earth's middle atmosphere

    NASA Astrophysics Data System (ADS)

    Shepherd, T. G.

    2009-05-01

    The global-scale circulation of the Earth's middle atmosphere is driven by angular momentum transfers effected by waves propagating up from the more turbulent, thermally-driven troposphere. The resulting effects on the middle atmosphere are largest in polar regions. This 'mechanical forcing' is an indirect response to the direct thermal forcing of the atmosphere by the Sun, and can act in a thermally-indirect manner, i.e. as a refrigerator. As it involves wave propagation, it can also act anti-diffusively, and non-locally. The basic physics of the process is described and examples given of how it can lead to global-scale teleconnections, both vertically and latitudinally. Parallels with the dynamics of the Sun will be mentioned.

  9. Atmospheric methyl bromide - Trends and global mass balance

    NASA Technical Reports Server (NTRS)

    Khalil, M. A. K.; Rasmussen, R. A.; Gunawardena, R.

    1993-01-01

    A decadal time series of global CH3Br concentrations in the earth's atmosphere is presented. It is shown that average concentrations are about 10 pptv and during the last 4 yr may be increasing at 0.3 +/- 0.1 pptv/yr. It is estimated that the atmospheric lifetime of CH3Br that is due to reaction with OH is about 2 yr, which results in a calculated global emission rate of about 100 Gg/yr. Ocean supersaturations of 140-180 percent are observed, and atmospheric concentrations over the open oceans are higher than at comparably located coastal sites. The ocean source is estimated to be about 35 Gg/yr. The remaining emissions must come from other natural sources and anthropogenic activities.

  10. Global-scale waves in the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Gierasch, Peter J.; Schinder, Paul J.

    1993-01-01

    The nature of global-scale waves that can exist in the atmosphere of Venus is examined. A linear three-dimensional model atmosphere with spherical geometry is used to study large-scale forced and free waves. Solutions are obtained numerically with grid points in the vertical and a spherical harmonic expansion in the horizontal. Observations have shown a global-scale traveling wave with phase speed near the cloud-top wind velocity. Global-scale wave modes are found to exist in the model at this velocity. When a radiative-dynamic cloud feedback is added to the model, the most unstable wave mode is found to have the same phase speed as the observed wave. The horizontal structure of this wave is consistent with the observed horizontal structure of the 'Y' feature seen in ultraviolet images of the Venus cloud top.

  11. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  12. The atmospheric partial lifetime of carbon tetrachloride with respect to the global soil sink

    NASA Astrophysics Data System (ADS)

    Rhew, Robert C.; Happell, James D.

    2016-03-01

    The magnitude of the terrestrial soil sink for atmospheric carbon tetrachloride (CCl4) remains poorly constrained, with the estimated uncertainty range of CCl4 partial lifetimes between ~110 and 910 years. Field observations are sparse, and there are uncertainties in extrapolating these results to the global scale. Here we add to the published CCl4 fluxes with additional field measurements, and we employ a land cover classification scheme based on Advanced Very High Resolution Radiometer measurements that align more closely with the measurement sites to reevaluate the global CCl4 soil sink. We calculate an updated partial lifetime of CCl4 with respect to the soil sink to be 375 (288-536) years, which is 50 to 90% longer than the most recently published best estimates of the soil sink partial lifetime (195 and 245 years). This translates into a longer overall atmospheric lifetime estimate, which is more consistent with the observed atmospheric concentration trend and interhemispheric gradient.

  13. NASA/MSFC FY90 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W. (Editor)

    1990-01-01

    Research supported by the Global Atmospheric Research Program at the Marshall Space Flight Center on atmospheric remote sensing, meteorology, numerical weather forecasting, satellite data analysis, cloud precipitation, atmospheric circulation, atmospheric models and related topics is discussed.

  14. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  15. Observational constraints on the global atmospheric CO sub 2 budget

    SciTech Connect

    Tans, P.P. ); Fung, I.Y. ); Takahashi, Taro )

    1990-03-23

    Observed atmospheric concentrations of CO{sub 2} and data on the partial pressures of CO{sub 2} in surface ocean waters are combined to identify globally significant sources and sinks of CO{sub 2}. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO{sub 2} are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO{sub 2} in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO{sub 2}. Therefore, a large amount of the CO{sub 2} is apparently absorbed on the continents by terrestrial ecosystems. 39 refs., 5 figs., 4 tabs.

  16. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  17. Atmospheric iron deposition: global distribution, variability, and human perturbations.

    PubMed

    Mahowald, Natalie M; Engelstaedter, Sebastian; Luo, Chao; Sealy, Andrea; Artaxo, Paulo; Benitez-Nelson, Claudia; Bonnet, Sophie; Chen, Ying; Chuang, Patrick Y; Cohen, David D; Dulac, Francois; Herut, Barak; Johansen, Anne M; Kubilay, Nilgun; Losno, Remi; Maenhaut, Willy; Paytan, Adina; Prospero, Joseph M; Shank, Lindsey M; Siefert, Ronald L

    2009-01-01

    Atmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron are less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding. PMID:21141037

  18. Remote sensing of the earth's biosphere - A tool for studies of the global atmospheric environment

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Harriss, Robert C.; Bartlett, Karen B.

    1987-01-01

    Recent advances in remote sensing technology and its use for global studies of the biospheric processes are described. Special consideration is given to research related to two issues: (1) quantifying the impacts of natural vegetation and its changing patterns of occurrence on the atmospheric CO2 budget and (2) assessing wetlands (such as the swamps and marshes of Florida's Everglades) as sources of atmospheric CH4. The results include the data from NOAA-AVHRR sensors and from experiments in remote detection of plant growth rate.

  19. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  20. Global monitoring of atmospheric properties by the EOS MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1993-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.

  1. Atmospheric oxidation of hexachlorobenzene: New global source of pentachlorophenol.

    PubMed

    Kovacevic, Goran; Sabljic, Aleksandar

    2016-09-01

    Hexachlorobenzene is highly persistent, bioaccumulative, toxic and globally distributed, a model persistent organic pollutant. The major atmospheric removal process for hexachlorobenzene is its oxidation by hydroxyl radicals. Unfortunately, there is no information on the reaction mechanism of this important atmospheric process and the respective degradation rates were measured in a narrow temperature range not of environmental relevance. Thus, the geometries and energies of all stationary points significant for the atmospheric oxidation of hexachlorobenzene are optimized using MP2/6-311G(d,p) method. Furthermore, the single point energies were calculated with G3 method on the optimized minima and transition-states. It was demonstrated for the first time that the addition of hydroxyl radicals to hexachlorobenzene proceeds indirectly, via a prereaction complex. In the prereaction complex the hydroxyl radical is almost perpendicular to the aromatic ring while oxygen is pointing to its center. In contrast, in the transition state it is nearly parallel with the aromatic ring. The reliable rate constants are calculated for the first time for the atmospheric oxidation of hexachlorobenzene for all environmentally relevant temperatures. It was also demonstrated for the first time that pentachlorophenol is the major stable product in the addition of hydroxyl radicals to hexachlorobenzene and that atmosphere seems to be a new global secondary source of pentachlorophenol. PMID:27341152

  2. Observational constraints on the global atmospheric budget of ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J. A.; Millet, D. B.; Goldan, P. D.; Kuster, W. C.; Goldstein, A.

    2010-01-01

    Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr-1 from industrial sources and biofuels, 9.2 Tg yr-1 from terrestrial plants, ~0.5 Tg yr-1 from biomass burning, and 0.05 Tg yr-1 from atmospheric reactions of the ethyl peroxide radical (C2H5O2) with itself and with the methyl peroxide radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition to land (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions estimated at a factor of three may contribute to the 50% model underestimate of observations in the North American boundary layer. Furthermore, current levels of ethanol measured in remote atmospheres are an order of magnitude larger than those explained by surface sources or by in-situ atmospheric production from observed precursor hydrocarbons in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and other VOCs are a critical step towards assessing the impacts of increasing use of ethanol as a fuel.

  3. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Topics discussed at the March 1990 American Geophysical Union's Conference on biomass burning which was attended by more than 175 participants representing 19 countries are presented. Conference highlights include discussion of remote sensing data concerning biomass burning (BB), gaseous and particle emissions resulting from BB in the tropics, BB in temperate and boreal ecosystems, the historic and prehistoric perspectives on BB, BB and global budgets for carbon, nitrogen, and oxygen, and the BB and the greenhouse effect. Global estimates of annual amounts of biomass burning and of the resulting release of carbon to the atmosphere and the mean gaseous emission ratios for fires in wetlands, chaparral, and boreal ecosystems are given. An overview is presented of some conference discussions including global burning from 1850-1980, the global impact of biomass burning, the great Chinese/Soviet fire of 1987, and burning and biogenic emissions.

  4. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  5. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07)

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    GRAM is a Fortran software package that can run on a variety of platforms including PC's. GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc. GRAM99 covers all global locations, all months, and heights from the surface to approx. 1000 km). Dispersions (perturbations) of these parameters are also provided and are spatially and temporally correlated. GRAM can be run in a stand-alone mode or called as a subroutine from a trajectory program. GRAM07 is diagnostic, not prognostic (i.e., it describes the atmosphere, but it does not forecast). The source code is distributed free-of-charge to eligible recipients.

  6. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  7. Global thermohaline circulation. Part 2: Sensitivity with interactive atmospheric transports

    SciTech Connect

    Wang, X.; Stone, P.H.; Marotzke, J.

    1999-01-01

    A hybrid coupled ocean-atmospheric model is used to investigate the stability of the thermohaline circulation (THC) to an increase in the surface freshwater forcing in the presence of interactive meridional transports in the atmosphere. The ocean component is the idealized global general circulation model used in Part 1. The atmospheric model assumes fixed latitudinal structure of the heat and moisture transports, and the amplitudes are calculated separately for each hemisphere from the large-scale sea surface temperature (SST) and SST gradient, using parameterizations based on baroclinic stability theory. The ocean-atmosphere heat and freshwater exchanges are calculated as residuals of the steady-state atmospheric budgets. Owing to the ocean component`s weak heat transport, the model has too strong a meridional SST gradient when driven with observed atmospheric meridional transports. When the latter are made interactive, the conveyor belt circulation collapses. A flux adjustment is introduced in which the efficiency of the atmospheric transports is lowered to match the too low efficiency of the ocean component. The feedbacks between the THC and both the atmospheric heat and moisture transports are positive, whether atmospheric transports are interactive in the Northern Hemisphere, the Southern Hemisphere, or both. However, the feedbacks operate differently in the northern and southern Hemispheres, because the Pacific THC dominates in the Southern Hemisphere, and deep water formation in the two hemispheres is negatively correlated. The feedbacks in the two hemisphere do not necessarily reinforce each other because they have opposite effects on low-latitude temperatures. The model is qualitatively similar in stability to one with conventional additive flux adjustment, but quantitatively more stable.

  8. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S. (Editor)

    1991-01-01

    The present volume discusses the biomass burning (BMB) studies of the International Global Atmospheric Chemistry project, GEO satellite estimation of Amazonian BMB, remote sensing of BMB in West Africa with NOAA-AVHRR, an orbital view of the great Chinese fire of 1987, BMB's role in tropical rainforest reduction, CO and O3 measurements of BMB in the Amazon, effects of vegetation burning on the atmospheric chemistry of the Venezuelan savanna, an assessment of annually-burned biomass in Africa, and light hydrocarbon emissions from African savanna burnings. Also discussed are BMB in India, trace gas and particulate emissions from BMB in temperate ecosystems, ammonia and nitric acid emissions from wetlands and boreal forest fires, combustion emissions and satellite imagery of BMB, BMB in the perspective of the global carbon cycle, modeling trace-gas emissions from BMB, NO(x) emissions from BMB, and cloud-condensation nuclei from BMB.

  9. Regional forecasting with global atmospheric models; Fourth year report

    SciTech Connect

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  10. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    NASA Astrophysics Data System (ADS)

    Friedman, C. L.; Selin, N. E.

    2015-11-01

    We present a spatially and temporally resolved global atmospheric PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere mid-latitudes, and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for the International Council for the Exploration of the Sea 7 PCBs, and demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently-described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that mid-latitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  11. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    NASA Astrophysics Data System (ADS)

    Friedman, Carey L.; Selin, Noelle E.

    2016-03-01

    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  12. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  13. Global measurements of wind fields using the Laser Atmospheric Wind Sounder (LAWS) on the Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, Daniel E.

    1988-01-01

    The technology for measuring global wind fields in space by the Laser Atmospheric Wind Sounder (LAWS) to be flown on the Earth Observing System (EOS) is discussed. Studies initiated by NASA to determine the feasibility of using Doppler lidar from a platform in space to measure the wind globally have shown the general feasibility of the technique and have identified the technological problems that need to be resolved. Among the lidar systems being evaluated, CO2 coherent detection lidar is given special consideration. A comprehensive research program, the Global Backscatter Experiment, has been established to study global distribution of naturally occurring atmospheric aerosols that provide signal return at the wavelengths used by the techniques under consideration. Wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering the present knowledge of the large-scale atmospheric circulation and climate dynamics, and of global biogeochemical and hydrologic cycles.

  14. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1990-01-01

    Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.

  15. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  16. A quasi-static model of global atmospheric electricity. I - The lower atmosphere

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Roble, R. G.

    1979-01-01

    A quasi-steady model of global lower atmospheric electricity is presented. The model considers thunderstorms as dipole electric generators that can be randomly distributed in various regions and that are the only source of atmospheric electricity and includes the effects of orography and electrical coupling along geomagnetic field lines in the ionosphere and magnetosphere. The model is used to calculate the global distribution of electric potential and current for model conductivities and assumed spatial distributions of thunderstorms. Results indicate that large positive electric potentials are generated over thunderstorms and penetrate to ionospheric heights and into the conjugate hemisphere along magnetic field lines. The perturbation of the calculated electric potential and current distributions during solar flares and subsequent Forbush decreases is discussed, and future measurements of atmospheric electrical parameters and modifications of the model which would improve the agreement between calculations and measurements are suggested.

  17. The Global Atmospheric Environment for the Next Generation

    SciTech Connect

    Dentener, F; Stevenson, D; Ellingsen, K; van Joije, T; Schultz, M; Amann, M; Atherton, C; Bell, N; Bergmann, D; Bey, I; Bouwman, L; Butler, T; Cofala, J; Collins, B; Drevet, J; Doherty, R; Eickhout, B; Eskes, H; Fiore, A; Gauss, M; Hauglustaine, D; Horowitz, L; Isaksen, I A; Josse, B; Lawrence, M; Krol, M; Lamarque, J F; Montanaro, V; Muller, J F; Peuch, V H; Pitari, G; Pyle, J; Rast, S; Rodriguez, J; Sanderson, M; Savage, N H; Shindell, D; Strahan, S; Szopa, S; Sudo, K; Van Dingenen, R; Wild, O; Zeng, G

    2005-12-07

    Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using twenty-five state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, whilst the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models, and show a reasonable agreement with surface ozone, wet deposition and NO{sub 2} satellite observations. Large parts of the world are currently exposed to high ozone concentrations, and high depositions of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 {+-} 1.2 ppbv (CLE), and 4.3 {+-} 2.2 ppbv (A2). Only the progressive MFR scenario will reduce ozone by -2.3 {+-} 1.1 ppbv. The CLE and A2 scenarios project further increases in nitrogen critical loads, with particularly large impacts in Asia where nitrogen emissions and deposition are forecast to increase by a factor of 1.4 (CLE) to 2 (A2). Climate change may modify surface ozone by -0.8 {+-} 0.6 ppbv, with larger decreases over sea than over land. This study shows the importance of enforcing current worldwide air quality legislation, and the major benefits of going further. Non-attainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.

  18. The Global Atmosphere Watch Programme: New Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Terblanche, D. E.; Tarasova, O. A.

    2015-12-01

    The Global Atmosphere Watch Programme, one of the tree research Programmes of the World Meteorological Organization (WMO/GAW) is the only existing long-term international global programme that coordinates observations and analysis of atmospheric composition changes. The GAW Programme builds on a partnership of more than 100 countries. Within its 25 years of existence WMO/GAW has matured to the system that provides reliable long-term high quality observations in support of international policy making. WMO/GAW includes globally coordinated observational network, complemented by a comprehensive quality assurance system and capacity development. In spite of the fact that GAW has embraced the IGACO strategy (Integrated Global Atmospheric Chemistry Observations), the programme in its current form still has a strong observational bias. Future development of WMO/GAW requires the further evolution of the programme concept toward "science for services". New challenges call for the changes in the GAW station requirements and data managements, for new approaches to collaboration with the contributing networks and better involvement of the modelling community. The programme structure is evolving to streamline better to user requirements with the move from precipitation chemistry to total deposition and from near-real-time data delivery to applications (modeling) requiring such data delivery. The updated concept of GAW will include more cross-cutting applications. A new category of local station is introduced to help with the verification of some applications including those related to urban areas and the impacts of urban complexes regionally and globally. The evolution of the GAW Programme towards user driven cross-cutting applications provides a new opportunity to the National Meteorological and Hydrological Services in partnership with other science - based institutions to increase their relevance to society.

  19. Global thermohaline circulation and ocean-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli

    1997-09-01

    A global ocean general circulation model (GCM) with idealized geometry (two basins of equal size, Marotzke and Willebrand, 1991) is coupled to an energy balance atmospheric model with nonlinear parameterizations of meridional atmospheric transports of heat and moisture. With the coupled model that prescribes the atmospheric heat and moisture transports, the North Atlantic meridional mass overturning rates at equilibrium increases as the global hydrological cycle strength increases. Furthermore, the equilibrium overturning rate is primarily controlled by the hydrological cycle of the Southern Hemisphere, whereas the Northern Hemispheric hydrological cycle has little impact. The transition of the thermohaline circulation from the conveyor belt to the southern sinking state is controlled by two factors, the hydrological cycle in Northern Hemisphere, and the ratio of hydrological cycle strengths between the Northern Hemisphere and the Southern Hemisphere. Increasing either of them destabilizes the thermohaline circulation. The large-scale dynamics of the North Atlantic overturning is mainly interhemispheric, with the bulk of the overturning rising in the Southern Hemisphere. Multiple intermediate states exist that are only quantitatively different, under very small salinity perturbations. The coupled feedbacks between the thermohaline circulation and the atmospheric heat and moisture transports are demonstrated to exist in the coupled model, and all of them are positive. In addition, it is identified that the coupled feedbacks associated with the atmospheric transports in the Southern Hemisphere are also positive. Two different flux adjustments are used in the coupled model, with one adjusting the atmospheric transports efficiencies, the other adjusting the surface fluxes. Different flux adjustments influence the coupled feedback intensities, and hence the stability of the thermohaline circulation. (Copies available exclusively from MIT Libraries, Rm. 14

  20. Global thermohaline circulation. Part 1: Sensitivity to atmospheric moisture transport

    SciTech Connect

    Wang, X.; Stone, P.H.; Marotzke, J.

    1999-01-01

    A global ocean general circulation model of idealized geometry, combined with an atmospheric model based on observed transports of heat, momentum, and moisture, is used to explore the sensitivity of the global conveyor belt circulation to the surface freshwater fluxes, in particular the effects of meridional atmospheric moisture transports. The numerical results indicate that the equilibrium strength of the North Atlantic Deep Water (NADW) formation increases as the global freshwater transports increase. However, the global deep water formation--that is, the sum of the NADW and the Southern Ocean Deep Water formation rates--is relatively insensitive to changes of the freshwater flux. Perturbations to the meridional moisture transports of each hemisphere identify equatorially asymmetric effects of the freshwater fluxes. The results are consistent with box model results that the equilibrium NADW formation is primarily controlled by the magnitude of the Southern Hemisphere freshwater flux. However, the results show that the Northern Hemisphere freshwater flux has a strong impact on the transient behavior of the North Atlantic overturning. Increasing this flux leads to a collapse of the conveyor belt circulation, but the collapse is delayed if the Southern Hemisphere flux also increases. The perturbation experiments also illustrate that the rapidity of collapse is affected by random fluctuations in the wind stress field.

  1. [Global Atmospheric Chemistry/Transport Modeling and Data-Analysis

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1999-01-01

    This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.

  2. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  3. Observational constraints on the global atmospheric budget of ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J. A.; Millet, D. B.; Goldan, P. D.; Kuster, W. C.; Goldstein, A.

    2010-06-01

    Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr-1 from industrial sources and biofuels, 9.2 Tg yr-1 from terrestrial plants, ~0.5 Tg yr-1 from biomass burning, and 0.05 Tg yr-1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2) with itself and with the methyl peroxy radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  4. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  5. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements

    PubMed Central

    Arnold, Tim; Harth, Christina M.; Mühle, Jens; Manning, Alistair J.; Salameh, Peter K.; Kim, Jooil; Ivy, Diane J.; Steele, L. Paul; Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Baggenstos, Daniel; Weiss, Ray F.

    2013-01-01

    Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing. PMID:23341630

  6. Atmospheric interactions during global deposition of Chicxulub impact ejecta

    NASA Astrophysics Data System (ADS)

    Goldin, Tamara Joan

    Atmospheric interactions affected both the mechanics of impact ejecta deposition and the environmental effects from the catastrophic Chicxulub impact at the Cretaceous-Paleogene (K-Pg) boundary. Hypervelocity reentry and subsequent sedimentation of Chicxulub impact spherules through the Earth's atmosphere was modeled using the KFIX-LPL two-phase flow code, which includes thermal radiation and operates at the necessary range of flow regimes and velocities. Spherules were injected into a model mesh approximating a two-dimensional slice of atmosphere at rates based on ballistic models of impact plume expansion. The spherules decelerate due to drag, compressing the upper atmosphere and reaching terminal velocity at ˜70 km in altitude. A band of spherules accumulates at this altitude, below which is compressed cool air and above which is hot (>3000 K) relatively-empty atmosphere. Eventually the spherule-laden air becomes unstable and density currents form, transporting the spherules through the lower atmosphere collectively as plumes rather than individually at terminal velocity. This has implications for the depositional style and sedimentation rate of the global K-Pg boundary layer. Vertical density current formation in both incompressible (water) and compressible (air) fluids is evaluated numerically via KFIX-LPL simulations and analytically using new instability criteria. Models of density current formation due to particulate loading of water are compared to tephra fall experiments in order to validate the model instabilities. The impact spherules themselves obtain peak temperatures of 1300-1600 K and efficiently radiate that heat as thermal radiation. However, the downward thermal radiation emitted from decelerating spherules is increasingly blocked by previously-entered spherules settling lower in the atmosphere. This self-shielding effect strengthens with time as the settling spherule cloud thickens and becomes increasingly opaque, limiting both the magnitude

  7. Multi-component interactions of gravity waves in global atmospheric models

    NASA Astrophysics Data System (ADS)

    Kim, Y.-J.

    2009-04-01

    The parameterization of the effects of gravity waves in a global atmospheric model has progressed significantly over the past two decades ever since its need was recognized and its effects were represented in the models. The source of gravity-wave drag considered spans from orography and convective systems to jet streams and frontal systems. The vertical domain of the modeled atmosphere for which drag is applied moved up from the troposphere to include the middle/upper atmosphere. The balance between the drag in the lower and middle atmospheres became important in view of the momentum budget in the models that include the middle atmosphere. The parameterization problem then advances to treat the interactions with other physical processes. The interactions among the various drag processes, such as gravity-wave drag due to orography and convective processes, form drag, friction drag, low-level drag due to blocking, mountain drag due to resolved orography, started being considered important. The interactions are expanded to other physical processes such as the radiation and atmospheric boundary layer processes. The interactions between gravity-wave drag and radiation / boundary layer mixing indeed play an important role in properly representing the drag processes in atmospheric models. These processes strongly interact with one another and should be evaluated collectively as well as individually in atmospheric models. The problem extends further to the interaction between the atmospheric forecast model and the data assimilation model. Because an atmospheric forecast model and a data assimilation model are strongly coupled in a forecast system, independent improvements in one model or the other do not automatically improve forecasts. For example, improved middle-atmospheric physics due to improved gravity-wave drag can degrade forecast skill, if the data assimilation cannot take advantage of the improved physics and rejects more observation data that would have been

  8. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and

  9. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  10. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Jacob, D. J.; Yantosca, R. M.; Sulprizio, M. P.; Millet, D. B.; Mao, J.; Paulot, F.; Singh, H. B.; Roiger, A.-E.; Ries, L.; Talbot, R. W.; Dzepina, K.; Pandey Deolal, S.

    2013-10-01

    Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs), is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.

  11. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Jacob, D. J.; Yantosca, R. M.; Sulprizio, M. P.; Millet, D. B.; Mao, J.; Paulot, F.; Singh, H. B.; Roiger, A.; Ries, L.; Talbot, R. W.; Dzepina, K.; Pandey Deolal, S.

    2014-03-01

    Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.

  12. Extensive middle atmosphere (20-120 KM) modification in the Global Reference Atmospheric Model (GRAM-90)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, Dale

    1990-01-01

    The Global Reference Atmospheric Model (GRAM) is currently available in the 'GRAM-88' version (Justus, et al., 1986; 1988), which includes relatively minor upgrades and changes from the 'MOD-3' version (Justus, et al., 1980). Currently a project is underway to use large amounts of data, mostly collected under the Middle Atmosphere Program (MAP) to produce a major upgrade of the program planned for release as the GRAM-90 version. The new data and program revisions will particularly affect the 25-90 km height range. Sources of data and preliminary results are described here in the form of cross-sectional plots.

  13. GRAM-86 - FOUR DIMENSIONAL GLOBAL REFERENCE ATMOSPHERE MODEL

    NASA Technical Reports Server (NTRS)

    Johnson, D.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications would be global circulation and diffusion studies, and generating profiles for comparison with other atmospheric measurement techniques, such as satellite measured temperature profiles and infrasonic measurement of wind profiles. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The high atmospheric region above 115km is simulated entirely by the Jacchia (1970) model. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). Between 90km and 115km a smooth transition between the modified Groves values and the Jacchia values is accomplished by a fairing technique. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. Between 25km and 30km an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate

  14. Atmospheric Rivers in a Hierarchy of High-Resolution Global Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Schiemann, R.; Demory, M. E.; Lavers, D. A.; Mizielinski, M.; Vidale, P. L.; Roberts, M.

    2014-12-01

    Atmospheric rivers are long and narrow plumes that carry moisture over land along frontal zones associated with mid-latitude storms. They can account for 90% of the horizontal moisture transport in a given day and are responsible for major flooding, particularly along western coastal regions (western coasts of North America and Europe). It is therefore crucial to well simulate these events in climate models in order to improve predictions and attributions of heavy precipitation and flooding along western coastal regions. In this study, we investigate the ability of a state-of-the art climate model to represent the location, frequency and structure of atmospheric rivers affecting Western Europe and California. By making use of the UPSCALE (UK on PRACE: weather resolving Simulations of Climate for globAL Environmental risk) campaign, a traceable hierarchy of global atmospheric simulations (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130 km to 25 km, we study the impact of improved representation of small-scale processes on the mean climate, its variability and extremes in order to understand the processes underlying observed improvement with higher resolution. Five-member ensembles of 27-year, atmosphere-only integrations are available at these resolutions, using both present day forcing and a future climate scenario. Demory et al (2014) have already shown that a relatively coarse resolution limits the model's ability to simulate moisture transport from ocean to land. This is particularly true at mid-latitude, where the transport is dominated by eddies. Increasing horizontal resolution increases eddy transport of moisture at mid-latitudes. Here, we investigate the climatology of atmospheric rivers, in particular their frequency and associated precipitation, compared to reanalysis products. Some aspects of the relationship between the improved simulation of moisture transport in current climate conditions, and how this impacts

  15. Inter-university Upper atmosphere Global Observation NETwork (IUGONET)

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Tanaka, Y.; Hori, T.; Koyama, Y.; Kagitani, M.; Shinbori, A.; Abe, S.; Kouno, T.; Yoshida, D.; Ueno, S.; Kaneda, N.; Iugonet Project Team

    2010-12-01

    To investigate the mechanism of long-term variations in the upper atmosphere, we need to create integrated and organic links between various types of ground-based observation made at different locations and altitudes. The databases of such observations, however, have been maintained and made available to the community by each institution that conducted the observations. That is one of the reasons why those data have been used only for studies of specific phenomena. For the same reason some of the observational data have been used by only researcher groups who were involved in the observation campaign and have never been made available to other researchers. A six-year research project, Inter-university Upper atmosphere Global Observation NETwork (IUGONET), was just initiated in 2009 to overcome such problems of data use by the five Japanese research institutes (NiPR, Tohoku Univ., Nagoya Univ., Kyoto Univ., and Kyushu Univ.) that have been leading ground-based observations of the upper atmosphere for decades. We are collaborating to build a database system for the metadata of our various kinds of observational data acquired by the global network of radars, magnetometers, optical sensors, helioscopes, etc. The metadata database (MDB) will be of great help to researchers in efficiently finding and obtaining various observational data we have accumulated over many years. The MDB system will significantly facilitate the analyses of a variety of observational data, which we believe will lead to more comprehensive studies of the mechanisms of long-term variations in the upper atmosphere. Moreover, we expect that researchers will become familiar with not only data in their area of expertise but also data from different atmospheric regions by using the MDB. This will contribute to the promotion of new interdisciplinary studies regarding the upper atmosphere. The IUGONET development team has designed the initial version of our metadata format based on the Space Physics

  16. Utilization of Global Reference Atmosphere Model (GRAM) for shuttle entry

    NASA Technical Reports Server (NTRS)

    Joosten, Kent

    1987-01-01

    At high latitudes, dispersions in values of density for the middle atmosphere from the Global Reference Atmosphere Model (GRAM) are observed to be large, particularly in the winter. Trajectories have been run from 28.5 deg to 98 deg. The critical part of the atmosphere for reentry is 250,000 to 270,000 ft. 250,000 ft is the altitude where the shuttle trajectory levels out. For ascending passes the critical region occurs near the equator. For descending entries the critical region is in northern latitudes. The computed trajectory is input to the GRAM, which computes means and deviations of atmospheric parameters at each point along the trajectory. There is little latitude dispersion for the ascending passes; the strongest source of deviations is seasonal; however, very wide seasonal and latitudinal deviations are exhibited for the descending passes at all orbital inclinations. For shuttle operations the problem is control to maintain the correct entry corridor and avoid either aerodynamic skipping or excessive heat loads.

  17. Revised Perturbation Statistics for the Global Scale Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1975-01-01

    Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.

  18. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  19. Future impact of transport emissions on the global atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Koffi, B.; Szopa, S.; Cozic, A.

    2009-04-01

    Emissions of air pollutants by road, air traffic and international shipping affect air quality and climate. Besides their effect on the ozone concentration and its related radiative forcing, they also affect the OH-concentration, i.e. the oxidizing capacity of the atmosphere. The pollutants are emitted by the three transport sectors into highly different environments. The O3 and OH potential productions induced by each of these sectors thus differ strongly. These transport emissions are expected to show drastic quantitative and geographic changes in the next decades, because of new emission regulations, increasing mobility, as well as demographic and economic growths. In addition to changes in emissions, significant changes in climate parameters such as H2O, temperature, and dynamics are expected to occur in the future global atmosphere. They will affect the oxidation processes and thereby the changes in the atmospheric concentrations induced by transport emissions. Within the EU-project QUANTIFY (Quantifying the Climate Impact of Global and European Transport Systems) the LMDz-INCA climate-chemistry model was used to estimate the effect of transport emissions on the global atmospheric chemical composition. In a first step, up-to-date emission datasets were used for the transport and non-transport anthropogenic emissions for present (2000) and future (2050, SRES A1b and B1 scenarios) using 2003 nudged meteorology. A strong reduction of the road emissions and a moderate (B1) to high (A1b) increase of the ship and aircraft emissions are expected by the year 2050. As a consequence, the impact of road emissions on ozone is shown to decrease drastically, whereas aviation would become the major transport sources of tropospheric ozone perturbation at global scale. According to the most likely scenario (A1b), the contribution of all transport modes to the ozone column would increase everywhere, reaching up to 13% in some areas such as Asia. In a second step of the study

  20. Global atmospheric circulation statistics, 1000-1 mb

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1992-01-01

    The atlas presents atmospheric general circulation statistics derived from twelve years (1979-90) of daily National Meteorological Center (NMC) operational geopotential height analyses; it is an update of a prior atlas using data over 1979-1986. These global analyses are available on pressure levels covering 1000-1 mb (approximately 0-50 km). The geopotential grids are a combined product of the Climate Analysis Center (which produces analyses over 70-1 mb) and operational NMC analyses (over 1000-100 mb). Balance horizontal winds and hydrostatic temperatures are derived from the geopotential fields.

  1. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    USGS Publications Warehouse

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  2. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  3. Sentinel-5 Precursor: Global Monitoring of Atmospheric Trace Gases & Aerosols

    NASA Astrophysics Data System (ADS)

    Nett, Herbert; McMullan, Kevin; Ingmann, Paul

    2013-04-01

    ESA's Sentinel 5 Precursor (S5P) Mission will form part of the Space Component under the Global Monitoring for Environment and Security (GMES) initiative. It represents a preparatory project for the GMES atmospheric missions that comprise both a geo-stationary (Sentinel-4 / part of MTG-S payload) and a polar orbiting (Sentinel-5 / MetOp Second Generation) component. In view of the planned launch date of around 2020 for the first S-4 MTG-S and MetOp-SG spacecrafts, respectively, S5P (launch: mid 2015) shall minimize gaps in the availability of global atmospheric data products as provided by its predecessor missions SCIAMACHY (Envisat) and OMI (AURA). The satellite's single payload instrument, TROPOMI (TROPOspheric Monitoring Instrument), is jointly developed by The Netherlands and ESA. Covering spectral channels located in the UV, visible, near- and short-wave infrared it will measure various key species including stratospheric ozone, as well as NO2, SO2, CO, CH4, CH2O and aerosols, specifically in the lower Troposphere. The envisaged formation flying with NASA's Suomi NPP satellite will allow use of high spatial resolution imager data for enhanced cloud clearing of the observational data specifically in the short-wave infrared range. An outline of the Sentinel-5P mission objectives will be given. The status of development activities, covering Spacecraft and the Ground Segment will be presented.

  4. LEOMAC: A Future 'Global Atmospheric Composition Mission' (CACM) Concept

    NASA Technical Reports Server (NTRS)

    Livesey, Nathaniel; Santee, Michelle; Stek, Paul; Waters, Joe; Levelt, Pieternel; Veefkind, Pepijn; Kumer, Jack; Roche, Aidan

    2008-01-01

    Resolution of important outstanding questions in air quality, climate change and ozone layer stability demands global observations of multiple chemical species with high horizontal and vertical resolution from the boundary layer to the stratopause. We present a mission concept that delivers the needed atmospheric composition observations, along with cloud ice and water vapor data needed for improvements in climate and weather forecasting models. The mission comprises ultraviolet and infrared nadir and microwave limb viewing instruments observing wide swaths each orbit. We review the scientific goals of the mission and the measurement capabilities this concept will deliver. We describe how precessing orbits offer significant improvements in temporal resolution and diurnal coverage compared to sun-synchronous orbits. Such improvements are needed to quantify the impact of critical 'fast processes' such as deep convection on the composition and radiative properties of the upper troposphere, a region where water vapor and ozone are strong but poorly understood greenhouse gases. This concept can serve as the 'Global Atmospheric Composition Mission' (GACM) recently recommended by the National Academy of Sciences decadal survey as one of 17 priority earth science missions for the coming decade.

  5. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    SciTech Connect

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  6. Global changes in atmospheric concentrations of hydrochlorofluorocarbons and hydrofluorocarbons: assessing and guiding international policy decisions (Invited)

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.; Miller, B. R.; Hu, L.; Siso, C.; Moore, F.; Hall, B. D.; Elkins, J. W.

    2013-12-01

    Atmospheric observations allow an objective and independent assessment of policy controls related to the release of chemicals to the atmosphere. Currently there are substantial uncertainties regarding the magnitude of recent hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) use and how these compound classes will affect future stratospheric ozone depletion and climate. Here we report recent atmospheric trends for these compounds as measured from NOAA's global sampling network and other broad-scale sampling programs. When combined with our understanding of loss rates, the observations suggest smaller emission increases in HCFCs since 2007 than derived for the baseline scenario of the 2010 WMO Scientific Assessment of Ozone Depletion. They indicate that HCFC emissions have increased minimally (constant within 5%) after the 2007 Adjustments to the Montreal Protocol were agreed upon, which was well in advance of the 2013 freeze on global HCFC production. Additionally, our measurements allow the climate impacts associated with current use of HFCs to be accurately estimated and the future climate benefits of potential controls to be assessed. Global emissions of the major HFCs used as ODS substitutes totaled 450-500 MtCO2-eq/yr in 2012, which is approximately 1.5% of fossil-fuel-related emissions of CO2 in recent years. Approximately one-third of CO2-equivalent HFC emissions related to ODS substitution are currently from use of HFC-134a in mobile air conditioning, an application for which a short-lived and low-GWP alternative has been identified.

  7. Global atmospheric budget of simple monocyclic aromatic compounds

    NASA Astrophysics Data System (ADS)

    Cabrera-Perez, David; Taraborrelli, Domenico; Sander, Rolf; Pozzer, Andrea

    2016-06-01

    The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with an ensemble of surface and aircraft observations with the goal of understanding emission, production and removal of these compounds.Anthropogenic emissions provided by the RCP database represent the largest source of aromatics in the model (≃ 23 TgC year-1) and biomass burning from the GFAS inventory the second largest (≃ 5 TgC year-1). The simulated chemical production of aromatics accounts for ≃ 5 TgC year-1. The atmospheric burden of aromatics sums up to 0.3 TgC. The main removal process of aromatics is photochemical decomposition (≃ 27 TgC year-1), while wet and dry deposition are responsible for a removal of ≃ 4 TgC year-1.Simulated mixing ratios at the surface and elsewhere in the troposphere show good spatial and temporal agreement with the observations for benzene, although the model generally underestimates mixing ratios. Toluene is generally well reproduced by the model at the surface, but mixing ratios in the free troposphere are underestimated. Finally, larger discrepancies are found for xylenes: surface mixing ratios are not only overestimated but also a low temporal correlation is found with respect to in situ observations.

  8. OVOC (Oxygenated Volatile Organic Chemicals) in the Global Atmosphere: Atmospheric Budgets, Oceanic Concentrations, and Uncertainties

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.

    2004-01-01

    Airborne measurements of oxygenated volatile organic chemicals (OVOC), OH free radicals, and tracers of pollution were performed over the Pacific during Winter/Spring of 2001. Large concentrations of OVOC are present in the global troposphere and are expected to play an important role in atmospheric chemistry. Their total abundance (SIGMAOVOC) was nearly twice that of non-methane hydrocarbons (SIGMAC2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NHMC. A comparison of these data with western Pacific observations collected some seven years earlier (Feb.-March, 1994) did not reveal significant differences. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in twelve plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. These data are combined with other observations and interpreted with the help of a global 3-D model to assess OVOC global sources and sinks. We further interpret atmospheric observations with the help of an air-sea exchange model io show that oceans can be both net sorces and sinks. An extremely large oceanic reservoir of OVOC, that exceeds the atmospheric reservoir by more than an order of magnitude, can be inferred to be present. We conclude that OVOC sources are extremely large (150-500 TgC y-1) but remain poorly quantified. In many cases, measured concentrations are uncertain and incompatible with our present knowledge of atmospheric chemistry. Results based on observations from several field studies and critical gaps will be discussed.

  9. Global simulation of aromatic volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  10. Constructing an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael; Podolak, Ester; Mckay, Christopher

    1990-01-01

    Scientific model building can be an intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot be easily distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. In this paper, we describe a prototype for a scientific modeling software tool that serves as an aid to the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities. Our prototype has been developed in the domain of planetary atmospheric modeling, and is being used to construct models of Titan's atmosphere.

  11. An exploration of Saturn's atmospheric dynamics with Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indurain, Mikel; Meurdesoif, Yann; Millour, Ehouarn; Sylvestre, Mélody; Dubos, Thomas; Fouchet, Thierry

    2015-04-01

    A decade of Cassini observations has yielded a new vision on the dynamical phenomena in Saturn's troposphere and stratosphere. Several puzzling signatures (equatorial oscillations with a period of about half a Saturn year, interhemispheric circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, sudden warming associated with the powerful 2010 Great White Spot) cannot be explained by current photochemical and radiative models, which do not include dynamics. We therefore suspect that 1. the observed anomalies arise from large-scale dynamical circulations and 2. those large-scale dynamical motions are driven by atmospheric waves, eddies, and convection, in other words fundamental mechanisms giving birth to, e.g., the Quasi-Biennal Oscillation and Brewer-Dobson circulation in the Earth's middle atmosphere. We explore the plausibility of this scenario using our new Global Climate Modeling (GCM) for Saturn. To build this model, we firstly formulated dedicated physical parameterizations for Saturn's atmosphere, with a particular emphasis on radiative computations (using a correlated-k radiative transfer model, with radiative species and spectral discretization tailored for Saturn) aimed at both efficiency and accuracy, and validated them against existing Cassini observations. A second step consisted in coupling this radiative model to an hydrodynamical solver to predict the three-dimensional evolution of Saturn's tropospheric and stratospheric flow. We will provide an analysis of the first results of those dynamical simulations, with a focus on the development of baroclinic and barotropic instability, on eddy vs. mean flow interactions, and how this could relate to the enigmatic signatures observed by Cassini. Preliminary high-resolution simulations with a new icosahedral dynamical solver adapted to high-performance computing will also be analyzed. Perspectives are twofold: firstly, broadening our fundamental knowledge of

  12. Development of advanced global cloud classification schemes

    NASA Astrophysics Data System (ADS)

    Konvalin, Chris; Logar, Antonette M.; Lloyd, David; Corwin, Edward; Penaloza, Manuel; Feind, Rand E.; Welch, Ronald M.

    1997-01-01

    The problem of producing polar cloud masks for satellite imagery is an important facet of the research on global warming. For the past three years, our research on this topic has produced a series of classifiers. The first classifier used traditional statistical techniques, and, although the performance was reasonably good, better accuracy and faster classification speeds were desired. Neural network classifiers provided an improvement in both classification speed and accuracy but a single monolithic network proved difficult to train and was computationally expensive. A decomposition of the neural network into a hierarchical structure provided significant reductions in training time and some increase in accuracy. While this technique produced excellent results, to optimize its performance a minimal feature set and a highly accurate and easily computed switching mechanism must be identified. This paper presents recent developments in these two areas. Landsat Thematic Mapper (TM) data from the arctic and antarctic was used to test the network. A minimal feature set, which defines the elements of the network input vector, is desirable for both improving accuracy and reducing computation. A smaller input vector will reduce the number of weights which must be updated during training and concomitantly reduce training and testing times. Small input vectors are also desirable because of the oft-cited 'curse of dimensionality' which states the higher the dimension of the problem to be solved, the more difficult it will be for the network to find an acceptable solution. However, it is also known that if a network has insufficient information, it will not be possible to form an appropriate decision surface. In that case, additional features, and additional dimensions, are required. Finding the proper balance can be difficult. Previously, trial and error was used to find a 'good' selection of features for classification. Features were added individually and those which had no

  13. Simulations of Global Flows in Io’s Rarefied Atmosphere

    NASA Astrophysics Data System (ADS)

    Hoey, William A.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Walker, A. C.

    2013-10-01

    The sulfur-rich Ionian atmosphere is populated through a number of mechanisms, the most notable of which include sublimation from insolated surface frost deposits, material sputtering due to the impact of energetic ions from the Jovian plasma torus, and plume emission related to volcanic activity. While local flows are collisional at low altitudes on portions of the moon’s dayside, densities rapidly tend toward the free-molecular limit with altitude, necessitating non-continuum (rarefied gas dynamic) modeling and analysis. While recent work has modestly constrained the relative contributions of sputtering, sublimation, and volcanism to Io’s atmosphere, dynamic wind patterns driven by dayside sublimation and nightside condensation remain poorly understood. This work moves toward the explanation of mid-infrared observations that indicate an apparent super-rotating wind in Io’s atmosphere. In the present work, the Direct Simulation Monte Carlo method is employed in the modeling of Io’s rarefied atmosphere; simulations are computed in parallel, on a three-dimensional domain that spans the moon’s entire surface and extends hundreds of kilometers vertically, into the exobase. A wide range of physical phenomena have been incorporated into the atmospheric model, including: [1] the effects of planetary rotation; [2] surface temperature, surface frost inhomogeneity, and thermal inertia; [3] plasma heating and sputtering; [4] gas plumes from superimposed volcanic hot spots; and [5] multi-species chemistry. Furthermore, this work improves upon previous efforts by correcting for non-inertial effects in a moon-fixed reference frame. The influence of such effects on the development of global flow patterns and cyclonic wind is analyzed. The case in which Io transits Jupiter is considered, with the anti-Jovian hemisphere as the dayside. We predict that a circumlunar flow develops that is asymmetric about the subsolar point, and drives atmosphere from the warmer, dayside

  14. A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI

    NASA Astrophysics Data System (ADS)

    Khan, M. A. H.; Cooke, M. C.; Utembe, S. R.; Archibald, A. T.; Maxwell, P.; Morris, W. C.; Xiao, P.; Derwent, R. G.; Jenkin, M. E.; Percival, C. J.; Walsh, R. C.; Young, T. D. S.; Simmonds, P. G.; Nickless, G.; O'Doherty, S.; Shallcross, D. E.

    2015-07-01

    The impact of including a more detailed VOC oxidation scheme (CRI v2-R5) with a multi-generational approach for simulating tropospheric acetone is investigated using a 3-D global model, STOCHEM-CRI. The CRI v2-R5 mechanism contains photochemical production of acetone from monoterpenes which account for 64% (46.8 Tg/yr) of the global acetone sources in STOCHEM-CRI. Both photolysis and oxidation by OH in the troposphere contributes equally (42%, each) and dry deposition contributes 16% of the atmospheric sinks of acetone. The tropospheric life-time and the global burden of acetone are found to be 18 days and 3.5 Tg, respectively, these values being close to those reported in the study of Jacob et al. (2002). A dataset of aircraft campaign measurements are used to evaluate the inclusion of acetone formation from monoterpenes in the CRI v2-R5 mechanism used in STOCHEM-CRI. The overall comparison between measurements and models show that the parameterised approach in STOCHEM-NAM (no acetone formation from monoterpenes) underpredicts the mixing ratios of acetone in the atmosphere. However, using a detailed monoterpene oxidation mechanism forming acetone has brought the STOCHEM-CRI into closer agreement with measurements with an improvement in the vertical simulation of acetone. The annual mean surface distribution of acetone simulated by the STOCHEM-CRI shows a peak over forested regions where there are large biogenic emissions and high levels of photochemical activity. Year-long observations of acetone and methanol at the Mace Head research station in Ireland are compared with the simulated acetone and methanol produced by the STOCHEM-CRI and found to produce good overall agreement between model and measurements. The seasonal variation of model and measured acetone levels at Mace Head, California, New Hampshire and Minnesota show peaks in summer and dips in winter, suggesting that photochemical production may have the strongest effect on its seasonal trend.

  15. Global navigation satellite sounding of the atmosphere and GNSS altimetry : prospects for geosciences

    NASA Technical Reports Server (NTRS)

    Yunck, Tom P.; Hajj, George A.

    2003-01-01

    The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.

  16. Global scale hydrology - Advances in land surface modeling

    SciTech Connect

    Wood, E.F. )

    1991-01-01

    Research into global scale hydrology is an expanding area that includes researchers from the meteorology, climatology, ecology and hydrology communities. This paper reviews research in this area carried out in the United States during the last IUGG quadrennial period of 1987-1990. The review covers the representation of land-surface hydrologic processes for general circulation models (GCMs), sensitivity analysis of these representations on global hydrologic fields like precipitation, regional studies of climate that have global hydrologic implications, recent field studies and experiments whose aims are the improved understanding of land surface-atmospheric interactions, and the use of remotely sensed data for the further understanding of the spatial variability of surface hydrologic processes that are important at regional and global climate scales. 76 refs.

  17. Advanced aerospace remote sensing systems for global resource applications

    NASA Technical Reports Server (NTRS)

    Taranik, J. V.

    1981-01-01

    The Landsat program, which was concerned with testing the use of satellite data for global resource observations, has been an unqualified success, and users of Landsat data demand now that repetitive global multispectral data be provided on a routine basis for a wide variety of applications. A review is provided of the current status of NASA's land observation program, new developments in advanced aerospace remote sensing techniques, and issues related to the development and testing of new prototype systems by the U.S. The current Landsat program is considered along with developments in solid-state imaging technology, short wave infrared research using the Space Shuttle, the Shuttle Orbiter camera payload system large format camera, and advanced research in thermal remote sensing. Attention is also given to the potential of imaging radar for global resource observations, and research related to geopotential field mapping.

  18. Carbon monoxide measurement in the global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Dudzinski, T. J.

    1979-01-01

    The carbon monoxide measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available infrared absorption analyzer. The modifications increased the sensitivity of the analyzer to 1 ppmv full scale, with a limit of detectability of 0.02 ppmv. Packaging was modified for automatic, unattended operation in an aircraft environment. The GASP system is described along with analyzer operation, calibration procedures, and measurement errors. Uncertainty of the CO measurement over a 2-year period ranged from + or - 3 to + or - 13 percent of reading, plus an error due to random fluctuation of the output signal + or - 3 to + or - 15 ppbv.

  19. ENSO events are induced by the Global Atmosphere Oscillation

    NASA Astrophysics Data System (ADS)

    Serykh, Ilya; Byshev, Vladimir; Neiman, Victor; Romanov, Juri

    2014-05-01

    The large-scale anomalies in the planetary fields of the principal hydro-meteorological characteristics were found to appear prior the beginning and during the main phase of the El Niño - Southern Oscillation (ENSO) phenomenon in the Pacific Ocean. The anomalies were interpreted as manifestation of the interannual Global Atmosphere Oscillation (GAO) in dynamics of the modern climatic system. The key feature of the GAO baric structure is a large-scale positive anomaly in tropical area (30N-30S, 50W-170E) surrounded by negative anomaly bending its outer boundaries. Eventually, such reconstruction of the atmospheric pressure field over tropical zone as a consequence of the GAO leads to Walker circulation cell reversal which is immediately followed by the next El Niño process starting. Spatio-temporal structure of the anomalous hydro-meteorological fields developing under impact of the GAO was analyzed using the monthly-mean atmospheric pressure data at sea level (HadSLP2) and near-surface temperature (CRUTEM4) prepared by GB Met Office Hadley Centre for period of 1948-2012, also we used wind data from US NCEP/NCAR reanalysis for the same period. Due to the presence of feed-forwards and feedbacks in the climate dynamics, the large-scale anomalies of characteristics appearing after the GAO cause their back effect on the system of interaction of the ocean-atmosphere-land. This is the secondary impact which can be implemented either by direct exchange of properties between the adjacent areas (this is seen most explicitly in the Indo-Pacific Region), or owing to teleconnections between the concrete climatic subsystems in different parts of the Earth. It is apparently that the secondary, or indirect, GAO impact spreading through the system of general atmospheric circulation has a certain phase shift in different areas, which depends first on the distance from the respective climatic anomalies, in particular, from the most intensive of them, appearing in the equatorial

  20. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  1. Evaluating global atmospheric transport of plutonium with dust aerosols

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Arimoto, R.; Gill, T. E.; Kang, C.; Goodell, P.

    2009-12-01

    The resuspension of soils contaminated with radionuclides from nuclear weapons tests is a mechanism by which plutonium can be re-distributed throughout the environment. To better understand the global atmospheric transport of plutonium, we measured the activity of Pu in aerosol samples from four widely separated sites that receive dust from distant sources in both Asia and Africa. High-volume aerosol samples were collected from Barbados (2005 - 2006); Gosan, South Korea (2005 - 2006); Izaña, Canary Islands (1989 - 1996); and Mauna Loa Observatory, Hawaii (2005 - 2006) to evaluate the relationship between Pu activity and mineral dust concentrations (using crustal elements such as aluminum as a dust proxy). The activity of 239,240Pu (239Pu + 240Pu) in the aerosol samples was determined by alpha spectrometry following a series of chemical separations. Concentrations of other elements were determined by a variety of techniques. Pu activity was below the detection limit in many samples. In those samples where it was detected, the Gosan site had the highest dust concentrations and highest total plutonium activity, while Mauna Loa Observatory had the lowest dust concentrations and lowest 239,240Pu activity. The Izaña samples had the second highest concentrations of dust and plutonium activity, while Barbados had the third highest levels of both crustal aerosols and plutonium activity. The dust concentrations are consistent with previous observations at these remote sites, and we propose that the plutonium (primarily from past atmospheric nuclear weapons testing, much of which took place in arid lands) was deposited on erodible soil surfaces and subsequently transported as part of the overall mineral dust load. The results of this study have implications for the global transport and fate of Pu through its association with dust, the biogeochemical and environmental impacts of other substances associated with dust, and the workings of the dust cycle itself.

  2. Lagrangian modeling of global atmospheric methane (1990-2012)

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Henne, Stephan; Brunner, Dominik

    2016-04-01

    In the MAIOLICA-II project, the lagrangian particle model FLEXPART is used to simulate the global atmospheric methane over the 1990-2012 period. In this lagrangian framework, 3 million particles are permanently transported based on winds from ERA-interim. The history of individual particles can be followed allowing for a comprehensive analysis of transport pathways and timescales. The link between sources (emissions) and receptors (measurement stations) is then established in a straightforward manner, a prerequisite for source inversion problems. FLEXPART was extended to incorporate the methane loss by reaction with OH, soil uptake and stratospheric loss reactions with prescribed Cl and O(1d) radicals. Sources are separated into 245 different tracers, depending on source origin (anthropogenic, wetlands, rice, biomass burning, termites, wild animals, oceans, volcanoes), region of emission, and time since emission (5 age classes). The inversion method applied is a fixed-lag Kalman smoother similar to that described in Bruhwiler et al. [2005]. Results from the FLEXPART global methane simulation and from the subsequent inversion will be presented. Results notably suggest: - A reduction in methane growth rates due to diminished wetland emissions and anthropogenic European emission in 1990-1993. - A second decrease in 1995-1996 is also mainly attributed to these two emission categories. - A reduced increase in Chinese anthropogenic emissions after 2003 compared to EDGAR inventories. - Large South American wetlands emissions during the entire period. Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. & Tans, P. 2005: An improved Kalman smoother fore atmospheric inversions, Atmos Chem Phys, 5, 2691-2702.

  3. A global mechanism creating low atmospheric luminous cold plasmas

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Petter Strand, Erling

    2014-05-01

    Red, white/yellow and blue balls of light have been observed in the low atmosphere over the Hessdalen valley , Norway, standing still and moving horizontally with random speed. Characteristics of these transient luminous phenomena in Hessdalen, and data from America, suggest that the process which creates these low atmospheric plasmas is a global mechanism, not only localized to the remote and desolated Hessdalen valley in Norway (62Deg.N - 11Deg.E). Transient luminous phenomena's has been observed in the low atmosphere over the Hessdalen valley for over 200 years. The first written documentation goes back to 1811 when the priest Jakob Tode Krogh wrote about it in his diary. Since 1982, inhabitants, tourists, journalists and scientists have done recurrent observations. E.P.Strand conducted the first scientific campaign in 1984, documenting over 50 observations in one month. 15 years later, Norwegian and Italian scientists installed the first permanent automated research base here. In 2010 French researchers joined this collaboration and installed two additional research bases. This transient luminous phenomenon, TLP, has been detected simultaneously on optical and radar devices, but electromagnetic radiation from this phenomenon has until now eluded detection. Smirnov (1994) and Zou(1994) was among the first scientist who used plasma physics trying to explain this phenomenon. Work done by Pavia & Taft (2010 and 2012) suggests that the TLP in Hessdalen probably is dusty or cold plasma, arranged as a cluster of Coulomb crystals. Optical spectrum data obtained by Strand (1984), Teodorani (2004) and Hauge (2007) showing a continuous optical spectrum support this hypothesis. Pictures of spiraling light rays obtained by Strand in 1984, and Hauge in 2004 and 2010 suggests that this plasma is moving in a strong magnetic field, and might be created by it. Radar reflections from the TLP in Hessdalen obtained by Strand in 1984 and Montebugnoli and Monari in 2007 points

  4. Seasonal prediction of global sea level anomalies using an ocean-atmosphere dynamical model

    NASA Astrophysics Data System (ADS)

    Miles, Elaine R.; Spillman, Claire M.; Church, John A.; McIntosh, Peter C.

    2014-10-01

    Advanced warning of extreme sea level events is an invaluable tool for coastal communities, allowing the implementation of management policies and strategies to minimise loss of life and infrastructure damage. This study is an initial attempt to apply a dynamical coupled ocean-atmosphere model to the prediction of seasonal sea level anomalies (SLA) globally for up to 7 months in advance. We assess the ability of the Australian Bureau of Meteorology's operational seasonal dynamical forecast system, the Predictive Ocean Atmosphere Model for Australia (POAMA), to predict seasonal SLA, using gridded satellite altimeter observation-based analyses over the period 1993-2010 and model reanalysis over 1981-2010. Hindcasts from POAMA are based on a 33-member ensemble of seasonal forecasts that are initialised once per month for the period 1981-2010. Our results show POAMA demonstrates high skill in the equatorial Pacific basin and consistently exhibits more skill globally than a forecast based on persistence. Model predictability estimates indicate there is scope for improvement in the higher latitudes and in the Atlantic and Southern Oceans. Most characteristics of the asymmetric SLA fields generated by El-Nino/La Nina events are well represented by POAMA, although the forecast amplitude weakens with increasing lead-time.

  5. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  6. Global atmospheric and ocean modeling on the connection machine

    SciTech Connect

    Atlas, S.R.

    1993-12-01

    This paper describes the high-level architecture of two parallel global climate models: an atmospheric model based on the Geophysical Fluid Dynamics Laboratory (GFDL) SKYHI model, and an ocean model descended from the Bryan-Cox-Semtner ocean general circulation model. These parallel models are being developed as part of a long-term research collaboration between Los Alamos National Laboratory (LANL) and the GFDL. The goal of this collaboration is to develop parallel global climate models which are modular in structure, portable across a wide variety of machine architectures and programming paradigms, and provide an appropriate starting point for a fully coupled model. Several design considerations have emerged as central to achieving these goals. These include the expression of the models in terms of mathematical primitives such as stencil operators, to facilitate performance optimization on different computational platforms; the isolation of communication from computation to allow flexible implementation of a single code under message-passing or data parallel programming paradigms; and judicious memory management to achieve modularity without memory explosion costs.

  7. Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1991-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.

  8. Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie

    1992-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.

  9. Simulating Global Atmospheric CO2 and Local Atmospheric COS for a Continental Mixed Forest

    NASA Astrophysics Data System (ADS)

    Conner Gausepohl, S. L.; Denning, A.; Kawa, S.; Berry, J.; Montzka, S. A.; Conway, T.; Andrews, A.; Baker, I.; Kleist, J.

    2005-12-01

    Simulated hourly global atmospheric [CO2] for the year 2000 exhibits a systematic error in the seasonal cycle of simulated [CO2] in the Northern Hemisphere mid-latitudes, characterized by early spring drawdown of [CO2] relative to the observations. We have evaluated the simulation of carbonyl sulfide (COS) in SiB3, a land-surface model, at a continental mixed-forest site to separately evaluate seasonal variations in simulated photosynthesis and ecosystem respiration. Preliminary results of our simulation at WLEF in Wisconsin, US, show that the calculation of photosynthesis (rather than respiration) is the cause of the systematic error in the simulated seasonal cycle of atmospheric CO2. COS is consumed in plant tissues by a reaction catalyzed by carbonic anhydrase, and therefore behaves as a tracer of gross photosynthesis over land surfaces. We computed COS flux in the land surface model by assuming complete oxidation of intercellular COS, and compared the simulated flux to fluxes of [COS] estimated from the observed jump in [COS] between the atmospheric mixed layer and the free troposphere. Simulated surface exchanges of COS systematically led those derived from observations by several weeks in the spring, indicating that the simulated initiation of photosynthesis, rather than the timing of ecosystem respiration, is the cause of the systematic error in the simulated seasonal cycle of the flux of CO2. Employing COS has assisted in evaluating our systematic error of early drawdown of atmospheric CO2 by the biosphere in the spring and early recovery of atmospheric CO2 in the autumn, generally quite a difficult task due to the similar dependencies of photosynthesis and respiration on temperature and moisture. These results indicate that the ratio of COS uptake to CO2 uptake provides a sensitive indicator of the ratio of photosynthesis to respiration.

  10. Application of Advanced Very High Resolution Radiometer vegetation index to study atmosphere-biosphere exchange of CO2

    NASA Technical Reports Server (NTRS)

    Fung, I. Y.; Tucker, C. J.; Prentice, K. C.

    1987-01-01

    Normalized difference vegetation indices derived from radiances measured by the Advanced Very High Resolution Radiometer were used to prescribe the phasing of terrestrial photosynthesis. The satellite data were combined with field data on soil respiration and a global map of net primary productivity to obtain the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained were employed as source/sink functions in a global three-dimensional atmospheric tracer transport model to simulate the annual oscillations of CO2 in the atmosphere. The results demonstrate that satellite data of high spatial and temporal resolution can be used to provide quantitative information about seasonal and longer-term variations of photosynthetic activity on a global scale.

  11. Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations

    NASA Astrophysics Data System (ADS)

    Van Damme, M.; Clarisse, L.; Heald, C. L.; Hurtmans, D.; Ngadi, Y.; Clerbaux, C.; Dolman, A. J.; Erisman, J. W.; Coheur, P. F.

    2014-03-01

    Ammonia (NH3) emissions in the atmosphere have increased substantially over the past decades, largely because of intensive livestock production and use of fertilizers. As a short-lived species, NH3 is highly variable in the atmosphere and its concentration is generally small, except near local sources. While ground-based measurements are possible, they are challenging and sparse. Advanced infrared sounders in orbit have recently demonstrated their capability to measure NH3, offering a new tool to refine global and regional budgets. In this paper we describe an improved retrieval scheme of NH3 total columns from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). It exploits the hyperspectral character of this instrument by using an extended spectral range (800-1200 cm-1) where NH3 is optically active. This scheme consists of the calculation of a dimensionless spectral index from the IASI level1C radiances, which is subsequently converted to a total NH3 column using look-up tables built from forward radiative transfer model simulations. We show how to retrieve the NH3 total columns from IASI quasi-globally and twice daily above both land and sea without large computational resources and with an improved detection limit. The retrieval also includes error characterization of the retrieved columns. Five years of IASI measurements (1 November 2007 to 31 October 2012) have been processed to acquire the first global and multiple-year data set of NH3 total columns, which are evaluated and compared to similar products from other retrieval methods. Spatial distributions from the five years data set are provided and analyzed at global and regional scales. In particular, we show the ability of this method to identify smaller emission sources than those previously reported, as well as transport patterns over the ocean. The five-year time series is further examined in terms of seasonality and interannual variability (in particular as a function of fire

  12. The Atmospheric Lifetime Experiment and the Global Atmospheric Gas Experiment (ALE/GAGE)

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. Aslam K.

    1995-01-01

    The ALE/GAGE project was designed to determine the global atmospheric lifetimes of the chlorofluorocarbons CCl3F and CCl2F2 (F-11 and F-12), which had been identified as the main gases that cause stratospheric ozone depletion. The experimental procedures also provided the concentrations of CH3CCl3, CCl4 and N2O. The extended role of the project was to evaluate the mass balances of these gases as well. Methylchloroform (CH3CCl3) serves as a tracer of average atmospheric OH concentrations and hence the oxidizing capacity of the atmosphere. Nitrous oxide (N2O) is a potent greenhouse gas and can also deplete the ozone layer. Measurements of these gases were taken with optimized instruments in the field at a frequency of about 1 sample/hr. Toward the end of the present project methane measurements were added to the program. The final report deals with the research of the Oregon Graduate Institute (OGI) as part of the ALE/GAGE program between 4/1/1988 and 1/31/1991. The report defines the scope of the OGI project, the approach, and the results.

  13. Global variation of sonic boom overpressure due to seasonal changes in atmosphere

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Obayashi, Shigeru

    2012-09-01

    Global variation of sonic boom overpressures with the realistic atmospheric gradients was discussed. The atmospheric gradients were estimated by upper-air observational radiosonde data and a simple N-wave was extrapolated through all seasonal atmospheric gradients without winds around the world. Results demonstrated that sonic boom overpressure varies widely with season and geographic position compared to that of the standard atmospheric condition. The results also showed the tendencies of the global variation in overpressure.

  14. Research Review: Walter Orr Roberts on the Atmosphere, Global Pollution and Weather Modification

    ERIC Educational Resources Information Center

    Jacobsen, Sally

    1973-01-01

    Global Atmospheric Research Program is envisaged to study various aspects of the environment for the whole globe. Describes programs undertaken and the international problems involved in implementing results of such research on a global level. (PS)

  15. Global scale water isotope observations and the impact of the terrestrial biosphere on atmospheric hydrology

    NASA Astrophysics Data System (ADS)

    Noone, D. `; Brown, D.; Worden, J.

    2007-12-01

    Water isotope measurements are known to be extremely useful for identifying hydrologic exchange processes at both single site scales and at larger scales from networks of, for instance, precipitation. Recent advances in observational techniques have allowed the development of a global scale dataset of the HDO to H2O isotope ratio in lower troposphere from spacecraft. The HDO estimates are found though a spectroscopic retrieval based on high resolution and well calibrated infrared spectra obtained from the Tropospheric Emission Spectrometer (TES) on NASA's Aura spacecraft. With these global scale observations available almost every two days, the ability to use isotopes to understand the impact of the terrestrial biosphere on atmospheric hydrology has become a possibility at not just local scales but for large geographic regions. Simulating the isotope exchange in global climate models continues to advance, but now such models can for the first time be validated and tested with observations. Further, with models, the importance of the processes identified in the observational data can be assessed in detail. Of particular interest is identifying the terrestrial source of atmospheric water vapor, and specifically continental evapotransipration. Using a combination of the satellite observations and model simulations, we identify the terrestrial source of atmospheric water, and demonstrate its importance is larger than previously recognized. This can be deduced from the observations since the isotopic signature of transpired water reflects the isotopic composition of precipitation, while that of oceanic origin reflects the disequilibrium fractionation during evaporation from the ocean. Based on these results and guided by model simulations, we speculate that should the land use characteristics of the tropical continental regions change, and reflect more arid environments, the impacts on the atmospheric hydrology and climate is more than of just local in extent. The use

  16. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  17. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  18. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  19. Effects of mineral dust on global atmospheric nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Pozzer, A.; Astitha, M.; Lelieveld, J.

    2016-02-01

    This study assesses the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate. The mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are included in the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers K+, Ca2+, Mg2+, NH4+, Na+, SO42-, NO3-, Cl-, and H2O aerosol components. Emissions of mineral dust are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. Presence of metallic ions can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The model simulates highest fine aerosol nitrate concentration over urban and industrialized areas (1-3 µg m-3), while coarse aerosol nitrate is highest close to deserts (1-4 µg m-3). The influence of mineral dust on nitrate formation extends across southern Europe, western USA, and northeastern China. The tropospheric burden of aerosol nitrate increases by 44 % when considering interactions of nitrate with mineral dust. The calculated global average nitrate aerosol concentration near the surface increases by 36 %, while the coarse- and fine-mode concentrations of nitrate increase by 53 and 21 %, respectively. Other inorganic aerosol components are affected by reactive dust components as well (e.g., the tropospheric burden of chloride increases by 9 %, ammonium decreases by 41 %, and sulfate increases by 7 %). Sensitivity tests show that nitrate aerosol is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.

  20. Effects of mineral dust on global atmospheric nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Pozzer, A.; Astitha, M.; Lelieveld, J.

    2015-04-01

    This study provides an assessment of the chemical composition and global aerosol load of the major inorganic aerosol components and determines the effect of mineral dust on their formation, focusing on aerosol nitrate. To account for this effect, the mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are added to the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol components. Emissions of mineral dust aerosol components (K+-Ca2+-Mg2+-Na+) are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The presence of the metallic ions on the simulated suite of components can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The updated model improved the nitrate predictions over remote areas and found that the fine aerosol nitrate concentration is highest over urban and industrialized areas (1-3 μg m-3), while coarse aerosol nitrate is highest close to deserts (1-4 μg m-3). The contribution of mineral dust components to nitrate formation is large in areas with high dust concentrations with impacts that can extend across southern Europe, western USA and northeastern China. The tropospheric burden of aerosol nitrate increases by 44% by considering the interactions of nitrate with mineral dust cations. The calculated global average nitrate aerosol concentration near the surface increases by 36% while the coarse and fine mode concentrations of nitrate increase by 53 and 21%, respectively. Sensitivity tests show that nitrate aerosol formation is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state

  1. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  2. Recent Advances on Solar Global Magnetism and Variability

    NASA Astrophysics Data System (ADS)

    Brun, A. S.; Browning, M. K.; Dikpati, M.; Hotta, H.; Strugarek, A.

    2015-12-01

    We discuss recent observational, theoretical and numerical progress made in understanding the solar global magnetism and its short and long term variability. We discuss the physical process thought to be at the origin of the solar magnetic field and its 22-yr cycle, namely dynamo action, and the nonlinear interplay between convection, rotation, radiation and magnetic field, yielding modulations of the solar constant or of the large scale flows such as the torsional oscillations. We also discuss the role of the field parity and dynamo families in explaining the complex multipolar structure of the solar global magnetic field. We then present some key MHD processes acting in the deep radiative interior and discuss the probable topology of a primordial field there. Finally we summarize how helioseismology has contributed to these recent advances and how it could contribute to resolving current unsolved problems in solar global dynamics and magnetism.

  3. Atmospheric Sulfur Cycle Simulated in The Global Model GOCART: Model Description and Global Properties

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Rood, Richard B.; Lin, Shian-Jiann; Mueller, Jean-Francois; Thompson, Anne M.

    2000-01-01

    The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the simulated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SO2, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are presented in this paper. In a normal year without major volcanic perturbations, about 20% of the sulfate precursor emission is from natural sources (biogenic and volcanic) and 80% is anthropogenic: the same sources contribute 339% and 67% respectively to the total sulfate burden. A sulfate production efficiency of 0.41 - 0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount oi sulfate produced to the total amount of SO2 emitted and produced in the atmosphere. This value indicates that less than half of the SO2 entering the atmosphere contributes to the sulfate production, the rest being removed by dry and wet depositions. In a simulation for 1990, we estimate a total sulfate production of 39 Tg S /yr with 36% and 64% respectively from in-air and in-cloud oxidation of SO2. We also demonstrate that major volcanic eruptions, such as the Mt. Pinatubo eruption in 1991, can significantly change the sulfate formation pathways, distributions, abundance, and lifetime. Comparison with other models shows that the parameterizations for wet removal or wet production of sulfate are the most critical factors in determining the burdens of SO2 and sulfate. Therefore, a priority for future research should be to reduce the large uncertainties associated with the wet physical and chemical processes.

  4. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-06-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and the subsequent deposition to the oceans have been accounted for in only few ocean biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.3 Tg yr-1 (90% confidence of 2.3 to 12.1). Of these emissions, 1, 27 and 72% were emitted in particles < 1 μm (PM1), 1-10 μm (PM1-10), and > 10 μm (PM> 10), respectively, compared to a total Fe emission from mineral dust of 41.0 Tg yr-1 in a log-normal distribution with a mass median diameter of 2.5 μm and a geometric standard deviation of 2. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 since 2000 due to an increase in Fe emission from motor vehicles (from 0.008 to 0.0103 Tg yr-1 in 2000 and 2007, respectively). These emissions have been introduced in a global 3-D transport model run at a spatial resolution of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations as monthly means were compared with the monthly (57 sites) or daily (768 sites) measured concentrations at a total of 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the

  5. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring

  6. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-03-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and their deposition over oceans are not accounted for in current biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.1 Tg yr-1 (90% confidence of 2.2 to 11.5). Of these emissions, 2, 33 and 65% were emitted in particles <1 μm (PM1), 1-10 μm (PM1-10), and >10 μm (PM>10), respectively, compared to total Fe emissions from mineral sources of 41.0 Tg yr-1. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 and PM1-10 since 2000 due to a rapid increase from motor vehicles. These emissions have been introduced in a global 3-D transport model run at a spatial resolution of of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations were compared to measurements at 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the surface was within a factor of two at most sampling stations, and the deviation was within a factor of 1.5 at sampling stations dominated by combustion sources. We analyzed the relative contribution of combustion sources to total Fe concentrations over different regions of the

  7. A quasi-static model of global atmospheric electricity. II - Electrical coupling between the upper and lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.

  8. Detection of Atmospheric Rivers: An Algorithm for Global Climatology and Model Evaluation Studies

    NASA Astrophysics Data System (ADS)

    Guan, B.; Waliser, D. E.

    2015-12-01

    Atmospheric rivers (ARs) are narrow, elongated, synoptic jets of water vapor that play important roles in the global water cycle and regional weather and hydrology. Previous studies have developed techniques for the identification of ARs based on intensity and/or geometry thresholds indicative of AR conditions. Such techniques have facilitated the investigation of ARs on local to regional scales. Recent advancement in the understanding of AR's global signatures and impacts (including those in less explored areas such as Greenland and Antarctica), and the need for understanding the representation of key AR characteristics in global weather/climate models motivate the development and evaluation of AR detection techniques suitable for global climatological and model evaluation studies. In this work, an objective AR detection algorithm is developed based on thresholding global, 6-hourly fields of integrated water vapor transport (IVT) derived from ERA-Interim reanalysis. Long, narrow filaments of enhanced IVT are detected by applying a set of intensity and geometry criteria, along with other considerations. Key output of the algorithm includes the AR shape boundary, main axis, location of landfalls, and a tabulated list of the basic statistics such as length, width, and mean IVT strength/direction of each detected AR. Sensitivity of detection is examined for selected parameters, and the result is evaluated and compared with an independent database of landfalling ARs in the west coast of North America based on satellite images of integrated water vapor (Neiman et al. 2008). Global distribution of key AR characteristics, and examples of their modulation by climate variability, will be presented.

  9. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  10. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    PubMed

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions. PMID:12078003

  11. Daily global maps of carbon monoxide from NASA's Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    McMillan, W. W.; Barnet, C.; Strow, L.; Chahine, M. T.; McCourt, M. L.; Warner, J. X.; Novelli, P. C.; Korontzi, S.; Maddy, E. S.; Datta, S.

    2005-06-01

    We present the first observations of tropospheric carbon monoxide (CO) by the Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. AIRS daily coverage of ~70% of the planet represents a significant evolutionary advance in satellite trace gas remote sensing. Tropospheric CO abundances are retrieved from AIRS 4.55 μm spectral region using the full AIRS retrieval algorithm run in a research mode. The presented AIRS daily global CO maps from 22-29 September 2002 show large-scale, long-range transport of CO from anthropogenic and natural sources, most notably from biomass burning. The sequence of daily maps reveal CO advection from Brazil to the South Atlantic in qualitative agreement with previous observations. Forward trajectory analysis confirms this scenario and indicates much longer range transport into the southern Indian Ocean. Preliminary comparisons to in situ aircraft profiles indicate AIRS CO retrievals are approaching the 15% accuracy target set by pre-launch simulations.

  12. A 2007-2015 record of global atmospheric dust seen from space

    NASA Astrophysics Data System (ADS)

    Clarisse, Lieven; Coheur, Pierre-François; Hadji-Lazaro, Juliette; Clerbaux, Cathy

    2016-04-01

    Satellite sounders are ideal for measuring the highly variable global atmospheric aerosol distributions, as they provide daily global coverage. Aeolian dust can particularly well be measured by infrared satellite instruments which can differentiate dust from other aerosol and can measure both during day and night, over land and over ocean. They also have an enhanced sensitivity to coarse mode particles. We start this talk with an overview of the state of the art of satellite measurements of aerosols before moving on to measurements of the advanced hyperspectral infrared sounder IASI. We present an IASI-derived dust product, first through examples, then through global distributions and monthly and seasonal climatologies. A preliminary validation of the measurements is presented, comparing them with collocated Aeronet observations. The measurements are then used to evaluate the state of the art ECMWF-MACC model. In the final part of the talk the 8 year IASI dataset is presented and analysed using timeseries over selected regions, with a focus on seasonal and multi-year trends.

  13. Global surface temperatures and the atmospheric electrical circuit

    NASA Technical Reports Server (NTRS)

    Price, Colin

    1993-01-01

    To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.

  14. The seasonal and global behavior of water vapor in the Mars atmosphere - Complete global results of the Viking atmospheric water detector experiment

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Farmer, C. B.

    1982-01-01

    A key question regarding the evolution of Mars is related to the behavior of its volatiles. The present investigation is concerned with the global and seasonal abundances of water vapor in the Mars atmosphere as mapped by the Viking Mars Atmospheric Water Detector (MAWD) instrument for almost 1-1/2 Martian years from June 1976 to April 1979. Attention is given to the implications of the observed variations for determining the relative importance of those processes which may be controlling the vapor cycle on a seasonal basis. The processes considered include buffering of the atmosphere water by a surface or subsurface reservior of ground ice, physically adsorbed water, or chemically bound water. Other processes are related to the supply of water from the residual or seasonal north polar ice cap, the redistribution of the vapor resulting from atmospheric circulation, and control of the vapor holding capacity of the atmosphere by the local atmospheric temperatures.

  15. Global Change in Earth's Atmosphere: Natural and Anthropogenic Factors

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    To what extent is human activity, such as the emission of carbon dioxide and other 'greenhouse' gases, influencing Earth's atmosphere, compared with natural variations driven by, for example, the Sun or volcanoes? Why has Earth's surface warmed barely, if at all, in the last decade? Why is the atmosphere at just 20 km above the surface cooling instead of warming? When - and will - the ozone layer recover from its two-decade decline due to chlorofluorocarbon depletion? Natural and anthropogenic factors are changing Earth's atmosphere, each with distinct temporal, geographical and altitudinal signatures. Increasing greenhouse gases, for example, warm the surface but cool the stratosphere and upper atmosphere. Aerosols injected into the stratosphere during a volcanic eruption warm the stratosphere but cool the surface. Increases in the Sun's brightness warm Earth's atmosphere, throughout. This talk will quantify and compare a variety of natural and human influences on the Earth's atmosphere, extracted statistically from multiple datasets with the goal of understanding how and why Earth's atmosphere is changing. The extent to which responses to natural influences are presently masking or exacerbating ongoing responses to human activity is examined. Scenarios for future levels of anthropogenic gases and solar activity are then used to speculate how Earth's atmosphere might evolve in future decades, according to both statistical models of the databases and physical general circulation models.

  16. Seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment

    SciTech Connect

    Jakosky, B.M.; Farmer, C.B.

    1982-04-10

    The water vapor content of the Mars atmosphere was measured from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) for a period of more than 1 Martian year, from June 1976 through April 1979. Results are presented in the form of global maps of column abundance for 24 periods throughout each Mars year. The data reduction incorporates spatial and seasonal variations in surface pressure and supplements earlier published versions of less complete data.

  17. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  18. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  19. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  20. UNDERSTANDING AND MANAGING THE RISKS TO HEALTH AND ENVIRONMENT FROM GLOBAL ATMOSPHERIC CHANGE: A SYNTHESIS

    EPA Science Inventory

    The global atmosphere is changing. Anthropogenic activities are increasing the concentrations of greenhouse gases and releasing synthetic compounds that deplete stratospheric ozone and increase UV-B radiation. Changes of temperature in the Northern Hemisphere during the past cent...

  1. Upper Atmosphere Research Satellite (UARS): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of NASA's Upper Atmosphere Research Satellite (UARS) program is presented in a broad based informational publication. The UARS will be responsible for carrying out the first systematic, comprehensive study of the stratosphere and will furnish important new data on the mesosphere and thermosphere. The UARS mission objectives are to provide an increased understanding of energy input into the upper atmosphere; global photochemistry of the upper atmosphere; dynamics of the upper atmosphere; coupling among these processes; and coupling between the upper and lower atmosphere. These mission objectives are briefly described along with the UARS on-board instrumentation and related data management systems.

  2. Multi-Functional Lidar Instrument for Global Measurement of Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Busch, G. E.; Edwards, W. C.; Dwyer Cianciolo, A. M.; Munk, M. M.

    2012-06-01

    This paper describes an orbiting lidar instrument concept capable of providing Mars atmospheric parameters critical to design of future robotic and manned missions requiring advanced aerocapture, precision landing, and launch from Mars surface.

  3. Spherical harmonic analysis for verfication of a global atmospheric model

    NASA Technical Reports Server (NTRS)

    Christidis, Z.; Spar, J.

    1979-01-01

    Surface spherical harmonics were used to analyze the horizontal fields of various quantities generated by a global climate model. Also, the computed monthly mean forecast fields were compared with the corresponding observed fields.

  4. Modeling the Martian Atmosphere with the LMD Global Climate Model

    NASA Astrophysics Data System (ADS)

    Forget, F.; Millour, E.; Gonzalez-Galindo, F.; Lebonnois, S.; Madeleine, J.-B.; Meslin, P.-Y.; Montabone, L.; Spiga, A.; Hourdin, F.; Lefevre, F.; Montmessin, F.; Lewis, S. R.; Read, P.; Lopez-Valverde, M. A.; Gilli, G.

    2008-11-01

    The Global Climate Model developed at LMD (Paris) in collaboration with IAA (Spain), AOPP and the OU (UK) has been improved. It is used for many applications (water, dust, CO2, radon cycles, photochemistry, thermosphere, ionosphere, etc.).

  5. Global dynamics and thermal structure of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1986-01-01

    Voyager flyby observations have yielded the first detailed maps of wind and temperature fields in the Jupiter atmosphere; these data indicate that Jupiter's zonal currents violate the barotropic instability criterion if they extend only a few scale heights below the cloud tops. Microwave observations at mm and cm wavelengths have probed the atmosphere down to a level of about 7 bars, thereby constraining horizontal and vertical thermal structure in a region of the atmosphere about which little was known. Temporal variations in the temperature field suggest that dynamical processes may be important in the establishment of tropopause structure on short time scales. Ground-based and Voyager observations have also indicated a hemispheric asymmetry in temperature in the upper stratosphere.

  6. Mars global reference atmosphere model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.

    1992-01-01

    Mars-GRAM is an empirical model that parameterizes the temperature, pressure, density, and wind structure of the Martian atmosphere from the surface through thermospheric altitudes. In the lower atmosphere of Mars, the model is built around parameterizations of height, latitudinal, longitudinal, and seasonal variations of temperature determined from a survey of published measurements from the Mariner and Viking programs. Pressure and density are inferred from the temperature by making use of the hydrostatic and perfect gas laws relationships. For the upper atmosphere, the thermospheric model of Stewart is used. A hydrostatic interpolation routine is used to insure a smooth transition from the lower portion of the model to the Stewart thermospheric model. Other aspects of the model are discussed.

  7. Studying Biological Responses to Global Change in Atmospheric Oxygen

    PubMed Central

    Powell, Frank L.

    2010-01-01

    A popular book recently hypothesized that change in atmospheric oxygen over geological time is the most important physical factor in the evolution of many fundamental characteristics of modern terrestrial animals. This hypothesis is generated primarily using fossil data but the present paper considers how modern experimental biology can be used to test it. Comparative physiology and experimental evolution clearly show that changes in atmospheric O2 over the ages had the potential to drive evolution, assuming the physiological O2-sensitivity of animals today is similar to the past. Established methods, such as phylogenetically independent contrasts, as well new approaches, such as adding environmental history to phylogenetic analyses or modeling interactions between environmental stresses and biological responses with different rate constants, may be useful for testing (disproving) hypotheses about biological adaptations to changes in atmospheric O2. PMID:20385257

  8. Dynamic responses of atmospheric carbon dioxide concentration to global temperature changes between 1850 and 2010

    NASA Astrophysics Data System (ADS)

    Wang, Weile; Nemani, Ramakrishna

    2016-02-01

    Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a temperature sensitivity parameter (1.64 ppm yr-1 °C-1) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide (CO2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010 ( r 2 > 0.96 and the root-mean-square error < 1 ppm for the period from 1960 onward). Analytical analysis also indicates that the multiplication of the parameter with the response time of the atmospheric carbon reservoir (~12 year) approximates the long-term temperature sensitivity of global atmospheric CO2 concentration (~15 ppm °C-1), generally consistent with previous estimates based on reconstructed CO2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmospheric CO2 concentration and slowed the net rate of atmospheric CO2 sequestration by global land and oceans by ~30% since the 1960s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.

  9. Global Deep Convection Models of Saturn's Atmospheric Features

    NASA Astrophysics Data System (ADS)

    Heimpel, Moritz; Cuff, Keith; Gastine, Thomas; Wicht, Johannes

    2016-04-01

    The Cassini mission, along with previous missions and ground-based observations, has revealed a rich variety of atmospheric phenomena and time variability on Saturn. Some examples of dynamical features are: zonal flows with multiple jet streams, turbulent tilted shear flows that seem to power the jets, the north polar hexagon, the south polar cyclone, large anticyclones in "storm alley", numerous convective storms (white spots) of various sizes, and the 2010/2011 great storm, which destroyed an array of vortices dubbed the "string of pearls". Here we use the anelastic dynamo code MagIC, in non-magnetic mode, to study rotating convection in a spherical shell. The thickness of the shell is set to approximate the depth of the low electrical conductivity deep atmosphere of Saturn, and the convective forcing is set to yield zonal flows of similar velocity (Rossby number) to those of Saturn. Internal heating and the outer entropy boundary conditions allow simple modelling of atmospheric layers with neutral stability or stable stratification. In these simulations we can identify several saturnian and jovian atmospheric features, with some variations. We find that large anticyclonic vortices tend to form in the first anticyclonic shear zones away from the equatorial jet. Cyclones form at the poles, and polar polygonal jet streams, comparable to Saturn's hexagon, may or may not form, depending on the model conditions. Strings of small scale vortical structures arise as convective plumes near boundaries of shear zones. They typically precede larger scale convective storms that spawn propagating shear flow disturbances and anticyclonic vortices, which tend to drift across anticyclonic shear zones, toward the equator (opposite the drift direction of Saturn's 2010/2011 storm). Our model results indicate that many identifiable dynamical atmospheric features seen on Jupiter and Saturn arise from deep convection, shaped by planetary rotation, underlying and interacting with stably

  10. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign

    NASA Astrophysics Data System (ADS)

    Intrieri, J. M.; de Boer, G.; Shupe, M. D.; Spackman, J. R.; Wang, J.; Neiman, P. J.; Wick, G. A.; Hock, T. F.; Hood, R. E.

    2014-11-01

    In February and March of 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. The WISPAR science missions were designed to (1) mprove our understanding of Pacific weather systems and the polar atmosphere; (2) evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3) demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB) in California. During the 25 h polar flight on 9-10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean-ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  11. The UARS (Upper Atmosphere Research Satellite): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Upper Atmosphere Research Satellite (UARS) program, its goals and objectives are described. Also included are its significance to upper atmosphere science, the experimental and theoretical investigations that comprise it, and the compelling issues of global change, driven by human activities, that led NASA to plan and implement it.

  12. Recent results from the GISS model of the global atmosphere. [circulation simulation for weather forecasting

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1975-01-01

    Large numerical atmospheric circulation models are in increasingly widespread use both for operational weather forecasting and for meteorological research. The results presented here are from a model developed at the Goddard Institute for Space Studies (GISS) and described in detail by Somerville et al. (1974). This model is representative of a class of models, recently surveyed by the Global Atmospheric Research Program (1974), designed to simulate the time-dependent, three-dimensional, large-scale dynamics of the earth's atmosphere.

  13. A Global and Regional Multi-scale Advanced Prediction System

    NASA Astrophysics Data System (ADS)

    Chen, D.; Xue, J.; Yang, X.; Zhang, H.; Liu, J.; Jin, Z.; Huang, L.; Wu, X.

    With social progress and economic development, the requirement for providing much longer, more detailed and more accurate meteorological forecasting services with higher resolution, including climate, synoptic and meso-scale weather forecasts, and air pollution as well as forest fire warning is increased significantly. On the other hand, to meet all needs of services, the numerical weather prediction models will be- come more and more complicated, and more and more ?huge?. The costs for improve- ment and maintenance will be expensive if several NWP systems are to be developed, improved and maintained at the same time and at the same center! In this paper, a Global and Regional multi-scale Advanced Prediction model System (GRAPS) was designed to meet all needs of short, medium and long range weather forecasts as well as environmental predictions. The main features of the GRAPS model include (1) full latitude-longitude grid points; (2) multi-scale in an unified model; (3) hydrostatic or non hydrostatic hypotheses optionally(4) variable or uniform resolution in option (5) possibility to run in regional or global mode(6) finite difference in the vertical dis- cretization in option (7) semi-implicit and semi-Lagrangian scheme; (8) height terrain- following coordinate; (9) Arakawa-C variable staggering; (10) Cascade-interpolation; (11) quasi-conservation of semi-Lagrangian advection scheme combined Staniforth (1992) and Preistley (1993).

  14. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.

  15. Atmospheric test models and numerical experiments for the simulation of the global distribution of weather data transponders

    SciTech Connect

    Grossman, A; Molenkamp, C R

    1999-08-25

    A proposal has been made to establish a high density global network of atmospheric micro transponders to record time, temperature, and wind data with time resolution of {le} 1 minute, temperature accuracy of {+-} 1 K, spatial resolution no poorer than {approx}3km horizontally and {approx}0.1km vertically, and 2-D speed accuracy of {le} 1m/s. This data will be used in conjunction with advanced numerical weather prediction models to provide increases in the reliability of long range weather forecasts. Major advances in data collection technology will be required to provide the proposed high-resolution data collection network. Systems studies must be undertaken to determine insertion requirements, spacing, and evolution of the transponder ensemble, which will be used to collect the data. Numerical models which provide realistic global weather pattern simulations must be utilized in order to perform these studies. A global circulation model with a 3{sup o} horizontal resolution has been used for initial simulations of the generation and evolution of transponder distributions. These studies indicate that reasonable global coverage of transponders can be achieved by a launch scenario consisting of the sequential launch of transponders at specified heights from a globally distributed set of launch sites.

  16. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1991-01-01

    General Circulation Model (GCM) studies of the atmospheric response to change boundary conditions are discussed. Results are reported on an extensive series of numerical studies based on the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) general circulation model. In these studies the authors determined the response to systematic changes in atmospheric CO2 ranging from 100 to 1000 ppm; to changes in the prescribed sea surface temperature (SST) in the Gulf of Mexico, such as occurred during the deglaciation phase of the last ice age; to changes in soil moisture over North America; and to changes in sea ice extent in the Southern Hemisphere. Study results show that the response of surface temperature and other variables is nearly logarithmic, with lower levels of CO2 implying greater sensitivity of the atmospheric state to changes in CO2. It was found that the surface temperature of the Gulf of Mexico exerts considerable control over the storm track and behavior of storm systems over the North Atlantic through its influence on evaporation and the source of latent heat. It was found that reductions in soil moisture can play a significant role in amplifying and maintaining North American drought, particularly when a negative soil moisture anomaly prevails late in the spring.

  17. Advanced atmospheric sounder and imaging radiometer /AASIR/ for STORMSAT

    NASA Technical Reports Server (NTRS)

    Chase, S. C.

    1976-01-01

    The principal mission of the three-axis stabilized STORMSAT spacecraft is to provide the necessary meteorological data for tracking, studying the detailed structure, and modeling mesoscale weather phenomena. In the area of mesoscale events, the following meteorological objectives are indicated: high-quality imagery, visible and infrared; wind velocity from cloud tracers (1 m/sec), atmospheric temperature profiles (1 K), and atmospheric humidity sounding. These objectives are reflected in the functional characteristics of the AASIR, which is a second generation meteorological sensor based on the Visible Infrared Spin-Scan Radiometer (VISSR) and the Atmospheric Sounder (VAS). The AASIR design and interface constraints with the STORMSAT spacecraft is discussed.

  18. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of

  19. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    NASA Astrophysics Data System (ADS)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  20. An automated system for global atmospheric sampling using B-747 airliners

    NASA Technical Reports Server (NTRS)

    Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.

    1981-01-01

    The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.

  1. PATHWAYS OF MERCURY EVASION FROM CONTAMINATED WETLANDS: A GLOBALLY IMPORTANT SOURCE OF ATMOSPHERIC MERCURY?

    EPA Science Inventory

    Mercury (Hg) is a globally occurring pollutant that bioaccumulates and persists in the environment. The global Hg cycle is highly dependant on air/water exchange, as it is one of the primary pathways to deliver Hg to the atmosphere. Although open water systems appear to be net...

  2. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  3. Advancing Solid Earth Science through Improved Atmosphere Modeling

    NASA Technical Reports Server (NTRS)

    Niell, A. E.

    2004-01-01

    We proposed to investigate and develop better models for the effect of the hydrostatic and water vapor components of the neutral atmosphere on delay for VLBI and GPS by using a Numerical Weather Model to better simulate realistic atmosphere conditions. By using a raytrace calculation through the model atmosphere at the times of actual VLBI observations, the potential improvement in geodetic results can be evaluated. Also, by calculating the actual variation of delays with elevation and azimuth, the errors in current mapping function models can be assessed. The VLBI data to be initially analyzed are the fifteen days of the CONT02 sessions of 2002 October which included eight stations. There are three segments to the research. 1) The PSU/NCAR fifth generation mesoscale numerical weather model (MM5) will be used to provide the state of the atmosphere with highest horizontal resolution of 3 km. 2) A three-dimensional raytrace program will be developed to determine the delays through the model atmosphere at the times and in the directions of the VLBI observations for each of the sites. 3) The VLBI data will be analyzed using both standard models for the atmosphere mapping functions and the mapping functions derived from the NWM raytracing.

  4. The enhanced NOAA global land dataset from the advanced very high resolution radiometer

    SciTech Connect

    Gutman, G.; Tarpley, D.; Ignatov, A.

    1995-07-01

    Global mapped data of reflected radiation in the visible (0.63 {mu}m) and near-infrared (0.85 {mu}m) wavebands on the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration satellites have been collected as the global vegetation index (GVI) dataset since 1982. Its primary objective has been vegetation studies (hence its title) using the normalized difference vegetation index (NDVI) calculated from the visible and near-IR data. The second-generation GVI, which started in April 1985, has also included brightness temperatures in the thermal IR (11 and 12 {mu}m) and the associated observation-illumination geometry. This multiyear, multispectral, multisatellite dataset is a unique tool for global land studies. At the same time, it raises challenging remote sensing and data management problems with respect to uniformity in time, enhancement of signal-to-noise ratio, retrieval of geophysical parameters from satellite radiances, and large data volumes. The authors explored a four-level generic structure for processing AVHRR data-the first two levels being remote sensing oriented and the other two directed at environmental studies-and will describe the present status of each level. The uniformity of GVI data was improved by applying an updated calibration, and noise was reduced by applying a more accurate cloud-screening procedure. In addition to the enhanced weekly data (recalibrated with appended quality/cloud flags), the available land environmental products include monthly 0-15{degrees}-resolution global maps of top-of-the-atmosphere visible and near-IR reflectances, NDVI, brightness temperatures, and a precipitable water index for April 1985-September 1994. For the first time, a 5-yr monthly climatology (means and standard deviations) of each quantity was produced. These products show strong potential for detecting and analyzing large-scale spatial and seasonal land variability. 57 refs., 8 figs.

  5. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  6. Micro/Nanosatellite Mars Network for Global Lower Atmosphere Characterization

    NASA Technical Reports Server (NTRS)

    Tinker, Mike L.

    2012-01-01

    To address multiple key challenge areas for robotic exploration of Mars, to achieve scientific goals and reduce risk for future human missions, a micro/nanosatellite constellation for lower atmosphere characterization is proposed. A microsatellite design is discussed that can operate (1) in tandem with another microsat or (2) as a "mother-ship" to deploy a network of nanosatellites (CubeSats). Either configuration of the network would perform radio occultation-based atmospheric measurements. Advantages of the proposed network are low development cost based on an existing microsatellite bus, and proven performance of the bus to date. Continued efforts in miniaturization of instruments are needed to fully enable the mother-ship/nanosat version of the proposed network.

  7. Earth Global Reference Atmospheric Model (GRAM99): Short Course

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2007-01-01

    Earth-GRAM is a FORTRAN software package that can run on a variety of platforms including PC's. For any time and location in the Earth's atmosphere, Earth-GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc.. Dispersions (perturbations) of these parameters are also provided and have realistic correlations, means, and variances - useful for Monte Carlo analysis. Earth-GRAM is driven by observations including a tropospheric database available from the National Climatic Data Center. Although Earth-GRAM can be run in a "stand-alone" mode, many users incorporate it into their trajectory codes. The source code is distributed free-of-charge to eligible recipients.

  8. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  9. Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.

    1991-01-01

    A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.

  10. NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Wilson, Greg S. (Editor); Leslie, Fred W. (Editor); Arnold, J. E. (Editor)

    1989-01-01

    Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  11. Global coupled ocean-atmosphere general circulation models in LASG/IAP

    NASA Astrophysics Data System (ADS)

    Yongqiang, Yu; Xuehong, Zhang; Yufu, Guo

    2004-06-01

    Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation model (CGCM). From the original flux anomaly-coupling model developed in the beginning of the 1990s to the latest directly-coupling model, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.

  12. Global Hawk dropsonde observations of the Arctic atmosphere during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign

    NASA Astrophysics Data System (ADS)

    Intrieri, J. M.; de Boer, G.; Shupe, M. D.; Spackman, J. R.; Wang, J.; Neiman, P. J.; Wick, G. A.; Hock, T. F.; Hood, R. E.

    2014-04-01

    In February and March of 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Pacific Ocean and the Arctic during the WISPAR field campaign. The WISPAR science missions were designed to: (1) improve our understanding of Pacific weather systems and the polar atmosphere; (2) evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3) demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards AFB in California. During the 25 h polar flight on 9-10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean-ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically non-existent.

  13. Atmospheric trends in methylchloroform and the global average for the hydroxyl radical

    NASA Technical Reports Server (NTRS)

    Prinn, R.; Cunnold, D.; Alyea, F.; Rasmussen, R.; Simmonds, P.

    1987-01-01

    ALE-GAGE (Atmospheric Lifetime Experiment-Global Atmospheric Gases Experiment) data obtained over the seven-year period from July 1978 to June 1985 are presented and interpreted. The data, combined with knowledge of industrial emissions, are used in an optimal estimation inversion scheme to deduce a globally average methylchloroform atmospheric lifetime of 6.3(+ 1.2, - 0.9) years (1 sigma uncertainty) and a globally averaged tropospheric hydroxyl radical concentration of (7.7 + or - 1.4) x 10 to the 5th radicals/cu cm (1 sigma uncertainty). These results provide the most accurate estimates yet of the trends and lifetime of methylchloroform and of the global average for tropospheric hydroxyl radical levels.

  14. The ATMOS (Atmospheric Trace MOlecule Spectroscopy) experiment - A tool for global monitoring of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Zander, R.; Gunson, M. R.; Farmer, C. B.; Norton, R. H.; Rinsland, C. P.

    1990-01-01

    A review is presented of the objectives, instrumentation, performance and results of the ATMOS program developed by NASA-JPL as part of the Spacelab 3 shuttle payload. ATMOS was developed to obtain high-resolution spectroscopic information of the middle atmosphere, from which the vertical distribution of the most possible trace and minor molecules could be retrieved. A complete occultation included not only data recorded when the optical path traversed the earth's atmosphere, but also many spectra with tangent heights big enough for no more telluric absorptions to be detected. The averaging of such 'high sun' observations has provided high quality solar spectra totally free of atmospheric absorption features.

  15. Land atmosphere exchange of water and energy in global change modeling

    SciTech Connect

    Dickinson, R.E.

    1995-06-01

    The biosphere is crucially coupled to the atmosphere through exchanges of water and energy and these exchanges are important for the modeling of global climate change. Key surface properties for modeling inputs to the atmosphere are albedo, aerodynamic roughness, canopy resistance to water flux and water holding capacity of soils. This paper indicates how these affect climate models and what are current limitations in specifying them. One of the recent surprises from research in this area is the strong effect these processes can have on the atmospheric hydrological cycle, and especially precipitation. Modeling of the surface energy and water processes determines such important quantities as surface temperature and moisture availability for vegetation and runoff, and in general, the physical environment for the biosphere. Global atmospheric models are still inadequate for provision of realistic inputs of solar energy and precipitation, but are improving. Ultimately, their success depends on improved treatments of the atmospheric hydrological cycle, which is a key question for current climate research.

  16. Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Loeb, Norman G.; Kato, Seiji; Su, Wenying; Wong, Takmeng; Rose, Fred G.; Doelling, David R.; Norris, Joel R.; Huang, Xianglei

    2012-07-01

    This paper highlights how the emerging record of satellite observations from the Earth Observation System (EOS) and A-Train constellation are advancing our ability to more completely document and understand the underlying processes associated with variations in the Earth's top-of-atmosphere (TOA) radiation budget. Large-scale TOA radiation changes during the past decade are observed to be within 0.5 Wm-2 per decade based upon comparisons between Clouds and the Earth's Radiant Energy System (CERES) instruments aboard Terra and Aqua and other instruments. Tropical variations in emitted outgoing longwave (LW) radiation are found to closely track changes in the El Niño-Southern Oscillation (ENSO). During positive ENSO phase (El Niño), outgoing LW radiation increases, and decreases during the negative ENSO phase (La Niña). The coldest year during the last decade occurred in 2008, during which strong La Nina conditions persisted throughout most of the year. Atmospheric Infrared Sounder (AIRS) observations show that the lower temperatures extended throughout much of the troposphere for several months, resulting in a reduction in outgoing LW radiation and an increase in net incoming radiation. At the global scale, outgoing LW flux anomalies are partially compensated for by decreases in midlatitude cloud fraction and cloud height, as observed by Moderate Resolution Imaging Spectrometer and Multi-angle Imaging SpectroRadiometer, respectively. CERES data show that clouds have a net radiative warming influence during La Niña conditions and a net cooling influence during El Niño, but the magnitude of the anomalies varies greatly from one ENSO event to another. Regional cloud-radiation variations among several Terra and A-Train instruments show consistent patterns and exhibit marked fluctuations at monthly timescales in response to tropical atmosphere-ocean dynamical processes associated with ENSO and Madden-Julian Oscillation.

  17. Heavy perfluorocarbons in the global atmosphere: Atmospheric histories and top-down global emission estimates for C4F10, C5F12, C6F14, C7F16 and C8F18

    NASA Astrophysics Data System (ADS)

    Ivy, D. J.; Arnold, T.; Rigby, M. L.; Baasandorj, M.; Muhle, J.; Harth, C.; Salameh, P.; Steele, P.; Leist, M.; Krummel, P. B.; Burkholder, J. B.; Fraser, P.; Weiss, R. F.; Prinn, R. G.

    2011-12-01

    The high molecular weight perfluorocarbons (PFCs) - perfluorobutane (C4F10), perfluoropentane (C5F12), perfluorohexane (C6F14), perfluoroheptane (C7F16) and perfluorooctane (C8F18) - are potent greenhouse gases with global warming potentials of ~ 9000 for a 100 year time horizon [Forster et al., 2007]. Currently, the heavy PFCs are regulated under the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC). However, no atmospheric observations or top-down emission estimates for these gases have been published. In this study, atmospheric histories of the heavy PFCs were determined through new measurements of the Cape Grim Air Archive and a collection of Northern Hemispheric archive flasks using the Advanced Global Atmospheric Gases Experiment (AGAGE) cryogenic preconcentration gas chromatography-mass spectrometry system "Medusa" [Miller et al., 2008]. Furthermore, global top-down emissions were estimated from 1973-2010 based on the atmospheric histories using an inverse method and the 3-D chemical transport model, Model of OZone and Related Tracers (MOZARTv4.5) [Emmons et al., 2009]. Comparison of the top-down emission estimates with bottom-up estimates from the Emissions Database for Global Atmospheric Research (EDGARv4.1) shows EDGARv4.1 emission estimates are underestimated by orders of magnitude for C4F10 and C5F12 [European Commission, 2009]. The bottom-up estimates from EDGARv4.1 are comparable to the top-down estimates for C6F14 and C7F16; no bottom-up emission estimates are available for C8F18. Generally, UNFCCC reported inventories by countries that have ratified the Kyoto Protocol are 5 to 10 times lower than the top-down emission estimates for C4F10, C5F12 and C6F14 (C7F16 and C8F18 are not reported to the UNFCCC). The atmospheric histories and top-down emission estimates presented are the most accurate and comprehensive compiled so far for the high molecular weight PFCs. Furthermore, this study illustrates the importance of

  18. The global change research center atmospheric chemistry model

    SciTech Connect

    Moraes, F.P. Jr.

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the O{sub x}, HO{sub x}, NO{sub x}, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  19. Hyperspectral sounding: a revolutionary advance in atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Sr.; Revercomb, Henry E.; Zhou, Daniel K.; Huang, Hung-Lung A.

    2005-01-01

    Hyperspectral remote sounding was introduced with the High spectral resolution Interferometer Sounder (HIS) that flew on the NASA ER-2 aircraft in the mid-1980s. The results from the HIS demonstrated that high vertical resolution sounding information could be achieved using quasi-continuous spectra of the atmosphere"s radiance to space. This has led to a series of research and operational satellite instruments designed to exploit the hyperspectral resolution sounding approach. The experimental versions, the ADEOS IMG (Interferometer for the Measurement of trace Gases) and the Aqua AIRS (Atmospheric InfraRed Sounder) have already been orbited. The IASI (Infrared Atmospheric Sounding Interferometer) and the CrIS (Cross-track Infrared Sounder) instruments are soon to be orbited on the METOP and the NPP/NPOESS operational series of polar orbiting satellites, respectively. Geostationary satellite hyperspectral resolution sounding instrumentation was initiated with the experimental GIFTS (Geostationary Imaging Fourier Transform Spectrometer) instrument whose development is providing risk reduction for the next generation of operational geostationary satellite instruments (e.g., the GOES-R Hyperspectral Environmental Suite, HES). This presentation traces the evolution of the hyperspectral resolution sounding program. Intercomparisons of the different satellite instrument approaches are discussed. Experimental results from the current aircraft and experimental satellite systems are presented to demonstrate the power of the hyperspectral resolution sounding technique.

  20. Three dimensional global modeling of atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.

  1. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands.

  2. Global carbon dioxide emission to the atmosphere by volcanoes

    SciTech Connect

    Williams, S.N.; Schaefer, S.J. ); Calvache V., M.L. Observatorio Vulcanologico de Colombia, Pasto ); Lopez, D. )

    1992-04-01

    Global emission of carbon dioxide by subaerial volcanoes is calculated, using CO{sub 2}/SO{sub 2} from volcanic gas analyses and SO{sub 2} flux, to be 34 {plus minus} 24 {times} 10{sup 12} g CO{sub 2}/yr from passive degassing and 31 {plus minus} 22 {times} 10{sup 12} g CO{sub 2}/yr from eruptions. Volcanic CO{sub 2} presently represents only 0.22% of anthropogenic emissions but may have contributed to significant greenhouse' effects at times in Earth history. Models of climate response to CO{sub 2} increases may be tested against geological data.

  3. Decadal regime shift linkage between global marine fish landings and atmospheric planetary wave forcing

    NASA Astrophysics Data System (ADS)

    Powell, A. M., Jr.; Xu, J.

    2015-04-01

    This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is that the global atmospheric planetary waves can lead to changes in the global surface air-sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956-1957, 1964-1965, 1977-1978, 1988-1989, and 1998-1999) in the most recent 59-year period (1950-2008) have been identified based on Student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic, and Indian) ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. The global forcing mechanism is described with a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO) global fish capture data (catch/stock). Analyses are performed to demonstrate that examining the interactions between the atmosphere, ocean, and fisheries is a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from longwave (relatively smooth and less complex) to shorter

  4. A High-Order Multiscale Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Nair, Ram

    2016-04-01

    The High-Order Method Modeling Environment (HOMME), developed at NCAR, is a petascale hydrostatic framework, which employs the cubed-sphere grid system and high-order continuous or discontinuous Galerkin (DG) methods. Recently, the HOMME framework is being extended to a non-hydrostatic dynamical core, named as the "High-Order Multiscale Atmospheric Model (HOMAM)." The spatial discretization is based on DG or high-order finite-volume methods. Orography is handled by the terrain-following height-based coordinate system. To alleviate the stringent CFL stability requirement resulting from the vertical aspects of the dynamics, an operator-splitting time integration scheme based on the horizontally explicit and vertically implicit (HEVI) philosophy is adopted for HOMAM. Preliminary results with the benchmark test cases proposed in the Dynamical Core Model Intercomparison project (DCMIP) test-suite will be presented in the seminar.

  5. Regional forecasting with global atmospheric models; Final report

    SciTech Connect

    Crowley, T.J.; Smith, N.R.

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  6. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  7. Exploring the Sensitivity of Terrestrial Ecosystems and Atmospheric Exchange of CO2 to Global Environmental Factors

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Meiyappan, P.; Song, Y.; Barman, R.

    2011-12-01

    This presentation explores the sensitivity of terrestrial ecosystems and atmospheric exchange of carbon to global environmental factors to advance our understanding of uncertainty in CO2 projections. We use a land surface model, the Integrated Science Assessment Model (ISAM) recently coupled into the NCAR Community Earth System Model (CESM1) framework to evaluate ecosystem variability due to climatic and anthropogenic factors. The factors considered here include climate change, increasing ambient CO2 concentrations, anthropogenic nitrogen deposition, and land use change (LUC) activities such as clearing of land for agriculture, pasture, and wood harvest. Each factor has a potential to influence the net ecosystem exchange (NEE) of CO2. Using the ISAM-CESM modeling framework, we evaluate the individual and concurrent effects of all these environmental factors on the terrestrial NEE over the 20th century and the 21st century. The ISAM biogeochemical cycles consist of fully prognostic carbon and nitrogen dynamics associated with changes in land cover, litter decomposition, and soil organic matter. The ISAM biophysical model accounts for water and energy processes in the vegetation and soil column, integrated over a time step of 30 minutes. The newly available CRU-NCEP climate forcing data (1850-2010, 0.5ox0.5o spatial resolution) will be used for the historical period simulations. The 21st century simulations will be carried out using the Representative Concentration Pathway (RCP) storylines. This study will help quantify the importance of various environmental factors towards modeling land-atmosphere carbon exchange and better understand model related differences in CO2 estimates.

  8. Advanced sensors for spaceborne measurements of the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D.

    1982-01-01

    Concepts involved in remote sensing from space are reviewed, together with performance requirements of proposed and planned equipment. Attention is focused on measurements of the troposphere, particularly meteorological variables and chemical species. The principles of absorption, using either passive or active sensors, emission detection, fluorescence measurements, and EM radiation scattering are outlined. The proposed NASA Windsat, using a CO2 laser from the Orbiter or from an 800 km orbit spacecraft to measure low-level wind speeds is described, as are the uses of the AMTS atmospheric sounder instrument for IR atmospheric temperature sensing and a 20-channel microwave radiometer to detect moisture profiles in the water vapor bands. Additionally, a microwave pressure sounder to detect backscattered signals at 60 GHz is outlined, along with lidar pressure and wind speed measurement methods.

  9. Challenges and Opportunities in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that

  10. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  11. Decadal regime shift linkage between global marine fish landings and atmospheric planetary wave forcing

    NASA Astrophysics Data System (ADS)

    Powell, A. M., Jr.; Xu, J.

    2014-08-01

    This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is the global atmospheric planetary waves that can lead to changes in the global surface air-sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956-1957, 1964-1965, 1977-1978, 1988-1989, and 1998-1999) in the recent 59 years (1950-2008) have been identified based on student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic and Indian) ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. Due to the multidisciplinary audience, the global forcing mechanism is described from a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO) global fish capture data (catch/stock). Analyses are performed to demonstrate the interactions between the atmosphere, ocean, and fisheries are a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from long wave (relatively smooth and less complex) to

  12. Global tropospheric methane: An indication of atmosphere-biosphere-climate interactions?

    NASA Technical Reports Server (NTRS)

    Harriss, Robert C.; Sebacher, Daniel I.; Bartlett, Karen B.

    1985-01-01

    Methane is an important atmospheric gas with potentially critical roles in both photochemical and radiation transfer processes. A major natural source of atmospheric methane involves anaerobic fermentation of organic materials in wetland soils and sediments. A data base of field measurements of atmospheric methane was used in the development of a global methane emissions inventory. Calculations support the following hypotheses: (1) Human activities currently produce methane at a rate approximately equal to natural resources (these rapidly increasing anthropogenic sources can explain most of the recent increase observed in tropospheric methane); and (2) Prior to 200 B.P. (before the present), the influence of climate on wetland extent and distribution was probably a dominant factor controlling global biogenic methane emissions to the atmosphere.

  13. Global transport of thermophilic bacteria in atmospheric dust.

    PubMed

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. PMID:23766086

  14. A parallel Atmosphere-Ocean Global Circulation Model of intermediate complexity for Earth system climate research

    NASA Astrophysics Data System (ADS)

    Silva, T. A.; Schmittner, A.

    2007-12-01

    We present the evolution of an Earth System model of intermediate complexity featuring an ocean global circulation model to include a fully coupled 3D primitive equations atmospheric model. The original Earth System climate model, UVic ESCM (Weaver et al. 2001), uses an ocean global circulation model coupled to a one layer atmospheric energy-moisture balance model. It also comprises a viscous-plastic rheology sea ice model, a mechanical land ice model, land surface, oceanic and terrestrial carbon models and a simple 3D marine ecosystem model (Schmittner et al. 2005). A spectral atmospheric, model, PUMA (Fraedrich et al. 2005), was coupled to the UVic ESCM to provide an atmosphere with nonlinear dynamics in target resolutions of T21, T31 and T42, as required. The coupling with the atmosphere, which involves data transfer, preprocessing and interpolation, is done through the OASIS3 coupler. During a run there are 2 + 2N parallel processes: the UVic ESCM, the Oasis3 coupler and the PUMA model with its domain split across 2N processes. The choice of N allows to balance more or less complex configurations of UVic model (e.g. higher level marine ecosystem model or number of biogeochemical tracers) with the atmospheric model at different resolutions, in order to maintain computational efficiency. The relatively simple parameterizations make this new atmosphere-ocean global circulation model much faster than a state-of-the-art Atmosphere-Ocean Global Circulation Model, and so optimally geared for decadal to millennial scale integrations. The latter require special care with the conservation of fluxes during coupling. A second order conservative interpolation method was applied (Jones 1999) and this is compared with the use of typical non-conservative methods.

  15. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  16. An advanced open-path atmospheric monitor design

    SciTech Connect

    Taylor, L.; Suhre, D.; Mech, S.

    1996-05-01

    The conceptual design of an open-path atmospheric monitor combines an acousto-optic tunable filter for emission spectroscopy (3-14 {mu}m) with a mid-IR (4.6-5.4 {mu}m) for absorption spectroscopy. It utilizes mostly commercially available components, covers a large area ({approximately}4 km radius), measures the distance to any reflecting object, can take measurements along any line-of-sight, and is eye safe. Of twenty test pollutants it is to detect, the concentrations of all twenty will be measurable via emission spectroscopy and ten by the more sensitive absorption spectroscopy.

  17. Effects of stabilizing atmospheric CO2 on global climate in the next two centuries

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo; Wigley, T. M. L.; Meehl, G. A.; Washington, W. M.

    Previous coupled ocean-atmosphere model simulations showed that the reduction in global warming is only moderate by year 2100 under CO2 stabilization (STA) scenarios compared with that under business-as-usual (BAU) scenarios. To further illustrate the long-term effect of stabilizing CO2 on global climate, we integrated a coupled ocean-atmosphere model from 1870 to 2200 forced by historical and projected CO2, SO2 and other greenhouse gases under newly updated BAU and STA scenarios. Our results show that the reduction in global warming resulting from CO2 stabilization could be large (∼1.5°C globally, and up to 12°C in DJF at northern high-latitudes) by the later part of the 22nd century. Stabilizing the CO2 level also results in reduced changes in precipitation, soil moisture and diurnal temperature range. BAU and STA patterns of change are similar for all variables examined.

  18. Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia

    2015-04-01

    Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.

  19. Long-term decline of global atmospheric ethane concentrations and implications for methane.

    PubMed

    Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R

    2012-08-23

    After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s. PMID:22914166

  20. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect

    Benkovitz, C.M.

    1995-07-01

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  1. Global Propagation of Gravity Waves Generated with the Whole Atmosphere Transfer Function Model

    NASA Astrophysics Data System (ADS)

    Mayr, H. G.; Talaat, E. R.; Wolven, B. C.

    2012-12-01

    Gravity waves are ubiquitous phenomena in the Earth's atmosphere, accounting for a significant fraction of its observed variability. These waves, with periods ranging from minutes to hours, are thought to be a major means for exchange of momentum and energy between atmospheric regions. The Transfer Function Model (TFM) describes acoustic gravity waves (AGW) that propagate across the globe in a dissipative static background atmosphere extending from the ground to 700 km. The model is limited to waves with periods << 12 hr where the Coriolis force is not important. Formulated in terms of zonal vector spherical harmonics and oscillation frequencies, the linearized equations of energy, mass, and momentum conservation are solved to generate the transfer function (TF) for a chosen height distribution of the excitation source. The model accounts for momentum exchange between atmospheric species (He, O, N2, O2, Ar), which affects significantly the wave amplitudes and phases of thermospheric temperature, densities, and wind fields. Covering a broad range of frequencies and spherical harmonic wave numbers (wavelengths), without limitations, the assembled TF captures the physics that controls the propagation of AGW, and the computational effort is considerable. For a chosen horizontal geometry and impulsive time dependence of the source, however, the global wave response is then obtained in short order. The model is computationally efficient and well suited to serve as an experimental and educational tool for simulating propagating wave patterns on the globe. The model is also semi-analytical and therefore well suited to explore the different wave modes that can be generated under varying dynamical conditions. The TFM has been applied to simulate the AGW, which are generated in the auroral region of the thermosphere by joule heating and momentum coupling due to solar wind induced electric fields [e.g., Mayr et al., Space Science Reviews, 1990]. The auroral source generates

  2. Perfluorocarbons in the global atmosphere: a) Measurements of tetrafluoromethane, hexafluoroethane, and octafluoropropane

    NASA Astrophysics Data System (ADS)

    Muhle, J.; Miller, B. R.; Salameh, P. K.; Ganesan, A. L.; Harth, C. M.; Greally, B. R.; O'Doherty, S. J.; Trudinger, C. M.; Porter, L. W.; Steele, L. P.; Krummel, P. B.; Petrenko, V. V.; Rigby, M. L.; Simmonds, P. G.; Fraser, P. J.; Prinn, R. G.; Weiss, R. F.

    2009-12-01

    We have reconstructed the atmospheric abundances of the extremely long-lived, infrared-absorbing perfluorocarbons (PFCs) tetrafluoromethane (CF4), hexafluoroethane (C2F6), and octafluoropropane (C3F8) from archived Southern Hemisphere (SH, Cape Grim Air Archive) and Northern Hemisphere (NH) air and in situ ambient air measurements at remote sites of the Advanced Global Atmospheric Gases Experiment (AGAGE) program using “Medusa” trace gas analytical systems. The PFC records span more than 30 years in both hemispheres - about twice the length of previous direct NH measurements, and unprecedented in the SH. The excellent precisions (<0.3% tetrafluoromethane, <1.5% hexafluoroethane, <4.5% octafluoropropane) and quality of the archived air and in situ data lead to clearly defined abundances and rise rates in both hemispheres with well defined interhemispheric gradients for the first time. Based on new calibration scales which have estimated accuracies of ~1%, the atmospheric abundance of tetrafluoromethane is 6-10% lower than previously published. The background tropospheric abundances of tetrafluoromethane have been increasing from ~50 ppt (parts-per-trillion, dry air mole fraction) in 1978 to ~77 ppt in 2008 in the SH and from ~46 ppt in 1973 to ~78 ppt in 2008 in the NH. Rise rates were ~1.1 ppt/year until ~1991 and ~0.7 ppt/year since ~1993. Its natural pre-industrial background is ~34.8 ppt based on air extracted from ancient Greenland ice and Antarctic firn. The tropospheric abundances of hexafluoroethane have been increasing from ~1 ppt in 1978 to ~3.9 ppt in 2008 in the SH and from ~0.8 ppt in 1973 to ~4.0 ppt in 2008 in the NH. Its interhemispheric gradient is larger than previously reported. The tropospheric abundances of octafluoropropane have been increasing from ~0.05 ppt in 1978 to ~0.5 ppt in 2008 in SH and from ~0.02 ppt in 1973 to ~0.52 ppt in 2008 in the NH. Abundances and rise rates are discussed in the context of changing emissions from the

  3. BOREAS (Boreal Ecosystem-Atmosphere Study): Global change and biosphere-atmosphere interactions in the boreal forest

    NASA Technical Reports Server (NTRS)

    Sellers, Piers J.

    1991-01-01

    The Boreal Ecosystems Atmosphere Study (BOREAS) is a cooperative field and analysis project involving elements of land surface climatology, tropospheric chemistry, and terrestrial ecology. The goal of the study is to understand the interactions between the boreal forest biome and the atmosphere in order to clarify their roles in global change. The study will be centered on two 20 by 20 km sites within the North American boreal forest region, located near the northern and southern limits of the biome. Studies based at these sites will be used to explore the roles of various environmental factors in controlling the extent and character of the biome. The sites will be the subject of surface, airborne, and satellite based observations which aim to improve understanding of the biological and physical processes and states which govern the exchanges of energy, water, carbon, and trace gases between boreal forest ecosystems and the atmosphere. Particular reference will be made to those processes and states that may be sensitive to global change. The study also aims to develop the use of remote sensing techniques to transfer understanding of the above process from local scales out to regional scales. The BOREAS project is being planned for 1992-1996, with a major field effort in 1994.

  4. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1992-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a test bed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  5. Advanced development of atmospheric models. [SEASAT Program support

    NASA Technical Reports Server (NTRS)

    Kesel, P. G.; Langland, R. A.; Stephens, P. L.; Welleck, R. E.; Wolff, P. M.

    1979-01-01

    A set of atmospheric analysis and prediction models was developed in support of the SEASAT Program existing objective analysis models which utilize a 125x125 polar stereographic grid of the Northern Hemisphere, which were modified in order to incorporate and assess the impact of (real or simulated) satellite data in the analysis of a two-day meteorological scenario in January 1979. Program/procedural changes included: (1) a provision to utilize winds in the sea level pressure and multi-level height analyses (1000-100 MBS); (2) The capability to perform a pre-analysis at two control levels (1000 MBS and 250 MBS); (3) a greater degree of wind- and mass-field coupling, especially at these controls levels; (4) an improved facility to bogus the analyses based on results of the preanalysis; and (5) a provision to utilize (SIRS) satellite thickness values and cloud motion vectors in the multi-level height analysis.

  6. Development of an advanced finite difference atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Randall, D. A.

    1994-11-01

    The essence of this research is further development of the Colorado State University (CSU) atmospheric general circulation model (AGCM). Although the CSU AGCM is currently evolving rapidly, is also being used in a variety of 'applications' in which the results of simulation performed with the model are analyzed to gain better understanding of the climate system. In parallel, a GCM development effort is also under way at UCLA. The CSU GCM was derived from the UCLA GCM of 1982, but has evolved to the point that the two models are now really quite distinct. The key distinguishing elements of the CSU model are briefly summarized. The goal of CHAMMP is 'to accelerate the development of more accurate and useful climate prediction capabilities to forecast climate change on sub-continental and smaller scales over time periods ranging from a decade to several centuries'.

  7. Iron Resources and Oceanic Nutrients: Advancement of Global Environment Simulations

    NASA Astrophysics Data System (ADS)

    Debaar, H. J.

    2002-12-01

    The concept of a single factor limiting plankton blooms, is presently giving way to co-limitation by light, and the nutrients N, P, Si and Fe. Primary production, export into the deep sea, and CO2 uptake from the atmosphere together form the 'biological pump' in Ocean Biogeochemical Climate Models (OBCM's). Thus far OBCM's assume just one limiting nutrient (P) and one universal phytoplankton species, for C budgets and CO2 exchange. New realistic OBCM's are being developed for budgeting and exchanges of both CO2 and DMS, implementing (i) co-limitation by 4 nutrients of 5 major taxonomic classes of phytoplankton, (ii) DMS(P) pathways, (iii) global iron cycling, (iv) chemical forms of iron and (v) iron supply into surface waters. The new OBCM's will predict realistic climate scenario's, notably climatic feedbacks on oceanic biogeochemistry. IRONAGES is a European consortium of twelve institutes and is coordinated by Royal NIOZ. Input from below of iron from anoxic sediments of coastal margins has been assessed (March 2002) along a 2-D vertical section from Europe into the centre of the north Atlantic. Input from above of Fe(II) dissolved in rainwater from Sahara dust blown over the central Atlantic will be quantified at sea (October 2002), and related to observed plankton production. Different chemical forms of iron are being assessed and a certification excercise for Fe in seawater also under aegis of SCOR Working Group 109 is being completed (December 2002). For two major DMS-producing algal groups Phaeocystis sp. and Emiliania huxleyi the life cycle, Fe limitation, export production, CO2 uptake and DMS emissions have been synthesized from existing literature and laboratory experiments. This is being fed into ecosystem modeling, as well as into DMS(P) pathway modeling. Also know-how has been synthesized for three other major classes (diatoms, N2-fixing Trichodesmium and nano-pico-plankton) and fed into the ecosystem modeling. Pathways of DMS(P) in blooms are being

  8. Study of advanced atmospheric entry systems for Mars

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Entry system designs are described for various advanced Mars missions including sample return, hard lander, and Mars airplane. The Mars exploration systems for sample return and the hard lander require decleration from direct approach entry velocities of about 6 km/s to terminal velocities consistent with surface landing requirements. The Mars airplane entry system is decelerated from orbit at 4.6 km/s to deployment near the surface. Mass performance characteristics of major elements of the Mass performance characteristics are estimated for the major elements of the required entry systems using Viking technology or logical extensions of technology in order to provide a common basis of comparison for the three entry modes mission mode approaches. The entry systems, although not optimized, are based on Viking designs and reflect current hardware performance capability and realistic mass relationships.

  9. Advancing Global Health – The Need for (Better) Social Science

    PubMed Central

    Hanefeld, Johanna

    2016-01-01

    In his perspective "Navigating between stealth advocacy and unconscious dogmatism: the challenge of researching the norms, politics and power of global health," Ooms argues that actions taken in the field of global health are dependent not only on available resources, but on the normative premise that guides how these resources are spent. This comment sets out how the application of a predominately biomedical positivist research tradition in global health, has potentially limited understanding of the value judgements underlying decisions in the field. To redress this critical social science, including health policy analysis has much to offer, to the field of global health including on questions of governance. PMID:27239873

  10. Modeling the terrestrial hydrology for the global atmosphere - The future role of satellite data

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Bock, P.; Alfano, J. J.

    1981-01-01

    A global terrestrial hydrology model has been developed for the transport and storage of moisture and heat in the ground surface layer where the hydrological parameters react to diurnal and seasonal changes in the atmosphere. The spatial and temporal variability of land surface features is considered in the model by means of large scale parameterizations. The model can be either forced by the atmosphere using conventional meteorological data or coupled to an atmospheric general circulation model (GCM) for interactive studies. The global surface is divided into 4 deg longitude by 5 deg latitude cells while the ground is represented by a thin surface layer, a bulk layer (the root zone), and a deep layer (the ground water zone). Results are presented from a seven-day global experiment which was conducted utilizing the GLAS GCM (NASA Goddard Laboratory for Atmospheric Sciences). The model has demonstrated its capability to predict, over a large region, the overall soil moisture storage and major flux exchanges with the atmosphere above and the ground water below.

  11. NO{sub x} from lightning 2. Constraints from the global atmospheric electric circuit

    SciTech Connect

    Price, C. |; Penner, J. |; Prather, M.

    1997-03-01

    The global atmospheric electric circuit can be used to constrain the total amount of NO{sub x} produced by lightning (LNO{sub x}). Since the global atmospheric electric circuit is regulated by global thunderstorm activity and, more specifically, global lightning currents, we use the global electric circuit to quantify and place limits on the total amount of energy available from lightning. Using a production rate of 10{times}10{sup 16} molecules NO/J, we have calculated the global LNO{sub x} production on monthly, annual, and interannual timescales from 1983 to 1991. The 8-year mean production rate is found to be 13.2 Tg N/yr and agrees with the independent estimate derived in part 1 of this study (12.2 Tg N/yr), which is based on lightning physics and global lightning distributions. After considering the various uncertainties in these calculations, we conclude that the annual production rate of NO{sub x} from lightning cannot be less than 5 nor more than 25 Tg N/yr.{copyright} 1997 American Geophysical Union

  12. Atmospheric impacts of changing sea ice cover in CO2 induced global warming

    NASA Astrophysics Data System (ADS)

    Cvijanovic, I.; Caldeira, K.

    2013-12-01

    Changes in sea ice cover have important consequences for both Earth's energy budget and atmospheric dynamics. Sea ice amplifies the effects of applied radiative forcing, insulates ocean from atmosphere and induces changes in the meridional temperature gradients thus affecting atmospheric motion in several ways. In this study, we partition and evaluate the effect of changing sea ice cover in global warming using sets of simulations with active and suppressed sea ice response. In particular, we investigate the effect of CO2 induced sea ice changes on global circulation response and extratropical precipitation extremes. Importantly, our setup employs the Atmospheric General Circulation Model coupled to a mixed layer ocean, thus enabling the atmosphere-surface ocean interactions and global atmospheric teleconnections from remote areas. Mid-latitude circulation patterns are found to be most strongly affected by the sea ice changes. In the standard, 'active' ice setup, westerly winds weaken in response to CO2-induced warming. In contrast, in the absence of sea ice response, westerly winds strengthen with global warming. These contrasting wind responses further affect the atmospheric weather patterns and extreme precipitation event development. We identify two opposing roles of sea ice decline on extreme events: (i) a dominant warming effect leads to an increase in the number and strength of extreme events; (ii) a decrease in the pole to equator gradient (a consequence of sea ice loss) acts to temper the development of precipitation extremes due to a decreased midlatitude dry static energy transport.This leads to the conclusion that for the same global temperature increase, the magnitude and frequency of mid-latitude precipitation extremes is smaller when sea ice loss is enabled than when it is suppressed. In general, in the absence of sea ice feedbacks, we find up to 35% less global warming (depending on the simulation type). This is not only due to the smaller high

  13. An advanced open path atmospheric pollution monitor for large areas

    SciTech Connect

    Taylor, L.; Suhre, D.; Mani, S.

    1996-12-31

    Over 100 million gallons of radioactive and toxic waste materials generated in weapon materials production are stored in 322 tanks buried within large areas at DOE sites. Toxic vapors occur in the tank headspace due to the solvents used and chemical reactions within the tanks. To prevent flammable or explosive concentration of volatile vapors, the headspace are vented, either manually or automatically, to the atmosphere when the headspace pressure exceeds preset values. Furthermore, 67 of the 177 tanks at the DOE Hanford Site are suspected or are known to be leaking into the ground. These underground storage tanks are grouped into tank farms which contain closely spaced tanks in areas as large as 1 km{sup 2}. The objective of this program is to protect DOE personnel and the public by monitoring the air above these tank farms for toxic air pollutants without the monitor entering the tanks farms, which can be radioactive. A secondary objective is to protect personnel by monitoring the air above buried 50 gallon drums containing moderately low radioactive materials but which could also emit toxic air pollutants.

  14. Global warming and marine carbon cycle feedbacks on future atmospheric CO2

    PubMed

    Joos; Plattner; Stocker; Marchal; Schmittner

    1999-04-16

    A low-order physical-biogeochemical climate model was used to project atmospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming simulations and collapses at high levels of carbon dioxide. Projected changes in the marine carbon cycle have a modest impact on atmospheric carbon dioxide. Compared with the control, atmospheric carbon dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean carbon uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic carbon, except when the North Atlantic thermohaline circulation collapses. PMID:10205049

  15. Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Jacob, D. J.; Johnson, M. T.; Bell, T. G.; Baker, A. R.; Keene, W. C.; Lima, I. D.; Doney, S. C.; Stock, C. A.

    2015-08-01

    Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a-1, much lower than current literature values (7-23 TgN a-1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a-1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2-5 TgN a-1, comparable in magnitude to other natural sources from open fires and soils.

  16. Global 3-d weather models for the atmospheric correction of gravity time series

    NASA Astrophysics Data System (ADS)

    Klügel, Thomas; Wziontek, Hartmut

    2016-04-01

    The use of 3-dimensional weather models allows for an effective reduction of atmospheric effects in gravity time series. In the past the BKG service Atmacs (Atmospheric Attraction Computation Service) provided 3-d atmospheric correction time series only for European stations of the International Geodynamics and Earth Tide Service (IGETS, formerly Global Geodynamics Project, GGP), which are based on the high resolution regional model COSMO-EU of the German Weather Service (DWD). The provision of 3-d density data from the global weather models GME (20 km resolution) and most recently ICON (13 km resolution) by the DWD now allows the computation of 3-d atmospheric correction time series for all IGETS stations worldwide. Due to the triangular grid structure, a different procedure for mass elements close to the computation point is necessary. By increasing the spatial resolution towards the computation point by linear interpolation of the grid values, the use of a point mass approach became possible with an approximation error below 0.3 nm/s2. This approach also allows to consider horizontal density gradients and a tilted model surface of the innermost cells. By means of a variance reduction at different frequency bands a significant improvement of the atmospheric correction can be demonstrated at many IGETS stations. The limited temporal resolution of recently 3 hours can be improved by the user by including local air pressure records using a remove-restore technique. Atmospheric correction time series are online available at http://atmacs.bkg.bund.de.

  17. Acute effects of a large bolide impact simulated by a global atmospheric circulation model

    NASA Technical Reports Server (NTRS)

    Thompson, Starley L.; Crutzen, P. J.

    1988-01-01

    The goal is to use a global three-dimensional atmospheric circulation model developed for studies of atmospheric effects of nuclear war to examine the time evolution of atmospheric effects from a large bolide impact. The model allows for dust and NOx injection, atmospheric transport by winds, removal by precipitation, radiative transfer effects, stratospheric ozone chemistry, and nitric acid formation and deposition on a simulated Earth having realistic geography. Researchers assume a modest 2 km-diameter impactor of the type that could have formed the 32 km-diameter impact structure found near Manson, Iowa and dated at roughly 66 Ma. Such an impact would have created on the order of 5 x 10 to the 10th power metric tons of atmospheric dust (about 0.01 g cm(-2) if spread globally) and 1 x 10 to the 37th power molecules of NO, or two orders of magnitude more stratospheric NO than might be produced in a large nuclear war. Researchers ignore potential injections of CO2 and wildfire smoke, and assume the direct heating of the atmosphere by impact ejecta on a regional scale is not large compared to absorption of solar energy by dust. Researchers assume an impact site at 45 N in the interior of present day North America.

  18. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020

    NASA Astrophysics Data System (ADS)

    Pacyna, E. G.; Pacyna, J. M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P.

    2010-07-01

    This paper presents the 2005 global inventory of anthropogenic emissions to the atmosphere component of the work that was prepared by UNEP and AMAP as a contribution to the UNEP report Global Atmospheric Mercury Assessment: Sources, Emissions and Transport ( UNEP Chemicals Branch, 2008). It describes the methodology applied to compile emissions data on the two main components of the inventory - the 'by-product' emissions and the 'intentional use' emissions - and to geospatially distribute these emissions estimates to produce a gridded dataset for use by modelers, and the results of this work. It also presents some initial results of work to develop (simplified) scenario emissions inventories for 2020 that can be used to investigate the possible implications of actions to reduce mercury emissions at the global scale.

  19. Simulation of rice plant temperatures using the UC Davis Advanced Canopy-Atmosphere-Soil Algorithm (ACASA)

    NASA Astrophysics Data System (ADS)

    Maruyama, A.; Pyles, D.; Paw U, K.

    2009-12-01

    The thermal environment in the plant canopy affects plants’ growth processes such as flowering and ripening. High temperatures often cause grain sterility and poor filling in serial crops, and reduce their production in tropical and temperate regions. With global warming predicted, these effects have become a major concern worldwide. In this study, we observed the plant body temperature profiles for the rice canopy and simulate them using a higher-order closure micrometeorological model to understand the relationship between plant temperatures and atmospheric condition. Experiments were conducted in rice paddy during 2007-summer season under warm temperate climate in Japan. Leaf temperatures at three different height (0.3, 0.5, 0.7m) and panicle temperatures at 0.9m were measured using fine-thermocouples. The UC Davis Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) was used to calculate plant body temperature profiles in the canopy. ACASA is based on the radiation transfer, higher-order closure of turbulent equations for mass and heat exchange, and detailed plant physiological parameterization for the canopy-atmosphere-soil system. Water temperature was almost constant of 21-23 C throughout the summer because of continuous irrigation. Therefore, larger difference between air temperature at 2 m and water temperature was found on daytime. Observed leaf/panicle temperature was lower near the water surface and higher on upper layer in the canopy. Difference of temperatures between 0.3 m and 0.9 m was around 3-4 C for daytime, and around 1-2 C for nighttime. Calculated result of ACASA recreated these trends of plant temperature profile sufficiently. However, the relationship between plant and air temperature in the canopy was a little different from observed, i.e. observed leaf/panicle temperature were almost the same as air temperature, in contrast the simulated air temperature was 0.5-1.5 C higher than plant temperatures for the both of daytime and night time

  20. Tracing the gas composition of Titan's atmosphere with Herschel : Advances and Discoveries

    NASA Astrophysics Data System (ADS)

    Rengel, Miriam; Moreno, Raphael; Courtin, Régis; Lellouch, Emmanuel; Sagawa, Hideo; Hartogh, Paul; Swinyard, Bruce; Lara, Luisa; Feuchtgruber, Helmut; Jarchow, Christopher; Fulton, Trevor; Cernicharo, José; Bockelée-Morvan, Dominique; Biver, Nicolás; Banaszkiewicz, Marek; González, Armando

    2014-11-01

    The nitrogen-dominated atmosphere of Titan exhibits a great diversity and complexity of molecules and high organic material abundances. The origin of Titan atmosphere is poorly understood and its chemistry is rather complicated. In the framework of the Herschel guaranteed time key programme "Water and Related Chemistry in the Solar System" (Hartogh et al 2009), we carried out observations of the atmosphere of Titan with HIFI, PACS and SPIRE onboard Herschel (Rengel et al. 2014; Courtin et al. 2011, Moreno et al. 2011, 2012). Here we will review key results and discoveries on the atmosphere of Titan obtained with Herschel:-an inventory of species detected including some isotopes from a new survey between 51 and 671 microns.-the determination of the abundance of trace constituents and comparisons with previous efforts.-the unexpected detection of hydrogen isocyanide (HNC), a specie not previously identified in Titan's atmosphere, and the measurement of 16O/18O ratio in CO in Titan for the first time published.-the determination of the vertical profile of water vapor over the 100-450 km altitude range, distribution which does not follow previous predictions and allows to strength an Enceladus' activity as the source for the current water on Titan.With the advent of Herschel, these advances and discoveries allow a further characterization of the complex atmosphere of Titan and help to advance the study of the abundance distribution and the investigation of a variety of processes in Titan atmosphere.

  1. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  2. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  3. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  4. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  5. Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations

    NASA Astrophysics Data System (ADS)

    O'Doherty, S.; Rigby, M.; Mühle, J.; Ivy, D. J.; Miller, B. R.; Young, D.; Simmonds, P. G.; Reimann, S.; Vollmer, M. K.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Dunse, B.; Salameh, P. K.; Harth, C. M.; Arnold, T.; Weiss, R. F.; Kim, J.; Park, S.; Li, S.; Lunder, C.; Hermansen, O.; Schmidbauer, N.; Zhou, L. X.; Yao, B.; Wang, R. H. J.; Manning, A. J.; Prinn, R. G.

    2014-09-01

    High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant hydrofluorocarbons (HFCs) respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 ± 0.04 and 0.7 ± 0.02 mW m-2 in 2012 respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1σ) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr-1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr-1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr-1 of HFC-143a and 21 ± 11 Gg yr-1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing by 7 ± 5% yr-1 for HFC-143a and 14 ± 11% yr-1 for HFC-32.

  6. Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations

    NASA Astrophysics Data System (ADS)

    O'Doherty, S.; Rigby, M.; Mühle, J.; Ivy, D. J.; Miller, B. R.; Young, D.; Simmonds, P. G.; Reimann, S.; Vollmer, M. K.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Dunse, B.; Salameh, P. K.; Harth, C. M.; Arnold, T.; Weiss, R. F.; Kim, J.; Park, S.; Li, S.; Lunder, C.; Hermansen, O.; Schmidbauer, N.; Zhou, L. X.; Yao, B.; Wang, R. H. J.; Manning, A.; Prinn, R. G.

    2014-03-01

    High frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant HFCs respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 and 0.7 mW m2 in 2012, respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1-sigma) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr-1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr-1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr-1 of HFC-143a and 21 ± 11 Gg yr-1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing 7 ± 5% yr-1 for HFC-143a and 14 ± 11% yr-1 for HFC-32.

  7. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents

    NASA Astrophysics Data System (ADS)

    Christoudias, Theodoros; Proestos, Yiannis; Lelieveld, Jos

    2015-04-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We simulated atmospheric transport and decay, focusing on 137Cs and 131I as proxies for particulate and gaseous radionuclides, respectively. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes. We present risk maps for potential surface layer concentrations, deposition and doses to humans from the inhalation exposure of 131I. The estimated risks exhibit seasonal variability, with the highest surface level concentrations of gaseous radionuclides in the Northern Hemisphere during winter.

  8. Globalization and Health: developing the journal to advance the field.

    PubMed

    Martin, Greg; MacLachlan, Malcolm; Labonté, Ronald; Larkan, Fiona; Vallières, Frédérique; Bergin, Niamh

    2016-01-01

    Founded in 2005, Globalization and Health was the first open access global health journal. The journal has since expanded the field, and its influence, with the number of downloaded papers rising 17-fold, to over 4 million. Its ground-breaking papers, leading authors -including a Nobel Prize winner- and an impact factor of 2.25 place it among the top global health journals in the world. To mark the ten years since the journal's founding, we, members of the current editorial board, undertook a review of the journal's progress over the last decade. Through the application of an inductive thematic analysis, we systematically identified themes of research published in the journal from 2005 to 2014. We identify key areas the journal has promoted and consider these in the context of an existing framework, identify current gaps in global health research and highlight areas we, as a journal, would like to see strengthened. PMID:26961760

  9. Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

    NASA Astrophysics Data System (ADS)

    Won, Jihye; Park, Kwan-Dong; Kim, Dusik; Ha, Jihyun

    2011-12-01

    The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/m2 and 4.3 kg/m2 for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

  10. The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    1999-01-01

    The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).

  11. Global Hawk Dropsonde Observations of the Arctic Atmosphere from March 9-10, 2011

    NASA Astrophysics Data System (ADS)

    Intrieri, J. M.; Spackman, J. R.; Hughes, M. R.; Neiman, P. J.; Wick, G. A.; Hock, T.; Nghiem, S. V.; Hood, R. E.

    2011-12-01

    In February and March of 2011, the Global Hawk (GH) unmanned aircraft system (UAS) was deployed over the Pacific Ocean and the Arctic in science missions designed to improve our understanding of Pacific weather systems and the polar atmosphere. The missions were not only designed to improve our scientific understanding of atmospheric events in remote environments but to also evaluate the operational use of unmanned aircraft for investigating them. The 116-foot-wingspan Global Hawk, which can soar for 28 hours up to 65,000 feet, was remotely operated from its home at NASA Dryden Flight Research Center on the Edwards Air Force Base in southern California. The field campaign, called Winter Storms and Pacific Atmospheric Rivers (WISPAR), was conducted through a collaborative effort that included NOAA, NASA, and National Center for Atmospheric Research (NCAR). The main objective of the NOAA-led WISPAR campaign was to demonstrate the operational and research applications of a dropsonde system, developed for NOAA by NCAR, for the NASA Global Hawk unmanned aircraft. The dropsondes obtained high-resolution profiles of temperature, pressure, relative humidity, wind speed and direction from the stratosphere to the surface of the ocean, or as in the data presented here, sea ice. The WISPAR science missions targeted three areas of interest; atmospheric rivers (AR), Pacific winter storms, and the Arctic atmosphere. During the 25-hour flight on March 9 and 10, the GH released 35 sondes in the Arctic from just off the North Slope of Alaska to as far as 85° N latitude. En route to and from the Arctic, an additional 35 sondes were dropped in an AR off California and a winter storm off the west coast of Canada. Although the GH Arctic mission is interesting because it transected an unusually cold polar notable for record Arctic ozone loss, in this paper we will examine and present details of the dropsonde data focused primarily on the polar boundary layer to examine atmospheric

  12. Microseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methane

    NASA Astrophysics Data System (ADS)

    Etiope, Giuseppe; Klusman, Ronald W.

    2010-07-01

    Drylands are considered a net sink for atmospheric methane and a main item of the global inventories of the greenhouse gas budget. It is outlined here, however, that a significant portion of drylands occur over sedimentary basins hosting natural gas and oil reservoirs, where gas migration to the surface takes place, producing positive fluxes of methane into the atmosphere. New field surveys, in different hydrocarbon-prone basins, confirm that microseepage, enhanced by faults and fractures in the rocks, overcomes the methanotrophic consumption occurring in dry soil throughout large areas, especially in the winter season. Fluxes of a few units to some tens of mg m - 2 day - 1 are frequent over oil-gas fields, whose global extent is estimated at 3.5-4.2 million km 2; higher fluxes (> 50 mg m - 2 day - 1 ) are primarily, but not exclusively, found in basins characterized by macro-seeps. Microseepage may however potentially exist over a wider area (˜ 8 million km 2, i.e. 15% of global drylands), including the Total Petroleum Systems, coal measures and portions of sedimentary basins that have experienced thermogenesis. Based on a relatively large and geographically dispersed data-set (563 measurements) from different hydrocarbon-prone basins in USA and Europe, upscaling suggests that global microseepage emission exceeding 10 Tg year - 1 is very likely. Microseepage is then only one component of a wider class of geological sources, including mud volcanoes, seeps, geothermal and marine seepage, which cannot be ignored in the atmospheric methane budget.

  13. Mars global atmospheric oscillations - Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms

    NASA Technical Reports Server (NTRS)

    Tillman, James E.

    1988-01-01

    Transient events of an unusual character have been discovered in the daily pressure variations of the Mars atmosphere's pressure at the planetary surface which last only a few Martian days, appear to repeat on an annual basis, cover a large part of the given day's hemisphere, occur in pairs separated by 20-days in some cases, and coincide with the annual pressure minimum. They also consist of spectral components nearly identical in frequency with diurnal and semidiurnal harmonics. It is presently suggested that these events are Kelvin, normal-mode, transient, global oscillations. An almost-diurnal and an almost-semidiurnal high-frequency global oscillation distinct from solar-driven tides may be common on Mars.

  14. Global and Regional Constraints on Exchanges of CO2 Between the Atmosphere and Terrestrial Biosphere

    NASA Astrophysics Data System (ADS)

    Piper, S. C.

    2001-12-01

    The vigorous atmospheric circulation rapidly mixes CO2 that is exchanged with the terrestrial biosphere and oceans. Therefore, at time scales greater than 1 year, the approximate interhemispheric exchange time of the atmosphere, an average of CO2 measurements from a network of surface stations can be used to accurately determine the global net change in atmospheric CO2. By subtracting CO2 produced by fossil fuel combustion, which is well characterized by national statistics, the global the sum of terrestrial biospheric and oceanic net fluxes, here termed the "nonfossil" CO2 flux, can also be accurately determined. The nonfossil CO2 flux averaged -2.1+/-0.3 PgC/yr and -3.2+/-0.4 PgC/yr in the 1980s and 1990s respectively (negative denotes out of the atmosphere), and varied in annual average from about 0 to -4 PgC/yr over these two decades. Two primary methods have been used to further partition the nonfossil CO2 flux between land and oceans: the O2 and 13C/12C methods, which rely, respectively, on measurements of atmospheric O2 (actually O2/N2 for technical reasons) and of the 13C/12C ratio of CO2. Burning of fossil fuel consumes atmospheric O2 and releases CO2 with a 13C/12C ratio lower than that of atmospheric CO2 whereas uptake of CO2 by terrestrial plants releases O2, and increases the atmospheric 13C/12C ratio owing to the preferential assimilation of 12CO2 relative to 13CO2. In contrast, the uptake of CO2 by the oceans has little effect on either the atmospheric O2 or 13C/12C ratio. Therefore, the net CO2 uptake or release from the terrestrial biosphere can be calculated in either method by subtracting the change owing to fossil fuel emissions from the measured change in the atmosphere, utilizing known stoichiometric ratios of O2 and CO2 in the O2 method, and isotopic fractionation factors in the 13C/12C method. Currently, the O2 method gives a net global terrestrial biospheric CO2 flux of -0.2+/-0.7 PgC/yr and -1.4+/-0.7 PgC/yr for the 1980s and the 1990s

  15. Mars Pathfinder meteorological observations on the basis of results of an atmospheric global circulation model

    NASA Technical Reports Server (NTRS)

    Forget, Francois; Hourdin, F.; Talagrand, O.

    1994-01-01

    The Mars Pathfinder Meteorological Package (ASI/MET) will measure the local pressure, temperature, and winds at its future landing site, somewhere between the latitudes 0 deg N and 30 deg N. Comparable measurements have already been obtained at the surface of Mars by the Viking Landers at 22 deg N (VL1) and 48 deg N (VL2), providing much useful information on the martian atmosphere. In particular the pressure measurements contain very instructive information on the global atmospheric circulation. At the Laboratoire de Meteorologie Dynamique (LMD), we have analyzed and simulated these measurements with a martian atmospheric global circulation model (GCM), which was the first to simulate the martian atmospheric circulation over more than 1 year. The model is able to reproduce rather accurately many observed features of the martian atmosphere, including the long- and short-period oscillations of the surface pressure observed by the Viking landers. From a meteorological point of view, we think that a landing site located near or at the equator would be an interesting choice.

  16. Local, regional, and global views of tropospheric carbon monoxide from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    McMillan, W. Wallace; Yurganov, Leonid

    2008-04-01

    More than five years of CO retrievals from the Atmospheric InfraRed Sounder (AIRS) onboard NASA's Aqua satellite reveal variations in tropospheric CO on timescales from twelve hours to five years and on spatial scales from local to global. The shorter timescales are invaluable to monitor daily variations in CO emissions, to enable three-dimensional tracking of atmospheric motions, and to enhance insights into atmospheric mixing. Previous studies have utilized AIRS CO retrievals over the course of days to weeks to track plumes from large forest fires. On the local scale, we will present AIRS observations of pollution from several northern hemisphere Megacities. On the regional scale, we will present AIRS observations of the Mexico City pollution plume. We will illustrate global scale AIRS CO observations of interannual variations linked to the influence of large-scale atmospheric perturbations from the El Nino Southern Oscillation (ENSO). In particular, we observe a quasi-biennial variation in CO emissions from Indonesia with varying magnitudes in peak emission occurring in 2002, 2004, and 2006. Examining satellite rainfall measurements over Indonesia, we find the enhanced CO emission correlates with occasions of less rainfall during the month of October. Continuing this satellite record of tropospheric CO with measurements from the European IASI instrument will permit construction of a long time-series useful for further investigations of climatological variations in CO emissions and their impact on the health of the atmosphere.

  17. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  18. Atmospheric fluxes of organic N and P to the global ocean

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria; Duce, Robert A.; Prospero, Joseph M.; Baker, Alex R.; Benitez-Nelson, Claudia; Dentener, Frank J.; Hunter, Keith A.; Liss, Peter S.; Mahowald, Natalie; Okin, Gregory S.; Sarin, Manmohan; Tsigaridis, Kostas; Uematsu, Mitsuo; Zamora, Lauren M.; Zhu, Tong

    2012-09-01

    The global tropospheric budget of gaseous and particulate non-methane organic matter (OM) is re-examined to provide a holistic view of the role that OM plays in transporting the essential nutrients nitrogen and phosphorus to the ocean. A global 3-dimensional chemistry-transport model was used to construct the first global picture of atmospheric transport and deposition of the organic nitrogen (ON) and organic phosphorus (OP) that are associated with OM, focusing on the soluble fractions of these nutrients. Model simulations agree with observations within an order of magnitude. Depending on location, the observed water soluble ON fraction ranges from ˜3% to 90% (median of ˜35%) of total soluble N in rainwater; soluble OP ranges from ˜20-83% (median of ˜35%) of total soluble phosphorus. The simulations suggest that the global ON cycle has a strong anthropogenic component with ˜45% of the overall atmospheric source (primary and secondary) associated with anthropogenic activities. In contrast, only 10% of atmospheric OP is emitted from human activities. The model-derived present-day soluble ON and OP deposition to the global ocean is estimated to be ˜16 Tg-N/yr and ˜0.35 Tg-P/yr respectively with an order of magnitude uncertainty. Of these amounts ˜40% and ˜6%, respectively, are associated with anthropogenic activities, and 33% and 90% are recycled oceanic materials. Therefore, anthropogenic emissions are having a greater impact on the ON cycle than the OP cycle; consequently increasing emissions may increase P-limitation in the oligotrophic regions of the world's ocean that rely on atmospheric deposition as an important nutrient source.

  19. Inferring global and regional methane sources and sinks using isotopic observations and atmospheric chemical transport models

    NASA Astrophysics Data System (ADS)

    Rigby, M. L.; Wenger, A.; O'Doherty, S.; Lunt, M. F.; Ganesan, A.; Manning, A.; Prinn, R. G.

    2015-12-01

    Measurements of the major isotopologues of atmospheric methane have the potential to improve our understanding of the methane budget at the global and regional scale. Using global and regional chemical transport models, we can predict the atmospheric variations in 13C-CH4 and D-CH4, for given assumptions about source isotope ratios and fractionation due to methane sinks. This information can then be used to test the impact that various measurement techniques, technologies and sampling strategies have on our knowledge of the methane budget. We show that, at the global scale, an extensive and accurate network of isotopic measurements can lead to a reduction in the uncertainties in the major global sources. Furthermore, measurements of the D/H ratio in methane may provide some level of uncertainty reduction in the magnitude of the OH sink. Uncertainties can be reduced with improved precision and accuracy of the atmospheric observations. However, to make the most of an atmospheric methane isotope network, we show that the characterisation of source isotope ratios must also be improved. Finally, we put the theory into practice by deriving sector-specific methane sources at the national scale using 13C-CH4 samples collected as part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. GAUGE measurements are made from a tall tower site to the east of the UK, a background station on the west coast of Ireland and during intensive aircraft sampling campaigns. We will discuss the challenges and benefits associated with adding isotopic information to a national greenhouse gas sampling network and outline a strategy for improvements in the future.

  20. Global SF6 emission estimates inferred from atmospheric observations - a test case for Kyoto reporting

    NASA Astrophysics Data System (ADS)

    Levin, I.; Naegler, T.

    2009-04-01

    Sulphur hexafluoride (SF6) is one of the strongest greenhouse gases per molecule in the atmosphere. SF6 emissions are also one of the six greenhouse gases targeted for reduction under the Kyoto Protocol. Here we present a long-term data set of globally distributed high-precision atmospheric SF6 observations which show an increase in mixing ratios from near zero in the 1970s to a global mean value of 6.3 ppt by the end of 2007. Because of its long atmospheric lifetime of around 3000 years, the accumulation of SF6 in the atmosphere is a direct measure of its global emissions: Analysis of our long-term data records implies a decrease of global SF6 sources after 1995, most likely due to emission reductions in industrialised countries. However, after 1998 the global SF6 source increases again, which is probably due to enhanced emissions from transition economies such as in China and India. Moreover, observed north-south concentration differences in SF6 suggest that emissions calculated from statistical (bottom-up) information and reported by Annex II parties to the United Nations Framework Convention on Climate Change (UNFCCC) may be too low by up to 50%. This clearly shows the importance and need for atmospheric (top-down) validation of Kyoto reporting which is only feasible with a dense world-wide observational network for greenhouse and other trace gases. Other members of the Global SF6 Trends Team: R. Heinz (1), D. Osusko (1), E. Cuevas (2), A. Engel (3), J. Ilmberger (1), R.L. Langenfelds (4), B. Neininger (5), C.v. Rohden (1), L.P. Steele (4), A. Varlagin (6), R. Weller (7), D.E. Worthy (8), S.A. Zimov (9) (1) Institut für Umweltphysik, University of Heidelberg, 69120 Heidelberg, Germany, (2) Centro de Investigación Atmosférica de Izaña, Instituto Nacional de Meteorología (INM), 38071 Santa Cruz de Tenerife, Spain, (3) Institut für Atmosphäre und Umwelt, J.W. Goethe Universität Frankfurt, 60438 Frankfurt/Main, Germany, (4) Centre for Australian Weather and

  1. Global tropospheric experiment at the Hong Kong Atmosphere Chemistry Measurement Station

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Ann; Wang, Tao

    1995-01-01

    The major activities of the Global Tropospheric Experiment at the Hong Kong Atmospheric Chemistry Measurement Station are presented for the period 1 January - 31 December 1995. Activities included data analysis, reduction, and archiving of atmospheric measurements and sampling. Sampling included O3, CO, SO2, NO, TSP, RSP, and ozone column density. A data archive was created for the surface meteorological data. Exploratory data analysis was performed, including examination of time series, frequency distributions, diurnal variations and correlation. The major results have been or will be published in scientific journals as well as presented at conferences/workshops. Abstracts are attached.

  2. Satellite observations of global atmospheric energy budgets: annual means and decadal records

    NASA Astrophysics Data System (ADS)

    Lin, B.; Stackhouse, P.; Minnis, P.; Wielicki, B.; Schlosser, C. A.; Rodell, M.; Hu, Y.; Sun, W.; Fan, T. A.; Hinkelman, L.

    2008-05-01

    The global atmospheric energy budget can tell us a lot about the earth's climate system, and is critical for general circulations of the atmosphere. This study uses satellite data sets of the radiation at the top of atmosphere (TOA) and surface from ERBE, CERES and ISCCP and the latent and sensible heat over oceans from SSM/I to assess the global energy budgets. Over land, surface radiation estimates are used to constrain GLDAS model assimilated results and to force the radiation, turbulent heat, and land surface heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Because of satellite data availability of broadband observations for radiation and microwave measurements for turbulent fluxes, this study considers the atmospheric energy budgets during 1988 and 2005. Global annual means of the TOA net radiation are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 W/m2, respectively. The estimated atmospheric and surface heat imbalances are about ­ 8 ~ 9 W/m2, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget: the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. For long term energy budgets, TOA radiation measurements show a clear relationship with the changes in the ocean heat storage. Although most oceanic latent and sensible heat data sets have significant unrealistic long-term variations, some satellite global observations of marine latent heat fluxes from evaporation and precipitation measurements exhibit potential correlations with sea surface

  3. Atmospheric impacts of sea ice decline in CO2 induced global warming

    NASA Astrophysics Data System (ADS)

    Cvijanovic, Ivana; Caldeira, Ken

    2015-03-01

    Changes in sea ice cover have important consequences for both Earth's energy budget and atmospheric dynamics. Sea ice acts as a positive feedback in the climate system, amplifying effects of radiative forcing while also affecting the meridional and interhemispheric temperature gradients that can impact mid- and low latitude atmospheric circulation. In this study, we partition and evaluate the effects of changing sea ice cover on global warming using a set of simulations with active and suppressed sea ice response. Two aspects of CO2-induced sea ice changes are investigated: (1) the effect of changing sea ice cover on global and local temperature changes; and (2) the impact of sea ice loss on atmospheric circulation and extreme weather events. We find that in the absence of sea ice decline, global temperature response decreases by 21-37 %, depending on the sea ice treatment and the CO2 forcing applied. Weakened global warming in the absence of changes in sea ice cover is not only due to a decreased high latitude warming but is also a consequence of a weaker tropical warming. In the northern midlatitudes, sea ice decline affects the magnitude and sign of zonal wind response to global warming in the winter and autumn seasons. Presence or absence of sea ice cover impacts the intensity and frequency of winter extreme precipitation and temperature events (temperature minima, number of heavy precipitation days and number of ice days). For some of the analyzed extreme weather indices, the difference between the responses with and without sea ice decline is eliminated when taking into account the amplifying effect of sea ice loss on hemispheric warming. However, in other cases, we find the influence of higher order factors, exerting weaker but opposing effects than those expected from the global temperature increase.

  4. Progress in observations and simulations of global change in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Qian, Liying; Laštovička, Jan; Roble, Raymond G.; Solomon, Stanley C.

    2011-04-01

    Anthropogenic increases of greenhouse gases warm the troposphere but have a cooling effect in the middle and upper atmosphere. The steady increase of CO2 is the dominant cause of upper atmosphere trends; other drivers are long-term changes of radiatively active trace gases such as CH4, O3, and H2O, secular change of solar and geomagnetic activity, and evolution of the Earth's magnetic field. Observational and model studies have confirmed that in the past several decades, global cooling has occurred in the mesosphere and thermosphere; the cooling and contraction of the upper atmosphere has lowered the ionosphere and increased electron density in the E and F1 regions. Trends of other parameters, including the F2 region, mesospheric clouds, and mesopause wave activity, have been more controversial. Modeling investigations have demonstrated that both greenhouse gas forcing and secular change of the Earth's magnetic field can cause regional, diurnal, and seasonal variability of trends in F2 region density and height, which may contribute to discrepancies regarding ionospheric trends. Recent studies also may have reconciled discrepancies between space-based and ground-based observations of mesospheric clouds: both types of observations do not find statistically significant trends in the ˜54°N-˜64°N latitude region, but space-based observations indicate that clouds may be increasing in frequency at higher latitude. Limited observational studies have suggested possible trends in wave activity. Changes in atmospheric dynamics, both as a consequence of global change in the lower and middle atmosphere and as a possible driver of trends in the upper atmosphere, is one of the critical open questions regarding trends in the upper atmosphere and ionosphere.

  5. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  6. Global biogeochemical controls and seasonality of atmospheric methane consumption in soils

    SciTech Connect

    Potter, C.S.; Davidson, E.A. |

    1995-06-01

    Fluxes of trace gases between soils and the atmosphere are usually extrapolated to global estimates by multiplying averages of small chamber measurements for various ecosystem types or other strata by estimates of the area covered by each stratum. Another approach is to use process-level models driven by gridded global databases to predict trace gas fluxes for each grid cell and for the globe. Methane uptake by soils is an appropriate process to model globally because the probable controls are simple relative to many other microbially mediated soil processes of trace gas production and consumption. Field experience suggests that diffusion of atmospheric CH{sub 4} into the soil is the primary factor limiting rates of CH{sub 4} oxidation in many soils. We have applied a modified version of Fick`s first law based on theoretical computations for diffusivity in aggregated media, together with a soil water balance model run on a 1{degree} global grid, to make independent estimates of CH{sub 4} uptake by soils worldwide. We estimate a reference case for global consumption of CH{sub 4} in soils to be 17-23 Tg yr{sup -1}, which is near the middle of previously reported ranges estimated from extrapolating means across ecosystem strata. A new finding of our modeling approach is that over 40% of the soil sink for CH{sub 4} occurs in warm and relatively dry ecosystems, such as semi-arid steppe, tropical savanna, tropical seasonal forest, and chaparral.

  7. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  8. A global average model of atmospheric aerosols for radiative transfer calculations

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1976-01-01

    A global average model is proposed for the size distribution, chemical composition, and optical thickness of stratospheric and tropospheric aerosols. This aerosol model is designed to specify the input parameters to global average radiative transfer calculations which assume the atmosphere is horizontally homogeneous. The model subdivides the atmosphere at multiples of 3 km, where the surface layer extends from the ground to 3 km, the upper troposphere from 3 to 12 km, and the stratosphere from 12 to 45 km. A list of assumptions made in construction of the model is presented and discussed along with major model uncertainties. The stratospheric aerosol is modeled as a liquid mixture of 75% H2SO4 and 25% H2O, while the tropospheric aerosol consists of 60% sulfate and 40% soil particles above 3 km and of 50% sulfate, 35% soil particles, and 15% sea salt below 3 km. Implications and consistency of the model are discussed.

  9. Some effects of global dust storms on the atmospheric circulation of Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Leovy, C. B.; Pollack, J. B.

    1982-01-01

    A zonally symmetric primitive equation modelled on a sphere is used to numerically simulate the Martian atmosphere's response to various dust loads, as well as the ability of its meridional circulation to transport dust globally, where the circulation is driven by heating due to the absorption of solar and IR radiation by dust and CO2, in addition to sensible heat exchange with the ground. A preliminary experiment shows the model distribution of winds and temperature to compare favorably with zonally averaged values from a general circulation model. Experiments simulating the evolution of global dust storms show that dust is effectively transported by the zonal mean circulation, which rapidly intensifies as the dust spreads, and that the basic structure of the circulation is relatively insensitive to details, being mostly dependent on the heating of the tropical and subtropical atmosphere.

  10. The nonlinear thermodynamics of meteors, noctilucent clouds, enhanced airglow and global atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Rajchl, J.

    1987-01-01

    Two types of fundamental topological junctions of elements are deduced from a nonlinear thermodynamical model. Using this scheme, the possibility of a causal relation between fireballs and faint meteors as nonlinear sources on the one hand, and noctilucent clouds (NC) and Hoffmeister's enhanced airglow (EA) as complementary formative processes in the middle atmosphere and ionosphere, on the other hand, is examined. The principal role of the global atmospheric circulation in this relation is demonstrated. Such circulation in the mesosphere appears to prevent the neutral dust dissipated by fireballs from becoming an efficient agent in NLC generation. In this case, the behavior of ionized material deposited by both the bright and faint meteors is more probably controlled, as shown from the annual variation of the E sub s layer by the darkness of lunar eclipses and the global circulation of the lower thermosphere. The role of fireballs and neutral dust might be more significant as a source of EA phenomenon.

  11. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  12. Simultaneous measurements of carbon monoxide and ozone in the NASA Global Atmospheric Sampling Program (GASP)

    NASA Technical Reports Server (NTRS)

    Newell, R. E.; Wu, M.-F.

    1985-01-01

    It is noted that the Global Atmospheric Sampling Program (GASP) was intended to establish global baseline values of selected atmospheric constituents that could be used for studies of the dynamics of the sampled region as well as for modeling purposes. Instrument packages were carried on four Boeing 747 aircraft in routine commercial service. Carbon monoxide and ozone data were collected simultaneously from early 1977 to early 1979 when GASP terminated. CO was measured with an infrared absorption analyzer using dual isotope fluorescence. Ozone was measured via absorption of UV light. Correlations between the CO and the O3 are tabulated; they are clearly negative for both troposphere and stratosphere in middle latitudes, indicating that transport processes between the stratosphere and troposphere (discussed) dominate. But in the low latitude troposphere the correlations are positive, indicating the possible influence of photochemical effects.

  13. A simple-physics global circulation model for Venus: Sensitivity assessments of atmospheric superrotation

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J. L.; Young, R. E.; Schubert, G.; Covey, C.; Grossman, A. S.

    2007-03-01

    A 3D global circulation model is adapted to the atmosphere of Venus to explore the nature of the planet's atmospheric superrotation. The model employs the full meteorological primitive equations and simplified forms for diabatic and other nonconservative forcings. It is therefore economical for performing very long simulations. To assess circulation equilibration and the occurrence of atmospheric superrotation, the climate model is run for 10,000-20,000 day integrations at 4° × 5° latitude-longitude horizontal resolution, and 56 vertical levels (denoted L56). The sensitivity of these simulations to imposed Venus-like diabatic heating rates, momentum dissipation rates, and various other key parameters (e.g., near-surface momentum drag), in addition to model configuration (e.g., low versus high vertical domain and number of atmospheric levels), is examined. We find equatorial superrotation in several of our numerical experiments, but the magnitude of superrotation is often less than observed. Further, the meridional structure of the mean zonal overturning (i.e., Hadley circulation) can consist of numerous cells which are symmetric about the equator and whose depth scale appears sensitive to the number of vertical layers imposed in the model atmosphere. We find that when realistic diabatic heating is imposed in the lowest several scales heights, only extremely weak atmospheric superrotation results.

  14. The Role of Plastic Surgeons in Advancing Development Global.

    PubMed

    Broer, P Niclas; Jenny, Hillary E; Ng-Kamstra, Joshua S; Juran, Sabrina

    2016-05-01

    In September 2015, the international community came together to agree on the 2030 Agenda for Sustainable Development, a plan of action for people, the planet, and prosperity. Ambitious and far-reaching as they are, they are built on three keystones: the elimination of extreme poverty, fighting climate change, and a commitment to fighting injustice and inequality. Critical to the achievement of the Agenda is the global realization of access to safe, affordable surgical and anesthesia care when needed. The landmark report by the Lancet Commission on Global Surgery estimated that between 28 and 32 percent of the global burden of disease is amenable to surgical treatment. However, as many as five billion people lack access to safe, timely, and affordable surgical care, a burden felt most severely in low- and middle-income countries (LMICs). Surgery, and specifically plastic surgery, should be incorporated into the international development and humanitarian agenda. As a community of care providers dedicated to the restoration of the form and function of the human body, plastics surgeons have a collective opportunity to contribute to global development, making the world more equitable and helping to reduce extreme poverty. As surgical disease comprises a significant burden of disease and surgery can be delivered in a cost-effective manner, surgery must be considered a public health priority. PMID:27579265

  15. The Role of Plastic Surgeons in Advancing Development Global

    PubMed Central

    Broer, P. Niclas; Jenny, Hillary E.; Ng-Kamstra, Joshua S.; Juran, Sabrina

    2016-01-01

    In September 2015, the international community came together to agree on the 2030 Agenda for Sustainable Development, a plan of action for people, the planet, and prosperity. Ambitious and far-reaching as they are, they are built on three keystones: the elimination of extreme poverty, fighting climate change, and a commitment to fighting injustice and inequality. Critical to the achievement of the Agenda is the global realization of access to safe, affordable surgical and anesthesia care when needed. The landmark report by the Lancet Commission on Global Surgery estimated that between 28 and 32 percent of the global burden of disease is amenable to surgical treatment. However, as many as five billion people lack access to safe, timely, and affordable surgical care, a burden felt most severely in low- and middle-income countries (LMICs). Surgery, and specifically plastic surgery, should be incorporated into the international development and humanitarian agenda. As a community of care providers dedicated to the restoration of the form and function of the human body, plastics surgeons have a collective opportunity to contribute to global development, making the world more equitable and helping to reduce extreme poverty. As surgical disease comprises a significant burden of disease and surgery can be delivered in a cost-effective manner, surgery must be considered a public health priority. PMID:27579265

  16. Update: International Strategic Partnership Initiative. Strengthening Connections, Advancing Global Understanding

    ERIC Educational Resources Information Center

    Institute of Museum and Library Services, 2010

    2010-01-01

    Museums and libraries are portals to the world. Valued nearly everywhere as trusted community organizations, they are well positioned to help foster cross-border and cross-cultural communication and enhance global awareness. These institutions are centers for intercultural learning, ideal venues for cross-cultural communication, and prime partners…

  17. Americans Need Advanced Math to Stay Globally Competitive. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    No student who hopes to compete in today's rapidly evolving global economy and job market can afford to graduate from high school with weak mathematical skills, which include the ability to use logic, reason, and solve problems. The benefits associated with improving the math performance of American students also extend to the larger U.S. economy.…

  18. Model Evaluation and Sensitivity Studies for Determining Aircraft Effects on the Global Atmosphere

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.

    1997-01-01

    This project, started in July 1995 and ending in July 1996, related: to evaluation of the possible importance of soot and sulfur dioxide emissions from subsonic and supersonic aircraft; to research contributions and special responsibilities for NASA AEAP assessments of subsonic aircraft and High Speed Civil Transport aircraft; and to science team responsibilities supporting the development of the three-dimensional atmospheric chemistry model of the Global Modeling Initiative.

  19. Twenty years on: Atmospheric blocking representation in Global Climate Models from AMIP to CMIP-5

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; D'Andrea, Fabio

    2016-04-01

    Atmospheric blocking simulation has always been a big concern for Global Climate Models (GCMs). Making use of a series of equivalent metrics, the improvement of GCMs since the 90s to nowadays is assessed. Results from the AMIP (1992), the CMIP-3 (2007) and the CMIP-5 (2012) inter-comparison projects are analyzed, using both coupled and atmospheric-only models for a total of 82 climate models. Although large improvements are seen over the Pacific ocean minor success has been achieved over the Euro-Atlantic sector, where many state-of-the-art GCMs still exhibits the same negative bias as 20 years ago - associated with large geopotential height systematic errors. Even though, some of the CMIP-5 models reasonably represent the climatological frequency of blocking over both basins. Negligible differences emerge among coupled or atmospheric-only simulations, suggesting weak relevance of sea surface temperatures biases. Conversely, increased horizontal resolution seems cardinal to resolve European Blocking.

  20. NASA Global Atmospheric Sampling Program (GASP) data report for tapes VL0007 and VL0008

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Gauntner, D. J.; Humenik, F. M.; Briehl, D.

    1977-01-01

    The Global Atmospheric Sampling Program (GASP) is obtaining measurements of atmospheric trace constituents in the upper troposphere and lower stratosphere using fully automated air sampling systems on board the NASA CV-990 research aircraft and four commerical B-747 aircraft in routine airline service. In-situ measurements of atmospheric ozone and water vapor, data from laboratory analysis of filters exposed in flight, and related flight and meteorological data obtained from September 1976 through January 1977 are reported. These data are now available on GASP tapes VL0007 & VL0008 from the National Climatic Center, Asheville, North Carolina. In addition to the GASP data, tropopause pressure fields obtained from NMC archives for the dates of the GASP flights are included on the data tape. Flight routes and dates, instrumentation, data processing procedures, and data tape specifications are described.

  1. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0004

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Humenik, F. M.; Lezberg, E. A.

    1976-01-01

    The NASA Global Atmospheric Sampling Program (GASP) is obtaining measurements of atmospheric trace constituents in the upper troposphere and lower stratosphere using fully automated air sampling systems on board several commercial B-747 aircraft in routine airline service. Atmospheric ozone, water vapor, and related flight and meteorological data were obtained during 139 flights of a United Airlines B-747 and a Pan American World Airways B-747 from December 1975 through March 1976. In addition, sample bottles were exposed during three flights and analyzed for trichlorofluoromethane, and filter samples were exposed during five flights and analyzed for sulfates, nitrates, and chlorides. Flight routes and dates, instrumentation, data processing procedures, data tape specifications, and selected analyses are discussed.

  2. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0006

    NASA Technical Reports Server (NTRS)

    Gauntner, D. J.; Holdeman, J. D.; Humenik, F. M.

    1977-01-01

    The NASA Global Atmospheric Sampling Program (GASP) is obtaining measurements of atmospheric trace constituents in the upper troposphere and lower stratosphere using fully automated air sampling systems on board several commercial B-747 aircraft in routine airline service. Atmospheric ozone, and related flight and meteorological data were obtained during 245 flights of a Qantas Airways of Australia B-747 and two Pan American World Airways B-747s from July 1976 through September 1976. In addition, whole air samples, obtained during three flights, were analyzed for trichlorofluoromethane, and filter samples, obtained during four flights, were analyzed for sulfates, nitrates, fluorides, and chlorides. Flight routes and dates, instrumentation, data processing procedures, data tape specifications, and selected analyses are discussed.

  3. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Astrophysics Data System (ADS)

    Hameed, Sultan; Cess, Robert D.; Hogan, Joseph S.

    1980-12-01

    Recent modeling of atmospheric chemical processes (Logan et al., 1978; Hameed et al., 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NOx, and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx, and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  4. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  5. Tropical Ocean and Global Atmosphere (TOGA) heat exchange project: A summary report

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Niiler, P. P.

    1985-01-01

    A pilot data center to compute ocean atmosphere heat exchange over the tropical ocean is prposed at the Jet Propulsion Laboratory (JPL) in response to the scientific needs of the Tropical Ocean and Global Atmosphere (TOGA) Program. Optimal methods will be used to estimate sea surface temperature (SET), surface wind speed, and humidity from spaceborne observations. A monthly summary of these parameters will be used to compute ocean atmosphere latent heat exchanges. Monthly fields of surface heat flux over tropical oceans will be constructed using estimations of latent heat exchanges and short wave radiation from satellite data. Verification of all satellite data sets with in situ measurements at a few locations will be provided. The data center will be an experimental active archive where the quality and quantity of data required for TOGA flux computation are managed. The center is essential to facilitate the construction of composite data sets from global measurements taken from different sensors on various satellites. It will provide efficient utilization and easy access to the large volume of satellite data available for studies of ocean atmosphere energy exchanges.

  6. Effects of global atmospheric perturbations on forest ecosystems: Predictions of seasonal and cumulative effects

    NASA Technical Reports Server (NTRS)

    Tinus, R. W.; Roddy, D. J.

    1988-01-01

    The physical effects of certain large events, such as giant impacts, explosive volcanism, or combined nuclear explosions, have the potential of inducing global catastrophes in our terrestrial environment. Such highly energetic events can inject substantial quantities of material into the atmosphere. In turn, this changes the amount of sunlight reaching the Earth's surface and modifies atmospheric temperatures to produce a wide range of global effects. One consequence is the introduction of serious stresses in both plants and animals throughout the Earth's biosphere. For example, recent studies predict that forest lands, crop lands, and range lands would suffer specific physical and biological degradations if major physical and chemical disruptions occurred in our atmosphere. Forests, which cover over 4 times 10 to the 9th power hectares (4 times 10 to the 7th power sq km) of our planet, or about 3 times the area now cultivated for crops, are critical to many processes in the biosphere. Forests contribute heavily to the production of atmospheric oxygen, supply the major volume of biomass, and provide a significant percentage of plant and animal habitats.

  7. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxu; Tao, Shu

    The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y -1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y -1), India (90 Gg y -1) and United States (32 Gg y -1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km -2 y in the Falkland Islands to 360 kg km -2 y in Singapore with a global mean value of 3.98 kg km -2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.

  8. Global Simulation of Atmospheric Mercury Concentrations and Deposition Fluxes. Appendix Q

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Seigneur, Christian; Pai, Prasad; Ko, Malcolm; Sze, Nien Dak

    1999-01-01

    Results from a numerical model of the global emissions, transport, chemistry, and deposition of mercury (Hg) in the atmosphere are presented. Hg (in the form of Hg(O) and Hg(II)) is emitted into the atmosphere from natural and anthropogenic sources (estimated to be 4000 and 2100 Mg/ yr, respectively). It is distributed between gaseous, aqueous and particulate phases. Removal of Hg from the atmosphere occurs via dry deposition and wet deposition, which are calculated by the model to be 3300 and 2800 Mg/ yr, respectively. Deposition on land surfaces accounts for 47% of total global deposition. The simulated Hg ambient surface concentrations and deposition fluxes to the Earth's surface are consistent with available observations. Observed spatial and seasonal trends are reproduced by the model, although larger spatial variations are observed in Hg(O) surface concentrations than are predicted by the model. The calculated atmospheric residence time of Hg is -1.7 years. Chemical transformations between Hg(O) and HG(II) have a strong influence on Hg deposition patterns because HG(II) is removed faster than Hg(O). Oxidation of Hg(O) to HG(II) occurs primarily in the gas phase, whereas HG(II) reduction to Hg(O) occurs solely in the aqueous phase. Our model results indicated that in the absence of the aqueous reactions the atmospheric residence time of Hg is reduced to 1.2 from 1.7 years and the Hg surface concentration is -25% lower because of the absence of the HG(II) reduction pathway. This result suggests that aqueous chemistry is an essential component of the atmospheric cycling of Hg.

  9. Effects of Explicit Convection on Global Land-atmosphere Coupling in the Superparameterized CAM

    NASA Astrophysics Data System (ADS)

    Sun, J.; Pritchard, M. S.

    2015-12-01

    Many global climate models are prone to producing land-atmosphere coupling dynamics that are too strong and simplistic. Cumulus and convection parameterizations are natural culprits but the effect of bypassing them with explicitly resolved convection on global land-atmosphere coupling dynamics has not been explored systematically. We apply a suite of modern land-atmosphere coupling diagnostics to isolate the effect of cloud superparameterization (SP) in the Community Atmosphere Model v3.5, focusing on both the land segment (i.e., soil moisture and evapotranspiration relationship) and atmospheric segment (i.e., evapotranspiration and precipitation relationship) in the water pathway of the land-atmosphere feedback loop. Comparing SPCAM3.5 and conventional CAM3.5 in daily timescale, our results show that the Super-Parameterized model reduces the coupling strength in the Central Great Plain in American, and reverses the terrestrial segment coupling sign (from negative to positive) over India. Which are consistent with previous studies and are favorable improvements on the known issues reported in literatures. Analysis of the triggering feedback strength (TFS) and amount feedback strength (AFS) shows that SPCAM3.5 favorably reproduces the patterns of these indices over North America, with probability of afternoon precipitation enhanced by high evaporative fraction along the eastern United States and Mexico, while conventional CAM3.5 does not capture this signal. The links in the soil moisture-precipitation feedback loop are further explored through applying the mixing diagram approach to the diurnal cycles of the land surface and planetary boundary layer variables.

  10. Sensitivity Studies for Space-Based Global Measurements of Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mao, Jian-Ping; Kawa, S. Randolph; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Carbon dioxide (CO2) is well known as the primary forcing agent of global warming. Although the climate forcing due to CO2 is well known, the sources and sinks of CO2 are not well understood. Currently the lack of global atmospheric CO2 observations limits our ability to diagnose the global carbon budget (e.g., finding the so-called "missing sink") and thus limits our ability to understand past climate change and predict future climate response. Space-based techniques are being developed to make high-resolution and high-precision global column CO2 measurements. One of the proposed techniques utilizes the passive remote sensing of Earth's reflected solar radiation at the weaker vibration-rotation band of CO2 in the near infrared (approx. 1.57 micron). We use a line-by-line radiative transfer model to explore the potential of this method. Results of sensitivity studies for CO2 concentration variation and geophysical conditions (i.e., atmospheric temperature, surface reflectivity, solar zenith angle, aerosol, and cirrus cloud) will be presented. We will also present sensitivity results for an O2 A-band (approx. 0.76 micron) sensor that will be needed along with CO2 to make surface pressure and cloud height measurements.

  11. A comprehensive global inventory of atmospheric Antimony emissions from anthropogenic activities, 1995-2010.

    PubMed

    Tian, Hezhong; Zhou, JunRui; Zhu, Chuanyong; Zhao, Dan; Gao, Jiajia; Hao, Jiming; He, Mengchang; Liu, Kaiyun; Wang, Kun; Hua, Shenbing

    2014-09-01

    Antimony (Sb) and its compounds are considered as global pollutants due to their health risks and long-range transport characteristics. A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities during the period of 1995-2010 has been developed with specific estimation methods based on the relevant data available for different continents and countries. Our results indicate that the global antimony emissions have increased to a peak at about 2232 t (t) in 2005 and then declined gradually. Global antimony emissions in 2010 are estimated at about 1904 t (uncertainty of a 95% confidence interval (CI): -30% ∼ 67%), with fuel combustion as the major source category. Asia and Europe account for about 57% and 24%, respectively, of the global total emissions, and China, the United States, and Japan rank as the top three emitting countries. Furthermore, global antimony emissions are distributed into gridded cells with a resolution of 1° × 1°. Regions with high Sb emissions are generally concentrated in the Southeastern Asia and Western Europe, while South Africa, economically developed regions in the eastern U.S., and Mexico are also responsible for the high antimony emission intensity. PMID:25110938

  12. Retrospective analysis of "new" flame retardants in the global atmosphere under the GAPS Network.

    PubMed

    Lee, Sum Chi; Sverko, Ed; Harner, Tom; Pozo, Karla; Barresi, Enzo; Schachtschneider, JoAnne; Zaruk, Donna; DeJong, Maryl; Narayan, Julie

    2016-10-01

    A retrospective analysis was conducted on air samples that were collected in 2005 under the Global Atmospheric Passive Sampling (GAPS) Network around the time period when the Stockholm Convention on Persistent Organic Pollutants came into force. Results are presented for several new flame retardants, including hexabromocyclododecane (HBCD), which was recently listed under the Convention (2013). These results represent the first global-scale distributions in air for these compounds. The targeted compounds are shown to have unique global distributions in air, which highlights the challenges in understanding the sources and environmental fate of each chemical, and ultimately in their assessments as persistent organic pollutants. The study also demonstrates the feasibility of using the PUF disk passive air sampler to study these new flame retardants in air, many of which exist entirely in the particle-phase as demonstrated in this study using a KOA-based partitioning model. PMID:26857525

  13. Mars Global Surveyor TES Results: Observations of Atmospheric Dust During Mapping

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, J. C.; Conrath, B. J.; Christensen, P. R.

    1999-01-01

    The Mars Global Surveyor entered mapping orbit around Mars in March 1999. Infrared spectra returned by the Thermal Emission Spectrometer (TES) are very well suited for monitoring column-integrated infrared dust opacity. A global view of dust opacity is possible on a daily basis allowing the detailed study of the evolution of dust storms and the seasonal trend of the background dust opacity. Information about the vertical distribution of dust in the atmosphere can be obtained by examination of TES spectra taken in a limb-viewing geometry. We report here on 1) the observed horizontal distribution of dust aerosols and their evolution with time during the mapping phase of the Mars Global Surveyor mission so far (roughly covering northern hemisphere summer and early fall), and 2) the vertical distribution of dust aerosols as determined from TES spectra taken in the limb-viewing geometry.

  14. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  15. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    NASA Technical Reports Server (NTRS)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  16. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments Database

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  17. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    NASA Astrophysics Data System (ADS)

    Bassiri, Sassan; Hajj, George A.

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  18. A model ensemble for explaining the seasonal cycle of globally averaged atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Alexandrov, Georgii; Eliseev, Alexey

    2015-04-01

    The seasonal cycle of the globally averaged atmospheric carbon dioxide concentrations results from the seasonal changes in the gas exchange between the atmosphere and other carbon pools. Terrestrial pools are the most important. Boreal and temperate ecosystems provide a sink for carbon dioxide only during the warm period of the year, and, therefore, the summertime reduction in the atmospheric carbon dioxide concentration is usually explained by the seasonal changes in the magnitude of terrestrial carbon sink. Although this explanation seems almost obvious, it is surprisingly difficult to support it by calculations of the seasonal changes in the strength of the sink provided by boreal and temperate ecosystems. The traditional conceptual framework for modelling net ecosystem exchange (NEE) leads to the estimates of the NEE seasonal cycle amplitude which are too low for explaining the amplitude of the seasonal cycle of the atmospheric carbon dioxide concentration. To propose a more suitable conceptual framework we develop a model ensemble that consists of nine structurally different models and covers various approaches to modelling gross primary production and heterotrophic respiration, including the effects of light saturation, limited light use efficiency, limited water use efficiency, substrate limitation and microbiological priming. The use of model ensembles is a well recognized methodology for evaluating structural uncertainty of model-based predictions. In this study we use this methodology for exploratory modelling analysis - that is, to identify the mechanisms that cause the observed amplitude of the seasonal cycle of the atmospheric carbon dioxide concentration and its slow but steady growth.

  19. Atmospheric carbon dioxide and the global carbon cycle: The key uncertainties

    SciTech Connect

    Peng, T.H.; Post, W.M.; DeAngelis, D.L.; Dale, V.H.; Farrell, M.P.

    1987-01-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO/sub 2/ concentrations. The observed increase in atmospheric CO/sub 2/ content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO/sub 2/ produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO/sub 2/ uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO/sub 2/ uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO/sub 2/ than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO/sub 2/ fluxes. The instability of current models to estimate accurately oceanic uptake of CO/sub 2/ creates one of the key uncertainties in predictions of atmospheric CO/sub 2/ increases and climate responses over the next 100 to 200 years. 60 refs., 1 fig., 2 tabs.

  20. Advances in Global Adjoint Tomography -- Massive Data Assimilation

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Lei, W.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Krischer, L.; Tromp, J.

    2015-12-01

    Azimuthal anisotropy and anelasticity are key to understanding a myriad of processes in Earth's interior. Resolving these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models and an iterative inversion strategy. In the wake of successes in regional studies(e.g., Chen et al., 2007; Tape et al., 2009, 2010; Fichtner et al., 2009, 2010; Chen et al.,2010; Zhu et al., 2012, 2013; Chen et al., 2015), we are employing adjoint tomography based on a spectral-element method (Komatitsch & Tromp 1999, 2002) on a global scale using the supercomputer ''Titan'' at Oak Ridge National Laboratory. After 15 iterations, we have obtained a high-resolution transversely isotropic Earth model (M15) using traveltime data from 253 earthquakes. To obtain higher resolution images of the emerging new features and to prepare the inversion for azimuthal anisotropy and anelasticity, we expanded the original dataset with approximately 4,220 additional global earthquakes (Mw5.5-7.0) --occurring between 1995 and 2014-- and downloaded 300-minute-long time series for all available data archived at the IRIS Data Management Center, ORFEUS, and F-net. Ocean Bottom Seismograph data from the last decade are also included to maximize data coverage. In order to handle the huge dataset and solve the I/O bottleneck in global adjoint tomography, we implemented a python-based parallel data processing workflow based on the newly developed Adaptable Seismic Data Format (ASDF). With the help of the data selection tool MUSTANG developed by IRIS, we cleaned our dataset and assembled event-based ASDF files for parallel processing. We have started Centroid Moment Tensors (CMT) inversions for all 4,220 earthquakes with the latest model M15, and selected high-quality data for measurement. We will statistically investigate each channel using synthetic seismograms calculated in M15 for updated CMTs and identify problematic channels. In addition to data screening, we also modified

  1. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    PubMed Central

    Zhang, Yanxu; Jacob, Daniel J.; Horowitz, Hannah M.; Chen, Long; Amos, Helen M.; Krabbenhoft, David P.; Slemr, Franz; St. Louis, Vincent L.; Sunderland, Elsie M.

    2016-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y−1). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities. PMID:26729866

  2. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.

    PubMed

    Zhang, Yanxu; Jacob, Daniel J; Horowitz, Hannah M; Chen, Long; Amos, Helen M; Krabbenhoft, David P; Slemr, Franz; St Louis, Vincent L; Sunderland, Elsie M

    2016-01-19

    Observations of elemental mercury (Hg(0)) at sites in North America and Europe show large decreases (∼ 1-2% y(-1)) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y(-1)). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg(0)/Hg(II) speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg(0) emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg(0) concentrations and in Hg(II) wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities. PMID:26729866

  3. Emissions of methyl chloroform inferred from a global atmospheric transport model

    NASA Astrophysics Data System (ADS)

    Taguchi, S.

    2003-04-01

    A global atmospheric transport model (NIRE-CTM-96) was used to investigate the relationship among the emission of methyl chloroform(MCF: McCulloch and Midgley, 2001), OH and the observed atmospheric concentration (ALE/ GAGE/ AGAGE, Prinn et al., 2000). The model has a 2.5x2.5 lat-long horizontal resolution, 15 vertical levels up to about 30 km, and a 6-hour integration time step. Inter-annual variation of atmospheric transport was taken into account by using meteorological data analyzed at European Centre for Medium Range Weather Forecasts(ECMWF) for the period 1979 to 1999. Time-dependent change in the geographical distribution of the MCF emission ( Midgley and McCulloch, 1995) was incorporated into model simulations by using the emission data at six geographical regions. Loss rate in the troposphere was estimated using temperature fields of the ECMWF dataset, monthly and zonal mean OH ( Spivakovsky et al., 2000) and the rate constant ( Talkudar et al.,1992). Simulated concentrations at the end of 1978 were consistent with the observations but those after 1979 were overestimated significantly. Simulated concentrations were consistent with the observations for the period 1979 to 1996 if OH was increased by 10% for the whole period. Global lifetime of the simulated MCF changed from 4.7 to 5.3 years during this simulation, indicating that the distribution of MCF itself in the atmosphere might contribute to the inter-annual variability of its global loss since OH does not distribute homogeneously. We estimated industrial MCF emission scenarios with the natural emissions from biomass burning (Lobert et al., 1999) for zero trend OH.

  4. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  5. Global circulation of the Earth's atmosphere at altitudes from 0 to 135 Km simulated with the ARM model. Consideration of the solar activity contribution

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A. A.; Cherepanova, L. A.; Dement'eva, A. V.; Repnev, A. I.; Klyuchnikova, A. V.

    2015-11-01

    The results of simulations of the global circulation and temperature regime in the altitude range from the lower tropospheric layers to 135 km are presented. They were obtained with the Atmospheric Research Model (ARM), an advanced modification of a version of the Cologne Middle Atmosphere Model (COMMA). The ARM is characterized by higher spatial resolution and better parameterizations of the radiation sources and heat sinks. At the lower boundary of the model, wavy sources of perturbations, which are caused by internal gravity waves and planetary waves, are specified. The results of the modeling of the global temperature and wind fields for the mean solar activity level are presented, and their changes, which are caused by variations of the UV-radiation fluxes in the solar activity cycle and by solar proton flares, are also considered.

  6. Advances in RSV vaccine research and development - A global agenda.

    PubMed

    Higgins, Deborah; Trujillo, Carrie; Keech, Cheryl

    2016-06-01

    Respiratory syncytial virus (RSV) is an important cause of viral lower respiratory tract illness in infants and children globally, but no vaccine is currently available to protect these vulnerable populations. Live-attenuated vaccine approaches have been in development for decades, but achieving the appropriate balance between immunogenicity and safety has proven difficult. Immunoprophylaxis with the neutralizing monoclonal antibody palivizumab is limited to high-risk infants, but cost requirements for multiple dosing make its use impractical in low- and middle-income countries. A growing number of RSV vaccine candidates using a variety of technologies and targeting diverse populations has emerged in recent years. There are now 60 RSV vaccine candidates in development that target pediatric and elderly populations. While most are at a preclinical stage, 16 candidates are in clinical development. This review summarizes current RSV vaccine research and development, including an overview of the vaccine platforms being used, the development stage of individual vaccine candidates, and gaps to be addressed to facilitate use of these vaccines to meet global health needs. PMID:27105562

  7. Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Song, S.; Selin, N. E.; Soerensen, A. L.; Angot, H.; Artz, R.; Brooks, S.; Brunke, E.-G.; Conley, G.; Dommergue, A.; Ebinghaus, R.; Holsen, T. M.; Jaffe, D. A.; Kang, S.; Kelley, P.; Luke, W. T.; Magand, O.; Marumoto, K.; Pfaffhuber, K. A.; Ren, X.; Sheu, G.-R.; Slemr, F.; Warneke, T.; Weigelt, A.; Weiss-Penzias, P.; Wip, D. C.; Zhang, Q.

    2015-02-01

    We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physio-chemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations, and also matches regional over-water Hg0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~5.8 Gg yr-1. The ocean accounts for 3.2 Gg yr-1 (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg0. The optimized Asian anthropogenic emission of Hg0 (gas elemental mercury) is 650-1770 Mg yr-1, higher than its bottom-up estimates (550-800 Mg yr-1). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23% of present-day atmospheric deposition.

  8. Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Song, S.; Selin, N. E.; Soerensen, A. L.; Angot, H.; Artz, R.; Brooks, S.; Brunke, E.-G.; Conley, G.; Dommergue, A.; Ebinghaus, R.; Holsen, T. M.; Jaffe, D. A.; Kang, S.; Kelley, P.; Luke, W. T.; Magand, O.; Marumoto, K.; Pfaffhuber, K. A.; Ren, X.; Sheu, G.-R.; Slemr, F.; Warneke, T.; Weigelt, A.; Weiss-Penzias, P.; Wip, D. C.; Zhang, Q.

    2015-06-01

    We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr-1. The ocean accounts for 3.2 Gg yr-1 (55 % of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg0. The optimized Asian anthropogenic emission of Hg0 (gas elemental mercury) is 650-1770 Mg yr-1, higher than its bottom-up estimates (550-800 Mg yr-1). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.

  9. Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 and 2005

    NASA Technical Reports Server (NTRS)

    Loebe, Norman G.; Wielicki, Bruce A.; Rose, Fred G.; Doelling, David R.

    2007-01-01

    Measurements from various instruments and analysis techniques are used to directly compare changes in Earth-atmosphere shortwave (SW) top-of-atmosphere (TOA) radiation between 2000 and 2005. Included in the comparison are estimates of TOA reflectance variability from published ground-based Earthshine observations and from new satellite-based CERES, MODIS and ISCCP results. The ground-based Earthshine data show an order-of-magnitude more variability in annual mean SW TOA flux than either CERES or ISCCP, while ISCCP and CERES SW TOA flux variability is consistent to 40%. Most of the variability in CERES TOA flux is shown to be dominated by variations global cloud fraction, as observed using coincident CERES and MODIS data. Idealized Earthshine simulations of TOA SW radiation variability for a lunar-based observer show far less variability than the ground-based Earthshine observations, but are still a factor of 4-5 times more variable than global CERES SW TOA flux results. Furthermore, while CERES global albedos exhibit a well-defined seasonal cycle each year, the seasonal cycle in the lunar Earthshine reflectance simulations is highly variable and out-of-phase from one year to the next. Radiative transfer model (RTM) approaches that use imager cloud and aerosol retrievals reproduce most of the change in SW TOA radiation observed in broadband CERES data. However, assumptions used to represent the spectral properties of the atmosphere, clouds, aerosols and surface in the RTM calculations can introduce significant uncertainties in annual mean changes in regional and global SW TOA flux.

  10. Advancing the right to health through global organizations: The potential role of a Framework Convention on Global Health.

    PubMed

    Friedman, Eric A; Gostin, Lawrence O; Buse, Kent

    2013-01-01

    Organizations, partnerships, and alliances form the building blocks of global governance. Global health organizations thus have the potential to play a formative role in determining the extent to which people are able to realize their right to health. This article examines how major global health organizations, such as WHO, the Global Fund to Fight AIDS, TB and Malaria, UNAIDS, and GAVI approach human rights concerns, including equality, accountability, and inclusive participation. We argue that organizational support for the right to health must transition from ad hoc and partial to permanent and comprehensive. Drawing on the literature and our knowledge of global health organizations, we offer good practices that point to ways in which such agencies can advance the right to health, covering nine areas: 1) participation and representation in governance processes; 2) leadership and organizational ethos; 3) internal policies; 4) norm-setting and promotion; 5) organizational leadership through advocacy and communication; 6) monitoring and accountability; 7) capacity building; 8) funding policies; and 9) partnerships and engagement. In each of these areas, we offer elements of a proposed Framework Convention on Global Health (FCGH), which would commit state parties to support these standards through their board membership and other interactions with these agencies. We also explain how the FCGH could incorporate these organizations into its overall financing framework, initiate a new forum where they collaborate with each other, as well as organizations in other regimes, to advance the right to health, and ensure sufficient funding for right to health capacity building. We urge major global health organizations to follow the leadership of the UN Secretary-General and UNAIDS to champion the FCGH. It is only through a rights-based approach, enshrined in a new Convention, that we can expect to achieve health for all in our lifetimes. PMID:25006092

  11. Solving the Global Climate Monitoring Problem in the Atmosphere: Towards SI-tied Climate Records with Integrated Uncertainty Propagation

    NASA Astrophysics Data System (ADS)

    Kirchengast, G.; Schwaerz, M.; Fritzer, J.; Schwarz, J.; Scherllin-Pirscher, B.; Steiner, A. K.

    2013-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature and greenhouse gases is the backbone of contemporary atmospheric and climate science. Earth observation from space is the key to obtain such data globally in the atmosphere. Currently, however, not any existing satellite-based atmospheric ECV record can serve as authoritative benchmark over months to decades so that climate variability and change in the atmosphere are not yet reliably monitored. Radio occultation (RO) using Global Navigation Satellite System (GNSS) signals provides a unique opportunity to solve this problem in the free atmosphere (from ~1-2 km altitude upwards) for core ECVs: the thermodynamic variables temperature and pressure, and to some degree water vapor, which are key parameters for tracking climate change. On top of RO we have recently conceived next-generation methods, microwave and infrared-laser occultation and nadir-looking infrared-laser reflectometry. These can monitor a full set of thermo-dynamic ECVs (incl. wind) as well as the greenhouse gases such as carbon dioxide and methane as main drivers of climate change; for the latter we also target the boundary layer for tracking carbon sources and sinks. We briefly introduce to why the atmospheric climate monitoring challenge is unsolved so far and why just the above methods have the capabilities to break through. We then focus on RO, which already provided more than a decade of observations. RO accurately measures time delays from refraction of GNSS signals during atmospheric occultation events. This enables to tie RO-derived ECVs and their uncertainty to fundamental time standards, effectively the SI second, and to their unique long-term stability and narrow uncertainty. However, despite impressive advances since the pioneering RO mission GPS/Met in the mid-1990ties no rigorous trace from fundamental time to the ECVs (duly accounting also for relevant side

  12. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  13. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  14. The Global Atmospheric Angular Momentum Under Varying Thermal and Orographic Forcing, Simulated In A Simple Gcm

    NASA Astrophysics Data System (ADS)

    Stenzel, O.; von Storch, J.

    This work investigates the impacts of various large-scale thermal and orographic forc- ing on the global AAM. The investigation is based on numerical experiments with a simple GCM, PUMA (Portable University Model of the Atmosphere). The non-linear hydrodynamics of the atmosphere are represented in PUMA in the same way as in a standard GCM, but the latitude-dependent radiative forcing is strongly simplified and expressed as a Newtonian cooling. By modifying the restoration temperature field, the large-scale thermal forcing of the atmosphere can be easily controlled. A series of numerical experiments are carried out using different restoration tempera- ture fields and orographies. The restoration temperature fields are zonally symmetric and have different meridional gradients. It is found that the global AAM increases with increasing meridional gradient in the thermal forcing. The increase in the AAM is characterized by a change in circulation regime in the mid- and high-latitudes: The structure of the transients changes from a zonal wavenumber six to three, and the num- ber of cells in the meridional circulation reduces from three to two with a diminishing polar cell.

  15. January and July global distributions of atmospheric heating for 1986, 1987, and 1988

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1994-01-01

    Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986-88 from the European Center for Medium Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating both locally and regionally. Large fluctuations in the magnitude of heating and the disposition of maxima/minima in the Tropics occur over the 3-year period. This variability, which is largely in accord with anomalous precipitation expected during the El Nino-Southern Oscillation (ENSO) cycle, appears realistic. In both January and July, interannual differences of 1.0-1.5 K/day in the vertically averaged heating occur over the tropical Pacific. These interannual regional differences are substantial in comparison with maximum monthly averaged heating rates of 2.0-2.5 K/day. In the extratropics, the most prominent interannual variability occurs along the wintertime North Atlantic cyclone track. Vertical profiles of heating from selected regions also reveal large interannual variability. Clearly evident is the modulation of the heating within tropical regions of deep moist convection associated with the evolution of the ENSO cycle. The heating integrated over continental and oceanic basins emphasizes the impact of land and ocean surfaces on atmospheric energy balance and depicts marked interseasonal and interannual large-scale variability.

  16. Sensitivity of global ocean heat content from reanalyses to the atmospheric reanalysis forcing: A comparative study

    NASA Astrophysics Data System (ADS)

    Storto, Andrea; Yang, Chunxue; Masina, Simona

    2016-05-01

    The global ocean heat content evolution is a key component of the Earth's energy budget and can be consistently determined by ocean reanalyses that assimilate hydrographic profiles. This work investigates the impact of the atmospheric reanalysis forcing through a multiforcing ensemble ocean reanalysis, where the ensemble members are forced by five state-of-the-art atmospheric reanalyses during the meteorological satellite era (1979-2013). Data assimilation leads the ensemble to converge toward robust estimates of ocean warming rates and significantly reduces the spread (1.48 ± 0.18 W/m2, per unit area of the World Ocean); hence, the impact of the atmospheric forcing appears only marginal for the global heat content estimates in both upper and deeper oceans. A sensitivity assessment performed through realistic perturbation of the main sources of uncertainty in ocean reanalyses highlights that bias correction and preprocessing of in situ observations represent the most crucial component of the reanalysis, whose perturbation accounts for up to 60% of the ocean heat content anomaly variability in the pre-Argo period. Although these results may depend on the single reanalysis system used, they reveal useful information for the ocean observation community and for the optimal generation of perturbations in ocean ensemble systems.

  17. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    PubMed

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades. PMID:24945600

  18. GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.

  19. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  20. The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2

    NASA Astrophysics Data System (ADS)

    Bao, Qing; Lin, Pengfei; Zhou, Tianjun; Liu, Yimin; Yu, Yongqiang; Wu, Guoxiong; He, Bian; He, Jie; Li, Lijuan; Li, Jiandong; Li, Yangchun; Liu, Hailong; Qiao, Fangli; Song, Zhenya; Wang, Bin; Wang, Jun; Wang, Pengfei; Wang, Xiaocong; Wang, Zaizhi; Wu, Bo; Wu, Tongwen; Xu, Yongfu; Yu, Haiyang; Zhao, Wei; Zheng, Weipeng; Zhou, Linjiong

    2013-05-01

    The Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2) was used to simulate realistic climates and to study anthropogenic influences on climate change. Specifically, the FGOALS-s2 was integrated with Coupled Model Intercomparison Project Phase 5 (CMIP5) to conduct coordinated experiments that will provide valuable scientific information to climate research communities. The performances of FGOALS-s2 were assessed in simulating major climate phenomena, and documented both the strengths and weaknesses of the model. The results indicate that FGOALS-s2 successfully overcomes climate drift, and realistically models global and regional climate characteristics, including SST, precipitation, and atmospheric circulation. In particular, the model accurately captures annual and semi-annual SST cycles in the equatorial Pacific Ocean, and the main characteristic features of the Asian summer monsoon, which include a low-level southwestern jet and five monsoon rainfall centers. The simulated climate variability was further examined in terms of teleconnections, leading modes of global SST (namely, ENSO), Pacific Decadal Oscillations (PDO), and changes in 19th-20th century climate. The analysis demonstrates that FGOALS-s2 realistically simulates extra-tropical teleconnection patterns of large-scale climate, and irregular ENSO periods. The model gives fairly reasonable reconstructions of spatial patterns of PDO and global monsoon changes in the 20th century. However, because the indirect effects of aerosols are not included in the model, the simulated global temperature change during the period 1850-2005 is greater than the observed warming, by 0.6°C. Some other shortcomings of the model are also noted.

  1. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  2. Global distribution of atmospheric carbon dioxide 2. A review of provisional background observations, 1978--1980

    SciTech Connect

    Fraser, P.J.; Pearman, G.I.; Hyson, P.

    1983-04-20

    An attempt is made to bring together provisional data collected throughout the world to construct a global picture of the background atmospheric carbon dioxide concentration distribution. The uncertainties, calibration and sampling difficulties, and measurement needs are discussed, and it is concluded that in general the accuracy of the provisional data at each sampling location is approx. +- 1 ppmv. Ongoing studies at the main laboratories are likely to significantly improve this accuracy in the near future. The most recent data available (for 1980) indicate annual average northern hemisphere high latitude CO/sub 2/ concentrations 4 to 5 ppmv above those at high latitudes of the southern hemisphere (approx.336 ppmv). The greatest uncertainty in the zonal average concentration exists in the latitude band 10--30 /sup 0/N where surface observations are 2--3 ppmv higher than those measured by continuous analysis at the Mauna Loa Observatory. There is generally good agreement between a model-generated and the observed annual mean global distributions. The seasonality of concentration is small in the southern hemisphere (approx.1--2 ppmv peak to peak) rising to approx.6 ppmv at 20 /sup 0/N and approx.15 ppmv at high latitudes of the northern hemisphere. The total global atmospheric CO/sub 2/ content, averaged through 1980, is estimated to have been 7.15 x 10/sup 14/ kg of carbon with a probable uncertainty of 0.5 to 1.0%.

  3. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Hameed, S.; Hogan, J. S.

    1980-01-01

    Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.

  4. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    NASA Astrophysics Data System (ADS)

    Singh, R.; Percivall, G.

    2009-12-01

    (note: acronym glossary at end of abstract) For scientists to have confidence in the veracity of data sets and computational processes not under their control, operational transparency must be much greater than previously required. Being able to have a universally understood and machine-readable language for describing such things as the completeness of metadata, data provenance and uncertainty, and the discrete computational steps in a complex process take on increased importance. OGC has been involved with technological issues associated with climate change since 2005 when we, along with the IEEE Committee on Earth Observation, began a close working relationship with GEO and GEOSS (http://earthobservations.org). GEO/GEOS provide the technology platform to GCOS who in turn represents the earth observation community to UNFCCC. OGC and IEEE are the organizers of the GEO/GEOSS Architecture Implementation Pilot (see http://www.ogcnetwork.net/AIpilot). This continuing work involves closely working with GOOS (Global Ocean Observing System) and WMO (World Meteorological Organization). This session reports on the findings of recent work within the OGC’s community of software developers and users to apply geospatial web services to the climate studies domain. The value of this work is to evolve OGC web services, moving from data access and query to geo-processing and workflows. Two projects will be described, the GEOSS API-2 and the CCIP. AIP is a task of the GEOSS Architecture and Data Committee. During its duration, two GEO Tasks defined the project: AIP-2 began as GEO Task AR-07-02, to lead the incorporation of contributed components consistent with the GEOSS Architecture using a GEO Web Portal and a Clearinghouse search facility to access services through GEOSS Interoperability Arrangements in support of the GEOSS Societal Benefit Areas. AIP-2 concluded as GEOS Task AR-09-01b, to develop and pilot new process and infrastructure components for the GEOSS Common

  5. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    NASA Astrophysics Data System (ADS)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-07-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes

  6. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; Liu, Zhaoyan

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  7. Variable-Resolution Global Atmospheric Simulations Bridging the Hydrostatic and Nonhydrostatic Regimes

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.; Klemp, J.; Duda, M.; Fowler, L. D.; Park, S. H.

    2014-12-01

    The atmospheric component of the Model for Prediction Across Scales (MPAS-A) uses a fully compressible global nonhydrostatic solver that employs an unstructured variable-resolution Voronoi mesh to tile the sphere along with C-grid staggering. Preliminary tests with a full complement of atmospheric physics, using both variable-resolution and uniform meshes, indicate that the dynamical solver is robust. MPAS-A tests using variable-resolution meshes in the hydrostatic regime, where convection is parameterized, show no obvious problems appearing in or around the mesh transition zones for regional climate (years) and weather prediction (days to weeks) timescales. We are now testing meshes spanning hydrostatic (dx > 10 km) to nonhydrostatic (dx ~ few km) scales. These applications require a more sophisticated treatment of the atmospheric physics, particularly for the parameterization of deep convection. Several extensions of existing deep-convection physics schemes are being developed for MPAS-A applications bridging the hydrostatic and nonhydrostatic regimes. We will present results illustrating the current capabilities of MPAS-A for multi-scale atmospheric simulation in these regimes with the new deep convection schemes, focusing on explicitly simulated severe convective events over the US.

  8. Sulfur in the early martian atmosphere revisited: Experiments with a 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Forget, François; Wordsworth, Robin

    2015-11-01

    Volcanic SO2 in the martian atmosphere has been invoked as a way to create a sustained or transient greenhouse during early martian history. Many modeling studies have been performed to test the feasibility of this hypothesis, resulting in a range of conclusions, from highly feasible to highly improbable. In this study we perform a wide range of simulations using the 3-D Laboratoire de Météorologie Dynamique Generic Global Climate Model (GCM) in order to place earlier results into context and to explore the sensitivity of model outcomes to parameters such as SO2 mixing ratio, atmospheric H2O content, background atmospheric pressure, and aerosol size, abundance, and composition. We conclude that SO2 is incapable of creating a sustained greenhouse on early Mars, and that even in the absence of aerosols, local and daily temperatures rise above 273 K for only for limited periods with favorable background CO2 pressures. In the presence of even small amounts of aerosols, the surface is dramatically cooled for realistic aerosol sizes. Brief, mildly warm conditions require the co-occurrence of many improbable factors, while cooling is achieved for a wide range of model parameters. Instead of causing warming, sulfur in the martian atmosphere may have caused substantial cooling, leading to the end of clement climate conditions on early Mars.

  9. Global distribution of helium in the upper atmosphere during solar minimum

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Kerr, R. B.

    1984-01-01

    The annual variations in the concentration of helium in the atmosphere have been measured by open mass spectrometry from onboard the Atmosphere Explorer C (AE-C) satellite. The observations were performed during the solar minimum in 1976 when geomagnetic activity was relatively low. It is shown that the monthly variation in helium number density has a smooth distribution over all latitudes throughout the year. The enhancement of helium over the winter pole (the helium bulge) is found to change slowly as the seasons progress. The progression of winter helium enhancement is given in a series of latitudinal profiles of helium number density for each month of the year. On the basis of the gradual variations in helium concentrations, it is suggested that the global thermospheric wind systems may also change gradually throughout the year.

  10. Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.; Johnson, Dale L.

    1996-01-01

    This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

  11. GLACE: The Global Land-Atmosphere Coupling Experiment Part 2: Analysis

    NASA Technical Reports Server (NTRS)

    Guo, Zhichang; Dirmeyer, Paul A.; Koster, Randal D.; Bonan, Gordon; Chan, Edmond; Cox, Peter; Gordon, C. T.; Kanae, Shinjiro; Kowalczyk, Eva; Lawrence, David

    2005-01-01

    The twelve weather and climate models participating in the Global Land-Atmosphere Coupling Experiment (GLACE) show both a wide variation in the strength of land-atmosphere coupling and some intriguing commonalities. In this paper, we address the causes of variations in coupling strength - both the geographic variations within a given model and the model-to-model differences. The ability of soil moisture to affect precipitation is examined in two stages, namely, the ability of the soil moisture to affect evaporation, and the ability of evaporation to affect precipitation. Most of the differences between the models and within a given model are found to be associated with the first stage - an evaporation rate that varies strongly and consistently with soil moisture tends to lead to a higher coupling strength. The first stage differences reflect identifiable differences in model parameterization and model climate. Intermodel differences in the evaporation-precipitation connection, however, also play a key role.

  12. The global reference atmospheric model, mod 2 (with two scale perturbation model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Hargraves, W. R.

    1976-01-01

    The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.

  13. The GISS model of the global atmosphere. [Goddard Institute for Space Studies numerical model

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.; Stone, P. H.; Halem, M.; Hansen, J. E.; Hogan, J. S.; Druyan, L. M.; Quirk, W. J.; Russell, G.; Lacis, A. A.; Tenenbaum, J.

    1974-01-01

    A description and numerical results are presented for a global atmospheric circulation model developed at the Goddard Institute for Space Studies (GISS). The model version described is a 9-level primitive-equation model in sigma coordinates. It includes a realistic distribution of continents, oceans and topography. Detailed calculations of energy transfer by solar and terrestrial radiation make use of cloud and water vapor fields calculated by the model. The model hydrologic cycle includes two precipitation mechanisms: large-scale supersaturation and a parameterization of subgrid-scale cumulus convection. Results are presented both from a comparison of the 13th to the 43rd days (January) of one integration with climatological statistics, and from five short-range forecasting experiments. In the extended integration, the near-equilibrium January-mean model atmosphere exhibits an energy cycle in good agreement with observational estimates, together with generally realistic zonal mean fields of winds, temperature, humidity, transports, diabatic heating, evaporation, precipitation, and cloud cover.

  14. Use of the 4D-Global Reference Atmosphere Model (GRAM) for space shuttle descent design

    NASA Technical Reports Server (NTRS)

    Mccarty, S. M.

    1987-01-01

    The method of using the Global Reference Atmosphere Model (GRAM) mean and dispersed atmospheres to study skipout/overshoot requirements, to characterize mean and worst case vehicle temperatures, study control requirements, and verify design was discussed. Landing sites in these analyses range from 65 N to 30 S, while orbit inclinations vary from 20 deg to 98 deg. The primary concern was that they cannot use as small vertical steps in the reentry calculation as desired because the model predicts anomalously large density shear rates for very small vertical step sizes. The winds predicted by the model are not satisfactory. This is probably because they are geostrophic winds and because the model has an error in the computation of winds in the equatorial regions.

  15. Mars Global Reference Atmospheric Model (Mars-GRAM): Release No. 2 - Overview and applications

    NASA Technical Reports Server (NTRS)

    James, B.; Johnson, D.; Tyree, L.

    1993-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM), a science and engineering model for empirically parameterizing the temperature, pressure, density, and wind structure of the Martian atmosphere, is described with particular attention to the model's newest version, Mars-GRAM, Release No. 2 and to the improvements incorporated into the Release No. 2 model as compared with the Release No. 1 version. These improvements include (1) an addition of a new capability to simulate local-scale Martian dust storms and the growth and decay of these storms; (2) an addition of the Zurek and Haberle (1988) wave perturbation model, for simulating tidal perturbation effects; and (3) a new modular version of Mars-GRAM, for incorporation as a subroutine into other codes.

  16. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  17. Activities of the global biosphere as reflected in atmospheric CO/sub 2/ records

    SciTech Connect

    Pearman, G.I.; Hyson, P.

    1980-08-20

    A two-dimensional global diffusion simulation model is used to establish zonal and monthly average net surface fluxes of carbon dioxide (CO/sub 2/) which are consistent with the variations in CO/sub 2/ concentration observed at six monitoring stations distributed globally. These fluxes represent the zonally averaged net ecosystem production of primarily terrestrial biosphere. Annually, the global net ecosystem production during the photosynthetically more active season removed 6.8 x 10/sup 12/ kg of carbon from the atmosphere, returning it during the less active winter months. This turnover represents about 14% of the annual continental net primary production of carbon and 0.8% of the total terrestrial biomass. During the growing season, net ecosystem production appears to be relatively independent of latitude in the northern hemisphere (approx. 6 x 10/sup -9/ kg carbon m/sup -2/ s/sup -1/). The model indicates that time correlations between the CO/sub 2/ concentration at different altitudes of the northern hemisphere with the interhemispheric advection of air results in a net interhemispheric CO/sub 2/ flux which becomes zero when the South Pole CO/sub 2/ concentration is on average 0.92 ppmV above that at Mauna Loa, Hawaii. The influence of both the net and the gross atmospheric biospheric exchange of carbon on the atmospheric stable carbon isotope ratio is modeled. On time scales of a year the gross turnover of carbon has an insignificant effect, and all isotopic effects can be related to the net exchanges. It is argued that as with concentration, long-term trends in isotopic composition will be best observed in the southern hemisphere. 43 references, 5 figures, 7 tables.

  18. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    PubMed

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0). PMID:26599393

  19. Response of a global atmospheric circulation model to spatio-temporal stochastic forcing: ensemble statistics

    NASA Astrophysics Data System (ADS)

    Pérez-Muñuzuri, V.; Lorenzo, M. N.; Montero, P.; Fraedrich, K.; Kirk, E.; Lunkeit, F.

    The response of a simplified global atmospheric circulation model (PUMA) to spatiotemporal stochastic forcing is analyzed using the statistical measures originally developed for ensemble forecast evaluation. The nontrivial effects of time and length correlations of the stochastic forcing on the ensemble scores (e.g. spread and 'error') are studied. A maximum for these scores is observed to occur for specific values of the correlation time. The effects of multiplicative and additive contributions of the correlated noise are analyzed in terms of the noise and PUMA parameters.

  20. Variable-resolution frameworks for the simulation of tropical cyclones in global atmospheric general circulation models

    NASA Astrophysics Data System (ADS)

    Zarzycki, Colin

    The ability of atmospheric General Circulation Models (GCMs) to resolve tropical cyclones in the climate system has traditionally been difficult. The challenges include adequately capturing storms which are small in size relative to model grids and the fact that key thermodynamic processes require a significant level of parameterization. At traditional GCM grid spacings of 50-300 km tropical cyclones are severely under-resolved, if not completely unresolved. This thesis explores a variable-resolution global model approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such GCM designs with multi-resolution meshes serve to bridge the gap between globally-uniform grids and limited area models and have the potential to become a future tool for regional climate assessments. A statically-nested, variable-resolution option has recently been introduced into the Department of Energy/National Center for Atmospheric Research (DoE/NCAR) Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. Using an idealized tropical cyclone test, variable-resolution meshes are shown to significantly lessen computational requirements in regional GCM studies. Furthermore, the tropical cyclone simulations are free of spurious numerical errors at the resolution interfaces. Utilizing aquaplanet simulations as an intermediate test between idealized simulations and fully-coupled climate model runs, climate statistics within refined patches are shown to be well-matched to globally-uniform simulations of the same grid spacing. Facets of the CAM version 4 (CAM4) subgrid physical parameterizations are likely too scale sensitive for variable-resolution applications, but the newer CAM5 package is vastly improved in performance at multiple grid spacings. Multi-decadal simulations following 'Atmospheric Model Intercomparison Project' protocols have been conducted with variable-resolution grids. Climate

  1. Global N2O cycles--terrestrial emissions, atmospheric accumulation and biospheric effects.

    PubMed

    Banin, A; Lawless, J G; Whitten, R C

    1984-01-01

    Tropospheric nitrous oxide concentration has increased by 0.2-0.4% per year over the period 1975 to 1982, amounting to net addition to the atmosphere of 2.8-5.6 Tg N2O-N per year. This perturbation, if continued into the future, will affect stratospheric chemical cycles, and the thermal balance of the Earth. In turn it will have direct and indirect global effects on the biosphere. Though the budget and cycles of N2O on Earth are not yet fully resolved, accumulating information and recent modelling efforts enable a more complete evaluation and better definition of gaps in our knowledge. PMID:11537777

  2. Improved estimates and understanding of global albedo and atmospheric solar absorption

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeong; Ramanathan, V.

    2012-12-01

    This study integrates available surface-based and satellite observations of solar radiation at the surface and the top of the atmosphere (TOA) with a comprehensive set of satellite observations of atmospheric and surface optical properties and a Monte Carlo Aerosol-Cloud-Radiation (MACR) model to estimate the three fundamental components of the planetary solar radiation budget: Albedo at the TOA; atmospheric solar absorption; and surface solar absorption. The MACR incorporates most if not all of our current understanding of the theory of solar radiation physics including modern spectroscopic water vapor data, minor trace gases, absorbing aerosols including its effects inside cloud drops, 3-D cloud scattering effects. The model is subject to a severe test by comparing the simulated solar radiation budget with data from 34 globally distributed state-of-the art BSRN (Baseline Surface Radiation Network) land stations which began data collection in the mid 1990s. The TOA over these sites were obtained from the CERES (Cloud and Earth's Radiant Energy System) satellites. The simulated radiation budget was within 2 Wm-2 for all three components over the BSRN sites. On the other hand, over these same sites, the IPCC-2007 simulation of atmospheric absorption is smaller by 7-8 Wm-2. MACR was then used with a comprehensive set of model input from satellites to simulate global solar radiation budget. The simulated planetary albedo of 29.0% confirms the value (28.6%) observed by CERES. We estimate the atmospheric absorption to be 82 ± 8 Wm-2 to be compared with the 67 Wm-2 by IPCC models as of 2001 and updated to 76 Wm-2 by IPCC-2007. The primary reasons for the 6 Wm-2 larger solar absorption in our estimates are: updated water vapor spectroscopic database (˜1 Wm-2), inclusion of minor gases (˜0.5 Wm-2), black and brown carbon aerosols (˜4 Wm-2), the inclusion of black carbon in clouds (˜1 Wm-2) and 3-D effect of clouds (˜1 Wm-2). The fundamental deduction from our study

  3. Response of the Middle Atmosphere to a Total Solar Eclipse Using a Prototype High-Altitude Global Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Stollberg, M. T.; Hogan, T. F.; Coy, L.; McCormack, J. P.

    2006-05-01

    Solar eclipses provide a natural reproducible perturbation experiment for studying the atmosphere's reponse to changes in solar forcing. Theory suggests a large-scale gravity wave response in the middle and upper atmosphere, yet nearly 4 decades of observations aimed at testing these predictions have been largely inconclusive. To investigate in more detail the atmosphere's response to the total solar eclipse that occurred in the Southern Hemisphere on 4~December 2002, we use an advanced-level physics and high-altitude (ALPHA) prototype version of the spectral forecast model of the Navy Operational Global Atmospheric Prediction System (NOGAPS), the Department of Defense's global weather prediction model. The NOGAPS-ALPHA runs reported here extend from the surface to ~100~km. Our control simulations are standard "cold-start" hindcasts initialized at 0000~UTC on 4~December 2002 which have no eclipse effects included. In these runs we update the radiative heating and cooling rates at every model time step, rather than the more typical 1--2~hours. Our eclipse simulations rerun these same hindcasts, but insert a moving eclipse shadow at the appropriate times based on 60~s time series of the leading and lagging limbs of the lunar shadow on the Earth's surface, issued by the U.S. Naval Observatory. For implementation in NOGAPS-ALPHA, we convert eclipse magnitudes within these shadow regions into local reductions in solar UV intensity using geometry and consenus estimates of limb darkening across the solar disk at 200-300~nm. We study evolving atmospheric responses to this moving UV eclipse shadow using global atmospheric difference fields between the two simulations. In particular, we compare the observed response to the theoretical predictions of Chimonas and Fritts--Luo. Finally, we present preliminary results from similar runs for the most recent total solar eclipse that occurred on 29 March 2006. www.nrl.navy.mil/dynamics/html/nogaps.html

  4. Global atmospheric temperature monitoring with satellite microwave measurements - Method and results 1979-84

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Christy, John R.; Grody, Norman C.

    1990-01-01

    This paper describes a method for determining global atmospheric-temperature anomalies by means of satellite microwave radiometry. It is shown that microwave measurements of molecular oxygen thermal emission by the Microwave Sounding Units (MSUs) flying aboard the NOAA-6 and NOAA-7 can be used to monitor tropospheric temperature anomalies on global basis to a high level of precision. Comparisons between monthly MSU-derived hemispheric temperature anomalies with those computed from surface thermometer data show a very good agreement over the United States, although not for the hemispheres, especially the Southern Hemisphere. In this latter case, the poor agreement is ascribed to weaker thermal coupling between the ocean and the deep troposphere than that over the U.S. Annual anomalies for the hemispheres exhibit better correlations than do monthly anomalies.

  5. The structure of the upper atmosphere of mars: In situ accelerometer measurements from mars global surveyor

    PubMed

    Keating; Bougher; Zurek; Tolson; Cancro; Noll; Parker; Schellenberg; Shane; Wilkerson; Murphy; Hollingsworth; Haberle; Joshi; Pearl; Conrath; Smith; Clancy; Blanchard; Wilmoth; Rault; Martin; Lyons; Esposito; Johnston; et

    1998-03-13

    The Mars Global Surveyor (MGS) z-axis accelerometer has obtained over 200 vertical structures of thermospheric density, temperature, and pressure, ranging from 110 to 170 kilometers, compared to only three previous such vertical structures. In November 1997, a regional dust storm in the Southern Hemisphere triggered an unexpectedly large thermospheric response at mid-northern latitudes, increasing the altitude of thermospheric pressure surfaces there by as much as 8 kilometers and indicating a strong global thermospheric response to a regional dust storm. Throughout the MGS mission, thermospheric density bulges have been detected on opposite sides of the planet near 90 degreesE and 90 degreesW, in the vicinity of maximum terrain heights. This wave 2 pattern may be caused by topographically-forced planetary waves propagating up from the lower atmosphere. PMID:9497278

  6. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  7. Investigations of Global Chemistry-Climate Interactions and Organic Aerosol Using Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Pye, Havala Olson Taylor

    Aerosol, or particulate matter (PM), is an important component of the atmosphere responsible for negative health impacts, environmental degradation, reductions in visibility, and climate change. In this work, the global chemical transport model, GEOS-Chem, is used as a tool to examine chemistry-climate interactions and organic aerosols. GEOS-Chem is used to simulate present-day (year 2000) and future (year 2050) sulfate, nitrate, and ammonium aerosols and investigate the potential effects of changes in climate and emissions on global budgets and U.S. air quality. Changes in a number of meteorological parameters, such as temperature and precipitation, are potentially important for aerosols and could lead to increases or decreases in PM concentrations. Although projected changes in sulfate and nitrate precursor emissions favor lower PM concentrations over the U.S., projected increases in ammonia emissions could result in higher nitrate concentrations. The organic aerosol simulation in GEOS-Chem is updated to include aerosol from primary semivolatile organic compounds (SVOCS), intermediate volatility compounds (IVOCs), NOx dependent terpene aerosol, and aerosol from isoprene + NO3 reaction. SVOCs are identified as the largest global source of organic aerosol even though their atmospheric transformation is highly uncertain and emissions are probably underestimated. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and high aerosol yields from NO3 oxidation, biogenic hydrocarbons reacting with the nitrate radical are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. Globally, 69 to 88 Tg/yr of aerosol is predicted to be produced annually, approximately 22 to 24 Tg/yr of which is from biogenic hydrocarbons.

  8. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  9. Numerical Modeling of Global Atmospheric Chemical Transport with Wavelet-based Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Rastigejev, Y.; Semakin, A. N.

    2012-12-01

    In this work we present a multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of global atmospheric chemical transport problems. An accurate numerical simulation of such problems presents an enormous challenge. Atmospheric Chemical Transport Models (CTMs) combine chemical reactions with meteorologically predicted atmospheric advection and turbulent mixing. The resulting system of multi-scale advection-reaction-diffusion equations is extremely stiff, nonlinear and involves a large number of chemically interacting species. As a consequence, the need for enormous computational resources for solving these equations imposes severe limitations on the spatial resolution of the CTMs implemented on uniform or quasi-uniform grids. In turn, this relatively crude spatial resolution results in significant numerical diffusion introduced into the system. This numerical diffusion is shown to noticeably distort the pollutant mixing and transport dynamics for typically used grid resolutions. The developed WAMR method for numerical modeling of atmospheric chemical evolution equations presented in this work provides a significant reduction in the computational cost, without upsetting numerical accuracy, therefore it addresses the numerical difficulties described above. WAMR method introduces a fine grid in the regions where sharp transitions occur and cruder grid in the regions of smooth solution behavior. Therefore WAMR results in much more accurate solutions than conventional numerical methods implemented on uniform or quasi-uniform grids. The algorithm allows one to provide error estimates of the solution that are used in conjunction with appropriate threshold criteria to adapt the non-uniform grid. The method has been tested for a variety of problems including numerical simulation of traveling pollution plumes. It was shown that pollution plumes in the remote troposphere can propagate as well-defined layered structures for two weeks or more as

  10. Sound-wave coherence in atmospheric turbulence with intrinsic and global intermittency.

    PubMed

    Wilson, D Keith; Ostashev, Vladimir E; Goedecke, George H

    2008-08-01

    The coherence function of sound waves propagating through an intermittently turbulent atmosphere is calculated theoretically. Intermittency mechanisms due to both the turbulent energy cascade (intrinsic intermittency) and spatially uneven production (global intermittency) are modeled using ensembles of quasiwavelets (QWs), which are analogous to turbulent eddies. The intrinsic intermittency is associated with decreasing spatial density (packing fraction) of the QWs with decreasing size. Global intermittency is introduced by allowing the local strength of the turbulence, as manifested by the amplitudes of the QWs, to vary in space according to superimposed Markov processes. The resulting turbulence spectrum is then used to evaluate the coherence function of a plane sound wave undergoing line-of-sight propagation. Predictions are made by a general simulation method and by an analytical derivation valid in the limit of Gaussian fluctuations in signal phase. It is shown that the average coherence function increases as a result of both intrinsic and global intermittency. When global intermittency is very strong, signal phase fluctuations become highly non-Gaussian and the average coherence is dominated by episodes with weak turbulence. PMID:18681567

  11. Global atmospheric energy deposition by energetic electrons - Quantitative spatial and temporal characteristics inferred from the Atmospheric X-ray Imaging Spectrometer (PEM/AXIS) on UARS

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Datlowe, D. W.; Robinson, R. M.; Schumaker, T. L.; Vondrak, R. R.; Frahm, R. A.; Sharber, J. R.; Winningham, J. D.

    1993-01-01

    The primary purpose of PEM/AXIS is to provide a global monitor of the energy input to the upper atmosphere due to energetic electrons. The design, development, and calibration of AXIS are described and an assessment of its excellent on-orbit performance is presented. The unique capabilities of X-ray imaging spectrometers to monitor the global patterns of electron energy deposition in the atmosphere are shown through an analysis of some specific cases during the first year of the UARS mission.

  12. Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperature

    NASA Astrophysics Data System (ADS)

    Inamdar, Anand K.; Ramanathan, V.

    1998-12-01

    We employ a multitude of global data sets to extend recent analyses of atmospheric greenhouse effect and its dependence on surface temperature (Ts) and vertical water vapor distribution. The new data encompasses a global domain including both the continents and the oceans as well as both the ascending and descending branches of the Walker and Hadley cells and the extratropical storm track regions. We adopt the radiometric definition of the atmospheric greenhouse effect, Ga, which is the difference between the surface longwave emission and the outgoing longwave radiation. We derive the global average greenhouse effect over both oceans and land areas. The east to west variations of the normalized atmospheric greenhouse effect (ga) and precipitable water (w) are just as strong as the north to south variations, thus illustrating the strong role of the dynamics in w and ga. Between 60°N and 60°S the lowest values of ga (0.11-0.15) are found over the Saharan and other deserts; while the largest values (0.35-0.40) are found over the warm oceans with a deep convective atmosphere. The coupling between Ga, and the vertical distribution of atmospheric water vapor and temperature, is examined from monthly mean annual cycle. When averaged from the southern to the northern latitudes, these quantities exhibit a statistically significant annual cycle. The annual cycle of Ts, about 1 K for the tropics (30°N to 30°S) and about 4 K for the globe, is large enough to obtain a statistically significant estimate for the sensitivity parameter dGa/dTs. It is as large as 5.5-6 W m-2 K-1 for tropical mean conditions (30°N to 30°S) and reduces to a global mean value of 3.5 W m-2 K-1 (with a 2σ range of 2.9-4.1 W m-2 K-1). Consistent with earlier studies, the tropics exhibit a strong positive coupling between Ts, Ga, and water vapor distribution with large increases in the midtroposphere humidity. However, poleward of 30°N, water vapor increases are about half as much as that in the

  13. Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange

    NASA Astrophysics Data System (ADS)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-03-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  14. Observations of Black Carbon characteristics and radiative forcing over a Global Atmosphere Watch supersite in Korea

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Park, Sung-Hwa; Lee, Dong-In; Kim, Dong-Chul; Jung, Woon-Seon; Jang, Sang-Min; Jeong, Jong-Hoon; Kim, Dong-Soon; Yu, Jegyu; Jeong, Harrison

    2013-10-01

    This paper provides an account of observed variations in Black carbon (BC) mass concentrations and BC induced radiative forcing for the first time over a background Global Atmosphere Watch (GAW) site, Anmyeon in South Korea. BC concentrations were continuously measured over the site during January 2003-December 2004 periods using an Aethalometer. BC showed higher concentrations during 2003 in majority of the months (except in January, August and October). BC found to be showing higher concentrations in September 2003, with values reaching up to 3 μg m-3 over the site. It also showed higher peaks in May and December in 2003. BC values were found to be comparatively less during wet season (July-August; especially august), which could be associated with the rainout and washout associated with the Changma season (summer monsoon). Optical Properties of Aerosols and Clouds (OPAC) model in combination with a radiative transfer model (SBDART) were used to estimate aerosol radiative forcing separately for composite aerosols (total aerosols) and solely for BC aerosols using chemical composition data sets of Total Suspended Particulates (TSP) and BC. The atmospheric forcing for composite aerosols found to be +14.9 to +25.9 W m-2 during spring, +13.4 to +20.4 W m-2 in summer, +12.9 to +19.1 W m-2 in autumn and +16 to +18.2 W m-2 during winter,respectively. The respective BC atmospheric forcings were +8.1 to +11.8 W m-2, +8.4 to +11.1 W m-2, +8.7 to +11.4 W m-2 and +8.8 to +11.7 W m-2 during spring, summer, autumn and winter. The study suggests that BC induced atmospheric forcing can contribute up to 88% of total aerosol induced atmospheric warming.

  15. Assessment of Climatic and Anthropogenic Impacts on the Global Carbon Cycle Constrained by Atmospheric Measurements and Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Keeling, Charles D.; Piper, Stephen C.

    2001-01-01

    This grant aimed to establish how the global carbon cycle has responded and will respond to global change. We proposed to use models to predict measurements of atmospheric CO2 concentration and C-13/C-12 isotopic ratio, and thereby to establish how sources and sinks of atmospheric CO2 have been influenced by climatic change and human activities. As the work progressed we developed strategies involving finding regional sources and sinks of atmospheric CO2 by an inverse approach, and studying their seasonal and interannual variability.

  16. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions

    PubMed Central

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin; Liu, Junfeng; Tao, Shu

    2013-01-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios. PMID:23659377

  17. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions.

    PubMed

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin; Liu, Junfeng; Tao, Shu

    2013-06-18

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios. PMID:23659377

  18. Global atmospheric distribution and trend of methylchloroform /CH3CCl3/

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Results of global measurements of the concentration of atmospheric methylchloroform, a man-made gas with potentially harmful environmental consequences, performed over a two-year period are presented. Samples were collected weekly at Pt. Barrow and Poker Flats, Alaska, Cape Meares, Oregon, Cape Kumakahi, Hawaii, Samoa, and Cape Grim, Tasmania, and yearly at the South Pole, and methylchloroform concentrations were determined by electron capture-gas chromatographic techniques. A latitudinal profile of CH3CCl3 concentrations derived from the data exhibits a bump at high northern latitudes, where most of the sources are located. Average concentrations calculated for the Northern and Southern Hemispheres showed a rise in global concentrations at a rate of 6.7 + or - 2.0%/year for the period from January 1979 to January 1981, with concentrations rising more slowly in 1980 than in 1979. These yearly increases are also smaller than earlier rates of increase, explainable by a reduction in the rate of emission increase, and are consistent with an atmospheric lifetime of between 6 and 10 years.

  19. Observing system simulation experiments for the laser atmospheric wind sounder using global spectral model

    NASA Technical Reports Server (NTRS)

    Rohaly, Gregg; Krishnamurti, T. N.

    1991-01-01

    Fundamental to improving the understanding of the total Earth system are increased and improved observations. In the coming decade several spaceborne instrumented platforms will be constructed and implemented. These platforms will, in large, be housing the NASA Earth Observing System (EOS) instrument suite. One of the proposed instruments is a wind profiling system which is currently referred to as the Laser Atmospheric Wind Sounder (LAWS). This instrument will use a CO2 Doppler lidar wind profiler to give wind measurements with a vertical and horizontal resolution which has yet to be seen globally. The LAWS instrument is now a candidate for launch on a NASA EOS-B platform and is fundamental to increasing our understanding of Earth system science. The LAWS data sets will form an integral component of the temporally continuous data base needed for research of the coupled climate systems. This instrument's observations will aid in giving an improved description of the atmospheric circulation, including the transports of energy, momentum, moisture, trace gases, and aerosols. Also, the wind data will be assimilated and used as the initial state for many global forecast models at various operational centers. Results of system simulation experiments are discussed, and future experiments are described.

  20. Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    2000-01-01

    This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  1. Projected changes in atmospheric river events in Arizona as simulated by global and regional climate models

    NASA Astrophysics Data System (ADS)

    Rivera, Erick R.; Dominguez, Francina

    2015-12-01

    Inland-penetrating atmospheric rivers (ARs) affect the United States Southwest and significantly contribute to cool season precipitation. In this study, we examine the results from an ensemble of dynamically downscaled simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and their driving general circulation models (GCMs) in order to determine statistically significant changes in the intensity of the cool season ARs impacting Arizona and the associated precipitation. Future greenhouse gas emissions follow the A2 emission scenario from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations. We find that there is a consistent and clear intensification of the AR-related water vapor transport in both the global and regional simulations which reflects the increase in water vapor content due to warmer atmospheric temperatures, according to the Clausius-Clapeyron relationship. However, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no significant changes are projected either by the GCMs or the NARCCAP models. This lack of robust precipitation variations can be explained in part by the absence of meaningful changes in both the large-scale water vapor flux convergence and the maximum positive relative vorticity in the GCMs. Additionally, some global models show a robust decrease in relative humidity which may also be responsible for the projected precipitation patterns.

  2. A Global Upper Atmosphere Observatory Using of Lidar on the International Space Station

    NASA Technical Reports Server (NTRS)

    Clemmons, J. H.; Beck, S. M.; Hecht, J. H.; Corey, C. F.; McLeroy, J. C.; Ferrone, K. L.; Spann, J. F.; Swenson, G. R.; Janches, D.; Giles, B.; Krainak, M.; Yu, A.; Jones, S.

    2014-01-01

    A concept for hosting a lidar facility for the upper atmosphere on the International Space Station (ISS) is presented and discussed. The concept is based on utilizing an existing Large Space Optics mirror having a 2.37-m aperture as the primary mirror in its receiver. This large aperture provides for hosting several transmitter systems to retrieve density, temperature, and wind measurements for several upper atmospheric species. Thus the concept provides for measurements over a wide altitude range (80-600 km), at various time and spatial resolutions, and hosting on the ISS provides nearly global coverage. The baseline concept includes transmitters and receivers for atomic oxygen (80-500 km), metastable helium (400-600 km), and sodium (80-110 km). The facility is conceived as being flexible such that other transmitter/receiver systems could be added to allow the possibility of other species to be studied, such as iron. The presentation discusses the transformative science that would be gained by such an observatory by combining the nearly global coverage afforded by the ISS orbit with the extension of powerful lidar techniques to high altitudes. The challenges in realizing such an observatory are discussed, as are current plans and partnerships to meet those challenges. The presentation also reports on the development status of several components, primarily various independent transmitter/receiver systems, that are under consideration for the baseline observatory. Several institutions are performing these developments.

  3. Impacts of numerical approximation in atmospheric tracer transport: examples from the Global Modeling Initiative

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Zhu, X.

    2003-12-01

    Improved numerical methods for transport of trace species in the atmosphere and ocean continue to be developed. Typically, these algorithms are evaluated against existing methods using analytic or idealized test cases, but the NASA Global Modeling Initiative now provides a realistic framework for evaluating their accuracy in full chemistry-transport models (CTM). GMI's modular approach is combined with parallel simulations in the UCI CTM to quantify the differences between two relatively accurate tracer transport algorithms (Lin-Rood, Prather 2nd-order moments), including the impact of forcing a positive-definite, ripple-free tracer abundance. We use a range of simplified atmospheric chemical tracers (radon-lead, fossil-fuel CO2, industrial and biomass CO) with the meteorology from the Goddard Institute for Space Studies global climate model (4 deg by 5 deg with 23 layers) that includes three-hourly integrated winds, boundary-layer physics, entraining and non-entraining convection, large-scale and convective precipitation, updrafts and downdrafts. The relative accuracy of the different methods is considered in terms of forward and inverse calculations. We thank the entire GMI team, especially the researchers at LLNL and GSFC who have built and maintained the GMI modeling capability.

  4. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.

    2008-01-01

    Engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL)1. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: a) TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth; and b) TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Mars-GRAM 2005 has been validated2 against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES)

  5. Vegetation-atmosphere interactions and their role in global warming during the latest Cretaceous

    PubMed Central

    Upchurch, G. R.; Otto-Bliesner, B. L.; Scotese, C.

    1998-01-01

    Forest vegetation has the ability to warm Recent climate by its effects on albedo and atmospheric water vapour, but the role of vegetation in warming climates of the geologic past is poorly understood. This study evaluates the role of forest vegetation in maintaining warm climates of the Late Cretaceous by (1) reconstructing global palaeovegetation for the latest Cretaceous (Maastrichtian); (2) modelling latest Cretaceous climate under unvegetated conditions and different distributions of palaeovegetation; and (3) comparing model output with a global database of palaeoclimatic indicators. Simulation of Maastrichtian climate with the land surface coded as bare soil produces high-latitude temperatures that are too cold to explain the documented palaeogeographic distribution of forest and woodland vegetation. In contrast, simulations that include forest vegetation at high latitudes show significantly warmer temperatures that are sufficient to explain the widespread geographic distribution of high-latitude deciduous forests. These warmer temperatures result from decreased albedo and feedbacks between the land surface and adjacent oceans. Prescribing a realistic distribution of palaeovegetation in model simulations produces the best agreement between simulated climate and the geologic record of palaeoclimatic indicators. Positive feedbacks between high-latitude forests, the atmosphere, and ocean contributed significantly to high-latitude warming during the latest Cretaceous, and imply that high-latitude forest vegetation was an important source of polar warmth during other warm periods of geologic history.

  6. Uncertainty and bias of surface ozone measurements at selected Global Atmosphere Watch sites

    NASA Astrophysics Data System (ADS)

    Klausen, JöRg; Zellweger, Christoph; Buchmann, Brigitte; Hofer, Peter

    2003-10-01

    The Global Atmosphere Watch (GAW) program currently coordinates 22 ground-based atmospheric background monitoring stations of global scope. The GAW World Calibration Centre for Surface Ozone, Carbon Monoxide and Methane (WCC-EMPA) is responsible for tracing surface ozone measurements at these stations to the designated reference within the GAW program, the Standard Reference Photometer SRP 2 maintained at the National Institute of Standards and Technology (NIST). The recommended method for surface ozone measurements is based on UV absorption at 254 nm (Hg line). Repeated and regular intercomparisons of station instruments are necessary to achieve and maintain high and known data quality. In this paper, the traceability chain is explained, and standard uncertainties for each element are evaluated. Data of 26 intercomparisons performed at 14 stations between 1996 and 2002 are analyzed. On 23 occasions, the instruments passed the audit with "good" agreement, in one case with "sufficient" agreement. On 2 occasions, both first audits at the site, the audited instrument did not comply with the minimal data quality requirements. The best instruments in use exhibit a median absolute bias of approximately 0.32 ppbv and a standard uncertainty of approximately 0.8 ppbv (0-100 ppbv). The quantitative improvement of data quality as a result of repeated audits can be demonstrated with several stations.

  7. Tropical Ocean Global Atmosphere (TOGA) Meteorological and Oceanographic Data Sets for 1985 and 1986

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Ashby, H.; Finch, C.; Smith, E.; Robles, J.

    1990-01-01

    The Tropical Ocean Global Atmosphere (TOGA) Program is a component of the World Meteorological Organization (WMO)/International Council of Scientific Unions (ICSU) World Climate Research Program (WCRP). One of the objectives of TOGA, which began in 1985, is to determine the limits of predictability of monthly mean sea surface temperature variations in tropical regions. The TOGA program created a raison d'etre for an explosive growth of the tropical ocean observing system and a substantial improvement in numerical simulations from atmospheric and oceanic general circulation models. Institutions located throughout the world are involved in the TOGA-distributed active data archive system. The diverse TOGA data sets for 1985 and 1986, including results from general circulation models, are included on a CD-ROM. Variables on the CD-ROM are barometric pressure, surface air temperature, dewpoint temperature Cartesian components of surface wind, surface sensible and latent heat fluxes,Cartesian components of surface wind stress and of an index of surface wind stress, sea level, sea surface temperature, and depth profiles of temperature and current in the upper ocean. Some data sets are global in extent, some are regional and cover portions of an ocean basin. Data on the CD-ROM can be extracted with an Apple Macintosh or an IBM PC.

  8. Advanced Manufacturing as an Online Case Study for Global Geography Education

    ERIC Educational Resources Information Center

    Glass, Michael R.; Kalafsky, Ronald V.; Drake, Dawn M.

    2013-01-01

    Advanced manufacturing continues to be an important sector for emerging and industrialized economies, therefore, remaining an important topic for economic geography education. This article describes a case study created for the Association of American Geographer's Center for Global Geography Education and its implementation. The international…

  9. Student perceptions about the mission of dental schools to advance global dentistry and philanthropy.

    PubMed

    Ivanoff, Chris S; Ivanoff, Athena E; Yaneva, Krassimira; Hottel, Timothy L; Proctor, Hannah L

    2013-10-01

    In this study, 491 dental students at one dental school in the United States and one in Bulgaria were surveyed to assess their perceptions about the mission of dental schools to advance global dentistry and philanthropy. The study included questions about prior involvement in charitable dental missions. Many respondents felt that their dental school does not advance global dentistry nor adequately teaches students the virtues of philanthropy and volunteerism. The majority agreed, however, that dental schools have a moral obligation to raise the level of oral health care worldwide and help underserved communities access basic dental care. They reported that an opportunity to spend a semester at a foreign dental school would enhance their dental education in ways that are not presently fulfilled; help them better understand cultural diversity; and teach them about philanthropy and volunteerism. In their opinion, international exchange programs that provide clinical rotations and field experiences in economically challenged and underserved areas of the world would a) foster the global advancement of dentistry; b) promote an appreciation for cultural diversity and socioeconomic disparity in the communities that graduates will be serving; and c) teach students the virtues of philanthropy and volunteerism. This study may contribute to understanding factors affecting student involvement in programs to advance global dentistry. PMID:24098030

  10. The state of greenhouse gases in the atmosphere using global observations through 2014

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed

    2016-04-01

    We present results from the eleventh annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG). Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of CO2, CH4 and N2O derived from this network reached new highs in 2014, at 397.7±0.1 ppm, 1833±1 ppb and 327.1±0.1 ppb respectively. These values constitute 143%, 254% and 121% of pre-industrial (before 1750) levels. The atmospheric increase of CO2 from 2013 to 2014 was 1.9 ppm, which is smaller than the increase from 2012 to 2013 and the average growth rate for the past decade (˜2.06 ppm per year), but larger than the average growth rate for the 1990s (˜1.5 ppm per year). Smaller growth in 2014 compared with other recent years is most likely related to a relatively small net change in large fluxes between the atmosphere and terrestrial biosphere. The rise of atmospheric CO2 has been only about a half of what is expected if all excess CO2 from burning fossil-fuels stayed in the air. The other half has been absorbed by the land biosphere and the oceans, leading to ocean acidification. For both CH4 and N2O the increases from 2013 to 2014 were larger than those observed from 2012 to 2013 and the mean rates over the past 10 years. The National

  11. Mars Global Reference Atmospheric Model (Mars-GRAM) and Database for Mission Design

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model, while above 80 km it is based on Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter. Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science and Thermal Emission Spectrometer data. RS data from 2480 profiles were used, covering latitudes 75 deg S to 72 deg N, surface to approximately 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160 deg and 265-310 deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, RS density varied by about a factor of 2.5 over ranges of latitudes and Ls values observed. Evaluated at matching positions and times, these figures show average RSMars-GRAM density ratios were generally 1+/-)0.05, except at heights above approximately 25 km and latitudes above approximately 50 deg N. Average standard deviation of RSMars-GRAM density ratio was 6%. TES data were used covering surface to approximately 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). Depending on season, TES data covered latitudes 85 deg S to 85 deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (greater than 45 deg N), or at most altitudes in the southern hemisphere at Ls approximately 90 and 180 deg. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of

  12. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications

    NASA Astrophysics Data System (ADS)

    Wang, Junhong; Zhang, Liangying; Dai, Aiguo

    2005-11-01

    Water-vapor-weighted atmospheric mean temperature, Tm, is a key parameter in the retrieval of atmospheric precipitable water (PW) from ground-based Global Positioning System (GPS) measurements of zenith path delay (ZPD), as the accuracy of the GPS-derived PW is proportional to the accuracy of Tm. We compare and analyze global estimates of Tm from three different data sets from 1997 to 2002: the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40), the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and the newly released Integrated Global Radiosonde Archive (IGRA) data set. Temperature and humidity profiles from both the ERA-40 and NCEP/NCAR reanalyses produce reasonable Tm estimates compared with those from the IGRA soundings. The ERA-40, however, is a better option for global Tm estimation because of its better performance and its higher spatial resolution. Tm is found to increase from below 255 K in polar regions to 295-300 K in the tropics, with small longitudinal variations. Tm has an annual range of ˜2-4 K in the tropics and 20-35 K over much of Eurasia and northern North America. The day-to-day Tm variations are 1-3 K over most low latitudes and 4-7 K (2-4 K) in winter (summer) Northern Hemispheric land areas. Diurnal variations of Tm are generally small, with mean-to-peak amplitudes less than 0.5 K over most oceans and 0.5-1.5 K over most land areas and a local time of maximum around 16-20 LST. The commonly used Tm-Ts relationship from Bevis et al. (1992) is evaluated using the ERA-40 data. Tm derived from this relationship (referred to as Tmb) has a cold bias in the tropics and subtropics (-1 ˜ -6 K, largest in marine stratiform cloud regions) and a warm bias in the middle and high latitudes (2-5 K, largest over mountain regions). The random error in Tmb is much smaller than the bias. A serious problem in Tmb is its erroneous large diurnal cycle owing to

  13. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  14. Near-global distribution of CO isotopic fractionation in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Beale, C. A.; Buzan, E. M.; Boone, C. D.; Bernath, P. F.

    2016-05-01

    The first near-global (-85° to 85°) measurements of the isotopic fractionation of 13CO relative to 12CO have been obtained from 5 to 90 km using the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer). These observations have been compared to predictions from WACCM (Whole Atmosphere Community Climate Model). The highest positive fractionation (i.e. relatively more 13CO) values of over 100‰ are observed in the lower thermosphere during winter in both hemispheres, whereas the highest negative fractionation (i.e. relatively more 12CO) is observed in the mesosphere in the summer at high latitudes (due to the highly fractionating effect that UV light has on CO2) and year round in the tropics. Agreement between measurements and model results is generally good at high altitude, although ACE shows a stronger fractionation effect from CO2 photolysis than predicted by WACCM. In the lower atmosphere, agreement is qualitatively good, although there is a distinct discrepancy at 40 km in all seasons, which is likely a retrieval artifact.

  15. Model simulations of strong atmospheric conductivity disturbances and induced responses of the Global Electric Circuit

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J.; Lehto, E.; Neely, R. R.; English, J. M.; Zhu, Y.; Lucas, G.; Thayer, J. P.

    2013-12-01

    Electrical conductivity in the troposphere and stratosphere is an important quantity that determines the distribution of currents in the GEC (Global Electric Circuit), as well as the potential difference between the Earth and the ionosphere. Recently, progress in modeling atmospheric conductivity has been achieved by integrating the conductivity calculation into an AC-GCM (atmospheric chemistry general circulation model), which provides all relevant data. In this study, WACCM (Whole Atmosphere Community Climate Model) is used for conductivity calculations and an analysis of the effects of strong disturbances on the GEC. This includes volcanic eruptions of Pinatubo in 1991 and the super volcano Toba, polar stratospheric clouds, radioactive releases, and the recent strong galactic cosmic ray maximum. In general, there is a decrease in conductivity from enhanced aerosol number densities, resulting from volcanic eruptions or polar stratospheric clouds. Conductivity is increased by additional ionization sources such as radioactive releases, or galactic cosmic ray increases such as during the last solar minimum. The effects of such events on conductivity, column and total resistance, and estimate effects on current distribution and the earth-ionosphere potential difference will be quantified. Percentage change in conductivity at 20 km altitude two months after the Toba volcanic eruption (WACCM model simulation). The enhanced aerosol concentrations lead to a "conductivity hole" between 30°S and 45° N.

  16. Understanding global cycling of atmosphere-surface exchangeable pollutants and its implications

    NASA Astrophysics Data System (ADS)

    Selin, N. E.; Giang, A.; Song, S.; Pike-thackray, C.; Friedman, C. L.

    2014-12-01

    We combine modeling approaches with data analysis to provide quantitative constraints on the global biogeochemical cycling of pollutants such as mercury (Hg) and persistent organic pollutants (POPs). These pollutants, released by human activities, continue to cycle between land, ocean, and atmosphere surfaces, extending their effective lifetimes in the environment. Measurement data are limited for all of these substances, providing few constraints on the magnitude of surface-atmosphere fluxes and thus the timescales of their cycling. This limits our ability to trace emissions to impacts for these substances, particularly in the context of both ongoing policies and climate change. We present a suite of modeling and analysis tools, including uncertainty analysis, that can provide quantitative constraints on cycling for these data-limited problems, and we illustrate their applicability through examples of Hg and selected POPs. Specifically, we summarize recent insights from inverse modeling of mercury, polynomial chaos-based methods for PAHs. Finally, we assess how uncertainty in timescales affects the entire emissions-to-impacts pathway for atmosphere-surface exchangeable pollutants. We discuss the implications of this analysis for policies under the Stockholm and Minamata Conventions.

  17. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    2001-01-01

    This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  18. Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.; Keller, Vernon W.

    2006-01-01

    This document is the viewgraph slides of the presentation. Marshall Space Flight Center's Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.

  19. Assessing New Dry Deposition Parameterization Schemes for Incorporation into Global Atmospheric Transport Models

    NASA Astrophysics Data System (ADS)

    Khan, T.; Perlinger, J. A.; Wu, S.; Fairall, C. W.

    2014-12-01

    Dry deposition is a key process in atmosphere-surface exchange and is an important transmission route for atmospheric gases and aerosols to enter terrestrial and aquatic ecosystems. Vertical transport of atmospheric aerosols to Earth's surface is governed by several processes including turbulent transfer, interception, inertial impaction, settling, diffusion, turbophoresis, thermophoresis, and electrostatic effects. In global transport models (GTMs), particle dry deposition velocity (vd) from the lowest model layer to the surface is often parameterized using an electrical resistance analogy. This resistance analogy is widely used in a modified form to compute vd for steady-state dry deposition flux. Recently, a mass conservative formulation of dry deposition applicable to smooth and rough surfaces was proposed. Here, we evaluate dry deposition velocities computed using five different schemes with measurement results from a variety of surfaces including bare soil, grass, and coniferous, broad-leaf, and deciduous forest canopies. Based on this assessment, we provide suggestions for optimal treatment of dry deposition processes in GTMs and evaluate implementation of new dry deposition schemes.

  20. Climatology and natural variability of the global hydrologic cycle in the GLA atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Mehta, V. M.; Sud, Y. C.; Walker, G. K.

    1994-01-01

    Time average climatology and low-frequency variabilities of the global hydrologic cycle (GHC) in the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) were investigated in the present work. A 730-day experiment was conducted with the GLA GCM forced by insolation, sea surface temperature, and ice-snow undergoing climatological annual cycles. Ifluences of interactive soil moisture on time average climatology and natural variability of the GHC were also investigated by conducting 365-day experiments with and without interactive soil moisture. Insolation, sea surface temperature, and ice-snow were fixed at their July levels in the latter two experiments. Results show that the model's time average hydrologic cycle variables for July in all three experiments agree reasonably well with observations. Except in the case of precipitable water, the zonal average climates of the annual cycle experiment and the two perpetual July experiments are alike, i.e., their differences are within limits of the natural variability of the model's climate. Statistics of various components of the GHC, i.e., water vapor, evaporation, and precipitation, are significantly affected by the presence of interactive soil moisture. A long-term trend is found in the principal empirical modes of variability of ground wetness, evaporation, and sensible heat. Dominant modes of variability of these quantities over land are physically consistent with one another and with land surface energy balance requirements. The dominant mode of precipitation variability is found to be closely related to organized convection over the tropical western Pacific Ocean. The precipitation variability has timescales in the range of 2 to 3 months and can be identified with the stationary component of the Madden-Julian Oscillation. The precipitation mode is not sensitive to the presence of interactive soil moisture but is closely linked to both the rotational and divergent components of atmospheric

  1. What do the cited and citing environments reveal about Advances in Atmospheric Physics?

    NASA Astrophysics Data System (ADS)

    Shi, Aolan; Leydesdorff, Loet

    2011-01-01

    The networking status of journals reflects their academic influence among peer journals. This paper analyzes the cited and citing environments of this journal, Advances in Atmospheric Sciences ( Adv. Atmos. Sci.), using methods from social network analysis. Since its initial publication, Adv. Atmos. Sci. has been actively participating in the international journal environment and international journals are frequently cited in Adv. Atmos. Sci. Particularly, this journal is intensely interrelated with its international peer journals in terms of their similar citing patterns. The international influence of Adv. Atmos. Sci. is comparatively bigger than other Chinese SCI journals in atmospheric sciences as reflected by total cites to Adv. Atmos. Sci. and the total number of international journals citing it. The academic visibility of Adv. Atmos. Sci. is continuing to improve in the international research community as the number of reference citation it receives in its peer journals internationally increases over time.

  2. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations: Atmospheric Temperatures During Aerobraking and Science Phasing

    NASA Technical Reports Server (NTRS)

    Conrath, Barney J.; Pearl, John C.; Smith, Michael D.; Maguire, William C.; Christensen, Philip R.; Dason, Shymala; Kaelberer, Monte S.

    1999-01-01

    Between September 1997, when the Mars Global Surveyor spacecraft arrived at Mars, and September 1998 when the final aerobraking phase of the mission began, the Thermal Emission Spectrometer (TES) has acquired an extensive data set spanning approximately half of a Martian year. Nadir-viewing spectral measurements from this data set within the 15-micrometers CO2 absorption band are inverted to obtain atmospheric temperature profiles from the surface up to about the 0.1 mbar level. The computational procedure used to retrieve the temperatures is presented. Mean meridional cross sections of thermal structure are calculated for periods of time near northern hemisphere fall equinox, winter solstice, and spring equinox, as well as for a time interval immediately following the onset of the Noachis Terra dust storm. Gradient thermal wind cross sections are calculated from the thermal structure. Regions of possible wave activity are identified using cross sections of rms temperature deviations from the mean. Results from both near-equinox periods show some hemispheric asymmetry with peak eastward thermal winds in the north about twice the magnitude of those in the south. The results near solstice show an intense circumpolar vortex at high northern latitudes and waves associated with the vortex jet core. Warming of the atmosphere aloft at mid-northern latitudes suggests the presence of a strong cross-equatorial Hadley circulation. Although the Noachis dust storm did not become global in scale, strong perturbations to the atmospheric structure are found, including an enhanced temperature maximum aloft at high northern latitudes resulting from intensification of the Hadley circulation. TES results for the various seasonal conditions are compared with published results from Mars general circulation models, and generally good qualitative agreement is found.

  3. Inverse modeling of atmospheric mercury emissions using a global chemical transport model and surface observations

    NASA Astrophysics Data System (ADS)

    Song, S.; Selin, N. E.

    2012-12-01

    We use inverse modeling in combination with worldwide observational data to constrain atmospheric mercury fluxes and associated uncertainties from anthropogenic and natural sources. Though atmospheric transport is a critical pathway of global mercury transport, large uncertainties exist in estimating the magnitudes and temporal variabilities of mercury emissions to the atmosphere from both natural and anthropogenic processes. Previous estimations have primarily used a so-called "bottom-up" approach, which extrapolates the few direct measurements to larger regions or uses simplified process models to estimate fluxes. Here, we apply a "top-down" or inverse modeling approach. Worldwide surface observations of total gaseous mercury (TGM) and simulations from a global chemical transport model (GEOS-Chem version 9-01-02 with a 2 by 2.5 degree horizontal resolution) are combined to estimate mercury fluxes. Time-invariant anthropogenic emission and seasonally varying fluxes (e.g., ocean evasion, biomass burning, and soil volatilization) are optimally estimated by Kalman filter between 2005 and 2009 at a monthly time resolution. The reference source spatial distributions are shown in Figure 1. We collected data from 16 measurement sites with high precision and frequency, covering most active stations during our period of study. The observations and reference model outputs at 4 representative sites are compared in Figure 2. We test the inverse model by comparing model-measurement fits between the reference model and optimized emissions.igure 1. Mercury reference source spatial distributions. Annually averaged patterns are shown in log scale. igure 2. Comparison of TGM monthly mean observations between observations (black, shown with standard deviations) and reference model results (red) at 4 representative sites.

  4. Land-atmosphere coupling metrics from satellite remote sensing as a global drought-monitoring tool

    NASA Astrophysics Data System (ADS)

    Roundy, Joshua K.; Santanello, Joseph A.

    2015-04-01

    Drought causes significant economic impact to society that can be reduced through preparations made possible by monitoring and prediction. Most drought monitoring systems utilize a variety of metrics to assess and understand drought. Feedbacks induced through land-atmosphere interactions are an important mechanism of drought intensification and persistence that is often not considered in current drought monitors due to a lack of spatially consistent observations. Recent work has developed a new classification of land-atmosphere interactions that summarizes the net impact of these interactions on drought intensification and recovery through the Coupling Drought Index (CDI). One thing that makes the CDI unique is that it can be calculated based on estimates from satellite remote sensing, which makes it particularly useful for global drought monitoring. Furthermore, the persistent nature of these coupling regimes provides a means of prediction through a Markov Chain Coupling Statistical Model (CSM). Previous work has shown that the CDI based on satellite remote sensing compares well with the U.S. Drought monitor in terms of drought intensification and recovery. On the other hand, the skill of the CSM forecasts over the U.S. is limited and still needs improvement. In this work the extent to which the CDI and CSM can be extended to other areas of the globe are explored. In particular, the ability of the satellite remote sensing based CDI to capture drought intensification and recovery over Africa and Europe are assessed. The benefits and limitations of using a metric of land-atmosphere interactions for global drought monitoring are also discussed.

  5. The NASA/MSFC Global Reference Atmospheric Model-1995 version (GRAM-95)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Jeffries, W. R., III; Yung, S. P.; Johnson, D. L.

    1995-01-01

    The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.

  6. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Waliser, Duane E.

    2015-12-01

    Atmospheric rivers (ARs) are narrow, elongated, synoptic jets of water vapor that play important roles in the global water cycle and regional weather/hydrology. A technique is developed for objective detection of ARs on the global domain based on characteristics of the integrated water vapor transport (IVT). AR detection involves thresholding 6-hourly fields of ERA-Interim IVT based on the 85th percentile specific to each season and grid cell and a fixed lower limit of 100 kg m-1 s-1 and checking for the geometry requirements of length >2000 km, length/width ratio >2, and other considerations indicative of AR conditions. Output of the detection includes the AR shape, axis, landfall location, and basic statistics of each detected AR. The performance of the technique is evaluated by comparison to AR detection in the western North America, Britain, and East Antarctica with three independently conducted studies using different techniques, with over ~90% agreement in AR dates. Among the parameters tested, AR detection shows the largest sensitivity to the length criterion in terms of changes in the resulting statistical distribution of AR intensity and geometry. Global distributions of key AR characteristics are examined, and the results highlight the global footprints of ARs and their potential importance on global and regional scales. Also examined are seasonal dependence of AR frequency and precipitation and their modulation by four prominent modes of large-scale climate variability. The results are in broad consistency with previous studies that focused on landfalling ARs in the west coasts of North America and Europe.

  7. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  8. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  9. Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5

    NASA Astrophysics Data System (ADS)

    Reed, Kevin A.; Chavas, Daniel R.

    2015-12-01

    A standard atmospheric general circulation model is run in a uniformly rotating global radiative-convective equilibrium configuration to explore the equilibrium state, including the statistics of its constituent tropical cyclones, and its sensitivity to horizontal resolution. The Community Atmosphere Model 5 (CAM5) is run at the conventional resolution of approximately 100 km grid spacing and a high resolution of 25 km grid spacing globally. The setup uses an aqua-planet configuration with spatially uniform, diurnally varying insolation, uniform fixed sea surface temperatures, and a uniform rotation rate equal to that at 10°N. The resulting state is one in which tropical cyclones fill the global domain, such that storm count and outer storm size covary strongly. At higher resolution, the storm inner core is more intense and compact but the size of the outer circulation decreases only marginally, and storm count increases in a manner consistent with this decrease in size. Furthermore, the size of the wind field and precipitation fields are highly correlated. A simple analytical model is found to robustly reproduce the radial structure of the broad outer storm circulation. Finally, the minimum central pressure is demonstrated to be an exclusive function of peak azimuthal-mean wind speed and outer storm size. Despite significant changes in the statistics of storm count, intensity, and structure, the mean environment, including the potential intensity, is nearly identical for both simulations. Results are compared with the nonrotating case from a prior study, and a generalized conceptual framework for the interpretation of aggregation with or without rotation is proposed.

  10. The Nature of Martian Dust Storms as Revealed by Long Term Daily Global Atmospheric Imaging

    NASA Astrophysics Data System (ADS)

    Wang, H.; Richardson, M. I.

    2013-12-01

    The Martian dust cycle is composed of dust lifting and transport events that span a very wide spectrum of temporal and spatial scales. The largest storm events occur with sufficiently low frequency that we are only beginning to be able to provide an observational baseline for these events after seven Martian years of roughly continuous global atmospheric imaging. Creation of daily global maps from Mars Orbiter Camera (MOC) and Wide Angle and Mars Color Imager (MARCI) images allows the occurrence, evolutionary pathway and development style of large dust storms to be examined in detail. For the period of observations with Thermal Emission Spectrometer (TES) or Mars Climate Sounder (MCS), we can also examine commensurate changes in atmospheric opacity, temperature and crudely track those in surface dust cover (for TES). These observations allow us to construct a "climatology" of large dust storms, which shows distinct families of dust storm types on the basis of the season and location of storm origin, replacing prior simplified descriptions of a single "dust storm season". We are also able to describe common transport and evolutionary pathways for storms, including very different behaviors of storms originating in the northern versus the southern mid- and high-latitudes. For some of the larger storms during Mars Years 24-26, we are also able to show how the storms modified the surface dust cover, and on what time scales and by what processes the surface dust distribution "recovers" to pre-storm conditions. The results from MOC and MARCI suggest that we have only just begun to collect enough data for a statistically-meaningful climatology of regional-scale storms, and that substantially longer time series would be needed to understanding the diversity and nature of the very largest, global-scale storms. A planned successor for MARCI is greatly needed for our prospects of adequately understanding these dust storm systems, not only for the current and past climate

  11. The global impact of the transport sectors on atmospheric aerosol in 2030 - Part 2: Aviation

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hendricks, J.; Sausen, R.

    2015-12-01

    We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to simulate the impact of aviation emissions on global atmospheric aerosol and climate in 2030. Emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs) designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare our findings with the results of a previous study with the same model configuration focusing on year 2000 emissions. We also characterize the aviation results in the context of the other transport sectors presented in a companion paper. In spite of a relevant increase in aviation traffic volume and resulting emissions of aerosol (black carbon) and aerosol precursor species (nitrogen oxides and sulfur dioxide), the aviation effect on particle mass concentration in 2030 remains quite negligible (on the order of a few ng m-3), about one order of magnitude less than the increase in concentration due to other emission sources. Due to the relatively small size of the aviation-induced aerosol, however, the increase in particle number concentration is significant in all scenarios (about 1000 cm-3), mostly affecting the northern mid-latitudes at typical flight altitudes (7-12 km). This largely contributes to the overall change in particle number concentration between 2000 and 2030, which results also in significant climate effects due to aerosol-cloud interactions. Aviation is the only transport sector for which a larger impact on the Earth's radiation budget is simulated in the future: The aviation-induced RF in 2030 is more than doubled with respect to the year 2000 value of -15 mW m-2, with a maximum value of -63 mW m-2 simulated for RCP2.6.

  12. The global impact of the transport sectors on atmospheric aerosol in 2030 - Part 2: Aviation

    NASA Astrophysics Data System (ADS)

    Righi, Mattia; Hendricks, Johannes; Sausen, Robert

    2016-04-01

    We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to simulate the impact of aviation emissions on global atmospheric aerosol and climate in 2030. Emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs) designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare our findings with the results of a previous study with the same model configuration focusing on year 2000 emissions. We also characterize the aviation results in the context of the other transport sectors presented in a companion paper. In spite of a relevant increase in aviation traffic volume and resulting emissions of aerosol (black carbon) and aerosol precursor species (nitrogen oxides and sulfur dioxide), the aviation effect on particle mass concentration in 2030 remains quite negligible (on the order of a few ng m-3), about 1 order of magnitude less than the increase in concentration due to other emission sources. Due to the relatively small size of the aviation-induced aerosol, however, the increase in particle number concentration is significant in all scenarios (about 1000 cm-3), mostly affecting the northern mid-latitudes at typical flight altitudes (7-12 km). This largely contributes to the overall change in particle number concentration between 2000 and 2030, which also results in significant climate effects due to aerosol-cloud interactions. Aviation is the only transport sector for which a larger impact on the Earth's radiation budget is simulated in the future: the aviation-induced radiative forcing in 2030 is more than doubled with respect to the year 2000 value of -15 mW m-2 in all scenarios, with a maximum value of -63 mW m-2 simulated for RCP2.6.

  13. Development of the first nonhydrostatic nested-grid grid-point global atmospheric modeling system on parallel machines

    SciTech Connect

    Kao, C.Y.J.; Langley, D.L.; Reisner, J.M.; Smith, W.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Evaluating the importance of global and regional climate response to increasing atmospheric concentrations of greenhouse gases requires a comprehensive global atmospheric modeling system (GAMS) capable of simulations over a wide range of atmospheric circulations, from complex terrain to continental scales, on high-performance computers. Unfortunately, all of the existing global circulation models (GCMs) do not meet this requirements, because they suffer from one or more of the following three shortcomings: (1) use of the hydrostatic approximation, which makes the models potentially ill-posed; (2) lack of a nested-grid (or multi-grid) capability, which makes it difficult to consistently evaluate the regional climate response to the global warming, and (3) spherical spectral (opposed to grid-point finite-difference) representation of model variables, which hinders model performance for parallel machine applications. The end product of the research is a highly modularized, multi-gridded, self-calibratable (for further parameterization development) global modeling system with state-of-the-science physics and chemistry. This system will be suitable for a suite of atmospheric problems: from local circulations to climate, from thunderstorms to global cloud radiative forcing, from urban pollution to global greenhouse trace gases, and from the guiding of field experiments to coupling with ocean models. It will also provide a unique testbed for high-performance computing architecture.

  14. The effect of atmospheric nitrogen deposition on marine nitrogen cycling throughout the global ocean

    NASA Astrophysics Data System (ADS)

    Somes, Christopher; Oschlies, Andreas

    2014-05-01

    The rapidly increasing rate of anthropogenic nitrogen deposition has the potential to perturb marine ecosystems and biogeochemical cycles because nitrogen is one of the major limiting nutrients in the ocean. We use an Earth System Climate Model that includes ocean biogeochemistry to assess the impact of atmospheric nitrogen deposition. Experiments are conducted where we artificially add nitrogen to nearly all locations individually throughout the global surface ocean using a nitrogen deposition rate of 700 mg N m-2 yr-1, which is consistent with modern estimates near industrial areas. We identify oceanic "biomes" that respond differently to atmospheric nitrogen deposition. (1) When nitrogen is deposited near oxygen minimum zones where water column denitrification occurs, locally increased primary production stimulates additional denitrification. Since water column denitrification removes 7 mol N for every mol N of newly formed organic matter respired, the global oceanic nitrogen inventory declines in response to nitrogen deposition in these areas. This slow, but steady decline persists for at least 1,000 years. (2) When nitrogen is deposited above shallow continental shelves where benthic denitrification occurs, our benthic denitrification model predicts an increase that is nearly equal to the nitrogen deposited and thus no net change in the global nitrogen inventory. (3) When nitrogen is deposited into the high latitude open ocean far removed from nitrogen fixation and denitrification, all of this deposited nitrogen initially accumulates in the ocean. This nitrogen eventually circulates into the tropical oxygen minimum zones where it fuels additional primary production and denitrification, which removes nitrogen at a rate equal to the deposition after 1,000 years and leads to a stable, but increased nitrogen inventory in our model. (4) When nitrogen is deposited into the open ocean where nitrogen fixation occurs, nitrogen fixation decreases due to less nitrogen

  15. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-02-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions+re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  16. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-07-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  17. Global atmospheric emissions and transport of polycyclic aromatic hydrocarbons: Evaluation of modeling and transboundary pollution

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu

    2014-05-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimated country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). MOZART-4 (The Model for Ozone and Related Chemical Tracers, version 4) was applied to simulate the global tropospheric transport of Benzo(a)pyrene, one of the high molecular weight carcinogenic PAHs, at a horizontal resolution of 1.875° (longitude) × 1.8947° (latitude). The reaction with OH radical, gas/particle partitioning, wet deposition, dry deposition, and dynamic soil/ocean-air exchange of PAHs were considered. The simulation was validated by observations at both background and non-background sites, including Alert site in Canadian High Arctic, EMEP sites in Europe, and other 254 urban/rural sites reported from literatures. Key factors effecting long-range transport of BaP were addressed, and transboundary pollution was discussed.

  18. Towards Direct Simulation of Future Tropical Cyclone Statistics in a High-Resolution Global Atmospheric Model

    DOE PAGESBeta

    Wehner, Michael F.; Bala, G.; Duffy, Phillip; Mirin, Arthur A.; Romano, Raquel

    2010-01-01

    We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less

  19. Background concentrations of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in the global oceanic atmosphere.

    PubMed

    Morales, Laura; Dachs, Jordi; González-Gaya, Belén; Hernán, Gema; Abalos, Manuela; Abad, Esteban

    2014-09-01

    The remote oceans are among the most pristine environments in the world, away from sources of anthropogenic persistent organic pollutants (POP), but nevertheless recipients of atmospheric deposition of POPs that have undergone long-range atmospheric transport (LRAT). In this work, the background occurrence of gas and aerosol phase polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin like polychlorinated biphenyls (dl-PCB) is evaluated for the first time in the atmosphere of the tropical and subtropical Atlantic, Pacific, and Indian oceans. Thirty-nine air samples were collected during the eight-month Malaspina circumnavigation cruise onboard the R/V Hespérides. The background levels of dioxins and dl-PCBs remained very low and in many cases very close to or below the limit of detection. Expectedly, the levels of PCBs were higher than dioxins, PCB#118 being the most abundant compound. In the particular case of dioxins, octachlorodibenzo-p-dioxin (OCDD) was the most abundant PCDD/F congener. Distribution of dl-PCB is dominated by the gas phase, while for PCDD/F the aerosol phase concentrations were higher, particularly for the more hydrophobic congeners. The Atlantic Ocean presented on average the highest PCDD/F and dl-PCB concentrations, being lower in the southern hemisphere. The assessment of air mass back trajectories show a clear influence of continental source regions, and lower concentrations when the air mass has an oceanic origin. In addition, the samples affected by an oceanic air mass are characterized by a lower contribution of the less chlorinated dioxins in comparison with the furans, consistent with the reported higher reaction rate constants of dibenzo-p-dioxins with OH radicals than those of dibenzofurans. The total dry atmospheric deposition of aerosol-bound ∑PCDD/F and ∑dl-PCB to the global oceans was estimated to be 354 and 896 kg/year, respectively. PMID:25083749

  20. Using satellite fluorescence data to drive a global carbon cycle model: Impacts on atmospheric CO2.

    NASA Astrophysics Data System (ADS)

    Collatz, G. J.; Joiner, J.; Kawa, S. R.; Ivanoff, A.; Liu, Y.; Yoshida, Y.; Berry, J. A.; Badgley, G. M.

    2014-12-01

    Atmospheric CO2 variability is markedly influenced by biospheric fluxes (photosynthesis and respiration) from the land surface at seasonal, to annual, to decadal time scales. Process models of photosynthesis and respiration have considerable uncertainty as only the sum of these fluxes can be constrained on the bases of atmospheric CO2 measurements alone. An independent proxy for photosynthesis or gross primary productivity (GPP) has recently become available from measurement of solar induced fluorescence (SIF). We report here on the first (to our knowledge) simulations of global atmospheric CO2 concentration driven by GPP estimated from observations of SIF. A baseline model uses satellite derived FPAR, incident solar radiation, temperature, and moisture stress scalars to estimate net primary productivity (NPP). The fluorescence driven model uses only fluorescence from GOME-2 scaled to the mean annual NPP at every grid cell and assumes a constant NPP/GPP ratio. Respiration was modeled identically in the two simulations. This preserves the spatial distribution of production capacity but allows for independent seasonal cycle and interannual variability from the baseline model. The flux models were run at ½ degree monthly resolution for 2007-2012 and fluxes were reaggregated along with fossil fuel and ocean fluxes to 3-hourly, 1 x 1.25 degree resolution for the atmospheric transport model. Here, we compare the model's skill at predicting CO2 variability at 40 NOAA CO2 flask network sites. The baseline model shows good skill at matching the seasonal cycle at the flask sites but is not as good at producing monthly and interannual anomalies. The fluorescence model shows similar (or even improved) performance even though solar radiation, FPAR, precipitation and temperature effects on GPP are not included in the simulation. The results demonstrate the capability of the fluorescence data to integrate physiological and biophysical controls on GPP into a single measured

  1. Simulation and Observation of Global Variations in Surface Exchange and Atmospheric Mixing Ratios of CO2

    NASA Astrophysics Data System (ADS)

    Denning, A.; Conner-Gausepohl, S.; Kawa, S.; Baker, I. T.; Zhu, Z.; Brown, M.; Vay, S.; Wofsy, S. C.; Philpott, A.; Collatz, G.; Schaefer, K.; Kleist, J.

    2005-12-01

    We have performed a simulation of hourly variations of terrestrial surface fluxes and the atmospheric mixing ratio of carbon dioxide from January 1, 2000 through December 31, 2004, and have evaluated the simulation by comparison to a number of observations. Terrestrial photosynthesis and ecosystem respiration were computed using the Simple Biosphere Model (SiB), driven by diurnally-varying weather analyzed by the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS), with vegetation parameters specified using imagery from the NOAA Advanced High Resolution Radiometer (AVHRR). CO2 emissions due to the combustion of fossil fuel and to air-sea gas exchange were also prescribed as boundary forcing to the atmospheric transport Parameterized Chemical Transport model (PCTM). Preliminary results showed reasonable agreement with spatial and synoptic variations, but suffered from a systematic offset with respect to the observed seasonal cycle of CO2 at many flask observing stations. Subsequent analysis showed that these problems were traceable to temporal interpolation of the satellite vegetation imagery and the treatment of leaf-to-canopy scaling in SiB, which have both been substantially revised as a result of these analyses. Comparisons to eddy covariance data at several sites, to tower-based continuous observations of CO2 mixing ratio, and to data collected by airborne sampling show that the coupled simulation successfully captures many features of the observed temporal and spatial variations of terrestrial surface exchange and atmospheric transport of CO2. The simulations demonstrate the sensitivity of both surface exchange and atmospheric transport of CO2 to synoptic weather events in middle latitudes, and suggest that high-frequency variations in continental [CO2] data can be interpreted in terms of surface flux anomalies.

  2. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  3. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  4. NMMB/BSC-DUST: an online mineral dust atmospheric model from meso to global scales

    NASA Astrophysics Data System (ADS)

    Haustein, K.; Pérez, C.; Jorba, O.; Baldasano, J. M.; Janjic, Z.; Black, T.; Nickovic, S.

    2009-04-01

    While mineral dust distribution and effects are important at global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales. Most global dust models use prescribed wind fields provided by meteorological centers (e.g., NCEP and ECMWF) and their spatial resolution is currently never better than about 1°×1°. Regional dust models offer substantially higher resolution (10-20 km) and are typically coupled with weather forecast models that simulate processes that GCMs either cannot resolve or can resolve only poorly. These include internal circulation features such as the low-level nocturnal jet which is a crucial feature for dust emission in several dust ‘hot spot' sources in North Africa. Based on our modeling experience with the BSC-DREAM regional forecast model (http://www.bsc.es/projects/earthscience/DREAM/) we are currently implementing an improved mineral dust model [Pérez et al., 2008] coupled online with the new global/regional NMMB atmospheric model under development in NOAA/NCEP/EMC [Janjic, 2005]. The NMMB is an evolution of the operational WRF-NMME extending from meso to global scales. The NMMB will become the next-generation NCEP model for operational weather forecast in 2010. The corresponding unified non-hydrostatic dynamical core ranges from meso to global scale allowing regional and global simulations. It has got an add-on non-hydrostatic module and it is based on the Arakawa B-grid and hybrid pressure-sigma vertical coordinates. NMMB is fully embedded into the Earth System Modeling Framework (ESMF), treating dynamics and physics separately and coupling them easily within the ESMF structure. Our main goal is to provide global dust forecasts up to 7 days at mesoscale resolutions. New features of the model include a physically-based dust emission scheme after White [1979], Iversen and White [1982] and Marticorena and Bergametti [1995] that takes the effects of saltation and sandblasting into account

  5. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    DOE R&D Accomplishments Database

    Teller, E.; Leith, C.; Canavan, G.; Wood, L.

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather

  6. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    SciTech Connect

    Teller, E; Leith, C; Canavan, G; Wood, L

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather

  7. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  8. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  9. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    SciTech Connect

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.; Backman, R.; Hupa, M.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral content can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.

  10. World Calibration Center for SF6 - supporting the quality system of the global atmosphere observation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Moon, D.; Min, D.; Yun, W.

    2012-10-01

    According to the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Strategic Plan: 2008-2015 (WMO, 2009a) WMO/GAW pays attention to systematical improvement of the quality of observations at global or regional monitoring sites. To ensure the comparability and compatibility of the measurements worldwide it is essential to maintain a traceability chain to the primary standard in the different laboratories around the world as well as to establish a quality control system. Sulfur hexafluoride (SF6), is reported to be very rare in the atmosphere at the global averaged annual mole fraction of about 7 ppt, it is one of the greenhouse gases regulated by Kyoto protocol and is increasing at a rate of 0.22 ppt yr-1. Development of a working (or transfer) standard with very low concentration of SF6 requires expert technologies and several knowhow of gas metrology. In order to meet the Data Quality Objective (DQO), the KMA has cooperated with the Korea Research Institute of Standards and Science (KRISS), which is the National Metrology Institute in South Korea. So long as the Central Calibration Laboratory (CCL) for SF6 was established, the Korea Meteorological Administration (KMA) is now trying to take another step forward to systematically support GAW stations in improving their traceability and quality system for SF6, thereby making a contribution to the WMO/GAW. Through hosting the World Calibration Center for SF6, which is one of GAW facilities, KMA will contribute to harmonization of the global SF6 observations in the long run. This work performed to demonstrate some measurement results on SF6 which complies with the DQOs and is traceable to the WMO mole fraction scale for SF6. In order to produce a working standard which is traceable to the WMO scale, we developed highly precise method of a Gas Chromatography/Electron Capture Detector (GC/ECD) calibrated against the five cylinders (from NOAA, 2011) of the WMO scale. For all analysis the measurement

  11. Global spectroscopy and imaging of atmospheric X-ray bremsstrahlung - Instrumentation and initial results from the PEM/AXIS instrument aboard the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Datlowe, D. W.; Imhof, W. L.; Schumaker, T. L.; Tobin, J. D.

    1992-01-01

    The Atmospheric X-ray Imaging Spectrometer (PEM/AXIS) aboard NASA's Upper Atmosphere Research Satellite provides continuous horizon to horizon images, both day and night, of the 3- to 100-keV X-ray flux emitted from the top of the atmosphere. AXIS achieves a spatial resolution to better than 100 km using a one-dimensional array of 16 passively cooled silicon detectors. The primary purpose of this instrument is to provide a global monitor of electron energy input to the upper atmosphere. We describe the design, development, and calibration of AXIS and provide an assessment of its excellent on-orbit performance. The unique capabilities of X-ray imaging spectrometers are demonstrated through an analysis of specific examples from October and November 1991. Important new developments for follow-on instruments also will be described.

  12. Theoretical and global scale model studies of the atmospheric sulfur/aerosol system

    NASA Technical Reports Server (NTRS)

    Kasibhatla, Prasad

    1996-01-01

    The primary focus during the third-phase of our on-going multi-year research effort has been on 3 activities. These are: (1) a global-scale model study of the anthropogenic component of the tropospheric sulfur cycle; (2) process-scale model studies of the factors influencing the distribution of aerosols in the remote marine atmosphere; and (3) an investigation of the mechanism of the OH-initiated oxidation of DMS in the remote marine boundary layer. In this paper, we describe in more detail our research activities in each of these areas. A major portion of our activities during the fourth and final phase of this project will involve the preparation and submission of manuscripts describing the results from our model studies of marine boundary-layer aerosols and DMS-oxidation mechanisms.

  13. The role of moisture transport between ground and atmosphere in global change

    SciTech Connect

    Rind, D.; Rosenzweig, C.; Stieglitz, M.

    1997-12-31

    Projections of the effect of climate change on future water availability are examined by reviewing the formulations used to calculate moisture transport between the ground and the atmosphere. General circulation models and climate change impact models have substantially different formulations for evapotranspiration, so their projections of future water availability often disagree, even though they use the same temperature and precipitation forecasts. General circulation models forecast little change in tropical and subtropical water availability, while impact models show severe water and agricultural shortages. A comparison of observations and modeling techniques shows that the parameterizations in general circulation models likely lead to an underestimate of the impacts of global warming on soil moisture and vegetation. Such errors would crucially affect the temperature and precipitation forecasts used in impact models. Some impact model evaporation formulations are probably more appropriate than those in general circulation models, but important questions remain. More observations are needed, especially in the vicinity of forests, to determine appropriate parameterizations.

  14. An Overview of Atmospheric Composition OSSE Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    daSilva, Arlinda

    2012-01-01

    A model-based Observing System Simulation Experiment (OSSE) is a framework for numerical experimentation in which observables are simulated from fields generated by an earth system model, including a parameterized description of observational error characteristics. Simulated observations can be used for sampling studies, quantifying errors in analysis or retrieval algorithms, and ultimately being a planning tool for designing new observing missions. While this framework has traditionally been used to assess the impact of observations on numerical weather prediction, it has a much broader applicability, in particular to aerosols and chemical constituents. In this talk we will give a general overview of Observing System Simulation Experiments (OSSE) activities at NASA's Global Modeling and Assimilation Office, with focus on its emerging atmospheric composition component.

  15. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  16. The Second Phase of the Global Land-Atmosphere Coupling Experiment (GLACE-2)

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Yamada, T.; Mahanama, S.; Guo, Z.; Dirmeyer, P. A.; VandenHurk, B. J. J. M.

    2010-01-01

    A major motivation for the study of the coupled land-atmosphere system is the idea that soil moisture anomalies may affect future meteorological variables through their effects on future surface energy and water budgets. If true, the accurate initialization of soil moisture in a subseasonal or seasonal forecast system may improve forecast skill, making the forecast products more valuable to society. The GLACE-2 project is examining, through a coordinated experiment using a wide variety of models, the degree to which subseasonal (out to two months) precipitation and air temperature forecasts improve through the realistic initialization of soil moisture. For the first time ever, a global consensus should emerge regarding the value of land initialization for forecasts, perhaps motivating national forecast centers to make full use of land moisture initialization in their operations

  17. Factors regulating ozone over the United States and its export to the global atmosphere

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Logan, Jennifer A.; Gardner, Geraldine M.; Yevich, Rose M.; Spivakovsky, Clarisa M.; Wofsy, Steven C.; Sillman, Sanford; Prather, Michael J.

    1993-01-01

    Attention is given to the factors regulating summertime O3 over the U.S. and its export to the global atmosphere, which are examined via a 3-mo simulation involving a continental-scale 3D photochemical model. It is found that reducing NO(x) emissions by 50 percent from 1985 levels would decrease rural O3 concentrations over the eastern U.S. by about 15 percent under almost all meteorological conditions, while reducing anthropogenic hydrocarbon emissions by 50 percent would have less than a 4 percent effect except in the largest urban plumes. The correlation between O3 concentrations and temperature observed at eastern U.S. sites is attributed in part to the association of high temperatures with regional stagnation, and in part to an actual dependence of O3 production on temperature driven primarily by conversion of NO(x) to PAN.

  18. An analysis of the first two years of GASP data. [Global Atmospheric Sampling Program

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1978-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes. The GASP water vapor data, analyzed with respect to the location of the tropopause, correlates well with the simultaneously obtained ozone and cloud data.

  19. Description and review of global measurements of atmospheric species from GASP

    NASA Technical Reports Server (NTRS)

    Gauntner, D. J.; Holdeman, J. D.; Briehl, D.; Humenik, F. M.

    1977-01-01

    A large volume of atmospheric constituent data is being collected in the global airlanes by specially equipped B-747 aircraft. This NASA program also obtains data from the similarly equipped NASA CV-990 aircraft during dedicated flights such as a recent near pole-to-pole latitude survey mission. Aerosol composition data are also collected with a NASA F-106 aircraft. Present measurements include ozone, carbon monoxide, water vapor, aerosol and condensation nuclei number densities, sulphates, nitrates, and the chlorofluoromethanes. Meteorological and flight parameters are also recorded for use in data analysis. The present aircraft operations obtain data between 6 and 13.5 km from 65 deg N between Europe and the North Pacific, and from 23 deg S over South America and 42 deg S over New Zealand. Typical constituent data from the aircraft operations during the first one and a half years are presented. Instrumentation is discussed.

  20. The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.

    1980-01-01

    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.

  1. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  2. NOAA Utilization of the Global Hawk Unmanned Aircraft for Atmospheric Research and Forecast Improvement

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Hood, R. E.; Black, M. L.; Spackman, J. R.; Ralph, F. M.; Intrieri, J. M.; Hock, T. F.; Neiman, P. J.

    2014-12-01

    High altitude, long endurance unmanned aircraft provide a tremendous new capability for monitoring the atmosphere in support of weather research and forecast improvement. The NOAA Unmanned Aircraft Systems (UAS) program is collaborating with NASA on the use of their Global Hawk (GH) aircraft for research into better understanding and forecasting high-impact weather events. NOAA has participated in multiple field campaigns either in partnership with NASA including the Genesis and Rapid Intensification Processes (GRIP, 2010) and the Hurricane and Severe Storm Sentinel (HS3, 2011-2014) experiments, or under NOAA leadership during the Winter Storms and Pacific Atmospheric Rivers (WISPAR, 2011) experiment. This past year, NOAA began a 3-year project, Sensing Hazards with Operational Unmanned Technology (SHOUT), to quantify the influence of UAS data on high-impact weather prediction and assess the operational effectiveness of UAS to help mitigate the risk of potential satellite observing gaps. The NOAA UAS system partnered with the National Center for Atmospheric Research in the development of a dropsonde system for the GH which has been flown along with other remote sensing instrumentation. This presentation summarizes our key results to date and describes our planned activities over the next two years. Flights during WISPAR provided measurements of water vapor transport within atmospheric rivers for evaluation of numerical weather prediction forecasts and analyses. A flight sampling the Arctic atmosphere north of Alaska included the first dropsondes released in the Arctic since the 1950's and extensive measurements of boundary-layer variability over an ocean-ice lead feature. Assimilation of GH dropsonde data collected in the environment around tropical storms during HS3 has demonstrated significant positive forecast improvements. Data are also being employed in the validation of multiple satellite-derived products. In SHOUT, campaigns are planned targeting Atlantic

  3. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  4. Stochastic model to describe atmospheric attenuation from yearly global solar irradiation

    NASA Astrophysics Data System (ADS)

    Vindel, J. M.; Polo, J.; Zarzalejo, L. F.; Ramírez, L.

    2015-02-01

    A new stochastic model to describe atmospheric attenuation from yearly global solar irradiation has been developed and implemented. The proposed model takes into account the consideration that the whole of all attenuating elements can be thought of as a population where the higher the number of individuals the lesser the clearness index. Thus, the inverse of the clearness index is considered as the variable of a stochastic process. From the proposed master equation as starting point, the new model is characterized by transition rates (assessed from a growing parameter - G - and a decreasing parameter - D) which depend mainly on the climatological characteristics at each location. In this sense, different regions with an attenuation level calculated from the yearly global irradiation have been established using the Köppen-Geiger climate classification as a first approach. The model parameters G and D have been determined for different regions using the inverse of the clearness index as variable. The probability density function obtained after the application of the stochastic model for each climate zone shows how the index mode increases from the zones with lower levels of attenuation to those with higher levels of attenuation. This result confirms the proposed null hypothesis related to the use of the inverse of the clearness index as an attenuation population indicator. The fit between the empirical data and the data provided for the model is good enough according to a Kolmogorov-Smirnov test with a significance level of 0.05. Nevertheless, it is necessary to slightly modify the climate zones of Köppen-Geiger initial classification for a better explanation of the atmospheric attenuation. This climate zones modification can be considered as an additional result.

  5. Global Dynamics of Hot Atomic Oxygen in Mars' Upper Atmosphere and Comparison with Recent Observation

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.

    2012-12-01

    The production of energetic particles in Mars's upper thermosphere and exosphere results in the formation of hot atom coronae. Dissociative recombination (DR) of O2+ ion is the dominant source of the production of hot atomic oxygen and the most important reaction for the exosphere on Mars, which occurs mostly deep in the dayside thermosphere of Mars. In this investigation, we have carried out the study of the global dynamics of energetic particles in Mars' upper atmosphere using our newly developed self-consistent Monte-Carlo model. The calculated total global escapes of hot oxygen are presented for different solar activities (solar maximum and minimum) and Martian seasons (aphelion, equinox, and perihelion). To describe self-consistently the exosphere and the upper thermosphere, a combination of our 3D Direct Simulation Monte Carlo (DSMC) model [Valeille, A., Combi, M., Bougher, S., Tenishev, V., Nagy, A., 2009. J. Geophys. Res. 114, E11006. doi:10.1029/2009JE003389] and the 3D Mars Thermosphere General Circulation Model (MTGCM) [Bougher, S.W., Bell, J.M., Murphy, J.R., Lopez-Valverde, M.A., Withers, P.G., 2006. Geophys. Res. Lett. 32, doi: 10.1029/2005GL024059. L02203] is used. Profiles of density and temperature, atmospheric loss rates, and return fluxes are studied using the model for the cases considered. Progress in updating the model physics is also described. Along with comparisons of our DSMC model outputs with those from other recent exosphere model studies, we present a comparison of our model results with the derived neutral oxygen density from atomic oxygen emission at 1304Å that was detected by Alice instrument on board European Space Agency's Rosetta spacecraft [Feldman, P., Steffl, A., Parker, J, A'Hearn, M., Bertaux, J., Stern, S., Weaver, H., Slater, D., Versteeg, M., Throop, H., Cunningham, N., Feaga, L., 2011. Icarus. 214, 2, 394-399, doi:10.1016/j.icarus.2011.06.013].

  6. Three-dimensional Wavelet-based Adaptive Mesh Refinement for Global Atmospheric Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Rastigejev, Y.; Semakin, A. N.

    2013-12-01

    Accurate numerical simulations of global scale three-dimensional atmospheric chemical transport models (CTMs) are essential for studies of many important atmospheric chemistry problems such as adverse effect of air pollutants on human health, ecosystems and the Earth's climate. These simulations usually require large CPU time due to numerical difficulties associated with a wide range of spatial and temporal scales, nonlinearity and large number of reacting species. In our previous work we have shown that in order to achieve adequate convergence rate and accuracy, the mesh spacing in numerical simulation of global synoptic-scale pollution plume transport must be decreased to a few kilometers. This resolution is difficult to achieve for global CTMs on uniform or quasi-uniform grids. To address the described above difficulty we developed a three-dimensional Wavelet-based Adaptive Mesh Refinement (WAMR) algorithm. The method employs a highly non-uniform adaptive grid with fine resolution over the areas of interest without requiring small grid-spacing throughout the entire domain. The method uses multi-grid iterative solver that naturally takes advantage of a multilevel structure of the adaptive grid. In order to represent the multilevel adaptive grid efficiently, a dynamic data structure based on indirect memory addressing has been developed. The data structure allows rapid access to individual points, fast inter-grid operations and re-gridding. The WAMR method has been implemented on parallel computer architectures. The parallel algorithm is based on run-time partitioning and load-balancing scheme for the adaptive grid. The partitioning scheme maintains locality to reduce communications between computing nodes. The parallel scheme was found to be cost-effective. Specifically we obtained an order of magnitude increase in computational speed for numerical simulations performed on a twelve-core single processor workstation. We have applied the WAMR method for numerical

  7. FT-IR remote sensing of atmospheric species: Application to global change and air pollution

    SciTech Connect

    Vazquez, G.J.

    1995-12-31

    In this contribution, the author describes two applications of Fourier Transform Infrared Spectroscopy to the monitoring of atmospheric compounds. Firstly, the author reports FTIR solar spectroscopy measurements carried out at ground level at NCAR and on airplanes employing a spectrometer of 0.06 cm{sup -1} resolution. Sample atmospheric spectra and fitting examples are presented for key species relevant to stratospheric chemistry and global change: ozone (O{sub 3}), a chlorofluorocarbon (CF{sub 2}Cl{sub 2}), a greenhouse gas (N{sub 2}O), HCl, NO and HNO{sub 3}. Secondly, the author briefly describes urban air pollution measurements at an intersection with heavy traffic in Tucson, AZ. Two FTIR spectrometers of 1 cm{sup -1} resolution were employed to carry out long-path open-path measurements of the CO/CO{sub 2} ratio and SF{sub 6}. Two FEAT and two LPUV instruments were employed for ancillary measurements of CO, CO{sub 2}, NO, and aromatic hydrocarbons. Measurements of CO at two heights and a comparison of CO/CO{sub 2} ratios obtained by FEAT exhaust emission and FTIR ambient air measurements are reported.

  8. A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation

    NASA Technical Reports Server (NTRS)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-01-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  9. Seafloor weathering controls on atmospheric CO{sub 2} and global climate

    SciTech Connect

    Brady, P.V.; Gislason, S.R.

    1997-03-01

    Alteration of surficial marine basalts at low temperatures (<40{degrees}C) is a potentially important sink for atmospheric CO{sub 2} over geologic time. Petrologic analyses, thermodynamic calculations, and experimental weathering results point to extensive Ca leaching and consumption of marine CO{sub 2} during alteration. Basalt weathering in seawater-like solutions is sensitive to temperature. The activation energy for initial basalt weathering in seawater is 41-65 U kJ mol{sup -1}. If seafloor weathering temperatures are set by deep ocean fluids under high fluid to rock ratios the feedback between weathering and atmospheric CO{sub 2} is indirect, but sizeable. If the bulk of seafloor weathering occurs in the presence of low-temperature hydrothermal fluids, the weathering feedback depends on the linkage between spreading rates and heat flow. In either case, the primary linkage between seafloor weathering and the global carbon cycle appears to be thermal as opposed to chemical. 81 refs., 4 figs., 2 tabs.

  10. Water vapor in the middle atmosphere of Mars during the global dust storm in 2007

    NASA Astrophysics Data System (ADS)

    Fedorova, Anna; Bertaux, Jean-Loup; Montmessin, Franck; Korablev, Oleg; Dzuban, Ilya; Maltagliati, Luca; Clarke, John

    2015-04-01

    Recent observations of the Martian hydrogen corona in the UV H Ly-α emission by Hubble Space Telescope (HST) [Clarke et al., 2014] and the SPICAM UV spectrometer on Mars Express [Chaffin et al., 2014] reported its rapid change an order of magnitude for the short period of a few months in 2007 (MY 28), which is inconsistent with the existing models. One proposed explanation of observed decrease in coronal emission is that during the global dust storm water vapor can be transported to higher altitudes where the rate of photodissociation by near-UV sunlight increases, providing an additional source of hydrogen for the upper atmosphere. Since 2004 the SPICAM IR spectrometer on Mars-Express carries out measurements of the vertical distribution of water vapor in the 1.38 µm band and aerosol properties in the middle atmosphere of Mars by means of solar occultations. We presents here vertical profiles of water vapor at Ls = 250-310° during the dust storm of MY28. SPICAM observations confirm the increase of the H2O content at 60 km from Ls=268° to Ls=285° an order of magnitude for the northern hemisphere and in 3-4 times for the southern hemisphere. Nevertheless, the photochemical modeling is required to estimate a contribution of observed water abundance to the hydrogen corona. The interannual variability of water vapor vertical distribution for the southern summer season will be also presented.

  11. Idealized global nonhydrostatic atmospheric test cases on a reduced-radius sphere

    NASA Astrophysics Data System (ADS)

    Klemp, J. B.; Skamarock, W. C.; Park, S.-H.

    2015-09-01

    Idealized simulations on a reduced-radius sphere can provide a useful vehicle for evaluating the behavior of nonhydrostatic processes in nonhydrostatic global atmospheric dynamical cores provided the simulated cases exhibit good agreement with corresponding flows in a Cartesian geometry, and for which there are known solutions. Idealized test cases on a reduced-radius sphere are presented here that focus on both dry and moist dynamics. The dry dynamics cases are variations of mountain-wave simulations designed for the Dynamical Core Model Intercomparison Project (DCMIP), and permit quantitative comparisons with linear analytic mountain-wave solutions in a Cartesian geometry. To evaluate moist dynamics, an idealized supercell thunderstorm is simulated that has strong correspondence to results obtained on a flat plane, and which can be numerically converged by specifying a constant physical diffusion. A simple Kessler-type routine for cloud microphysics is provided that can be readily implemented in atmospheric simulation models. Results for these test cases are evaluated for simulations with the Model for Prediction across scales (MPAS). They confirm close agreement with corresponding simulations in a Cartestian geometry; the mountain-wave results agree well with analytic mountain-wave solutions, and the simulated supercells are consistent with other idealized supercell simulation studies and exhibit convergent behavior.

  12. A test of sensitivity to convective transport in a global atmospheric CO2 simulation

    NASA Astrophysics Data System (ADS)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-11-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  13. Recent advance in polar seismology: Global impact of the International Polar Year

    NASA Astrophysics Data System (ADS)

    Kanao, Masaki; Zhao, Dapeng; Wiens, Douglas A.; Stutzmann, Éléonore

    2015-03-01

    The most exciting initiative for the recent polar studies was the International Polar Year (IPY) in 2007-2008. The IPY has witnessed a growing community of seismologists who have made considerable efforts to acquire high-quality data in polar regions. It also provided an excellent opportunity to make significant advances in seismic instrumentation of the polar regions to achieve scientific targets involving global issues. Taking these aspects into account, we organize and publish a special issue in Polar Science on the recent advance in polar seismology and cryoseismology as fruitful achievements of the IPY.

  14. Atmospheric response to Indian Ocean Dipole forcing: changes of Southeast China winter precipitation under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Sielmann, Frank; Fraedrich, Klaus; Zhi, Xiefei

    2016-05-01

    To investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the subsequent winter precipitation in Southeast China (SEC), observed fields of monthly precipitation, sea surface temperature (SST) and atmospheric circulation are subjected to a running and a maximum correlation analysis. The results show a significant change of the relevance of IOD for the early modulation of SEC winter precipitation in the 1980s. After 1980, positive correlations suggest prolonged atmospheric responses to IOD forcing, which are linked to an abnormal moisture supply initiated in autumn and extended into the subsequent winter. Under global warming two modulating factors are relevant: (1) an increase of the static stability has been observed suppressing vertical heat and momentum transports; (2) a positive (mid-level) cloud-radiation feedback jointly with the associated latent heating (apparent moisture sink Q2) explains the prolongation of positive as well as negative SST anomalies by conserving the heating (apparent heat source Q1) in the coupled atmosphere-ocean system. During the positive IOD events in fall (after 1980) the dipole heating anomalies in the middle and lower troposphere over the tropical Indian Ocean are prolonged to winter by a positive mid-level cloud-radiative feedback with latent heat release. Subsequently, thermal adaptation leads to an anticyclonic anomaly over Eastern India overlying the anomalous cooling SST of the tropical Eastern Indian Ocean enhancing the moisture flow from the tropical Indian Ocean through the Bay of Bengal into South China, following the northwestern boundary of the anticyclonic circulation anomaly over east India, thereby favoring abundant precipitation in SEC.

  15. Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.; Yang, Qing; Zhao, Chun; Lu, Jian

    2015-04-01

    This study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of Community Atmosphere Model (CAM4) at 240, 120, 60 and 30 km model resolutions each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of sub-tropical westerlies, atmospheric precipitable water content and profile and to a lesser extent on extra-tropical Rossby wave activity to model resolution and dynamical core. Real world simulations using MPAS at 120 km and 30 km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over southern East Pacific, but there difference is smaller over northern East Pacific. This inter-hemispheric difference is related to the enhancement of convection in over the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over southern East Pacific but have relatively little effect on those over northern East Pacific. In comparison to NCEP2 reanalysis, MPAS real world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier sub-tropics and poleward shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.

  16. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. PMID:23897802

  17. Atmospheric Electric Field measurements at Eastern North Atlantic ARM Climate Research Facility: Global Electric Circuit Evolution

    NASA Astrophysics Data System (ADS)

    Lopes, Francisco; Silva, Hugo; Nitschke, Kim; Azevedo, Eduardo

    2016-04-01

    The Eastern North Atlantic (ENA) facility of the ARM programme (established an supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), is located at Graciosa Island of the Azores Archipelago (39° N; 28° W). It constitutes a strategic observatory for Atmospheric Electricity since it is located in the Atlantic Ocean basin exposed to clean marine aerosol conditions which reduces the well known spectral signature of atmospheric pollution and enables the study of the so called Global Electrical Circuit (GEC). First evidences of the existence of a GEC affecting the Earth's Electric Environment has retrieved by the Carnegie cruise expedition, in what became known as the Carnegie Curve. Those measurements were made in the Ocean in several campaigns and the present studies aims at reconsidering measurements in similar conditions but in a long-term basis, at least 5 years. This will contribute to the understanding of the long-term evolution of the Ionospheric Potential (IP). In literature there is theoretical evidence that it is decreasing IP in strength, but that conjecture is still lacking valid experimental evidence. Moreover, to clearly identify the GEC signal two effects must be taken into account: the effect of surface radon gas variation, because the Azores Archipelago is a seismic active region the possible influence of Earthquakes cannot be discarded easily; the effect of short-term solar activity on the Atmospheric Electricity modulation, solar flares emitting solar particles (e.g., solar energetic protons) need to be considered in this study.

  18. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models. PMID:25044609

  19. Atmospheric doping effects in epitaxial graphene: correlation of local and global electrical studies

    NASA Astrophysics Data System (ADS)

    Panchal, Vishal; Giusca, Cristina E.; Lartsev, Arseniy; Martin, Nicholas A.; Cassidy, Nathan; Myers-Ward, Rachael L.; Gaskill, D. Kurt; Kazakova, Olga

    2016-03-01

    We di