Development and fabrication of a graphite polyimide box beam
NASA Technical Reports Server (NTRS)
Nadler, M. A.; Darms, F. J.
1972-01-01
The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.
Advanced Ceramic Armor Materials
1990-05-11
materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1992-01-01
In order to support materials selection for the next-generation supersonic civilian-passenger transport aircraft, a study has been undertaken to evaluate the material stress/strain relationships needed to describe advanced polymer matrix composites under conditions of high load and elevated temperature. As part of this effort, this paper describes the materials testing which was performed to investigate the viscoplastic behavior of graphite/thermoplastic and graphite/bismaleimide composites. Test procedures, results and data-reduction schemes which were developed for generating material constants for tension and compression loading, over a range of useful temperatures, are explained.
RESEARCH AND DEVELOPMENT ON ADVANCED GRAPHITE MATERIALS. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-04-01
A review is given of activities over the period October 15, 1960 to October 15, 1961 on a three year program for the research and development of materials, experimental techniques, and equipment for development of premium quality, reproducible graphite-base materials suitable for missile and astronautic applications. Progress is reported on research and development in the study areas of raw materials, fabrication, and material characterization and evaluation. (auth)
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
1963-06-01
RESISTANCE COATINGS "FOR GRAPHITE TECHNICAL DOCUMENTARY REPORT NO. WADD TR 61-72, Volume XXXIV ELECT" June 1963 D-I’C a AUý 0 219940 -14 0u c 94Air Force... coating on\\ Ex.: C (substrate’) + SiC1 R. SiC + graphite, + 4HCI (gas) oo flush Z000C 2 277I I I Deposition of coatings by plasma spraying also has...materials to withstand high tem- peratures has led to the investigation of the plasma torch as a means for 3 depositing protective coatings
AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
Recent advances in graphite powder-based electrodes.
Bellido-Milla, Dolores; Cubillana-Aguilera, Laura Ma; El Kaoutit, Mohammed; Hernández-Artiga, Ma Purificación; Hidalgo-Hidalgo de Cisneros, José Luis; Naranjo-Rodríguez, Ignacio; Palacios-Santander, José Ma
2013-04-01
Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.
NASA Technical Reports Server (NTRS)
Turner, M. J.; Grande, D. L.
1978-01-01
Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.
NASA Technical Reports Server (NTRS)
Fischbach, D. B.; Uptegrove, D. R.; Srinivasagopalan, S.
1974-01-01
The microstructure and some microstructural effects of oxidation have been investigated for laminar carbon fiber cloth/cloth binder matrix composite materials. It was found that cloth wave is important in determining the macrostructure of the composites X-ray diffraction analysis showed that the composites were more graphitic than the constituent fiber phases, indicating a graphitic binder matrix phase. Various tests which were conducted to investigate specific properties of the material are described. It was learned that under the moderate temperature and oxidant flow conditions studied, C-700, 730 materials exhibit superior oxidation resistance primarily because of the inhibiting influence of the graphitized binder matrix.
Structure and Performance of Epoxy Resin Cladded Graphite Used as Anode
NASA Astrophysics Data System (ADS)
Zhou, Zhentao; Li, Haijun
This paper is concerning to prepare modified natural graphite which is low-cost and advanced materials used as lithium ion battery anode using the way of cladding natural graphite with epoxy resin. The results shows that the specific capacity and circular performance of the modified natural graphite, which is prepared in the range of 600°C and 1000°C, have been apparently improved compare with the not-modified natural graphite. The first reversible capacity of the modified natural graphite is 338mAh/g and maintain more than 330mAh/g after 20 charge/discharge circles.
NASA Technical Reports Server (NTRS)
1976-01-01
The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.
Progress in composite structure and space construction systems technology
NASA Technical Reports Server (NTRS)
Bodle, J. B.; Jenkins, L. M.
1981-01-01
The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
Experimental Studies of Carbon Nanotube Materials for Space Radiators
NASA Technical Reports Server (NTRS)
SanSoucie, MIchael P.; Rogers, Jan R.; Craven, Paul D.; Hyers, Robert W.
2012-01-01
Game ]changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric propulsion (NEP) systems. Carbon nanotubes (CNT) and carbon fiber materials have the potential to offer significant improvements in thermal conductivity and mass properties. A test apparatus was developed to test advanced radiator designs. This test apparatus uses a resistance heater inside a graphite tube. Metallic tubes can be slipped over the graphite tube to simulate a heat pipe. Several sub ]scale test articles were fabricated using CNT cloth and pitch ]based carbon fibers, which were bonded to a metallic tube using an active braze material. The test articles were heated up to 600 C and an infrared (IR) camera captured the results. The test apparatus and experimental results are presented here.
NASA Astrophysics Data System (ADS)
Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.
2018-02-01
A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.
NASA Astrophysics Data System (ADS)
Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.
2016-05-01
The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.
Advanced Fatigue Damage Development in Graphite Epoxy Laminates.
1982-12-01
8217essary and identify by block number) Composite Materials Stiffness Changes Nondestructive Graphite/Epoxy Laminates Delamination Evaluation (NDE...30 3. Specimen in the Testing Machine with Extensometer Mounted ................................................. 32 4. Initial...for Micocrack Formation in [0,±45]. Laminat •s....115 43. Typical Stiffness Reduction Curve for a [0,90,±45]sLaminate
NASA Technical Reports Server (NTRS)
Knoell, A. C.
1972-01-01
Computer program has been specifically developed to handle, in an efficient and cost effective manner, planar wound pressure vessels fabricated of either boron-epoxy or graphite-epoxy advanced composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas; Windes, William; Swank, W. David
The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less
Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Wu, James Jianjun; Hong, Haiping
2014-01-01
NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.
NASA Technical Reports Server (NTRS)
Pocinki, L. S.; Kaplan, L. D.; Cornell, M. E.; Greenstone, R.
1979-01-01
A model was developed to generate quantitative estimates of the risk associated with the release of graphite fibers during fires involving commercial aircraft constructed with graphite fiber composite materials. The model was used to estimate the risk associated with accidents at several U.S. airports. These results were then combined to provide an estimate of the total risk to the nation.
Technology of civil usage of composites. [in commercial aircraft structures
NASA Technical Reports Server (NTRS)
Kemp, D. E.
1977-01-01
The paper deals with the use of advanced composites in structural components of commercial aircraft. The need for testing the response of a material system to service environment is discussed along with methods for evaluating design and manufacturing aspects of a built-up structure under environmental conditions and fail-safe (damage-tolerance) evaluation of structures. Crashworthiness aspects, the fire-hazard potential, and electrical damage of composite structures are considered. Practical operational experience with commercial aircraft is reviewed for boron/epoxy foreflaps, Kevlar/epoxy fillets and fairings, graphite/epoxy spoilers, graphite/polysulfone spoilers, graphite/epoxy floor posts, boron/aluminum aft pylon skin panels, graphite/epoxy engine nose cowl outer barrels, and graphite/epoxy upper aft rudder segments.
NASA Technical Reports Server (NTRS)
Tanimoto, E. Y.
1981-01-01
The periodic testing and evaluation of graphite/epoxy and Kevlar/epoxy material systems after subjecting test specimens to prolonged exposure to several laboratory-controlled environments deemed typical of normal aircraft operations is discussed. It is noted that specimen immersion in water or water-based fluids resulted in the greatest effect on the mechanical properties tested. Also, the environmental fluids showed a tendency to affect Kevlar/epoxy systems at an earlier exposure period than the graphite/epoxy systems. Results also indicate mechanical property strength retention generally being lower for the Kevlar/epoxy systems when compared to the corresponding graphite/epoxy systems in similar environments, after prolonged exposure.
Conceptual Design Studies of Composite AMST
1974-10-01
WEIGHT OF THE AIRFRAME THE PROPERTIES OF HIGH -STRENGTH GRAPHITE-EPOXY COMPOSITES (REPRESENTATIVE OF THORNEL 300 FIBERS) WERE USED IN THE APPLICATION...The primary advanced composite material selected was a high -strength graphite-epoxy (Thornel 300/Narmco 5208). Boron-infiltrated aluminum extrusions...Figure Page 25 Trimming Irregular Cutouts in Wing Box Attach Angles ...... 71 26 Hydroforming W-Truss Web Beaded Panels ................ 72 27 Exploded
Graphite Nanoreinforcements for Aerospace Nanocomposites
NASA Technical Reports Server (NTRS)
Drzal, Lawrence T.
2005-01-01
New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.
NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Olson, PhD
2004-07-21
This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ionmore » batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.« less
Systems integration and demonstration of advanced reusable structure for ALS
NASA Technical Reports Server (NTRS)
Gibbins, Martin N.
1991-01-01
The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.
Development of Improved Environmental Resistant Organic-Reinforced Materials Systems
1975-11-01
Advanced composites , graphite and boron reinforced laminates, moisture resistance, environmental resistance, organic matrix composites . 20. ABSTRACT...in November 1975 for publication. Efforts at TOD were conducted within the Advanced Composites Engineering Departmfntrunde; L technical...weight makes^organic matrix advanced composites hardware extremely attractive for today s modern Air Force weapons systems. Accordingly, such
Sun, Yong; Jin, Shuaixing; Yang, Guowei; Wang, Jing; Wang, Chengxin
2015-04-28
Despite the high theoretical capacity, pure Ge has various difficulties such as significant volume expansion and electron and Li(+) transfer problems, when applied as anode materials in lithium ion battery (LIB), for which the solution would finally rely on rational design like advanced structures and available hybrid. Here in this work, we report a one-step synthesis of Ge nanowires-in-graphite tubes (GNIGTs) with the liquid Ge/C synergetic confined growth method. The structure exhibits impressing LIB behavior in terms of both cyclic stability and rate performance. We found the semiclosed graphite shell with thickness of ∼50 layers experience an interesting splitting process that was driven by electrolyte diffusion, which occurs before the Ge-Li alloying plateau begins. Two types of different splitting mechanism addressed as "inside-out"/zipper effect and "outside-in" dominate this process, which are resulted from the SEI layer growing longitudinally along the Ge-graphite interface and the lateral diffusion of Li(+) across the shell, respectively. The former mechanism is the predominant way driving the initial shell to split, which behaves like a zipper with SEI layer as invisible puller. After repeated Li(+) insertion/exaction, the GNIGTs configuration is finally reconstructed by forming Ge nanowires-thin graphite strip hybrid, both of which are in close contact, resulting in enormous enchantment to the electrons/Li(+) transport. These features make the structures perform well as anode material in LIB. We believe both the progress in 1D assembly and the structure evolution of this Ge-C composite would contribute to the design of advanced LIB anode materials.
Sun, Li; Tian, Chungui; Fu, Yu; Yang, Ying; Yin, Jie; Wang, Lei; Fu, Honggang
2014-01-07
An advanced supercapacitor material based on nitrogen-doped porous graphitic carbon (NPGC) with high a surface area was synthesized by means of a simple coordination-pyrolysis combination process, in which tetraethyl orthosilicate (TEOS), nickel nitrate, and glucose were adopted as porogent, graphitic catalyst precursor, and carbon source, respectively. In addition, melamine was selected as a nitrogen source owing to its nitrogen-enriched structure and the strong interaction between the amine groups and the glucose unit. A low-temperature treatment resulted in the formation of a NPGC precursor by combination of the catalytic precursor, hydrolyzed TEOS, and the melamine-glucose unit. Following pyrolysis and removal of the catalyst and porogent, the NPGC material showed excellent electrical conductivity owing to its high crystallinity, a large Brunauer-Emmett-Teller surface area (SBET =1027 m(2) g(-1) ), and a high nitrogen level (7.72 wt %). The unusual microstructure of NPGC materials could provide electrochemical energy storage. The NPGC material, without the need for any conductive additives, showed excellent capacitive behavior (293 F g(-1) at 1 A g(-1) ), long-term cycling stability, and high coulombic efficiency (>99.9 % over 5000 cycles) in KOH when used as an electrode. Notably, in a two-electrode symmetric supercapacitor, NPGC energy densities as high as 8.1 and 47.5 Wh kg(-1) , at a high power density (10.5 kW kg(-1) ), were achieved in 6 M KOH and 1 M Et4 NBF4 -PC electrolytes, respectively. Thus, the synthesized NPGC material could be a highly promising electrode material for advanced supercapacitors and other conversion devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monitoring Prepregs As They Cure
NASA Technical Reports Server (NTRS)
Young, P. R.; Gleason, J. R.; Chang, A. C.
1986-01-01
Quality IR spectra obtained in dynamic heating environment. New technique obtains quality infrared spectra on graphite-fiber-reinforced, polymeric-matrix-resin prepregs as they cure. Technique resulted from modification of diffuse reflectance/Fourier transform infrared (DR/FTIR) technique previously used to analyze environmentally exposed cured graphite composites. Technique contribute to better understanding of prepreg chemistry/temperature relationships and development of more efficient processing cycles for advanced materials.
Effects of Oxidation on Oxidation-Resistant Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William; Smith, Rebecca; Carroll, Mark
2015-05-01
The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidationmore » rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.« less
Advanced techniques for determining long term compatibility of materials with propellants
NASA Technical Reports Server (NTRS)
Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.
1973-01-01
A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa
2016-09-01
Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark Christopher
2015-07-01
This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less
A simple synthesis of MnN0.43@C nanocomposite: characterization and application as battery material
NASA Astrophysics Data System (ADS)
Milke, Bettina; Wall, Clemens; Metzke, Sarah; Clavel, Guylhaine; Fichtner, Maximilian; Giordano, Cristina
2014-12-01
In the search of new materials for advanced batteries, manganese nitride is an appealing choice. However, in order to fully explore its potentiality, a suitable synthesis is the first mandatory step. In this contribution, nanosized manganese nitride covered by a graphitic shell has been prepared by a simple sol-gel-based process. Since graphite has a high thermal and chemical stability, it acts as stabilizing agent for the MnN0.43 nanoparticles. As a consequence, the particles do not oxidize for instance during the handling of the material and can be stored in air without special precautions. Furthermore, the graphitic shell makes the material more interesting for electrochemical applications, because graphite provides on the one hand an electrical conductivity, which is necessary for the function of active materials, and on the other hand also contributes to the Li storage capacity. The as-prepared nanocomposite was tested as anode material versus lithium metal as counter electrode, showing excellent cyclic stability, 230 mAh/g of capacity, and coulombic efficiencies close to 100 %. Since MnN0.43 possesses a theoretical capacity higher than commercial graphite and exhibits less polarization than several previously reported metal nitrides, it represents an attractive candidate as alternative/novel anode material. The method presented herein offers a simple route to prepare MnN0.43 nanoparticles encapsulated in carbon. The formation mechanism has been investigated, and the detailed characterization of the material before and after battery test (via XRD, HR-TEM, SAED, EELS) is discussed in the text.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang , Jing; Bao, Wurigumula; Ma, Lu
2015-11-09
Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stickmore » well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.« less
Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil
2015-12-07
Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Denis; Zhang, Dajie
2015-10-22
The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiationmore » damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.« less
Effective regeneration of anode material recycled from scrapped Li-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi
2018-06-01
Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.
Analysis of Graphite-Reinforced Cementitious Composites
NASA Technical Reports Server (NTRS)
Vaughan, R. E.
2002-01-01
Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.
NASA Astrophysics Data System (ADS)
González, Zoraida; Flox, Cristina; Blanco, Clara; Granda, Marcos; Morante, Juan R.; Menéndez, Rosa; Santamaría, Ricardo
2017-01-01
The development of more efficient electrode materials is essential to obtain vanadium redox flow batteries (VRFBs) with enhanced energy densities and to make these electrochemical energy storage devices more competitive. A graphene-modified graphite felt synthesized from a raw graphite felt and a graphene oxide water suspension by means of electrophoretic deposition (EPD) is investigated as a suitable electrode material in the positive side of a VRFB cell by means of cyclic voltammetry, impedance spectroscopy and charge/discharge experiments. The remarkably enhanced performance of the resultant hybrid material, in terms of electrochemical activity and kinetic reversibility towards the VO2+/VO2+, and mainly the markedly high energy efficiency of the VRFB cell (c.a. 95.8% at 25 mA cm-2) can be ascribed to the exceptional morphological and chemical characteristics of this tailored material. The 3D-architecture consisting of fibers interconnected by graphene-like sheets positively contributes to the proper development of the vanadium redox reactions and so represents a significant advance in the design of effective electrode materials.
Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam
2012-08-16
Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.
A manufacturing database of advanced materials used in spacecraft structures
NASA Technical Reports Server (NTRS)
Bao, Han P.
1994-01-01
Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer aware of some of the most important aspects of manufacturing associated with his/her choice of the structural materials. The other objective of this study is to propose a quantitative method to determine a Manufacturing Complexity Factor (MCF) for each material being contemplated. This MCF is derived on the basis of the six cost drivers mentioned above plus a Technology Readiness Factor which is very closely related to the Technology Readiness Level (TRL) as defined in the Access To Space final report. Short of any manufacturing information, our MCF is equivalent to the inverse of TRL. As more manufacturing information is available, our MCF is a better representation (than TRL) of the fabrication processes involved. The most likely application for MCF is in cost modeling for trade studies. On-going work is being pursued to expand the potential applications of MCF.
A manufacturing database of advanced materials used in spacecraft structures
NASA Astrophysics Data System (ADS)
Bao, Han P.
1994-12-01
Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer aware of some of the most important aspects of manufacturing associated with his/her choice of the structural materials. The other objective of this study is to propose a quantitative method to determine a Manufacturing Complexity Factor (MCF) for each material being contemplated. This MCF is derived on the basis of the six cost drivers mentioned above plus a Technology Readiness Factor which is very closely related to the Technology Readiness Level (TRL) as defined in the Access To Space final report. Short of any manufacturing information, our MCF is equivalent to the inverse of TRL. As more manufacturing information is available, our MCF is a better representation (than TRL) of the fabrication processes involved.
Advanced Na-NiCl2 Battery Using Nickel-Coated Graphite with Core-Shell Microarchitecture.
Chang, Hee-Jung; Canfield, Nathan L; Jung, Keeyoung; Sprenkle, Vincent L; Li, Guosheng
2017-04-05
Stationary electric energy storage devices (rechargeable batteries) have gained increasing prominence due to great market needs, such as smoothing the fluctuation of renewable energy resources and supporting the reliability of the electric grid. With regard to raw materials availability, sodium-based batteries are better positioned than lithium batteries due to the abundant resource of sodium in Earth's crust. However, the sodium-nickel chloride (Na-NiCl 2 ) battery, one of the most attractive stationary battery technologies, is hindered from further market penetration by its high material cost (Ni cost) and fast material degradation at its high operating temperature. Here, we demonstrate the design of a core-shell microarchitecture, nickel-coated graphite, with a graphite core to maintain electrochemically active surface area and structural integrity of the electron percolation pathway while using 40% less Ni than conventional Na-NiCl 2 batteries. An initial energy density of 133 Wh/kg (at ∼C/4) and energy efficiency of 94% are achieved at an intermediate temperature of 190 °C.
2011-11-01
correlating with the common use of graphite-epoxy composites in aerospace materials. Ghandi and Lyon identify two primary exposure routes from...Materials, Springer, Dordrecht, The Netherlands, 2006; Chapter 12, “Health Hazards of Composites in Fire”. 5. Sanjeev Ghandi and Richard E. Lyon, Health
Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao
2012-09-25
Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.
Effects of Boron and Graphite Uncertainty in Fuel for TREAT Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, Kyle; Mausolff, Zander; Gonzalez, Esteban
Advanced modeling techniques and current computational capacity make full core TREAT simulations possible, with the goal of such simulations to understand the pre-test core and minimize the number of required calibrations. But, in order to simulate TREAT with a high degree of precision the reactor materials and geometry must also be modeled with a high degree of precision. This paper examines how uncertainty in the reported values of boron and graphite have an effect on simulations of TREAT.
Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei
2017-01-31
Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.
Initial Assessment of X-Ray Computer Tomography image analysis for material defect microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua James; Windes, William Enoch
2016-06-01
The original development work leading to this report was focused on the non destructive three-dimensional (3-D) characterization of nuclear graphite as a means to better understand the nature of the inherent pore structure. The pore structure of graphite and its evolution under various environmental factors such as irradiation, mechanical stress, and oxidation plays an important role in their observed properties and characteristics. If we are to transition from an empirical understanding of graphite behavior to a truly predictive mechanistic understanding the pore structure must be well characterized and understood. As the pore structure within nuclear graphite is highly interconnected andmore » truly 3-D in nature, 3-D characterization techniques are critical. While 3-D characterization has been an excellent tool for graphite pore characterization, it is applicable to a broad number of materials systems over many length scales. Given the wide range of applications and the highly quantitative nature of the tool, it is quite surprising to discover how few materials researchers understand and how valuable of a tool 3-D image processing and analysis can be. Ultimately, this report is intended to encourage broader use of 3 D image processing and analysis in materials science and engineering applications, more specifically nuclear-related materials applications, by providing interested readers with enough familiarity to explore its vast potential in identifying microstructure changes. To encourage this broader use, the report is divided into two main sections. Section 2 provides an overview of some of the key principals and concepts needed to extract a wide variety of quantitative metrics from a 3-D representation of a material microstructure. The discussion includes a brief overview of segmentation methods, connective components, morphological operations, distance transforms, and skeletonization. Section 3 focuses on the application of concepts from Section 2 to relevant materials at Idaho National Laboratory. In this section, image analysis examples featuring nuclear graphite will be discussed in detail. Additionally, example analyses from Transient Reactor Test Facility low-enriched uranium conversion, Advanced Gas Reactor like compacts, and tristructural isotopic particles are shown to give a broader perspective of the applicability to relevant materials of interest.« less
A study of the stress wave factor technique for nondestructive evaluation of composite materials
NASA Technical Reports Server (NTRS)
Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II
1986-01-01
The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.
Zhang, Xuqing; Zhong, Yu; Xia, Xinhui; Xia, Yang; Wang, Donghuang; Zhou, Cheng'ao; Tang, Wangjia; Wang, Xiuli; Wu, J B; Tu, Jiangping
2018-04-25
Lithium-sulfur batteries (LSBs) are deemed to be among the most prospective next-generation advanced high-energy batteries. Advanced cathode materials fabricated from biological carbon are becoming more popular due to their unique properties. Inspired by the fibrous structure of bamboo, herein we put forward a smart strategy to convert bamboo sticks for barbecue into uniform bamboo carbon fibers (BCF) via a simple hydrothermal treatment proceeded in alkaline solution. Then NiCl 2 is used to etch the fibers through a heat treatment to achieve Ni-embedded porous graphitic carbon fibers (PGCF/Ni) for LSBs. The designed PGCF/Ni/S electrode exhibits improved electrochemical performances including high initial capacity (1198 mAh g -1 at 0.2 C), prolonged cycling life (1030 mAh g -1 at 0.2 C after 200 cycles), and improved rate capability. The excellent properties are attributed to the synergistic effect of 3D porous graphitic carbon fibers with highly conductive Ni nanoparticles embedded.
Spacecraft materials studies on the Aerospace Corporation tray on EOIM-3
NASA Technical Reports Server (NTRS)
Stuckey, Wayne K.; Hemminger, Carol S.; Steckel, Gary L.; Hills, Malina M.; Hilton, Michael R.
1995-01-01
A passive tray was flown on the Effects of Oxygen Interaction with Materials experiment on STS-46 (EOIM-3) with 82 samples from The Aerospace Corporation. A variety of advanced materials related to potential uses on future spacecraft were included for evaluation representing optical coatings, lubricants, polymers, composites, carbon-carbon composite protective coatings, graphite protective coatings, thermal-control materials, and some samples of current materials. An overview of the available results from the investigations of these materials is presented.
Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.
Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang
2017-08-25
A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of Joining Graphite Fibers to a Substrate
NASA Technical Reports Server (NTRS)
Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)
2014-01-01
A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.
1993-03-01
as a contact area for the hydraulic mounting grips used by the 4-3 Instron Machine . The tabs also prevented damage to the composite from the grips of... machine , but has been modified so that it can be end loaded. This procedure was done in accordance with the Suppliers of Advanced Composite Materials...AD=A262 549 ".i III l!l ! i lht I l II !f ill 11111 liii-I D .TI ,•"AN INVESTIGATION OF GRAPHITE PEEK Eir’ COMPOSITE UNDER COMPRESSION AP05 1993
Thermal abuse performance of high-power 18650 Li-ion cells
NASA Astrophysics Data System (ADS)
Roth, E. P.; Doughty, D. H.
High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.
Review of Aircraft Crash Structural Response Research.
1982-08-01
structures consisting of conventional built-up metallic construction and those consisting of advanced composite materials were of interest. The latter...increasing importance. Some recent theoretical and experimental studies of the behavior of composite - material structures subjected to severe static...dynamic, and/or impact conditions are noted. Such topics as crashworthiness testing ot composite fuselage structures, the impact resistance of graphite and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubic, Rick; Butt, Darryl; Windes, William
2014-03-13
An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less
Bridged graphite oxide materials
NASA Technical Reports Server (NTRS)
Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)
2010-01-01
Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.
NASA Technical Reports Server (NTRS)
Hsieh, Cheng; O'Donnell, Timothy P.
1991-01-01
The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.
Martín, Aída; López, Miguel Ángel; González, María Cristina; Escarpa, Alberto
2015-01-01
The main multidimensional carbon allotropes could be classified into carbon nanotubes as 1D material, graphene as 2D material, as well as graphite and diamond as 3D carbon materials. Along with this review, a discussion using these four structures as electrochemical detectors in CE and ME will permit us to explore the recent advances in this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Valis, Tomas; Tapanes, Edward; Liu, Kexing; Measures, Raymond M.
1991-04-01
A strain sensor embedded in composite materials that is intrinsic, all fiber, local, and phase demodulated is described. It is the combination of these necessary elements that represents an advance in the state of the art. Sensor localization is achieved by using a pair of mirror-ended optical fibers of different lengths that are mechanically coupled up until the desired gauge length for common-mode suppression has been reached. This fiber-optic sensor has been embedded in both thermoset (Kevlar/epoxy and graphite/epoxy) and thermoplastic (graphite/PEEK) composite materials in order to make local strain measurements at the lamina level. The all-fiber system uses a 3 x 3 coupler for phase demodulation. Parameters such as strain sensitivity, transverse strain sensitivity, failure strain, and frequency response are discussed, along with applications.
Development of polyphenylquinoxaline graphite composites
NASA Technical Reports Server (NTRS)
Hoggatt, J. T.; Hergenrother, P. M.; Shdo, J. G.
1973-01-01
The potential of polyphenylquinoxaline (PPQ)/graphite composites to serve as structural material at 316 C (600 F)has been demonstrated using a block copolymer, BlCo(13), PPQ derivative. Initially, thirteen polyphenylquinoxalines were evaluated. From this work, four candidate polymers were selected for preliminary evaluation as matrices for HMS graphite fiber reinforced composites. The preliminary composite evaluation enabled selection of one of the four polymers for advanced composite preparation and testing. Using an experimentally established cure schedule for each of the four polymers, preliminary laminates of 50% resin volume content, prepared without postcure, were tested for flexure strength and modulus, interlaminar shear strength (short beam), and tensile strength and modulus at ambient temperature. A block copolymer (Bl Co 13) derived from one mole p-bis (phenylglyoxalyl) benzene, one fourth mole 3,3'-diaminobenzidine and three-fourths mole 3,3', 4,4'-tetraminobenzophenone was selected for extensive study. Tensile, flexural, and interlaminar shear values were obtained after aging and testing postcured BlCo(13) laminates at 316 C (600 F). The potential of PPQ/graphite laminates to serve as short term structural materials at temperatures up to 371 C (700 F) was demonstrated through weight loss experiments.
NASA Astrophysics Data System (ADS)
Wang, Aiwu; Wang, Chundong; Fu, Li; Wong-Ng, Winnie; Lan, Yucheng
2017-10-01
The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are "earth-abundant." This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.
Multilayer Approach for Advanced Hybrid Lithium Battery.
Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Li, Lain-Jong
2016-06-28
Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode(-1) (vs the total mass of electrode) or 1866 mAh gs(-1) (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs(-1)). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode(-1) at 0.25C and 376 mAh gcathode(-1) at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications.
Self repairing composites for drone air vehicles
NASA Astrophysics Data System (ADS)
Dry, Carolyn
2015-04-01
The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.
EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.
COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.
NASA Astrophysics Data System (ADS)
Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.
2016-04-01
Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.
NASA Technical Reports Server (NTRS)
1978-01-01
A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark C.
High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individualmore » specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding process. An analysis of the comparison between each of these grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in the overall variability in properties within each of the grades that will ultimately provide the basis for predicting in-service performance. The comparative performance of the different types of nuclear-grade graphites will naturally continue to evolve as thousands more specimens are fully characterized with regard to strength, physical properties, and thermal performance from the numerous grades of graphite being evaluated.« less
Ground Vehicle Power and Mobility Overview
2007-05-30
Program Li-Ion Phosphate (LFP) Cathode Materials Large Format Li-Ion Prismatic Cells and Modules with Integrated Liquid Cooling Integrated Prototype...using porous graphitic material3 4 5 8 5 6 60 W-hr/kg 80-120 W/kg Low Cycle Life LFP cathode Safer Less energetic materials ~ ~ Power Cell 85-120...Thermal Runaway Study Zebra Battery NaNiCl2 (FY08 ATO) Advanced Lead Acid LiFePO4 Cathode Prismatic Lithium-ion batteries and Integrated Liquid Cooling
NASA Technical Reports Server (NTRS)
1979-01-01
Graphite/polyimide (Gr/PI) bolted and bonded joints were investigated. Possible failure modes and the design loads for the four generic joint types are discussed. Preliminary sizing of a type 1 joint, bonded and bolted configuration is described, including assumptions regarding material properties and sizing methodology. A general purpose finite element computer code is described that was formulated to analyze single and double lap joints, with and without tapered adherends, and with user-controlled variable element size arrangements. An initial order of Celion 6000/PMR-15 prepreg was received and characterized.
Advanced materials for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.
1991-01-01
The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.
Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.
The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules also increases gap size uncertainty. This study focuses on analysis of modeling assumptions and uncertainty sources to evaluate their impacts on the gap size uncertainty.« less
Producibility aspects of advanced composites for an L-1011 Aileron
NASA Technical Reports Server (NTRS)
Van Hamersveld, J.; Fogg, L. D.
1976-01-01
The design of advanced composite aileron suitable for long-term service on transport aircraft includes Kevlar 49 fabric skins on honeycomb sandwich covers, hybrid graphite/Kevlar 49 ribs and spars, and graphite/epoxy fittings. Weight and cost savings of 28 and 20 percent, respectively, are predicted by comparison with the production metallic aileron. The structural integrity of the design has been substantiated by analysis and static tests of subcomponents. The producibility considerations played a key role in the selection of design concepts with potential for low-cost production. Simplicity in fabrication is a major factor in achieving low cost using advanced tooling and manufacturing methods such as net molding to size, draping, forming broadgoods, and cocuring components. A broadgoods dispensing machine capable of handling unidirectional and bidirectional prepreg materials in widths ranging from 12 to 42 inches is used for rapid layup of component kits and covers. Existing large autoclaves, platen presses, and shop facilities are fully exploited.
NASA Astrophysics Data System (ADS)
Childers, Amanda Esther Sall
Composite properties can surpass those of the individual phases, allowing for the development of advanced, high-performance materials. Bio-inspired and naturally-derived materials have garnered attention as composite constituents due to their inherently efficient and complex structures. Wood-derived ceramics, produced by converting a wood precursor into a ceramic scaffold, can exhibit a wide range of microstructures depending on the wood species, including porosity, pore size and distribution, and connectivity. The focus of this work was to investigate the processing, microstructure, and properties of graphite/copper composites produced using wood-derived graphite scaffolds. Graphite/copper composites combine low specific gravity, high thermal conductivity, and tailorable thermal expansion properties, and due to the non-wetting behavior of copper to graphite, offer a unique system in which mechanically bonded interfaces in composites can be studied. Graphite scaffolds were produced from red oak, beech, and pine precursors using a catalytic pyrolyzation method, resulting in varying types of pore networks. Two infiltration methods were investigated to overcome challenges associated with non-wetting systems: copper electrodeposition and pressure-assisted melt infiltration. The phase distributions, constituent properties, interfacial characteristics, mechanical behavior, and load partitioning of these biomorphic graphite/copper composites were investigated, and were correlated to the wood species. The multi-domain feature sizes in the graphite scaffolds resulted in composites with copper relegated not only to the large, connected channels produced from the transport features in the wood, but also within the smaller, lower aspect ratio fibrous regions of the scaffold. Both features contributed to the mechanical behavior of the composites to varying degrees depending on the wood species. A multi-component predictive model also was developed and used to guide the additive-assisted electroplating of the graphitized scaffold, and helped illuminate the roles of plating additives in macro-sized channels. The model can be adapted for many material systems, sample geometries, and plating conditions to investigate the use of metal electrodeposition as a means of scaffold infiltration. Additionally, X-ray diffraction tomography was used to resolve position-dependent strain in a composite. The results of this nascent capability were discussed with respect to a two-component system under increasing uniaxial load, and compared to the results of conventional volume-averaged measurements.
NASA Technical Reports Server (NTRS)
Hodges, W. T.; Tyeryar, J. R.; Berry, M.
1985-01-01
Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.
Development of Advanced High Strength Cast Alloys for Heavy Duty Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, James
Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the nextmore » generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.« less
Heat receivers for solar dynamic space power systems
NASA Astrophysics Data System (ADS)
Perez-Davis, Marla Esther
A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.
1992-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.
NASA Technical Reports Server (NTRS)
Koumal, D. E.
1979-01-01
The design and evaluation of built-up attachments and bonded joint concepts for use at elevated temperatures is documented. Joint concept screening, verification of GR/PI material, fabrication of design allowables panels, definition of test matrices, and analysis of bonded and bolted joints are among the tasks completed. The results provide data for the design and fabrication of lightly loaded components for advanced space transportation systems and high speed aircraft.
Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.
Friction and wear of carbon-graphite materials for high-energy brakes
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.
NASA Astrophysics Data System (ADS)
Zhang, Xiaohua; Zhang, Kang; Li, Hengxiang; Cao, Qing; Jin, Li'e.; Li, Ping
2017-03-01
Biomass is receiving considerable attention because of its significant advantages as a sustainable and renewable material. Willow catkins, which have a single-walled microtubular structure are used as both a template and a precursor for synthesizing porous graphitic carbon microtubes (PGCMT) induced by the simultaneous activation-graphitization of K4Fe(CN)6. In addition to providing low-resistant pathways and short ion diffusion channels, as-obtained PGCMT with tubular structure also serves as an ideal platform for anchoring MnO2. The PGCMT/MnO2 composite electrode obtained by MnO2 electrodeposition expressed excellent electrochemical performance, including a significantly enhanced specific capacitance (550.8 F g-1 for the mass of MnO2 at a current density of 2 A g-1), a high capacitance retention of 61.8% even at a high current density of 50 A g-1, and an excellent cycling stability of 89.6% capability retention after 5000 cycles. These findings offer a simple and environmentally friendly strategy for preparing advanced energy materials by utilizing the unique structure of biomass waste from nature.
AGC-2 Graphite Pre-irradiation Data Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Swank; Joseph Lord; David Rohrbaugh
2010-08-01
The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less
Friction and wear of carbon-graphite materials for high energy brakes
NASA Technical Reports Server (NTRS)
Bill, R. C.
1975-01-01
Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.
Thermal design of composite material high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.
Preparation and characterization of phase transition/graphite foam composite materials.
Yu, Jia; Tang, ChenLong; Yu, ZhiChao
2016-07-04
Phase transition/graphite foam (PCM/GF) composite materials are a kind of composite materials that fill graphite foam with phase change materials. In this paper, graphite foam was prepared firstly by the soft template method, the heat conductivity of which at room temperature is 5.44 W/(m∙K). Then, four phase change materials including eicosane, acetamide, xylitol, and erythritol were chosen for filling into the prepared graphite foam to obtain PCM/GF composite materials. Among the four kinds of materials, erythritol composite material has the highest melting point (118.5°C) and the highest enthalpy of fusion (266.3J/g), weight loss ratios of xylitol composite material after ten cycles is the lowest (2.1%), the compressive strength of xylitol composite material is the highest (9.08 MPa) and that of eicosane composite material is the lowest (3.32 MPa).
Artificial intelligence in the materials processing laboratory
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kaukler, William F.
1990-01-01
Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.
Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems
NASA Technical Reports Server (NTRS)
Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)
1979-01-01
Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.
Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei
2017-09-01
Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced rotary engine components utilizing fiber reinforced Mg castings
NASA Technical Reports Server (NTRS)
Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.
1986-01-01
Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.
Effect of processing on Polymer/Composite structure and properties
NASA Technical Reports Server (NTRS)
1982-01-01
Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.
Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1973-01-01
A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.
Recent Advances in Two-Dimensional Materials beyond Graphene.
Bhimanapati, Ganesh R; Lin, Zhong; Meunier, Vincent; Jung, Yeonwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael S; Cooper, Valentino R; Liang, Liangbo; Louie, Steven G; Ringe, Emilie; Zhou, Wu; Kim, Steve S; Naik, Rajesh R; Sumpter, Bobby G; Terrones, Humberto; Xia, Fengnian; Wang, Yeliang; Zhu, Jun; Akinwande, Deji; Alem, Nasim; Schuller, Jon A; Schaak, Raymond E; Terrones, Mauricio; Robinson, Joshua A
2015-12-22
The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.
Characterization and development of materials for advanced textile composites
NASA Technical Reports Server (NTRS)
Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.
1993-01-01
Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.
Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.
Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo
2016-08-30
The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.
Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)
2011-01-01
A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.
Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes
NASA Astrophysics Data System (ADS)
Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.
2016-09-01
Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.
Trapped rubber processing for advanced composites
NASA Technical Reports Server (NTRS)
Marra, P. J.
1976-01-01
Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.
NASA Astrophysics Data System (ADS)
Kocherlakota, Lakshmi S.; Krajina, Brad A.; Overney, René M.
2015-12-01
Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ˜3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.
Kocherlakota, Lakshmi S; Krajina, Brad A; Overney, René M
2015-12-28
Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ∼3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.
Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang H. Oh; Eung Kim; Jong Lim
2009-05-01
Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because their chemical and mechanical characteristics are well identified by the previous investigations, and therefore it was convenient for us to access the published data, and to apply and validate our new methodologies. This paper presents preliminary results of compressive strength vs. burn-off and surface area density vs. burn-off, which can be used for the nuclear graphite selection for the NGNP.« less
NASA Technical Reports Server (NTRS)
Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.
1982-01-01
Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined.
Environmental Effects on Graphite-Epoxy Fatigue Properties
NASA Technical Reports Server (NTRS)
Sumsion, H. T.
1976-01-01
Effects of torsional and flexural fatigue on the long-time Integrity of advanced graphite-epoxy structural composites have been investigated. Torsional fatigue tests were run at stress ratios of R = 0 (zero to maximum, repeated) and R = -1 (zero mean stress) on unidirectional, angleply, and woven graphite fiber materials in air and water at room temperature and at 74 C. Flexural fatigue tests (four-point bending) with R = -1 were run in air and water at room temperature, and with R = 0 in air. Results show that, in torsional cycling, both water environment and higher test temperature contribute to significant degradation of torsional stiffness. The degradation of stiffness from torsional stress cycling was observed to be much greater with R = -1 than with simple R = 0 cycling. The effect of environment also is greater in the fully reversed cycling. Flexural fatigue results on +/- 30 deg material show a large fatigue effect, with fatigue limits of less than 50% and 30% of the static failure strength for specimens tested under stress ratios of R = 0 and R = -1, respectively. Compliance measurements indicate that the final failures are preceded by damage initiation and accumulation, which begins at about 1% of the specimen life.
NASA Astrophysics Data System (ADS)
Handley, Scott Michael
The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in graphite/epoxy laminates. Complementary ultrasonic parameters based on the frequency dependence of ultrasonic attenuation and integrated polar backscatter are investigated. In summary, the approach taken in this thesis is to examine the physical mechanisms in terms of a continuum mechanics framework and a linear elastic description of ultrasonic wave propagation in anisotropic media with specific application to the nondestructive evaluation of advanced composite materials.
NASA Technical Reports Server (NTRS)
1977-01-01
Composite materials are discussed with emphasis on the identification of the characteristics of those materials that make them attractive for use in surface transportation. Potential uses of graphite composites are given including automotive applications and the effects of materials substitution on vehicle characteristics and performance. Preliminary estimates of the economic effects of the use of graphite composite materials on vehicle manufacturers and consumers are included. The combined impact on the national economy of vehicle design changes to meet mandated fuel efficiency requirements and the extensive use of graphite composite materials in the automotive industry is considered.
Nondestructive evaluation of nuclear-grade graphite
NASA Astrophysics Data System (ADS)
Kunerth, D. C.; McJunkin, T. R.
2012-05-01
The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.
Development of seal ring carbon-graphite materials (tasks 5, 6, and 7)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1972-01-01
Carbon-graphite seal ring bodies for operation at air temperatures to 1300 F(704 C) were manufactured from three select formulations. Mechanical and thermal properties, porosities, and oxidation rates were measured. The results have shown that: (1) Major property improvements anticipated from the screening studies were not realized because of processing problems associated with the scale-up in material size and probable deterioration of a phenolic resin binder; (2) the mechanical properties of a phenolic resin-bonded, carbon-graphite material can be improved by applying high pressure during carbonization; and (3) the textile form of graphite fiber used as the minor filler component in a carbon-graphite material can beneficially affect mechanical properties.
Carbon composites in space vehicle structures
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1974-01-01
Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.
Industry technology assessment of graphite-polymide composite materials. [conferences
NASA Technical Reports Server (NTRS)
1975-01-01
An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.
Ceramic materials under high temperature heat transfer conditions
NASA Astrophysics Data System (ADS)
Mittenbühler, A.; Jung, J.
1990-04-01
Ceramic materials for application in a High-Temperature Reactor coupled with the steam gasification of coal were investigated. The study concentrated on the hot gas duct and their thermal insulation. Materials examined for the inner lining of the tubes were graphite, carbon fibre reinforced carbon and amorphous silica, while fibres, porous alumina and bonded alumina fibres were tested as insulating materials. During material investigations qualification was performed on samples and in component tests. For two carbon fibre reinforced carbon qualities with different graphitizing temperatures, the bending strength was determined as a function of volume corrosion. Devitrification of amorphous silica can be tolerated up to operating temperatures of about 950°C. The resilience of fibre materials depends on the Al2O3/ SiO2 ratio. It decreases according to the different fibre composition with increasing temperature and limits the maximum operating temperature for long term operation. The porous hollow spherical corundum inserted in the form of bricks fulfilled the thermal shock and mechanical requirements but led to an insulation exhibiting gaps in component tests. An advanced insulation on the basis of bonded alumina fibre showed a quasi-elastic material behaviour. Resistance to abrasion was achieved with a protective ceramic coating. The different materials and design concepts are compared and the results provide a good solution for the project.
Advanced Design Composite Aircraft
1976-02-01
been selected for ADCA applications. These are graphite (PAN)/ epoxy, graphite (PAN)/polyimide, Kevlar /epoxy, f ibergl ass/epoxy, and quartz...Aluminum Alloy Aluminum Alloy ACG (commercial grade) Nomex HRP Fiberglass/ Phenolic HRH Fiberglass/Polyimide Graphite/epoxy Graphi te/Polyimide
Composite materials for precision space reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.
1992-01-01
One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.
The Quantitative Significance of Nondestructive Evaluation of Graphite and Ceramic Materials.
NONDESTRUCTIVE TESTING), (* GRAPHITE , (*BORIDES, NONDESTRUCTIVE TESTING), (*REFRACTORY MATERIALS, NONDESTRUCTIVE TESTING), DEFECTS(MATERIALS), TENSILE PROPERTIES, RADIOGRAPHY, ULTRASONIC PROPERTIES, DENSITY.
A Fundamental Study of the Electromagnetic Properties of Advanced Composite Materials
1978-07-01
MKDC), Space and Missile Systems Organization (SAMSO). Aeronautical System Division (ASD), Electronic Systems Division ( ESD ), Air Force Avionics...discussions, the work reported involved only one fiber type--Thornel T300 as used in Narmco 5208 pre-preg tapes . Individual graphite fibers have radii... teflon coated tweezers to separate individual fibers from the bundle. Microscopic observation and a steady hand during this procedure improved the
Advanced composites: Fabrication processes for selected resin matrix materials
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.
FTIR Monitoring Of Curing Of Composites
NASA Technical Reports Server (NTRS)
Druy, Mark A.; Stevenson, William A.; Young, Philip R.
1990-01-01
Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Madaras, Eric I.
2000-01-01
The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.
Hygrothermal influence on delamination behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garg, A.; Ishai, O.
1985-01-01
The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination, and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.
Hygrothermal influence on delamination behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garg, A.; Ishai, O.
1984-01-01
The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.
Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology
NASA Astrophysics Data System (ADS)
Barekar, N.; Tzamtzis, S.; Dhindaw, B. K.; Patel, J.; Hari Babu, N.; Fan, Z.
2009-12-01
To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (ɛ) is obtained compared with composites produced by conventional processes.
Investigation of Isotopically Tailored Boron in Advanced Fission and Fusion Reactor Systems.
NASA Astrophysics Data System (ADS)
Domaszek, Gerald Raymond
This research examines the use of B^ {11}, in the form of metallic boron and boron carbide, as a moderating and reflecting material. An examination of the neutronic characteristics of the B ^{11} isotope of boron has revealed that B^{11} has neutron scattering and absorption cross sections favorably comparable to those of Be^9 and C^ {12}. Preliminary analysis of the neutronics of B ^{11} were performed by conducting one dimensional transport calculations on an infinite slab of varying thickness. Beryllium is the best of the three materials in reflecting neutrons due primarily to the contribution from (n,2n) reactions. Tailored neutron energy beam transmission experiments were carried out to experimentally verify the predicted neutronic characteristics of B^{11 }. To further examine the neutron moderating and reflecting characteristics of B^{11 }, the energy dependent neutron flux was measured as a function of position in an exponential pile constructed of B_4C isotopically enriched to 98.5 percent B^{11}. After the experimental verification of the neutronic behavior of B^{11}, further design studies were conducted using metallic boron and boron carbide enriched in the B^{11 } isotope. The use of materials isotopically enriched in B^{11} as a liner in the first wall/blanket of a magnetic confinement fusion reactor demonstrated acceptable tritium regeneration in the lithium blanket. Analysis of the effect of contaminant levels of B^{10} showed that B^{10} contents of less than 1 percent in metallic boron produced negligible adverse effects on the tritium breeding. A comparison of the effectiveness of graphite and B^{11}_4C when used as moderators in a reactor fueled with natural uranium has shown that the maximum k_infty for a given fuel rod design is approximately the same for both materials. Approximately half the volume of the moderator is required when B^{11 }_4C is substituted for graphite to obtain essentially the same K_infty . An analysis of the effectiveness of various materials as reflector control elements for a compact space reactor has shown that B^{11} is neutronically superior to graphite in these applications. Metallic boron and boron carbide isotopically enriched in B^{11} have been demonstrated to be neutronically acceptable for varied applications in advanced reactor systems. B^ {11} has been shown to be superior in performance to graphite. While only somewhat inferior to beryllium as neutron multipliers, B^ {11} and B^{11} _4C have safety, supply and cost advantage over beryllium. (Abstract shortened with permission of author.).
Status of Understanding for Seal Materials
NASA Technical Reports Server (NTRS)
Brown, P. F.
1984-01-01
Material selection for mainshaft face and ring seals, labyrinth seals, accessory gearbox face seals, and lip seals are discussed in light of tribology requirements and a given seal application. Carbon graphite has been found to be one of the best sealing materials and it is widely used in current gas turbine mainshaft and accessory gearbox seals. Its popularity is due to its unique combination of properties which consists of dimensional stability, corrosion resistance, low friction, good self lubricating characteristics, high thermal conductivity and low thermal expansion, the latter two properties combining to provide good thermal shock resistance. A brief description of the seals and the requirements they must meet are discussed to provide insight into the limitations and advantages of the seals in containing the lubricant. A forecast is made of the operational requirements of main shaft and gearbox seals for advanced engines and candidate materials and coatings that may satisfy these advanced engine requirements.
Thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)
2011-01-01
A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.
Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture
NASA Technical Reports Server (NTRS)
Dunning, E. G.; Cobbs, W. L.; Legg, R. L.
1981-01-01
The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.
Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1980-01-01
This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.
Cost-efficient manufacturing of composite structures
NASA Technical Reports Server (NTRS)
Freeman, W. Tom; Davis, John G.; Johnston, Norman J.
1991-01-01
The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed.
Compatibility of molten salts with advanced solar dynamic receiver materials
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Perry, W. D.
1989-01-01
Metal-coated graphite fibers are being considered as a thermal conductivity enhancement filler material for molten salts in solar dynamic thermal energy storage systems. The successful metal coating chosen for this application must exhibit acceptable wettability and must be compatible with the molten salt environment. Contact angle values between molten lithium fluoride and several metal, metal fluoride, and metal oxide substrates have been determined at 892 C using a modification of the Wilhelmy plate technique. Reproducible contact angles with repeated exposure to the molten LiF indicated compatibility.
Structural disorder of graphite and implications for graphite thermometry
NASA Astrophysics Data System (ADS)
Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru
2018-02-01
Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry
, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer
is ambiguous in active tectonic settings.
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda
2005-01-01
Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.
Properties of two composite materials made of toughened epoxy resin and high-strain graphite fiber
NASA Technical Reports Server (NTRS)
Dow, Marvin B.; Smith, Donald L.
1988-01-01
Results are presented from an experimental evaluation of IM7/8551-7 and IM6/18081, two new toughened epoxy resin, high strain graphite fiber composite materials. Data include ply-level strengths and moduli, notched tension and compression strengths and compression-after-impact assessments. The measured properties are compared with those of other graphite-epoxy materials.
Ti-doped isotropic graphite: A promising armour material for plasma-facing components
NASA Astrophysics Data System (ADS)
García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.
2009-04-01
Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.
Concept for a beryllium divertor with in-situ plasma spray surface regeneration
NASA Astrophysics Data System (ADS)
Smith, M. F.; Watson, R. D.; McGrath, R. T.; Croessmann, C. D.; Whitley, J. B.; Causey, R. A.
1990-04-01
Two serious problems with the use of graphite tiles on the ITER divertor are the limited lifetime due to erosion and the difficulty of replacing broken tiles inside the machine. Beryllium is proposed as an alternative low-Z armor material because the plasma spray process can be used to make in-situ repairs of eroded or damaged surfaces. Recent advances in plasma spray technology have produced beryllium coatings of 98% density with a 95% deposition efficiency and strong adhesion to the substrate. With existing technology, the entire active region of the ITER divertor surface could be coated with 2 mm of beryllium in less than 15 h using four small plasma spray guns. Beryllium also has other potential advantages over graphite, e.g., efficient gettering of oxygen, ten times less tritium inventory, reduced problems of transient fueling from D/T exchange and release, no runaway erosion cascades from self-sputtering, better adhesion of redeposited material, as well as higher strength, ductility, and fracture toughness than graphite. A 2-D finite element stress analysis was performed on a 3 mm thick Be tile brazed to an OFHC soft-copper saddle block, which was brazed to a high-strength copper tube. Peak stresses remained 50% below the ultimate strength for both brazing and in-service thermal stresses.
Combined Investigation on Durability and Dynamic Failure of Advanced Naval Materials
2014-10-06
environment effect”. For example, Karasek et al. (1995) have evaluated the influence of temperature and moisture on the impact resistance of epoxy /graphite...laminates and enhanced the absorption rate. Very recently, Imielinska and Guillaumat (2004) investigated two different woven glass–aramid-fiber/ epoxy ...Each specimen contains two parts which are aluminum and PMMA bonded with Loctite Super Glue Gel Control. The bonding strength will be relatively low if
NASA Astrophysics Data System (ADS)
Sui, Dong; Xie, Yuqing; Zhao, Weimin; Zhang, Hongtao; Zhou, Ying; Qin, Xiting; Ma, Yanfeng; Yang, Yong; Chen, Yongsheng
2018-04-01
Si is a promising anode material for lithium-ion batteries, but suffers from sophisticated engineering structures and complex fabrication processes that pose challenges for commercial application. Herein, a ternary Si/graphite/pyrolytic carbon (SiGC) anode material with a structure of crystal core and amorphous shell using low-cost raw materials is developed. In this ternary SiGC composite, Si component exists as nanoparticles and is spread on the surface of the core graphite flakes while the sucrose-derived pyrolytic carbon further covers the graphite/Si components as the amorphous shell. With this structure, Si together with the graphite contributes to the high specific capacity of this Si ternary material. Also the graphite serves as the supporting and conducting matrix and the amorphous shell carbon could accommodate the volume change effect of Si, reinforces the integrity of the composite architecture, and prevents the graphite and Si from direct exposing to the electrolyte. The optimized ternary SiGC composite displays high reversible specific capacity of 818 mAh g-1 at 0.1 A g-1, initial Coulombic efficiency (CE) over 80%, and excellent cycling stability at 0.5 A g-1 with 83.6% capacity retention (∼610 mAh g-1) after 300 cycles.
NASA Astrophysics Data System (ADS)
Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang
2018-04-01
Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.
Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang
2018-05-01
Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials
Gan, Yong X.
2009-01-01
This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466
Characterization and damage evaluation of advanced materials
NASA Astrophysics Data System (ADS)
Mitrovic, Milan
Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested. Finally, the influence of loading parameters on impact damage growth is investigated experimentally though constant amplitude and spectrum loading fatigue tests. Based on observed impact damage growth during these tests it is suggested that the low load levels can be deleted from the standardized test sequence without significant influence on impact damage propagation.
Potential for on-orbit manufacture of large space structures using the pultrusion process
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.
1987-01-01
On-orbit manufacture of lightweight, high-strength, advanced-composite structures using the pultrusion process is proposed. This process is adaptable to a zero-gravity environment by using preimpregnated graphite-fiber reinforcement systems. The reinforcement material is preimpregnated with a high-performance thermoplastic resin at a ground station, is coiled on spools for compact storage, and is transported into Earth orbit. A pultrusion machine is installed in the Shuttle cargo bay from which very long lengths of the desired structure is fabricated on-orbit. Potential structural profiles include rods, angles, channels, hat sections, tubes, honeycomb-cored panels, and T, H, and I beams. A potential pultrudable thermoplastic/graphite composite material is presented as a model for determining the effect on Earth-to-orbit package density of an on-orbit manufacture, the package density is increased by 132 percent, and payload volume requirement is decreased by 56.3 percent. The fabrication method has the potential for on-orbit manufacture of structural members for space platforms, large space antennas, and long tethers.
Radioactivity evaluation for the KSTAR tokamak.
Kim, Hyunduk; Lee, Hee-Seock; Hong, Sukmo; Kim, Minho; Chung, Chinwha; Kim, Changsuk
2005-01-01
The deuterium-deuterium (D-D) reaction in the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak generates neutrons with a peak yield of 2.5 x 10(16) s(-1) through a pulse operation of 300 s. Since the structure material of the tokamak is irradiated with neutrons, this environment will restrict work around and inside the tokamak from a radiation protection physics point of view after shutdown. Identification of neutron-produced radionuclides and evaluation of absorbed dose in the structure material are needed to develop a guiding principle for radiation protection. The activation level was evaluated by MCNP4C2 and an inventory code, FISPACT. The absorbed dose in the working area decreased by 4.26 x 10(-4) mrem h(-1) in the inner vessel 1.5 d after shutdown. Furthermore, tritium strongly contributes to the contamination in the graphite tile. The amount of tritium produced by neutrons was 3.03 x 10(6) Bq kg(-1) in the carbon graphite of a plasma-facing wall.
Advanced technology for extended endurance alkaline fuel cells
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Martin, R. A.
1987-01-01
Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.
Boron/aluminum graphite/resin advanced fiber composite hybrids
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Lark, R. F.; Sullivan, T. L.
1975-01-01
Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.
Graphite composite truss welding and cap section forming subsystems. Volume 2: Program results
NASA Technical Reports Server (NTRS)
1980-01-01
The technology required to develop a beam builder which automatically fabricates long, continuous, lightweight, triangular truss members in space from graphite/thermoplastics composite materials is described. Objectives are: (1) continue the development of forming and welding methods for graphite/thermoplastic (GR/TP) composite material; (2) continue GR/TP materials technology development; and (3) fabricate and structurally test a lightweight truss segment.
Graphene-graphite oxide field-effect transistors.
Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc
2012-03-14
Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Crocker, J. F.; Ekvall, J. C.; Eudaily, R. R.; Mosesian, B.; Vancleave, R. R.; Vanhamersveld, J.
1981-01-01
The composite fin design consists of two one-piece cocured covers, two one-piece cocured spars and eleven ribs. The lower ribs are truss ribs with graphite/epoxy caps and aluminum truss members. The upper three ribs are a sandwich design with graphite/epoxy face sheets and a syntactic epoxy core. The design achieves a 27% weight saving compared to the metal box. The fastener count has been reduced from over 40,000 to less than 7000. The structural integrity of the composite fin was verified by analysis and test. The static, fail-safe and flutter analyses were completed. An extensive test program has established the material behavior under a range of conditions and critical subcomponents were tested to verify the structural concepts.
NASA Astrophysics Data System (ADS)
Raccichini, Rinaldo; Varzi, Alberto; Chakravadhanula, Venkata Sai Kiran; Kübel, Christian; Balducci, Andrea; Passerini, Stefano
2015-05-01
The electrochemical properties of graphene are strongly depending on its synthesis. Between the different methods proposed so far, liquid phase exfoliation turns out to be a promising method for the production of graphene. Unfortunately, the low yield of this technique, in term of solid material obtained, still limit its use to small scale applications. In this article we propose a low cost and environmentally friendly method for producing multilayer crystalline graphene with high yield. Such innovative approach, involving an improved ionic liquid assisted, microwave exfoliation of expanded graphite, allows the production of graphene with advanced lithium ion storage performance, for the first time, at low temperatures (<0 °C), as low as -30 °C, with respect to commercially available graphite.
Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg
NASA Technical Reports Server (NTRS)
Ginty, C. A.; Chamis, C. C.
1985-01-01
A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.
Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg
NASA Technical Reports Server (NTRS)
Ginty, Carol A.; Chamis, Christos C.
1987-01-01
A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.
Emerging low-cost LED thermal management materials
NASA Astrophysics Data System (ADS)
Zweben, Carl H.
2004-10-01
As chip size and power levels continue to increase, thermal management, thermal stresses and cost have become key LED packaging issues. Until recently, low-coefficient-of-thermal-expansion (CTE) materials, which are needed to minimize thermal stresses, had thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. Copper, which has a higher thermal conductivity (400 W/m-K), also has a high CTE, which can cause severe thermal stresses. We now have over a dozen low-CTE materials with thermal conductivities ranging between 400 and 1700 W/m-K, and almost a score with thermal conductivities at least 50% greater than that of aluminum. Some of these materials are low cost. Others have the potential to be low cost in high volume production. Emphasizing low cost, this paper reviews traditional packaging materials and the six categories of advanced materials: polymer matrix-, metal matrix-, ceramic matrix-, and carbon matrix composites; monolithic carbonaceous materials; and metal-metal composites/alloys. Topics include properties, status, applications, cost and likely future directions of new advanced materials, including carbon nanotubes and inexpensive graphite nanoplatelets.
Mechanism and modulation of terahertz generation from a semimetal - graphite
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-01-01
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818
Mechanism and modulation of terahertz generation from a semimetal--graphite.
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-03-14
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism--surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.
NASA Technical Reports Server (NTRS)
Evans, R. W.
1997-01-01
These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.
NASA Astrophysics Data System (ADS)
Ma, Zhen; Zhuang, Yuchan; Deng, Yaoming; Song, Xiaona; Zuo, Xiaoxi; Xiao, Xin; Nan, Junmin
2018-02-01
Today, with the massive application of lithium ion batteries (LIBs) in the portable devices and electric vehicles, to supply the active materials with high-performances and then to recycle their wastes are two core issues for the development of LIBs. In this paper, the spent graphite (SG) in LIBs is used as raw materials to fabricate two comparative high-capacity graphite anode materials. Based on a microsurgery-like physical reconstruction, the reconstructed graphite (RG) with a sp2+sp3 carbon surface is prepared through a microwave exfoliation and subsequent spray drying process. In contrast, the neural-network-like amorphous sp2+sp3 carbon-coated graphite (AC@G) is synthesized using a self-reconfigurable chemical reaction strategy. Compared with SG and commercial graphite (CG), both RG and AC@G have enhanced specific capacities, from 311.2 mAh g-1 and 360.7 mAh g-1 to 409.7 mAh g-1 and 420.0 mAh g-1, at 0.1C after 100 cycles. In addition, they exhibit comparable cycling stability, rate capability, and voltage plateau with CG. Because the synthesis of RG and AC@G represents two typical physical and chemical methods for the recycling of SG, these results on the sp2+sp3 carbon layer coating bulk graphite also reveal an approach for the preparation of high-performance graphite anode materials derived from SG.
Application of fiber-reinforced bismaleimide materials to aircraft nacelle structures
NASA Technical Reports Server (NTRS)
Peros, Vasilios; Ruth, John; Trawinski, David
1992-01-01
Existing aircraft engine nacelle structures employ advanced composite materials to reduce weight and thereby increase overall performance. Use of advanced composite materials on existing aircraft nacelle structures includes fiber-reinforced epoxy structures and has typically been limited to regions furthest away from the hot engine core. Portions of the nacelle structure that are closer to the engine require materials with a higher temperature capability. In these portions, existing nacelle structures employ aluminum sandwich construction and skin/stringer construction. The aluminum structure is composed of many detail parts and assemblies and is usually protected by some form of ablative, insulator, or metallic thermal shield. A one-piece composite inner cowl for a new-generation engine nacelle structure has been designed using fiber-reinforced bismaleimide (BMI) materials and honeycomb core in a sandwich construction. The new composite design has many advantages over the existing aluminum structure. Multiple details were integrated into the one-piece composite design, thereby significantly reducing the number of detail parts and fasteners. The use of lightweight materials and the reduction of the number of joints result in a significant weight reduction over the aluminum design; manufacturing labor and the overall number of tools required have also been reduced. Several significant technical issues were addressed in the development of a BMI composite design. Technical evaluation of the available BMI systems led to the selection of a toughened BMI material which was resistant to microcracking under thermal cyclic loading and enhanced the damage tolerance of the structure. Technical evaluation of the degradation of BMI materials in contact with aluminum and other metals validated methods for isolation of the various materials. Graphite-reinforced BMI in contact with aluminum and some steels was found to degrade in salt spray testing. Isolation techniques such as those used for graphite-reinforced epoxy structures were shown to provide adequate protection. The springback and producibility of large BMI structures were evaluated by manufacturing prototype hardware which had the full-scale cross section of the one-piece composite structure.
Late-time particle emission from laser-produced graphite plasma
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Hassanein, A.; Polek, M.
2011-09-01
We report a late-time "fireworks-like" particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.
Temperature effect of friction and wear characteristics for solid lubricating graphite
NASA Astrophysics Data System (ADS)
Kim, Yeonwook; Kim, Jaehoon
2015-03-01
Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.
Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries
NASA Astrophysics Data System (ADS)
Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin
2016-06-01
In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.
Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, III, D. L.; Yoon, S.
2012-10-25
The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, whichmore » is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.« less
Heat exchanger using graphite foam
Campagna, Michael Joseph; Callas, James John
2012-09-25
A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.
NASA Astrophysics Data System (ADS)
Belharouak, Ilias; Koenig, Gary M.; Amine, K.
A promising anode material for hybrid electric vehicles (HEVs) is Li 4Ti 5O 12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn 2O 4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn 2O 4 cathode materials.
Materials Refining for Structural Elements From Lunar Resources
NASA Astrophysics Data System (ADS)
Landis, Geoffrey A.
1998-01-01
Use of in situ resources for construction on the Moon will require manufacturing structural materials out of lunar resources. Many materials that are currently used for aerospace and construction require materials that have low availability on the Moon. For example, graphite fiber, SiC fiber, and artificial fiber composites (such as Kevlar, Spectra, etc.) are used as advanced lightweight structural materials on Earth, but the low availability of C on the Moon makes these poor choices. Likewise the polymers used as the matrix for these composites, epoxy or polyester, also suffer from the low availability of C. Bulk paving and construction materials such as cement or concrete suffer from the low availability of water on the Moon, while asphalt, a common paving material on Earth, suffers from the low availability of C.
Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors
NASA Astrophysics Data System (ADS)
Tien, Chien-Pin; Teng, Hsisheng
A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.
Method of preventing oxidation of graphite fireproof material
NASA Technical Reports Server (NTRS)
Yamauchi, S.; Suzuki, H.
1981-01-01
A method of preventing oxidation of graphite fireproof material is given. A blend of 1 to 33 weight parts alumina and 3 to 19 parts of K2O + Na2O in 100 parts of SiO2 is pulverized followed by addition of 5 to 160 parts of silicon carbide powder in 100 parts of the mixture. This is thoroughly blended and coated on the surface of graphite fireproof material.
Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo
2013-03-01
Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachinger, Johannes; Muller, Walter; Marsat, Eric
2013-07-01
Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. Themore » most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or negligible porosity and a water impermeable structure. Structural analysis shows that the glass in the composite has replaced the pores in the graphite structure. The typical pore volume of a graphite material is in the range of 20 vol.%. Therefore no volume increase will occur in comparison with the former graphite material. This IGM material will allow the encapsulation of graphite with package densities larger than 1.5 ton per cubic meter. Therefore a huge volume saving can be achieved by such an alternative encapsulation method. Disposal performance is also enhanced since little or no leaching of radionuclides is observed due to the impermeability of the material NNL and FNAG have proved that IGM can be produced by hot isostatic pressing (HIP) which has several advantages for radioactive materials over the HVP process. - The sealed HIP container avoids the release of any radionuclides. - The outside of the waste package is not contaminated. - The HIP process time is shorter than the HVP process time. The isostatic press avoids anisotropic density distributions. - Simple filling of the HIP container has advantages over the filling of an axial die. (authors)« less
NASA Astrophysics Data System (ADS)
Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan
2018-06-01
Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.
Synthesis of soluble graphite and graphene.
Kelly, K F; Billups, W E
2013-01-15
Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without resorting to oxidation. Our exfoliation process involves the intercalation of lithium into bulk graphite to yield graphene sheets reduced by the lithium. We can alkylate the resulting graphite salt reductively using solubilizing dodecyl groups. By probe microscopy, we show that these groups are attached covalently only at the graphitic edges.
Kouhnavard, Mojgan; Ludin, Norasikin Ahmad; Ghaffari, Babak V; Sopian, Kamarozzaman; Ikeda, Shoichiro
2015-05-11
Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NEW METHOD OF GRAPHITE PREPARATION
Stoddard, S.D.; Harper, W.T.
1961-08-29
BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)
Characterization of nuclear graphite elastic properties using laser ultrasonic methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W; Han, Karen; Olasov, Lauren R
2015-01-01
Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less
Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.
Srivastava, Suneel Kumar; Pionteck, Jürgen
2015-03-01
Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.
Advanced cathode materials for high-power applications
NASA Astrophysics Data System (ADS)
Amine, K.; Liu, J.; Belharouak, I.; Kang, S.-H.; Bloom, I.; Vissers, D.; Henriksen, G.
In our efforts to develop low cost high-power Li-ion batteries with excellent safety, as well as long cycle and calendar life, lithium manganese oxide spinel and layered lithium nickel cobalt manganese oxide cathode materials were investigated. Our studies with the graphite/LiPF 6/spinel cells indicated a very significant degradation of capacity with cycling at 55 °C. This degradation was caused by the reduction of manganese ions on the graphite surface which resulted in a significant increase of the charge-transfer impedance at the anode/electrolyte interface. To improve the stability of the spinel, we investigated an alternative salt that would not generate HF acid that may attack the spinel. The alternative salt we selected for this work was lithium bisoxalatoborate, LiB(C 2O 4) 2 ("LiBoB"). In this case, the graphite/LiBoB/spinel Li-ion cells exhibited much improved cycle/calendar life at 55 °C and better abuse tolerance, as well as excellent power. A second system based on LiNi 1/3Co 1/3Mn 1/3O 2 layered material was also investigated and its performance was compared to commercial LiNi 0.8Co 0.15Al 0.05O 2. Cells based on LiNi 1/3Co 1/3Mn 1/3O 2 showed lower power fade and better thermal safety than the LiNi 0.8Co 0.15Al 0.05O 2-based commercial cells under similar test conditions. Li-ion cells based on the material with excess lithium (Li 1.1Ni 1/3Co 1/3Mn 1/3O 2) exhibited excellent power performance that exceeded the FreedomCAR requirements.
New high-temperature flame-resistant resin matrix for RP/C
NASA Technical Reports Server (NTRS)
Kourtides, D. A.
1981-01-01
The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced thermoset and thermoplastic resins as matrices are discussed. The evaluated properties include anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and high-temperature mechanical properties. It is shown that graphite composites having the highest char yield exhibit optimum fire-resistant properties.
Non-activated high surface area expanded graphite oxide for supercapacitors
NASA Astrophysics Data System (ADS)
Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G. E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C.
2015-12-01
Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m2/g to 2490 m2/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.
Huang, Chun; Kim, Ayoung; Chung, Dong Jae; Park, Eunjun; Young, Neil P; Jurkschat, Kerstin; Kim, Hansu; Grant, Patrick S
2018-05-09
Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiO x nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiO x helps to accommodate the volume changes of the Si. Here, we demonstrate a new electrode architecture for further advancing the performance of Si/SiO x nanocomposite anodes using a scalable layer-by-layer atomization spray deposition technique. We show that particulate C interlayers between the current collector and the Si/SiO x layer and between the separator and the Si/SiO x layer improved electrical contact and reduced irreversible pulverization of the Si/SiO x significantly. Overall, the multiscale approach based on microstructuring at the electrode level combined with nanoengineering at the material level improved the capacity, rate capability, and cycling stability compared to that of an anode comprising a random mixture of the same materials.
User's guide to the Residual Gas Analyzer (RGA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artman, S.A.
1988-08-04
The Residual Gas Analyzer (RGA), a Model 100C UTI quadrupole mass spectrometer, measures the concentrations of selected masses in the Fusion Energy Division's (FED) Advanced Toroidal Facility (ATF). The RGA software is a VAX FORTRAN computer program which controls the experimental apparatus, records the raw data, performs data reduction, and plots the data. The RGA program allows data to be collected from an RGA on ATF or from either of two RGAs in the laboratory. In the laboratory, the RGA diagnostic plays an important role in outgassing studied on various candidate materials for fusion experiments. One such material, graphite, ismore » being used more often in fusion experiments due to its ability to withstand high power loads. One of the functions of the RGA diagnostic is aid in the determination of the best grade of graphite to be used in these experiments and to study the procedures used to condition it. A procedure of particular interest involves baking the graphite sample in order to remove impurities that may be present in it. These impurities can be studied while in the ATF plasma or while being baked and outgassed in the laboratory. The Residual Gas Analyzer is a quadrupole mass spectrometer capable of scanning masses ranging in size from 1 atomic mass unit (amu) to 300 amu while under computer control. The procedure for collecting data for a particular mass is outlined.« less
Peterson, George R.
1976-01-01
Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.
Design and development of high efficiency 140W space TWT with graphite collector
NASA Astrophysics Data System (ADS)
Srivastava, V.; Purohit, G.; Sharma, R. K.; Sharma, S. M.; Bera, A.; Bhaskar, P. V.; Singh, R. R.; Prasad, K.; Kiran, V.
2008-05-01
4-stage graphite collector assembly has been designed and developed for a 140W Ku-band space TWT to achieve the collector efficiency more than 80%. The UHV compatible, high density, copper impregnated POCO graphite (DFP-1C) was used to fabricate the four collector electrodes of the 4-stage depressed collector. Copper impregnated graphite material is used for the collector electrodes because of its low secondary electron emission coefficient, high thermal and electrical conductivities, easy machining and brazing, low thermal expansion coefficient and low weight. The graphite material was characterized for the UHV compatibility. The collector electrodes were precisely fabricated by careful machining, and technology was developed for brazing of graphite electrodes with high voltage alumina insulators. Complete TWT with four-stage graphite collector was developed and 140W output power at gain more than 55 dB was achieved. The TWT was pumped from both the gun and the collector ends.
Very high temperature behavior of HTGR core materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soo, P.; Uneberg, G.; Sabatini, R.
1978-01-01
A description is given of experiments to investigate the behavior of HTGR core materials during hypothetical heatup accidents in which the core temperature is assumed to reach values between 2400/sup 0/C and the graphite sublimation range (>3600/sup 0/C). The work includes BISO coated fuel particle failure, simulated fission product migration in core graphite, and graphite sublimation behavior.
Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1984-01-01
If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the Sun, motion of the concentrator may stop. As the Sun moves relative to the Earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.
Solar tests of aperture plate materials for solar thermal dish collectors
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1984-01-01
If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.
Solar tests of aperture plate materials for solar thermal dish collectors
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1984-01-01
If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.
Neutron vibrational spectroscopic studies of novel tire-derived carbon materials.
Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L; Veith, Gabriel M; Levine, Alan M; Lee, Richard J; Mahurin, Shannon M; Dai, Sheng; Naskar, Amit K; Paranthaman, Mariappan Parans
2017-08-23
Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this communication, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C-H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption-desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and -CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced -SO 3 H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. This study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.
Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David
2012-10-02
Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resin/graphite fiber composites
NASA Technical Reports Server (NTRS)
Cavano, P. J.
1974-01-01
Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.
NASA Astrophysics Data System (ADS)
Peyvandi, Amirpasha
Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods of exposure to chloride solutions, pointing at the benefits of nanoplatelets towards enhancement of concrete resistance to chloride ion diffusion. It was also found that the intensity of Thaumasite, a key species marking sulfate attack on cement hydrates, was lowered with the addition of graphite nanoplatelets in concrete exposed to sulfate solutions. Experimental evaluations were conducted on scaled-up production of concrete nanocomposite in precast concrete plants. Full-scale reinforced concrete pipes and beams were produced using concrete nanocomposites. Durability and structural tests indicated that the use of graphite nanoplatelets, alone or in combination with synthetic (PVA) fibers, produced significant gains in the durability characteristics, and also benefited the structural performance of precast reinforced concrete products. The material and scaled-up structural investigations conducted in the project concluded that lower-cost graphite nanomaterials (e.g., graphite nanoplatelets) offer significant potentials as multi-functional additives capable of enhancing the barrier, durability and mechanical performance of concrete materials. The benefits of graphite nanomaterials tend to be more pronounced in higher-performance concrete materials.
Durability of aircraft composite materials
NASA Technical Reports Server (NTRS)
Dextern, H. B.
1982-01-01
Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.
Bien, T N; Gul, W H; Bac, L H; Kim, J C
2014-11-01
Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.
Electrode material comprising graphene-composite materials in a graphite network
Kung, Harold H.; Lee, Jung K.
2014-07-15
A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.
Electrode material comprising graphene-composite materials in a graphite network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Harold H.; Lee, Jung K.
A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.
Lightweight orthotic appliances
NASA Technical Reports Server (NTRS)
Baucom, R. M.; St. Clair, T. L.
1976-01-01
Graphite-filament reinforced polymer materials are used in applications requiring high tensile strength and modulus. Superior properties of graphite composite materials permit fabrication of supports that are considerably lighter, thinner, and stiffer than conventional components.
Friction and wear behaviors and mechanisms of ZnO and graphite in Cu-based friction materials
NASA Astrophysics Data System (ADS)
Chen, Tianhua
2018-03-01
Based on powder metallurgy method, nanometer graphite reinforced copper matrix friction materials were prepared. The nanometer zinc oxide were obtained by the hydro-thermal synthesis. Nanoparticles on friction performances of copper-based materials was studied. The wear morphology were investigated by metallographic microscopes. Tribological performance were use the inertia friction and wear testing machine. Experimental results show that the friction factor of the friction material added by nanometer zinc oxide and nano graphite are high and stable, which has no obvious recession phenomenon with the increase of number of joint compared with not add nanoparticles of friction materials.
Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Kazimi, Mujid S.
2013-10-01
The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.
Li, Jia; Wang, Guangxu; Xu, Zhenming
2016-01-25
The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of "waste+waste→resources." After mechanical scraping the mixed electrode materials enrich powders of LiCoO2 and graphite. The possible reaction between LiCoO2 and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO2 and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Brewer, W. D.
1975-01-01
The behavior of graphite and several charring ablators in a variety of high radiative heat flux environments was studied in various radiative environments produced by a CO2 laser and a carbon arc facility. Graphite was also tested in xenon arc radiation. Tests were conducted in air nitrogen, helium, and a mixture of CO2 and nitrogen, simulating the Venus atmosphere. The experimental results are compared with theoretical results obtained with a one dimensional charring ablator analysis and a two dimensional subliming ablator analysis. Photomicroscopy showed no significant differences in appearance or microstructure of the charring ablators or graphite after testing in the three different facilities, indicating that the materials respond fundamentally the same to the radiation of different frequencies. The performance of phenolic nylon and graphite was satisfactorily predicted with existing analyses and published material property data.
Qi, Xuejun; Song, Wenwu; Shi, Jianwei
2017-01-01
Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.
Hydrogen storage material and process using graphite additive with metal-doped complex hydrides
Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC
2008-06-10
A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.
NASA Technical Reports Server (NTRS)
Kanakia, M. D.; Switzer, W. G.; Hartzell, G. E.; Kaplan, H. L.
1980-01-01
Both materials possess a high degree of thermal stability, with total heat release values being essentially identical under piloted ignition conditions over a range of 5 to 10 W/sq cm incident heat flux. The graphite/epoxy material had a tendency to auto-ignite at a lower heat flux (about 7 W/sq cm) and produced about 23 percent higher peak heat release rates, approximately 42 percent more carbon monoxide and considerably more smoke than the graphite/bismaleimide under conditions of piloted ignition. Toxicological potencies of smoke produced from the two composites were equivalent for 30 minute exposures. Potencies were also comparable to many common materials, such as wood. There was no evidence for the formation of an "unusual toxicant" nor for any short term post-exposure toxicological effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, J.L.
1999-06-17
During the Phase 1 SBIR, SSG has integrated a number of advanced Silicon Carbide (SiC) materials to produce an innovative, lightweight, fracture tough, dimensionally stable, composite mask platen for use on an SVGL Microalign instrument. The fiber reinforced SiC material used has several critical advantages when compared to other competing materials: significantly improved lightweighting (SiC provides a specific stiffness which can be 8x better than aluminum, 8x better than Zerodur, and 2x better than carbon fiber/graphite epoxy based composite materials); excellent long term dimensional stability (through low CTE and no moisture absorption); superior damping (20x better than aluminum 2x bettermore » than carbon fiber/graphite epoxy). All of these advantages combine to yield an optimal material for high speed translation stage applications. During the Phase 1 SBIR SSG has designed, modeled, fabricated, and tested an ultralightweight composite SiC platen which is currently being integrated onto an SVGL Microalign instrument. The platen is ultralightweight (4 lbs with overall dimensions of approx. 18 inch x 10 inch x 1.5 inch) and stiff (first resonant mode at 770 Hz), and meets all of SVG`s operational and functional requirements. SVGL has supported the Phase 1 effort by providing co-funding during Phase 1, and this support is intended to continue through Phase 2.« less
Stable dispersions of polymer-coated graphitic nanoplatelets
NASA Technical Reports Server (NTRS)
Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)
2011-01-01
A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.
NASA Astrophysics Data System (ADS)
Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina
2017-04-01
Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite localisation. The lack of published systematic studies of mechanical modification of the structure of graphite inhibits further conclusion to be drawn. Thus, we performed laboratory deformation experiments during which we sheared highly crystalline graphite powder at room temperature, normal stresses of 5 MPa and 25 MPa and sliding velocities of 1 µm/s, 10 µm/s and 100 µm/s. The degree of graphite crystallinity, both in the starting and resulting materials, was analysed by Raman microspectroscopy. Our results demonstrate consistent decrease of graphite crystallinity with increasing shear strain. We conclude that: i) graphite 'thermometers' are unreliable in brittely deformed rocks; ii) a shear strain calibration of graphite 'thermometers' is needed; iii) fault creep is very likely responsible for the observed structural and textural characteristics of graphite in the Alpine Fault cataclasites. Finally, to investigate the possibility of hydrothermal origin for at least some of the graphite in the Alpine Fault cataclasites we will also present synchrotron FTIR and carbon isotope analysis of the Alpine fault rocks.
Dielectric properties of novel polyurethane-PZT-graphite foam composites
NASA Astrophysics Data System (ADS)
Tolvanen, Jarkko; Hannu, Jari; Nelo, Mikko; Juuti, Jari; Jantunen, Heli
2016-09-01
Flexible foam composite materials offer multiple benefits to future electronic applications as the rapid development of the electronics industry requires smaller, more efficient, and lighter materials to further develop foldable and wearable applications. The aims of this work were to examine the electrical properties of three- and four-phase novel foam composites in different conditions, find the optimal mixture for four-phase foam composites, and study the combined effects of lead zirconate titanate (PZT) and graphite fillers. The flexible and highly compressible foams were prepared in a room-temperature mixing process using polyurethane, PZT, and graphite components as well as their combinations, in which air acted as one phase. In three-phase foams the amount of PZT varied between 20 and 80 wt% and the amount of graphite, between 1 and 15 wt%. The four-phase foams were formed by adding 40 wt% of PZT while the amount of graphite ranged between 1 and 15 wt%. The presented results and materials could be utilized to develop new flexible and soft sensor applications by means of material technology.
NASA Technical Reports Server (NTRS)
1980-01-01
Principal program activities dealt with the literature survey, design of joint concepts, assessment of GR/PI material quality, fabrication of test panels and specimens, and small specimen testing. Bonded and bolted designs are presented for each of the four major attachment types. Quality control data are presented for prepreg Lots 2W4651 and 3W2020. Preliminary design allowables test results for tension tests and compression tests of laminates are also presented.
Development and test of advanced composite components. Center Directors discretionary fund program
NASA Technical Reports Server (NTRS)
Faile, G.; Hollis, R.; Ledbetter, F.; Maldonado, J.; Sledd, J.; Stuckey, J.; Waggoner, G.; Engler, E.
1985-01-01
This report describes the design, analysis, fabrication, and test of a complex bathtub fitting. Graphite fibers in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications.
The role of fiber and matrix in crash energy absorption of composite materials
NASA Technical Reports Server (NTRS)
Farley, G. L.; Bird, R. K.; Modlin, J. T.
1986-01-01
Static crushing tests were conducted on tube specimens fabricated from graphite/epoxy, Kevlar/epoxy and hybrid combinations of graphite-Kevlar/epoxy to examine the influence the fiber and matrix constitutive properties and laminate architecture have on energy absorption. Fiber and matrix ultimate failure strain were determined to significantly effect energy absorption. The energy absorption capability of high ultimate failure strain materials (AS-6/F185 and AS-6/HST-7) was less than materials having lower ultimate failure strain. Lamina stacking sequence had up to a 300 percent change in energy absorption for the materials tested. Hybridizing with graphite and Kevlar reinforcements resulted in materials with high energy absorption capabilities that have postcrushing integrity.
Impact of corrosion test container material in molten fluorides
Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; ...
2015-10-15
The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion inmore » graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.« less
Raman Scattering in a New Carbon Material
NASA Technical Reports Server (NTRS)
Voronov, O. A.; Street, K. W., Jr.
2010-01-01
Samples of a new carbon material, Diamonite-B, were fabricated under high pressure from a commercial carbon black--identified as mixed fullerenes. The new material is neither graphite-like nor diamond-like, but exhibits electrical properties close to graphite and mechanical properties close to diamond. The use of Raman spectroscopy to investigate the vibrational dynamics of this new carbon material and to provide structural characterization of its short-, medium- and long-range order is reported. We also provide the results of investigations of these samples by high-resolution electron microscopy and X-ray diffraction. Hardness, electrical conductivity, thermal conductivity and other properties of this new material are compared with synthetic graphite-like and diamond-like materials, two other phases of synthetic bulk carbon.
NASA Astrophysics Data System (ADS)
Niwase, Keisuke; Terasawa, Mititaka; Honda, Shin-ichi; Niibe, Masahito; Hisakuni, Tomohiko; Iwata, Tadao; Higo, Yuji; Hirai, Takeshi; Shinmei, Toru; Ohfuji, Hiroaki; Irifune, Tetsuo
2018-04-01
The super hard material of "compressed graphite" (CG) has been reported to be formed under compression of graphite at room temperature. However, it returns to graphite under decompression. Neutron-irradiated graphite, on the other hand, is a unique material for the synthesis of a new carbon phase, as reported by the formation of an amorphous diamond by shock compression. Here, we investigate the change of structure of highly oriented pyrolytic graphite (HOPG) irradiated with neutrons to a fluence of 1.4 × 1024 n/m2 under static pressure. The neutron-irradiated HOPG sample was compressed to 15 GPa at room temperature and then the temperature was increased up to 1500 °C. X-ray diffraction, high-resolution transmission electron microscopy on the recovered sample clearly showed the formation of a significant amount of quenchable-CG with ordinary graphite. Formation of hexagonal and cubic diamonds was also confirmed. The effect of irradiation-induced defects on the synthesis of quenchable-CG under high pressure and high temperature treatment was discussed.
AGC-2 Specimen Post Irradiation Data Package Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William Enoch; Swank, W. David; Rohrbaugh, David T.
This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens weremore » subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison between pre- and post-irradiation properties is presented. A more complete evaluation of trends in the material property changes, as well as irradiation-induced creep due to irradiation, temperature, and applied load on specimens will be discussed in later AGC-2 post-irradiation examination analysis reports.« less
Solid lubricant materials for high temperatures: A review
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1985-01-01
Solid lubricants that can be used above 300 C in air are discussed, including coatings and self-lubricating composite bearing materials. The lubricants considered are representative dichalcogenides, graphite, graphite fluoride, polyimides, soft oxides, oxidatively stable fluorides, and hard coating materials. A few general design considerations revelant to solid lubrication are interspersed.
NASA Technical Reports Server (NTRS)
Galasso, F. S.; Veltri, R. D.; Scola, D. A.
1979-01-01
Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.
Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms
Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.
2011-01-01
Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828
RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES
Fromm, L.W. Jr.
1959-09-01
An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.
A Comparison of the Irradiation Creep Behavior of Several Graphites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Windes, Will
2016-01-01
Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpamore » (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.« less
Thermal Pyrolytic Graphite Enhanced Components
NASA Technical Reports Server (NTRS)
Hardesty, Robert E. (Inventor)
2015-01-01
A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.
Modelling deformation and fracture of Gilsocarbon graphite subject to service environments
NASA Astrophysics Data System (ADS)
Šavija, Branko; Smith, Gillian E.; Heard, Peter J.; Sarakinou, Eleni; Darnbrough, James E.; Hallam, Keith R.; Schlangen, Erik; Flewitt, Peter E. J.
2018-02-01
Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic oxidation. In this paper, we discuss measurements undertaken of mechanical properties at the micro-length-scale for virgin and irradiated graphite. These data provide the necessary inputs to an experimentally-informed model that predicts the deformation and fracture properties of Gilsocarbon graphite at the centimetre length-scale, which is commensurate with laboratory test specimen data. The model predictions provide an improved understanding of how the mechanical properties and fracture characteristics of this type of graphite change as a result of exposure to the reactor service environment.
NASA Technical Reports Server (NTRS)
Lambrecht, Walter R. L.
1992-01-01
The goals of the research were to provide a fundamental science basis for why the bonding of Cu to graphite is weak, to critically evaluate the previous analysis of the wetting studies with particular regard to the values used for the surface energies of Cu and graphite, and to make recommendations for future experiments or other studies which could advance the understanding and solution of this technological problem. First principles electronic structure calculations were used to study the problem. These are based on density functional theory in the local density approximation and the use of the linear muffin-tin orbital band structure method. Calculations were performed for graphite monolayers, single crystal graphite with the hexagonal AB stacking, bulk Cu, Cu(111) surface, and Cu/graphite superlattices. The study is limited to the basal plane of graphite because this is the graphite plane exposed to Cu and graphite surface energies and combined with the measured contact angles to evaluate the experimental adhesion energy.
Graphite and ablative material response to CO2 laser, carbon-arc, and xenon-arc radiation
NASA Technical Reports Server (NTRS)
Brewer, W. D.
1976-01-01
The behavior was investigated of graphite and several charring ablators in a variety of high-radiative heat-flux environments. A commercial-grade graphite and nine state-of-the-art charring ablators were subjected to various radiative environments produced by a CO2 laser and a carbon arc. Graphite was also tested in xenon-arc radiation. Heat-flux levels ranged from 10 to 47 MW/sq m. Tests were conducted in air, nitrogen, helium, and a CO2-N2 mixture which simulated the Venus atmosphere. The experimental results were compared with theoretical results obtained with a one-dimensional charring-ablator analysis and a two-dimensional subliming-ablator analysis. Neither the graphite nor the charring ablators showed significant differences in appearance or microstructure after testing in the different radiative environments. The performance of phenolic nylon and graphite was predicted satisfactorily with existing analyses and published material property data. Good agreement between experimental and analytical results was obtained by using sublimation parameters from a chemical nonequilibrium analysis of graphite sublimation. Some charring ablators performed reasonably well and could withstand radiative fluxes of the level encountered in certain planetary entries. Other materials showed excessive surface recession and/or large amounts of cracking and spalling, and appear to be unsuitable for severe radiative environments.
Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells
2014-01-01
Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912
A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore.
Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong
2017-04-14
The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg -1 at 150 W·kg -1 , and 48 W·h·kg -1 at a high-power density of 7.4 kW·kg -1 . This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production.
A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore
Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong
2017-01-01
The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg−1 at 150 W·kg−1, and 48 W·h·kg−1 at a high-power density of 7.4 kW·kg−1. This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production. PMID:28772773
Song, Wenwu; Shi, Jianwei
2017-01-01
Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544
Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report
NASA Technical Reports Server (NTRS)
Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.
1982-01-01
Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.
Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Bush, Harold G.
2001-01-01
The results of a series of tests conducted at the NASA Langley Research Center to evaluate the behavior of an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending, down-bending and brake roll loading conditions were applied. The structure with non-visible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole.
Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.
2001-01-01
Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Astrophysics Data System (ADS)
Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.
2001-01-01
Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen
2013-01-01
Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g−1 at 0.2 C), good repeatability/rate capability (even >900 mAh g−1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances. PMID:23572030
Separation medium containing thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)
2012-01-01
A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.
Flexure fatigue testing of 90 deg graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Peck, Ann Nancy W.
1995-01-01
A great deal of research has been performed characterizing the in-plane fiber-dominated properties, under both static and fatigue loading, of advanced composite materials. To the author's knowledge, no study has been performed to date investigating fatigue characteristics in the transverse direction. This information is important in the design of bonded composite airframe structure where repeated, cyclic out-of-plane bending may occur. Recent tests characterizing skin/stringer debond failures in reinforced composite panels where the dominant loading in the skin is flexure along the edge of the frame indicate failure initiated either in the skin or else the flange, near the flange tip. When failure initiated in the skin, transverse matrix cracks formed in the surface skin ply closest to the flange and either initiated delaminations or created matrix cracks in the next lower ply, which in turn initiated delaminations. When failure initiated in the flanges, transverse cracks formed in the flange angle ply closest to the skin and initiated delamination. In no configuration did failure propagate through the adhesive bond layer. For the examined skin/flange configurations, the maximum transverse tension stress at failure correlates very well with the transverse tension strength of the composites. Transverse tension strength (static) data of graphite epoxy composites have been shown to vary with the volume of material stressed. As the volume of material stressed increased, the strength decreased. A volumetric scaling law based on Weibull statistics can be used to predict the transverse strength measurements. The volume dependence reflects the presence of inherent flaws in the microstructure of the lamina. A similar approach may be taken to determine a volume scale effect on the transverse tension fatigue behavior of graphite/epoxy composites. The objective of this work is to generate transverse tension strength and fatigue S-N characteristics for composite materials using 3-point flexure tests of 90 deg graphite/epoxy specimens. Investigations will include the volume scale effect as well as frequency and span-to-thickness ratio effects. Prior to the start of the experimental study, an analytical study using finite element modeling will be performed to investigate the span-to-thickness effect. The ratio of transverse flexure stress to shear stress will be monitored and its values predicted by the FEM analysis compared with the value obtained using a 'strength of materials' based approach.
High temperature x-ray micro-tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.
2016-07-27
There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrixmore » composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.« less
Zainal, Zulkarnain; Yusof, Nor Azah
2018-01-01
Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures. PMID:29438327
The Use of Pristine and Intercalated Graphite Fiber Composites as Buss Bars in Lead-Acid Batteries
NASA Technical Reports Server (NTRS)
Opaluch, Amanda M.
2004-01-01
This study was conducted as a part of the Firefly Energy Space Act Agreement project to investigate the possible use of composite materials in lead acid batteries. Specifically, it examined the use of intercalated graphite composites as buss bars. Currently, buss bars of these batteries are made of lead, a material that is problematic for several reasons. Over time, the lead is subject to both corrosion at the positive plate and sulfation at the negative plate, resulting in decreased battery life. In addition, the weight and size of the lead buss bars make for a heavy and cumbersome battery that is undesirable. Functionality and practicality of lead buss bars is adequate at best; consequently, investigation of more efficient composite materials would be advantageous. Practically speaking, graphite composites have a low density that is nearly one fourth that of its lead counterpart. A battery made of less dense materials would be more attractive to the consumer and the producer because it would be light and convenient. More importantly, low weight would be especially beneficial because it would result in greater overall power density of the battery. In addition to power density, use of graphite composite materials can also increase the life of the battery. From a functional standpoint, corrosion and sulfation at the positive and negative plates are major obstacles when considering how to extend battery life. Neither of these reactions are a factor when graphite composites replace lead parts because graphite is chemically non-reactive with the electrolyte within the battery. Without the problem of corrosion or sulfation, battery life expectancy can be almost doubled. The replacement of lead battery parts with composite materials is also more environmentally favorable because of easy disposal of organic materials. For this study, both pristine and bromine intercalated single-ply graphite fiber composites were created. The composites were fabricated in such a way as to facilitate their use in a 3" x 1/2" buss bar test cell. The prime objective of this investigation was to examine the effectiveness of a variety of graphite composite materials to act as buss bars and carry the current to and from the positive and negative battery plates. This energy transfer can be maximized by use of materials with high conductivity to minimize the buss resistance. Electrical conductivity of composites was measured using both a contactless eddy current probe and a four point measurement. In addition, the stability of these materials at battery-use conditions was characterized.
1989-01-01
channelling and scanning electron microscopy (SEM) of highly oriented pyrolytic graphite ( HOPG ), comparative scratch testing results and some ideas on...electrode graphite , HOPG and carbon fibers also show enhanced wear resistance followoing irradiation (6), the extent of which depends upon the initial...literature dealing with damage effects and physical property changes following neutron irradiation of graphite (single and polycrystalline ) in nuclear
Post Irradiation Examination Results of the NT-02 Graphite Fins NUMI Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, K.; Hurh, P.; Sidorov, V.
2017-02-10
The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potentialmore » localized oxidation in the heated region of the target. Understanding the long-termstructural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.« less
Advanced Heat Exchangers for Dry Cooling Systems, Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortini, Arthur J.; Horwath, Joseph
Dry cooling systems are an option for industrial and utility power plants that cannot obtain permits for cooling water or where cooling water is unavailable. Currently available dry cooling systems are more expensive and less efficient than wet cooling systems, so significant improvements in efficiency are needed to make them economically viable. Previous attempts at using foams as cooling fin materials for power generating systems have focused on high thermal conductivity graphite foams made via the Oak Ridge process. Because these materials have high flow restrictions and hence low permeability with respect to air flow, their internal volume and surfacemore » area were not effectively used. Consequently, they performed poorly and offered no advantage over aluminum fins. A foam with a more open structure would provide increased permeability, enable greater airflow through the bulk material, increase the rate of heat transfer, and enable the material to outperform traditional fin structures. In this project, Ultramet designed, fabricated, and tested low flow restriction, high-efficiency foam-based heat exchangers. Calculations based on existing thermal and hydraulic data for Ultramet’s high-performance open-cell foams indicated that 65-ppi (pores per linear inch) pyrolytic graphite foam with a relative density of 15 vol%, produced by chemical vapor infiltration (CVI), would have an effectiveness significantly greater than that of a state-of-the-art Hamon/Balcke-Durr aluminum fin system and greater than that of the POCO graphite foams previously tested for the DOE National Energy Technology Laboratory. Using the same chevron design, test setup, and run conditions as were used with the Hamon/Balcke-Durr fin system and the POCO foams, Ultramet tested graphite foams with air flow velocities of 0.07–3.2 m/sec and pressure drops of 0.03–9.7 inH2O. The best-performing graphite foam architectures had air velocities in excess of 2.5 m/sec when the pressure drop was 1 inH2O. Because a foam-based system is more efficient than a fin-based system, a smaller heat exchanger installation can be used, significantly reducing the installation cost. Furthermore, because the foam-based system is physically smaller with no increase in flow restriction, less electrical power is needed to run the fans to drive the air through the condenser. The result is a decrease in both the installation and operating costs, which in turn will decrease the overall life cycle cost of the system.« less
Evaluation of composite flattened tubular specimen. [fatigue tests
NASA Technical Reports Server (NTRS)
Liber, T.; Daniel, I. M.
1978-01-01
Flattened tubular specimens of graphite/epoxy, S-glass/epoxy, Kevlar-49/epoxy, and graphite/S-glass/epoxy hybrid materials were evaluated under static and cyclic uniaxial tensile loading and compared directly with flat coupon data of the same materials generated under corresponding loading conditions. Additional development for the refinement of the flattened specimen configuration and fabrication was required. Statically tested graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy flattened tube specimens exhibit somewhat higher average strengths than their corresponding flat coupons. Flattened tube specimens of the graphite/S-glass/epoxy hybrid and the graphite/epoxy flattened tube specimens failed in parasitic modes with consequential lower strength than the corresponding flat coupons. Fatigue tested flattened tube specimens failed in parasitic modes resulting in lower fatigue strengths than the corresponding flat coupons.
Design of Modern Reactors for Synthesis of Thermally Expanded Graphite.
Strativnov, Eugene V
2015-12-01
One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.
Feasibility of intercalated graphite railgun armatures
NASA Technical Reports Server (NTRS)
Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steven
1990-01-01
Graphite intercalation compounds may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have the desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations were performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading are addressed for the case of highly oriented pyrolytic graphite.
Payne, Liam; Heard, Peter J; Scott, Thomas B
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK’s first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600–1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374
Satellite thermal storage systems using metallic phase-change materials
NASA Astrophysics Data System (ADS)
Lauf, R. J.; Hamby, C.
Solar (thermal) dynamic power systems for satellites require a heat storage system capable of operating the engine during eclipse. A system is described in which the phase-change material (PCM) is a metal rather than the more conventional fluoride salts. Thermal storage modules consisting of germanium contained in graphite have good thermal conductivity, low parasitic mass, and are physically and chemically stable. The result is described for thermal cycle testing of graphite capsules containing germanium and several germanium- and silicon-based alloys, as well as some initial tests of the compatibility of graphite with Nb-1 percent Zr structural materials.
NASA Astrophysics Data System (ADS)
Mu, Mulan; Wan, Chaoying; McNally, Tony
2017-12-01
The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.
Post impact compressive strength in composites
NASA Technical Reports Server (NTRS)
Demuts, Edvins; Sandhu, Raghbir S.; Daniels, John A.
1992-01-01
Presented in this paper are the plan, equipment, procedures, and findings of an experimental investigation of the tolerance to low velocity impact of a graphite epoxy (AS4/3501-6) and graphite bismaleimide (M6/CYCOM3100) advanced composites. The applied impacts were governed by the Air Force Guide Specification 87221. Specimens of each material system having a common nominal layup (10% 0 deg; 80% +/-45 deg; 10% 90 deg), a common 7 inch (17.78 cm) by 10 inch (25.40 cm) size, five different thicknesses (9, 26, 48, 74, and 96 plies), and ambient moisture content were impacted and strength tested at room temperature. Damaged areas and post impact compression strengths (PICS) were among the most significant findings obtained. While the undamaged per ply compression strength of both materials is a strong function of laminate thickness, the per ply PICS is not. The average difference in per ply PICS between the two material systems is about seven percent. Although a smaller percentage of the applied kinetic energy was absorbed by the Gr/BMI than by the Gr/Epoxy composites, larger damaged areas were produced in the Gr/BMI than in Gr/Epoxy. Within the limitations of this investigation, the Gr/BMI system seems to offer no advantage in damage tolerance over the Gr/Epoxy system examined.
Thermal protection system (TPS) monitoring using acoustic emission
NASA Astrophysics Data System (ADS)
Hurley, D. A.; Huston, D. R.; Fletcher, D. G.; Owens, W. P.
2011-04-01
This project investigates acoustic emission (AE) as a tool for monitoring the degradation of thermal protection systems (TPS). The AE sensors are part of an array of instrumentation on an inductively coupled plasma (ICP) torch designed for testing advanced thermal protection aerospace materials used for hypervelocity vehicles. AE are generated by stresses within the material, propagate as elastic stress waves, and can be detected with sensitive instrumentation. Graphite (POCO DFP-2) is used to study gas-surface interaction during degradation of thermal protection materials. The plasma is produced by a RF magnetic field driven by a 30kW power supply at 3.5 MHz, which creates a noisy environment with large spikes when powered on or off. AE are waveguided from source to sensor by a liquid-cooled copper probe used to position the graphite sample in the plasma stream. Preliminary testing was used to set filters and thresholds on the AE detection system (Physical Acoustics PCI-2) to minimize the impact of considerable operating noise. Testing results show good correlation between AE data and testing environment, which dictates the physics and chemistry of the thermal breakdown of the sample. Current efforts for the project are expanding the dataset and developing statistical analysis tools. This study shows the potential of AE as a powerful tool for analysis of thermal protection material thermal degradations with the unique capability of real-time, in-situ monitoring.
Neutron vibrational spectroscopic studies of novel tire-derived carbon materials
Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L.; ...
2017-08-11
Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this paper, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C–H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption–desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed thatmore » the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and –CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced –SO 3H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. Finally, this study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng
An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less
USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE
Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...
Corrosion of graphite composites in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.
1986-01-01
Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda
1998-01-01
Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.
Method of fabricating composite structures
NASA Technical Reports Server (NTRS)
Sigur, W. A. (Inventor)
1990-01-01
A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.
Method of fabricating composite structures
NASA Technical Reports Server (NTRS)
Sigur, Wanda A. (Inventor)
1992-01-01
A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
London, A.
1981-01-01
Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.
Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films
NASA Astrophysics Data System (ADS)
Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.
2017-08-01
Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.
Process for the manufacture of carbon or graphite fibers
NASA Technical Reports Server (NTRS)
Overhoff, D.; Winkler, E.; Mueller, D.
1979-01-01
Carbon or graphite fibers are manufactured by heating polyacrylonitrile fiber materials in various solutions and gases. They are characterized in that the materials are heated to temperatures from 150 to 300 C in a solution containing one or more acids from the group of carbonic acids, sulfonic acids, and/or phenols. The original molecular orientation of the fibers is preserved by the cyclization that occurs before interlacing, which gives very strong and stiff carbon or graphite fibers without additional high temperature stretching treatments.
Apparatus for Sizing and Rewinding Graphite Fibers
NASA Technical Reports Server (NTRS)
Wilson, M. L.; Stanfield, C. E.
1986-01-01
Equipment ideally suited for research and development of new sizing solutions. Designed expecially for applying thermoplastic sizing solutions to graphite tow consisting of 3,000 to 12,000 filaments per tow, but accommodates other solutions, filament counts, and materials other than graphite. Closed system containing highly volatile methylene chloride vapors. Also ventilation system directly over resin reservoir. Concept used to apply sizing compounds on fiber tows or yarn-type reinforcement materials used in composite technology. Sizing solutions consist of compounds compatible with thermosets as well as thermoplastics.
Low temperature vapor phase digestion of graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Robert A.
2017-04-18
A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1972-01-01
Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.
Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons
Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke
2016-01-01
Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications. PMID:27471193
Automotive body panel containing thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor); Prud'Homme, Robert K. (Inventor); Adamson, Douglas (Inventor)
2011-01-01
An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.
Statistical distribution of mechanical properties for three graphite-epoxy material systems
NASA Technical Reports Server (NTRS)
Reese, C.; Sorem, J., Jr.
1981-01-01
Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.
Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin
2012-08-07
Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.
Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin
2012-01-01
Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262
Kang, Sangmin; Lim, Kyungmi; Park, Hyeokjun; Park, Jong Bo; Park, Seong Chae; Cho, Sung-Pyo; Kang, Kisuk; Hong, Byung Hee
2018-01-10
Carbon electrodes including graphene and thin graphite films have been utilized for various energy and sensor applications, where the patterning of electrodes is essentially included. Laser scribing in a DVD writer and inkjet printing were used to pattern the graphene-like materials, but the size and speed of fabrication has been limited for practical applications. In this work, we devise a simple strategy to use conventional laser-printer toner materials as precursors for graphitic carbon electrodes. The toner was laser-printed on metal foils, followed by thermal annealing in hydrogen environment, finally resulting in the patterned thin graphitic carbon or graphene electrodes for supercapacitors. The electrochemical cells made of the graphene-graphitic carbon electrodes show remarkably higher energy and power performance compared to conventional supercapacitors. Furthermore, considering the simplicity and scalability of roll-to-roll (R2R) electrode patterning processes, the proposed method would enable cheaper and larger-scale synthesis and patterning of graphene-graphitic carbon electrodes for various energy applications in the future.
Progress Towards Microwave Ignition of Explosives
NASA Astrophysics Data System (ADS)
Curling, Mark; Collins, Adam; Dima, Gabriel; Proud, William
2009-06-01
Microwaves could provide a method of propellant ignition that does away with a traditional primer, making ammunition safer and suitable for Insensitive Munitions (IM) applications. By embedding a suitable material inside a propellant, it is postulated that microwaves could be used to stimulate hotspots, through direct heating or electrostatic discharge (arcing) across the energetic material. This paper reports on progress in finding these suitable materials. Graphite rod, magnetite cubes and powders of graphite, aluminium, copper oxide, and iron were irradiated in a conventional microwave oven. Temperature measurements were made using a shielded thermocouple and thermal paints. Only graphite rod and magnetite showed significant heating upon microwave exposure. The light output from arcing of iron, steel, iron pyrite, magnetite and graphite was measured in the same microwave oven as above. Sample mass and shape were correlated with arcing intensity. A strategy is proposed to create a homogeneous igniter material by embedding arcing materials within an insulator, Polymethylpentene (TPX). External discharges were transmitted through TPX, however no embedded samples were successful in generating an electrical breakdown suitable for propellant ignition.
NASA Technical Reports Server (NTRS)
Chase, V. A.; Harrison, E. S.
1985-01-01
A study was conducted to assess the merits of using graphite/polyimide, NR-150B2 resin, for structural applications on advanced space launch vehicles. The program was divided into two phases: (1) Fabrication Process Development; and (2) Demonstration Components. The first phase of the program involved the selection of a graphite fiber, quality assurance of the NR-150B2 polyimide resin, and the quality assurance of the graphite/polyimide prepreg. In the second phase of the program, a limited number of components were fabricated before the NR-150B2 resin system was removed from the market by the supplier, Du Pont. The advancement of the NR-150B2 polyimide resin binder was found to vary significantly based on previous time and temperature history during the prepregging operation. Strength retention at 316C (600F) was found to be 50% that of room temperature strength. However, the composite would retain its initial strength after 200 hours exposure at 316C (600F). Basic chemistry studies are required for determining NR-150B2 resin binder quality assurance parameters. Graphite fibers are available that can withstand high temperature cure and postcure cycles.
NASA Technical Reports Server (NTRS)
Lee, S. C. S.
1979-01-01
Three weaves were evaluated; a balanced plain weave, a balanced 8-harness satin weave, and a semiunidirectional crowfoot satin weave. The current state-of-the-art resin system selected was Fiberite's 934 Epoxy; the advanced resin systems evaluated were Phenolic, Phenolic/Novolac, Benzyl and Bismaleimide. The panels were fabricated for testing on NASA/Ames Research Center's Composites Modification Program. Room temperature mechanical tests only were performed by Hitco; the results are presented.
Advanced electrolyte/additive for lithium-ion batteries with silicon anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuo; He, Meinan; Su, Chi-Cheung
State-of-the-art lithium-ion batteries (LIBs) are based on a lithium transition metal oxide cathode, a graphite anode and a nonaqueous carbonate electrolyte. To further increase the energy and power density of LIBs, silicon anodes have been intensively explored due to their high theoretical capacity, low operation potential, and low cost. However, the main challenges for Si anode are the large volume change during lithiation/delithiation process and the instability of the solid-electrolyte-interphase associated with this process. Recently, significant progress has been achieved via advanced material fabrication technologies and rational electrolyte design in terms of improving the Coulombic efficiency and capacity retention. Inmore » this paper, new developments in advanced electrolyte and additive for LIBs with Si anode were systematically reviewed, and perspectives over future research were suggested.« less
A new family of carbon materials with exceptional mechanical properties
NASA Astrophysics Data System (ADS)
Ran, Jiajia; Lin, Kunpeng; Yang, Haotian; Li, Jianlin; Wang, Lianjun; Jiang, Wan
2018-03-01
A new family of carbon materials with ultrahigh-strength and nano-onion grains has been successfully produced from nano-diamond particles by spark plasma sintering. It is believed that the spark plasma and applied pressure help overcome the difficulties in densification. Also diamond has a much greater density than that of graphite, leading to the volume expansion when nano-diamond particles transform to graphite onions during heating, facilitating the consolidation. The as-prepared bulk graphite with a density of 1.84 g/cm3 has ultrahigh bending strength, modulus and microhardness, 150 MPa, 31.3 GPa and 2.6 GPa, respectively, due to the unique microstructure of nano-graphite onions.
Composition and method for brazing graphite to graphite
Taylor, A.J.; Dykes, N.L.
1982-08-10
A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.
Eddy current inspection of graphite fiber components
NASA Technical Reports Server (NTRS)
Workman, G. L.; Bryson, C. C.
1990-01-01
The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.
Method of making a sodium sulfur battery
Elkins, Perry E.
1981-01-01
A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.
2000-12-15
NASA is looking to biological techniques that are millions of years old to help it develop new materials and nanotechnology for the 21st century. Sponsored by NASA, Jerzy Bernholc, a principal investigator in the microgravity materials science program and a physics professor at North Carolina State University, Bernholc works with very large-scale computations to model carbon molecules as they assemble themselves to form nanotubes. The strongest confirmed material known, nanotubes are much stronger than graphite, a more common material made of carbon, and weigh six times less than steel. Nanotubes have potential uses such as strain gauges, advanced electronic devices, amd batteries. The strength, light weight, and conductive qualities of nanotubes, shown in light blue in this computed electron distribution, make them excellent components of nanoscale devices. One way to conduct electricity to such devices is through contact with aluminum, shown in dark blue.
Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri
2016-01-01
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546
Electrode systems for in situ vitrification
Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.
1990-01-01
An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.
Zhan, Hualin; Garrett, David J; Apollo, Nicholas V; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri
2016-01-25
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm(3), were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.
1981-10-01
Protection Resin Nomex Composite Structure Tooling Graphite Electrolysis Ballistic Survivability 24. AUMT ACT’ (Zim llea m di nemsy mitily by block minubr...angles required by the design. 105 , ~ ii i w d q 100 Aluminum male molds (Figure 69) are u~tri to lay up prepreg material to form the angles that attach...aluminum male mold shaped to the airfoil contour as Figure 78 indicates. The spars and ribs are laid up in matched metal molds with silicone rubber
Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.
Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong
2014-09-01
The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.
NASA Astrophysics Data System (ADS)
Muhmood, Tahir; Xia, Mingzhu; Lei, Wu; Wang, Fengyun
2018-02-01
Novel duct graphitic carbon nitride (DCN) was successfully prepared using the temperature control method in a quartz tube furnace from commercially available melamine and evaluated against the photo-degradation of latent organic pollutants, acarbose (ACB). These prepared materials were characterized by UV-Vis spectroscopy, Fourier transform infrared spectra, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The characterization results indicated that the synthesized material was in the form of a duct-like structure and has greater adsorption capacity and photocatalytic ability as compared to traditionally synthesized graphitic carbon nitride materials. The DCN split theACB completely into many intermediates, which were depicted in the HPLC-MS spectrum for knowing the acarbose photo-degrdation pathway. The duct-like morphology of graphitic carbon nitride has improved properties, such as increasing the surface area and decelerating the e -/h + recombination, which increase the light absorbance ability with enhanced photoactivity.
Electron transfer kinetics on natural crystals of MoS2 and graphite.
Velický, Matěj; Bissett, Mark A; Toth, Peter S; Patten, Hollie V; Worrall, Stephen D; Rodgers, Andrew N J; Hill, Ernie W; Kinloch, Ian A; Novoselov, Konstantin S; Georgiou, Thanasis; Britnell, Liam; Dryfe, Robert A W
2015-07-21
Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications.
Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang
2017-02-16
Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.
Unwin, Patrick R; Güell, Aleix G; Zhang, Guohui
2016-09-20
Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure-activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp(2) carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer-sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes.
NASA Astrophysics Data System (ADS)
Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning
2017-12-01
Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g-1 at a current density of 50 mA·g-1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.
Jo, Yong Nam; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun
2013-05-01
Two different types of granulated graphites were synthesized by blending and kneading of natural graphite with pitch followed by sintering methods. The electrochemical performances of granulated graphites were investigated as anode materials for use in Li-ion batteries. The blending type granulated graphite possesses a large amount of cavities and voids, while the kneading type granulated graphite has a relatively compact microstructure, which is responsible for a high tap density. Both granulated graphites show improved the initial coulombic efficiencies as a result of decrease of surface area by the granulations. In particular, the kneading type granulated graphite exhibits an excellent rate-capability without significant capacity loss. In addition, the thermal stabilities of both granulated graphites were also improved, which could be attributed to the decrease of active surface area due to pitch coating.
Thermal charging study of compressed expanded natural graphite/phase change material composites
Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel
2016-08-12
The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm 2 and 1.55 W/cm 2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energymore » storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m 3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.« less
Tire containing thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)
2011-01-01
A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.
Wearable strain sensors based on thin graphite films for human activity monitoring
NASA Astrophysics Data System (ADS)
Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi
2017-12-01
Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.
NASA Astrophysics Data System (ADS)
An, Yongling; Fei, Huifang; Zeng, Guifang; Ci, Lijie; Xi, Baojuan; Xiong, Shenglin; Feng, Jinkui
2018-02-01
Design and synthesis of capable anode materials that can store the large size K+ is the key of development for potassium-ion batteries. The low-cost and commercial expanded graphite with large particles is a graphite-derived material with good conductivity and enlarged interlayer spaces to boost the potassium ion diffusion coefficient during charge/discharge process. Thus, we achieve excellent anode performance for potassium-ion batteries based on an expanded graphite. It can deliver a capacity of 263 mAh g-1 at the rate of 10 mA g-1 and the reversible capacity remains almost unchanged after 500 cycles at a high rate of 200 mA g-1 with a coulombic efficiency of around 100%. The potassium storage mechanism is investigated by the ex situ XRD technique. This excellent potassium storage performance will make the expanded graphite promising anode candidate for potassium ion batteries.
Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts
NASA Astrophysics Data System (ADS)
Ding, Jun; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao
2017-06-01
A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30-50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a "template mechanism" played an important role during the molten salt synthesis.
On the Application of Lithium Additives in the Electrolytic Production of Primary Aluminum
NASA Astrophysics Data System (ADS)
Saitov, A. V.; Bazhin, V. Yu.; Povarov, V. G.
2017-12-01
The behavior of carbon-graphite subjected to treatment in the lithium carbonate Li2CO3 melt without cryolite and alkali-metal fluorides is studied to reliably estimate the influence of lithium on the surface layers of a carbon-containing cathode lining. The chemical composition and the structure of the carbon-graphite material after its interaction with lithium in the Li2CO3 melt have been studied. The high-temperature interaction of the system components in the melt is found to be accompanied by fracture of the operating surface of the carbon-graphite material, while the carbon-graphite surface does not failed upon interacting with lithium vapors. Based on the obtained data, a model for the formation of lithium ions during the reduction of lithium and its interaction with a carbon-graphite sample during the electrolysis of lithium carbonate is proposed.
Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor
NASA Technical Reports Server (NTRS)
Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy
2013-01-01
Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited onto the cathodic mandrel by electrochemical reduction. Rotation of the mandrel ensures uniform distribution of refractory material. The EL-Form process allows for manufacturing in an inert atmosphere with deposition rates from 0.0004 to 0.002 in./h (10.2 to 50.8 m/h). Thicknesses typically range from microns to greater than 0.5 in. (13 mm). The refractory component produced is fabricated, dependably, to within one micron of the desired tolerances with no shrinkage or distortion as in other refractory metal manufacture techniques. The electroforming process has been used to produce solid, nonporous deposits of rhenium, iridium, niobium, tungsten, and their alloys.
Activated graphene as a cathode material for Li-ion hybrid supercapacitors.
Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S
2012-03-14
Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite
NASA Astrophysics Data System (ADS)
Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling
This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.
NASA Technical Reports Server (NTRS)
Ehret, R. M.; Scanlan, P. R.; Rosen, C. D.
1982-01-01
A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F).
Platinum-free, carbon-based materials as efficient counter electrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Widiyandari, Hendri; Prasetio, Adi; Purwanto, Agus; Subagio, Agus; Hidayat, Rachmat
2018-06-01
The electrocatalytic potential of carbon materials makes them the most viable candidate to replace Pt as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). In this research, we report our study using graphite, CNT/graphite composite, CNT, and Pt-based CEs in DSSCs. The electrochemical impedance spectroscopy (EIS) measurement showed that the CNT-based CE (CNT-CE) has the lowest charge transport resistance (R ct) compared with graphite and the CNT/graphite composite. The photovoltaic performance measurement showed that the CNT-CE resulted in a short-circuit photocurrent density (J sc) of 3.59 mA·cm‑2 whereas the Pt-based CE (Pt-CE) resulted in a J sc of 2.76 mA·cm‑2.
Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E
2016-08-18
Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.
Method of making a sodium sulfur battery
Elkins, P. E.
1981-09-22
A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.
The origin of epigenetic graphite: evidence from isotopes
Weis, P.L.; Friedman, I.; Gleason, J.P.
1981-01-01
Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.
Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.
2010-11-02
The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.
Next-Generation MKIII Lightweight HUT/Hatch Assembly
NASA Technical Reports Server (NTRS)
McCarthy, Mike; Toscano, Ralph
2013-01-01
The MK III (H-1) carbon-graphite/ epoxy Hard Upper Torso (HUT)/Hatch assembly was designed, fabricated, and tested in the early 1990s. The spacesuit represented an 8.3 psi (˜58 kPa) technology demonstrator model of a zero prebreathe suit. The basic torso shell, brief, and hip areas of the suit were composed of a carbon-graphite/epoxy composite lay-up. In its current configuration, the suit weighs approximately 120 lb (˜54 kg). However, since future planetary suits will be designed to operate at 0.26 bar (˜26 kPa), it was felt that the suit's re-designed weight could be reduced to 79 lb (˜35 kg) with the incorporation of lightweight structural materials. Many robust, lightweight structures based on the technologies of advanced honeycomb materials, revolutionary new composite laminates, metal matrix composites, and recent breakthroughs in fullerene fillers and nanotechnology lend themselves well to applications requiring materials that are both light and strong. The major problem involves the reduction in weight of the HUT/ Hatch assembly for use in lunar and/or planetary applications, while at the same time maintaining a robust structural design. The technical objective is to research, design, and develop manufacturing methods that support fa b rica - tion of a lightweight HUT/Hatch assembly using advanced material and geometric redesign as necessary. Additionally, the lightweight HUT/Hatch assembly will interface directly with current MK III hardware. Using the new operating pressure and current MK III (H-1) interfaces as a starting block, it is planned to maximize HUT/Hatch assembly weight reduction through material selection and geometric redesign. A hard upper torso shell structure with rear-entry closure and corresponding hatch will be fabricated. The lightweight HUT/Hatch assembly will retrofit and interface with existing MK III (H-1) hardware elements, providing NASA with immediate "plug-andplay" capability. NASA crewmembers will have a lightweight, robust, life-support system that will minimize fatigue during extraterrestrial surface sojourns. Its unique feature is the utilization of a new and innovative family of materials used by the aerospace industry, which at the time of this reporting has not been used for the proposed application.
Inelastic X-ray Scattering Studies of Plasmons in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Upton, M. H.; Casa, D.; Gog, T.; Misewich, J.; Hill, J. P.; Lowndes, D.; Eres, G.
2006-03-01
We report preliminary inelastic x-ray scattering measurements of the plasmon dispersions in oriented multi- and single- walled carbon nanotubes (M- and S- WCNT) and compare them to the plasmon dispersion in graphite. Two plasmon bands are observed dispersing along the nanotubes' axes: the π and π+σ plasmon bands. The π+σ plasmon band exhibits an apparent systematic variation in energy. Specifically, it has a lower energy in MWCNT than in graphite, and a still lower energy in SWCNT. The energy of the π+σ plasmon band is determined by the plasma frequency of the material, which is proportional to the square root of the electron density. We postulate that the energy shift is a result of a surface effect -- the electron wave function extends past the surface, lowering the average electron density in the bulk. The higher surface-to-volume ratio of the mostly SW sample would then lower the plasmon frequency with respect to the MWCNT sample and graphite. Thus, the systematic variation in plasmon frequency may be explained by a lowering of the net electron density by the surfaces in S- and M-WCNT. Work performed at BNL and the Advanced Photon Source was supported by the US DOE under contracts No. DE-AC02-98CH10886 and No. W-31-109-Eng-38 respectively.
The impact of LDEF results on the space application of metal matrix composites
NASA Technical Reports Server (NTRS)
Steckel, Gary L.; Le, Tuyen D.
1993-01-01
Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.
Gas storage cylinder formed from a composition containing thermally exfoliated graphite
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)
2012-01-01
A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.
Eddy-Current Inspection Of Graphite-Fiber Composites
NASA Technical Reports Server (NTRS)
Workman, G. L.; Bryson, C. C.
1993-01-01
NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive eddy-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped eddy-current probes like those described in "Eddy-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).
Polymerization method for formation of thermally exfoliated graphite oxide containing polymer
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor)
2010-01-01
A process for polymerization of at least one monomer including polymerizing the at least one monomer in the presence of a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(esp 2)/g to 2600 m(esp 2/g.
Comparison of irradiation behaviour of HTR graphite grades
NASA Astrophysics Data System (ADS)
Heijna, M. C. R.; de Groot, S.; Vreeling, J. A.
2017-08-01
The INNOGRAPH irradiations were executed in the High Flux Reactor (HFR) in Petten by NRG supported by the European Framework programs HTR-M, RAPHAEL, and ARCHER to generate data on the irradiation behaviour of graphite grades for High Temperature Reactor (HTR) application available at that time. Samples of the graphite grades NBG-10, NBG-17, NBG-18, NBG-20, NBG-25, PCEA, PPEA, PCIB, and IG-110 have been irradiated at 750 °C and 950 °C. The inherent scatter induced by the probabilistic material behaviour of graphite requires uncertainty and scatter induced by test conditions and post-irradiation examination to be minimized. The INNOGRAPH irradiations supplied an adequate number of irradiated samples to enable accurate determination of material properties and their evolution under irradiation. This allows comparison of different graphite grades and a qualitative assessment of their appropriateness for HTR applications, as a basis of selection, design and core component lifetime. The results indicate that coarse grained graphite grades exhibit more favourable behaviour for application in HTRs due to their low dimensional anisotropy and fracture propagation resilience.
Effective Thermal Conductivity of Graphite Materials with Cracks
NASA Astrophysics Data System (ADS)
Pestchaanyi, S. E.; Landman, I. S.
The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides
Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet
2012-01-01
The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620
Role of nuclear grade graphite in controlling oxidation in modular HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, Willaim; Strydom, G.; Kane, J.
2014-11-01
The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... correct grade of petroleum coke mix, and have been baked, formed, carbonized, impregnated, and graphitized... required for the production of SDGE (e.g., raw material handling, mixing, forming, baking, impregnating... production process, demonstrating how raw materials are formed, baked, impregnated (if needed), re-baked...
Light weight polymer matrix composite material
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)
1991-01-01
A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.
NASA Astrophysics Data System (ADS)
Jin, Hong; Hu, Jingpeng; Wu, Shichao; Wang, Xiaolan; Zhang, Hui; Xu, Hui; Lian, Kun
2018-04-01
Three-dimensional interconnected porous graphitic carbon materials are synthesized via a combination of graphitization and activation process with rice straw as the carbon source. The physicochemical properties of the three-dimensional interconnected porous graphitic carbon materials are characterized by Nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The results demonstrate that the as-prepared carbon is a high surface area carbon material (a specific surface area of 3333 m2 g-1 with abundant mesoporous and microporous structures). And it exhibits superb performance in symmetric double layer capacitors with a high specific capacitance of 400 F g-1 at a current density of 0.1 A g-1, good rate performance with 312 F g-1 under a current density of 5 A g-1 and favorable cycle stability with 6.4% loss after 10000 cycles at a current density of 5 A g-1 in the aqueous electrolyte of 6M KOH. Thus, rice straw is a promising carbon source for fabricating inexpensive, sustainable and high performance supercapacitors' electrode materials.
Reduced graphite oxide in supercapacitor electrodes.
Lobato, Belén; Vretenár, Viliam; Kotrusz, Peter; Hulman, Martin; Centeno, Teresa A
2015-05-15
The current energy needs have put the focus on highly efficient energy storage systems such as supercapacitors. At present, much attention focuses on graphene-like materials as promising supercapacitor electrodes. Here we show that reduced graphite oxide offers a very interesting potential. Materials obtained by oxidation of natural graphite and subsequent sonication and reduction by hydrazine achieve specific capacitances as high as 170 F/g in H2SO4 and 84F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the raw graphite has no significant effect on the physico-chemical characteristics of the reduced materials, that exfoliated from smaller particles (<75 μm) result more advantageous for the release of the stored electrical energy. This effect is particularly evident in the aqueous electrolyte. Graphene-like materials may suffer from a drop in their specific surface area upon fabrication of electrodes with features of the existing commercial devices. This should be taken into account for a reliable interpretation of their performance in supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdulagatov, Aziz Ilmutdinovich
Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately mixed TiO2 and nanographitized carbon. The graphitized carbon in the film was formed as a result of the removal of hydrogen by pyrolysis of the organic constituency of the MLD film. The presence of graphitic carbon allowed a 14 orders of magnitude increase in the electrical conductivity of the composite material compared fully oxidized rutile TiO 2.
Purification and preparation of graphite oxide from natural graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made
2016-03-11
Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphitemore » is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.« less
Energy storage options for space power
NASA Astrophysics Data System (ADS)
Hoffman, H. W.; Martin, J. F.; Olszewski, M.
Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels are assessed; the results obtained suggest that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 kJ/kg to 2000 kJ/kg at temperatures to 1675 K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (about 500 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.
Design, fabrication and test of graphite/polymide composite joints and attachments: Summary
NASA Technical Reports Server (NTRS)
Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.
1983-01-01
The design, analysis and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561K (550 F) are summarized. Material properties and 'small specimen' tests were conducted to establish design data and to evaluate specific design details. 'Static discriminator' tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours 589K (600 F)) and thermal cycled (116K to 589K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589K (600 F) for 125 hours.
NASA Technical Reports Server (NTRS)
Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.
1982-01-01
The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.
Liquid metal amoeba with spontaneous pseudopodia formation and motion capability.
Hu, Liang; Yuan, Bin; Liu, Jing
2017-08-03
The unique motion of amoeba with a deformable body has long been an intriguing issue in scientific fields ranging from physics, bionics to mechanics. So far, most of the currently available artificial machines are still hard to achieve the complicated amoeba-like behaviors including stretching pseudopodia. Here through introducing a multi-materials system, we discovered a group of very unusual biomimetic amoeba-like behaviors of self-fueled liquid gallium alloy on the graphite surface immersed in alkaline solution. The underlying mechanisms were discovered to be the surface tension variations across the liquid metal droplet through its simultaneous electrochemical interactions with aluminum and graphite in the NaOH electrolyte. This finding would shed light on the packing and the structural design of future soft robots owning diverse deformation capability. Moreover, this study related the physical transformation of a non-living LM droplet to the life behavior of amoeba in nature, which is inspiring in human's pursuit of advanced biomimetic machine.
Fabrication of near-net shape graphite/magnesium composites for large mirrors
NASA Astrophysics Data System (ADS)
Wendt, Robert; Misra, Mohan
1990-10-01
Successful development of space-based surveillance and laser systems will require large precision mirrors which are dimensionally stable under thermal, static, and dynamic (i.e., structural vibrations and retargeting) loading conditions. Among the advanced composites under consideration for large space mirrors, graphite fiber reinforced magnesium (Gr/Mg) is an ideal candidate material that can be tailored to obtain an optimum combination of properties, including a high modulus of elasticity, zero coefficient of thermal expansion, low density, and high thermal conductivity. In addition, an innovative technique, combining conventional filament winding and vacuum casting has been developed to produce near-net shape Gr/Mg composites. This approach can significantly reduce the cost of fabricating large mirrors by decreasing required machining. However, since Gr/Mg cannot be polished to a reflective surface, plating is required. This paper will review research at Martin Marietta Astronautics Group on Gr/Mg mirror blank fabrication and measured mechanical and thermal properties. Also, copper plating and polishing methods, and optical surface characteristics will be presented.
Polymer, metal and ceramic matrix composites for advanced aircraft engine applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.
1985-01-01
Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li
2015-12-22
Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.
NASA Astrophysics Data System (ADS)
Wang, Qing; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Zhao, Xiaofeng; Hu, Zhuang
2018-06-01
In order to immobilize high-level radioactive graphite, silicon carbide based composite materials{ (1-x) SiC· x MgAl2O4 (0.1 ≤ x≤0.4) } were fabricated by solid-state reaction at 1370 °C for 2 h in vacuum. Residual graphite and precipitated corundum were observed in the as-synthesized product, which attributed to the interface reaction of element silicon and magnesium compounds. To further understand the reasons for the presence of graphite and corundum, the effects of mole ratio of Si/C, MgAl2O4 content and non-stoichiometry of MgAl2O4 on the synthesis were investigated. To immobilize graphite better, residual graphite should be eliminated. The target product was obtained when the mole ratio of Si/C was 1.3:1, MgAl2O4 content was x = 0.2, and the mole ratio of Al to Mg in non-stoichiometric MgAl2O4 was 1.7:1. In addition, the interface reaction between magnesium compounds and silicon not graphite was displayed by conducting a series of comparative experiments. The key factor for the occurrence of interface reaction is that oxygen atom is transferred from magnesium compound to SiO gas. Infrared and Raman spectrum revealed the increased disorders of graphite after being synthesized.
Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z
2014-04-08
A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified Ohio State University Rate of Heat Release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.
Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Haiqing L.
2016-01-01
We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.
Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
Li, Jinjin; Gao, Tianyang; Luo, Jianbin
2018-03-01
2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions.
Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes
Gao, Tianyang; Luo, Jianbin
2018-01-01
Abstract 2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions. PMID:29593965
NASA Astrophysics Data System (ADS)
Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo
2015-12-01
The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.
Fiber reinforced PMR polyimide composites
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1978-01-01
Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)
2017-01-01
A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 sq m/g to 2600 sq m/g, and a method of making the same.
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)
2014-01-01
A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 m(sup.2)/g to 2600 m(sup.2)/g, and a method of making the same.
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor)
2011-01-01
A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.
Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts
2013-10-01
materials reveal broad N1s spectra, indicative of formation of multiple functionalities including but not limited to pyridinic, graphitic and pyrrolic ...network along with nitrogen substitutional defects, while high-dosage increases vacancy agglomerations and pyridinic and pyrrolic nitrogen defects...Article Online highly oriented pyrolytic graphite (HOPG) surface. Simulated defects included pyridinic (Npyridinic), pyrrolic (Npyrrolic), graphitic
Composite materials research and education program: The NASA-Virginia Tech composites program
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1980-01-01
Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.
NASA Technical Reports Server (NTRS)
Lineback, L. D.; Manning, C. R.
1971-01-01
Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.
Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts
NASA Technical Reports Server (NTRS)
Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.;
1996-01-01
Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.
Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning
2017-12-16
Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO 2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g -1 at a current density of 50 mA·g -1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.
Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels
NASA Astrophysics Data System (ADS)
Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał
2013-01-01
Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.
Lamination residual stresses in hybrid composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.
High temperature resin matrix composites for aerospace structures
NASA Technical Reports Server (NTRS)
Davis, J. G., Jr.
1980-01-01
Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.
Detailed Structural Analyses of KOH Activated Carbon from Waste Coffee Beans
NASA Astrophysics Data System (ADS)
Takahata, Tomokazu; Toda, Ikumi; Ono, Hiroki; Ohshio, Shigeo; Akasaka, Hiroki; Himeno, Syuji; Kokubu, Toshinori; Saitoh, Hidetoshi
2009-11-01
The relationship of the detailed structural change of KOH activated carbon and hydrogen storage ability was investigated in activated carbon materials fabricated from waste coffee beans. The specific surface area of porous carbon materials calculated from N2 adsorption isotherms stood at 2070 m2/g when the weight ratio of KOH to carbon materials was 5:1, and pore size was in the range of approximately 0.6 to 1.1 nm as micropores. In the structural analysis, X-ray diffraction analysis and Raman spectroscopy indicated structural change in these carbon materials through KOH activation. The order of the graphite structure changed to a smaller scale with this activation. It is theorized that specific surface area increased using micropores provided by carbon materials developed from the descent of the graphite structure. Hydrogen storage ability improved with these structural changes, and reached 0.6 wt % at 2070 m2/g. These results suggest that hydrogen storage ability is conferred by the chemical effect on graphite of carbon materials.
Schiffbauer, James D; Yin, Leiming; Bodnar, Robert J; Kaufman, Alan J; Meng, Fanwei; Hu, Jie; Shen, Bing; Yuan, Xunlai; Bao, Huiming; Xiao, Shuhai
2007-08-01
Abundant graphite particles occur in amphibolite-grade quartzite of the Archean-Paleoproterozoic Wutai Metamorphic Complex in the Wutaishan area of North China. Petrographic thin section observations suggest that the graphite particles occur within and between quartzite clasts and are heterogeneous in origin. Using HF maceration techniques, the Wutai graphite particles were extracted for further investigation. Laser Raman spectroscopic analysis of a population of extracted graphite discs indicated that they experienced a maximum metamorphic temperature of 513 +/- 50 degrees C, which is consistent with the metamorphic grade of the host rock and supports their indigenicity. Scanning and transmission electron microscopy revealed that the particles bear morphological features (such as hexagonal sheets of graphite crystals) related to metamorphism and crystal growth, but a small fraction of them (graphite discs) are characterized by a circular morphology, distinct marginal concentric folds, surficial wrinkles, and complex nanostructures. Ion microprobe analysis of individual graphite discs showed that their carbon isotope compositions range from -7.4 per thousand to -35.9 per thousand V-PDB (Vienna Pee Dee Belemnite), with an average of -20.3 per thousand, which is comparable to bulk analysis of extracted carbonaceous material. The range of their size, ultrastructures, and isotopic signatures suggests that the morphology and geochemistry of the Wutai graphite discs were overprinted by metamorphism and their ultimate carbon source probably had diverse origins that included abiotic processes. We considered both biotic and abiotic origins of the carbon source and graphite disc morphologies and cannot falsify the possibility that some circular graphite discs characterized by marginal folds and surficial wrinkles represent deflated, compressed, and subsequently graphitized organic-walled vesicles. Together with reports by other authors of acanthomorphic acritarchs from greenschist-amphibolite-grade metamorphic rocks, this study suggests that it is worthwhile to examine carbonaceous materials preserved in highly metamorphosed rocks for possible evidence of ancient life.
Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.
Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng
2015-09-23
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Funk, Joan G.; Sykes, George F., Jr.
1989-01-01
The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.
Flame-retardant composite materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1991-01-01
The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.
Graphite-ceramic rf Faraday-thermal shield and plasma limiter
Hwang, D.L.Q.; Hosea, J.C.
1983-05-05
The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.
Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Xu, Wu; Choi, Daiwon
2012-04-27
In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less
Graphite fluoride fibers and their applications in the space industry
NASA Technical Reports Server (NTRS)
Hung, Ching-Chen; Long, Martin; Dever, Therese
1990-01-01
Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.
NASA Astrophysics Data System (ADS)
Martín-Méndez, Iván; Boixereu, Ester; Villaseca, Carlos
2016-06-01
Graphite is found dispersed in high-grade metapelitic rocks of the Anatectic Complex of Toledo (ACT) and was mined during the mid twentieth century in places where it has been concentrated (Guadamur and la Puebla de Montalbán mines). Some samples from these mines show variable but significant alteration intensity, reaching very low-T hydrothermal (supergene) conditions for some samples from the waste heap of the Guadamur site (<100 °C and 1 kbar). Micro-Raman and XRD data indicate that all the studied ACT graphite is of high crystallinity irrespective of the degree of hydrothermal alteration. Chemical differences were obtained for graphite δ13C composition. ACT granulitic graphite shows δ13CPDB values in the range of -20.5 to -27.8 ‰, indicating a biogenic origin. Interaction of graphite with hydrothermal fluids does not modify isotopic compositions even in the most transformed samples from mining sites. The different isotopic signatures of graphite from the mining sites reflect its contrasted primary carbon source. The high crystallinity of studied graphite makes this area of central Spain suitable for graphitic exploration and its potential exploitation, due to the low carbon content required for its viability and its strategic applications in advanced technologies, such as graphene synthesis.
1988-01-01
to l0- mm of Hg and the boundaries, and the absorption of vibrational deflection was of the order of 10-6. energy during the microplastic deformation...matrix inter- 377 face due to void formation or microplastic de- This plot confirms that for all composite sys- formation than within the mica itself...dispersed Al alloys correlates with of energy in microplastic deformation of mica wt.% graphite by the following linear equation itself (Fig. 4
An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons
NASA Astrophysics Data System (ADS)
Laffont, L.; Jday, R.; Lacaze, J.
2018-04-01
Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.
Lighting Studies for Fuelling Machine Deployed Visual Inspection Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoots, Carl; Griffith, George
2015-04-01
Under subcontract to James Fisher Nuclear, Ltd., INL has been reviewing advanced vision systems for inspection of graphite in high radiation, high temperature, and high pressure environments. INL has performed calculations and proof-of-principle measurements of optics and lighting techniques to be considered for visual inspection of graphite fuel channels in AGR reactors in UK.
Electrochemical Ultracapacitors Using Graphitic Nanostacks
NASA Technical Reports Server (NTRS)
Marotta, Christopher
2012-01-01
Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS surface will be added that can exhibit pseudocapacitance. This pseudocapacitance exhibits faradaic (charge transfer) properties that can further increase the overall relative and volumetric capacitance of the material. A process is also proposed to use GNF as a precursor material to fabricate GNS that will be used as EC electrodes. This results in much better electrical conductivity than activated carbon. This is advantageous for high-pulsed-power applications to reduce parasitic heating. Larger average pore size allows more complete electrolyte wetting (faster charge transfer kinetics). These properties contribute to a lowered equivalent series resistance (ESR), increased specific power, shorter charging times, and decreased parasitic heating. The high density of basal plane edges provides nucleation sites for activation (addition of hydrophilic functional groups) that facilitate electrolyte wetting, and will contribute to pseudocapacitance.
NASA Astrophysics Data System (ADS)
Alinejad, Babak; Mahmoodi, Korosh
Natural graphite is a soft material that conventional milling methods fail to grind into nanoparticles. We found that adding NaCl into graphite during milling allows obtaining graphene nanoflakes of about 50×200nm2 as evidenced by Transmission Electron Microscope (TEM). NaCl particles are substantially brittle and harder than graphite, serving as milling agents by both helping to chop graphite into smaller pieces and preventing graphite particles from agglomeration. After milling, NaCl can be easily washed away by water. Probable mechanism for exfoliation of graphene during the modified ball milling may be explained by NaCl and graphene slipping or sliding against and over each other, exfoliating the graphene particles into thin layers.
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Mantilaka, M. M. M. G. P. G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H. W. M. A. C.; Yoshimura, Masamichi; Pitawala, H. M. T. G. A.
2017-07-01
Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g-1, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.
Cheng, Qian; Okamoto, Yasuharu; Tamura, Noriyuki; Tsuji, Masayoshi; Maruyama, Shunya; Matsuo, Yoshiaki
2017-11-01
Here we propose the use of a carbon material called graphene-like-graphite (GLG) as anode material of lithium ion batteries that delivers a high capacity of 608 mAh/g and provides superior rate capability. The morphology and crystal structure of GLG are quite similar to those of graphite, which is currently used as the anode material of lithium ion batteries. Therefore, it is expected to be used in the same manner of conventional graphite materials to fabricate the cells. Based on the data obtained from various spectroscopic techniques, we propose a structural GLG model in which nanopores and pairs of C-O-C units are introduced within the carbon layers stacked with three-dimensional regularity. Three types of highly ionic lithium ions are found in fully charged GLG and stored between its layers. The oxygen atoms introduced within the carbon layers seem to play an important role in accommodating a large amount of lithium ions in GLG. Moreover, the large increase in the interlayer spacing observed for fully charged GLG is ascribed to the migration of oxygen atoms within the carbon layer introduced in the state of C-O-C to the interlayer space maintaining one of the C-O bonds.
Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang
2014-05-01
A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen. Copyright © 2014 Elsevier Inc. All rights reserved.
Quality control developments for graphite/PMR15 polyimide composites materials
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.
1979-01-01
The problem of lot-to-lot and within-lot variability of graphite/PMR-15 prepreg was investigated. The PMR-15 chemical characterization data were evaluated along with the processing conditions controlling the manufacture of PMR-15 resin and monomers. Manufacturing procedures were selected to yield a consistently reproducible graphite prepreg that could be processed into acceptable structural elements.
2006-08-01
carbon would be highly oriented pyrolytic graphite ( HOPG ), which is formed by depositing one atom at a time on a surface utilizing the pyrolysis of a... of the crystallites, and baking to 2800 K produces a polycrystalline graphite part that has high strength and conductivity. To make isotropic...pitch fibers) or flexible (Graphoil®), as well as anisotropic ( HOPG ) or isotropic ( polycrystalline graphite ). In addition, porosity, lubricity
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)
2011-01-01
A conductive ink containing a conductive polymer, wherein the conductive polymer contains at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, and it use in a method for making a conductive circuit.
Graphite fiber reinforced thermoplastic resins
NASA Technical Reports Server (NTRS)
Navak, R. C.
1977-01-01
The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.
An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.
Cheng, Hansong; Sha, Xianwei; Chen, Liang; Cooper, Alan C; Foo, Maw-Lin; Lau, Garret C; Bailey, Wade H; Pez, Guido P
2009-12-16
We present a combined theoretical and experimental study on H(2) physisorption in partially fluorinated graphite. This material, first predicted computationally using ab initio molecular dynamics simulation and subsequently synthesized and characterized experimentally, represents a novel class of "acceptor type" graphite intercalated compounds that exhibit significantly higher isosteric heat of adsorption for H(2) at near ambient temperatures than previously demonstrated for commonly available porous carbon-based materials. The unusually strong interaction arises from the semi-ionic nature of the C-F bonds. Although a high H(2) storage capacity (>4 wt %) at room temperature is predicted not to be feasible due to the low heat of adsorption, enhanced storage properties can be envisaged by doping the graphitic host with appropriate species to promote higher levels of charge transfer from graphene to F(-) anions.
Nano-cracks in a synthetic graphite composite for nuclear applications
NASA Astrophysics Data System (ADS)
Liu, Dong; Cherns, David
2018-05-01
Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.
Postbuckling behavior of graphite-epoxy panels
NASA Technical Reports Server (NTRS)
Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.
1984-01-01
Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.
Graphite in an Apollo 17 impact melt breccia.
Steele, A; McCubbin, F M; Fries, M; Glamoclija, M; Kater, L; Nekvasil, H
2010-07-02
We report on the detection of discrete grains of crystalline graphite and graphite whiskers (GWs) in an Apollo 17 impact melt breccia. Multiple instances of graphite and GWs within a discrete area of the sample imply that these grains are not terrestrial contamination. Both graphite and GWs are indicative of high-temperature conditions and are probably the result of the impact processes responsible for breccia formation. This suggests that impact processes may be an additional formation mechanism for GWs in the solar system and indicates that the Moon contains a record of ancient carbonaceous material delivered at the time of the Late Heavy Bombardment.
High-Temperature Treatments For Polyimide/Graphite Composite
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Lowell, Carl
1992-01-01
Combination of inert-gas heat treatment and coating with material impermeable by oxygen proposed to increase thermo-oxidative and high-temperature structural stabilities of composite materials made of graphite fibers in matrices of PMR-15 polyimide. Proposal directed toward development of lightweight matrix/fiber composites for use in aircraft engines, wherein composites exposed to maximum operating temperatures between 371 and 427 degrees C.
NASA Technical Reports Server (NTRS)
Wright, C. C.; Baker, D. J.; Corvelli, N.; Thurston, L.; Clary, R.; Illg, W.
1971-01-01
The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported.
Development of an Acetate-Fed or Sugar-Fed Microbial Power Generator for Military Bases
2011-01-01
quarter. We tested graphite and stainless steel as anode materials for ARB growth, showing the greater suitability of carbon fibers as anode material...microbial electrolysis cells (MECs) with graphite rods and stainless steel meshes as anodes to select the optimum material for use in MFC modules to...be tested in the future. We selected meshes made from 316-grade stainless steel for these initial studies. We conducted several trials with the MECs
2006-08-01
and defence industries. In fact, some materials with such anomalous (i.e. NPR) properties have been used in applications such as pyrolytic graphite...real applications such as pyrolytic graphite with NPR of -0.21 for thermal protection in aerospace (Garber, 1963), large single crystals of Ni3Al with...Foundations of Solid Mechanics, Prentice-Hall, p.353, 1968. Garber, A.M., Pyrolytic materials for thermal protection systems, Aerospace Eng., Vol
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...
2015-08-03
X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less
Ultra high vacuum adhesion testing of NERVA engine materials
NASA Technical Reports Server (NTRS)
1970-01-01
The primary objective of this research program was to determine the effects of surface cleaning and deliberate gaseous contamination on the adhesion behavior of selected candidate materials for use in the NERVA nuclear rocket engine program. Using a torsion balance technique, the relationship between the normal compressive load applied to crossed rod samples and the resultant contact resistance was used to ascertain the extent of adhesion under each set of experimental conditions. In addition to an evaluation of the static adhesion behavior of selected materials combinations, the experimental apparatus was modified to permit a similar investigation relating to the effects of specific tangential displacements of the sample wires, i.e., their sliding friction behavior. During the course of this subcontract, the materials combinations 440 C vs. 440 C. pyrographite vs ZTA graphite, Nbc (graphite) vs. Nbc (graphite), and Electrolize Inconel 718 vs. Au electroplated 302 S/S were evaluated.
Measurements and simulations of boron carbide as degrader material for proton therapy.
Gerbershagen, Alexander; Baumgarten, Christian; Kiselev, Daniela; van der Meer, Robert; Risters, Yannic; Schippers, Marco
2016-07-21
We report on test measurements using boron carbide (B4C) as degrader material in comparison with the conventional graphite, which is currently used in many proton therapy degraders. Boron carbide is a material of lower average atomic weight and higher density than graphite. Calculations predict that, compared to graphite, the use of boron carbide results in a lower emittance behind the degrader due to the shorter degrader length. Downstream of the acceptance defining collimation system we expect a higher beam transmission, especially at low beam energies. This is of great interest in proton therapy applications as it allows either a reduction of the beam intensity extracted from the cyclotron leading to lower activation or a reduction of the treatment time. This paper summarizes the results of simulations and experiments carried out at the PROSCAN facility at the Paul Scherrer Institute(1). The simulations predict an increase in the transmitted beam current after the collimation system of approx. 30.5% for beam degradation from 250 to 84 MeV for a boron carbide degrader compared to graphite. The experiment carried out with a boron carbide block reducing the energy to 84 MeV yielded a transmission improvement of 37% compared with the graphite degrader set to that energy.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Ferguson, Frank T.; Lucas, Christopher; Kimura, Yuki; Hohenberg, Charles
2009-01-01
The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Graphite is not a particularly good FTT catalyst, especially compared to iron powder or to amorphous iron silicate. However, like other silicates that we have studied, it gets better with exposure to CO. N2 and H2 over time: e.g., after formation of a macromolecular carbonaceous layer on the surfaces of the underlying gains. While amorphous iron silicates required only 1 or 2 experimental runs to achieve steady state reaction rates, graphite only achieved steady state after 6 or more experiments. We will present results showing the catalytic action of graphite grains increasing with increasing number of experiments and will also discuss the nature of the final "graphite" grains aster completion of our experiments.
Rahman, Masudur; Neff, David; Green, Nathaniel; Norton, Michael L.
2016-01-01
Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material. PMID:28335324
Sun, Li; Fu, Yu; Tian, Chungui; Yang, Ying; Wang, Lei; Yin, Jie; Ma, Jing; Wang, Ruihong; Fu, Honggang
2014-06-01
Separated boron and nitrogen porous graphitic carbon (BNGC) is fabricated by a facile hydrothermal coordination/ZnCl2-activation process from renewable and inexpensive nitrogen-containing chitosan. In this synthetic pathway, chitosan, which has a high nitrogen content, first coordinates with Fe(3+) ions to form chitosan-Fe that subsequently reacts with boric acid (boron source) to generate the BNGC precursor. After simultaneous carbonization and ZnCl2 activation followed by removal of the Fe catalyst, BNGC, containing isolated boron and nitrogen centers and having a high surface area of 1567 m(2) g(-1) and good conductivity, can be obtained. Results indicate that use of chitosan as a nitrogen-containing carbon source effectively prevents nitrogen atoms from direct combination with boron atoms. In addition, the incorporation of Fe(3+) ions not only endows BNGC with high graphitization, but also favors for nitrogen fixation. Remarkably, the unique microstructure of BNGC enables its use as an advanced electrode material for energy storage. As electrode material for supercapacitors, BNGC shows a high capacitance of 313 F g(-1) at 1 A g(-1), and also long-term durability and coulombic efficiency of >99.5 % after 5000 cycles. Notably, in organic electrolytes, the energy density could be up to 50.1 Wh kg(-1) at a power density of 10.5 kW kg(-1). The strategy developed herein opens a new avenue to prepare BNGC without inactive BN bonds from commercially available chitosan for high-performance supercapacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphite oxide/β-Ni(OH)2 composites for application in supercapacitors
NASA Astrophysics Data System (ADS)
Singh, Arvinder; Chandra, Amreesh
2013-06-01
Graphite oxide/β-Ni(OH)2 composites have been investigated as electrode material in supercapacitors. Phase formation of electrode material is investigated using diffraction measurements. Particle shape-size studies show deposition of β-Ni(OH)2 nanoparticles on graphite oxide (GO) sheets. Electrochemical performance of GO/β-Ni(OH)2 composite in supercapacitors is discussed based on the analysis of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge studies. Excellent energy density of ˜53 Wh/kg in 1M Na2SO4 aqueous electrolyte is reported at power density of ˜1364W/kg. The significance of results is discussed in the paper.
Semiconductor cooling apparatus
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Gaier, James R. (Inventor)
1993-01-01
Gas derived graphite fibers generated by the decomposition of an organic gas are joined with a suitable binder. This produces a high thermal conductivity composite material which passively conducts heat from a source, such as a semiconductor, to a heat sink. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The fibers are bundled and joined with a suitable binder to form a high thermal conductivity composite material device. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.
Diffusion of cesium and iodine in compressed IG-110 graphite compacts
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2016-08-01
Nuclear graphite grade IG-110 is currently used in the High Temperature Engineering Test Reactor (HTTR) in Japan for certain permanent and replaceable core components, and is a material of interest in general. Therefore, transport parameters for fission products in this material are needed. Measurement of diffusion through pressed compacts of IG-110 graphite is experimentally attractive because they are easy to prepare with homogeneous distributions of fission product surrogates. In this work, we measured diffusion coefficients for Cs and I in pressed compacts made from IG-110 powder in the 1079-1290 K temperature range, and compared them to those obtained in as-received IG-110.
Graphite/epoxy composite adapters for the Space Shuttle/Centaur vehicle
NASA Technical Reports Server (NTRS)
Kasper, Harold J.; Ring, Darryl S.
1990-01-01
The decision to launch various NASA satellite and Air Force spacecraft from the Space Shuttle created the need for a high-energy upper stage capable of being deployed from the cargo bay. Two redesigned versions of the Centaur vehicle which employed a graphite/epoxy composite material for the forward and aft adapters were selected. Since this was the first time a graphite/epoxy material was used for Centaur major structural components, the development of the adapters was a major effort. An overview of the composite adapter designs, subcomponent design evaluation test results, and composite adapter test results from a full-scale vehicle structural test is presented.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.
Test Report - Fault Current Through Graphite Filament Reinforced Plastic
NASA Technical Reports Server (NTRS)
Evans, R. W.
1997-01-01
Tests were performed to determine the damage to samples of composite material when a current carrying wire is shorted to the surface of the composite material, and to determine whether enough current can flow through the material to blow a fuse before damage can occur. Fault current tests were performed on samples of graphite epoxy materials. Samples consisted of six layers of IM7 graphite fiber mat in Hercules 8552 epoxy resin. A variable power supply provided up to 35 amps of current. The high voltage side of the power supply was attached to a wire at the end of a hinged arm, and the low side was attached to the edge of the sample. To test joints, the return was connected to the edge of one sample, and the high side was shorted to the top of the other sample. Tests show that when current exceeds approximately 5 amps, the graphite glows, and the epoxy melts out at the shorted contact. At higher current levels the epoxy burns. At voltages above 15 volts the epoxy outer coat is easily broken, and fire, flame, and a rise in current occur suddenly. When joints are introduced, resistance is increased, and the maximum current resulting from a short circuit to the graphite epoxy is reduced. This condition can easily result in fault current lower than the circuit breaker limit and higher than the 5 amp ignition level. The shorting contact and the joint become hot spots with melting epoxy, smoke, and fire.
ELECTROCHEMICAL DEGRADATION OF POLYCHLOROBIPHENYLS
Granular graphite is an ideal conductive material for electrochemical reduction technology applications in the field. Granular graphite was used to enhance the transfer of chlorinated aliphatic compounds in saturated, low permeability soils by electroosmosis. It was also used to ...
Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells
NASA Technical Reports Server (NTRS)
Ehrlich, Grant M.; Durand, Christopher
2005-01-01
Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.
Thermodynamic evidence of first-order melting of Xe on graphite
NASA Astrophysics Data System (ADS)
Jin, A. J.; Bjurstrom, M. R.; Chan, M. H. W.
1989-03-01
Precision heat-capacity and vapor-pressure isotherm measurements indicate that the melting of monolayer Xe on graphite is always first order. This conclusion is consistent with the results of simulation studies but in sharp contrast with the claim advanced in a series of x-ray studies of a crossover from first-order to continuous Kosterlitz-Thouless-Halperin-Nelson-Young melting.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Tompkins, S. S.; Sykes, G. F.
1985-01-01
The effect of the space environment on: (1) thermal control coatings and thin polymer films; (2) radiation stability of 250 F and 350 F cured graphite/epoxy composites; and (3) the thermal mechanical stability of graphite/epoxy, graphite/glass composites are considered. Degradation in mechanical properties due to combined radiation and thermal cycling is highlighted. Damage mechanisms are presented and chemistry modifications to improve stability are suggested. The dimensional instabilities in graphite/epoxy composites associated with microcracking during thermal cycling is examined as well as the thermal strain hysteresis found in metal-matrix composites.
Manufacturing methods of a composite cell case for a Ni-Cd battery
NASA Technical Reports Server (NTRS)
Bauer, J. L.
1979-01-01
Basic manufacturing method refinements for using graphite epoxy material for a nickel cadmium battery cell case were performed to demonstrate production feasibility. The various facets of production scale-up, i.e., process and tooling development, together with material and process control, were integrated into a comprehensive manufacturing process that assures production reproducibility and product uniformity. Test results substantiate that a battery cell case produced from graphite epoxy pre-impregnated material, utilizing the internal pressure bag fabrication method, is feasible.
Battery Electrode Materials with High Cycle Lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prof. Brent Fultz
2001-06-29
In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.
Application of vitreous and graphitic large-area carbon surfaces as field-emission cathodes
NASA Astrophysics Data System (ADS)
Hunt, Charles E.; Wang, Yu
2005-09-01
Numerous carbon bulk or thin-film materials have been used as field-emission cathodes. Most of these can be made into large-area and high-current field-emission cathodes without the use of complex IC fabrication techniques. Some of these exhibit low-extraction field, low work-function, high ruggedness, chemical stability, uniform emission, and low-cost manufacturability. A comparison of all of these materials is presented. Two viable cathode materials, reticulated vitreous carbon (RVC) and graphite paste are examined here and compared.
Development of design data for graphite reinforced epoxy and polyimide composites
NASA Technical Reports Server (NTRS)
Scheck, W. G.
1974-01-01
Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.
Development of CIP/graphite composite additives for electromagnetic wave absorption applications
NASA Astrophysics Data System (ADS)
Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo
2017-09-01
In this study, the electromagnetic (EM) wave absorption ability of carbonyl iron powder (CIP)/graphite composites produced by ball milling were studied in a range of 28.5 GHz to examine the effects of the morphology and volume fraction of graphite on EM wave absorption ability. The results indicated that a ball milling technique was effective in exfoliating the graphite and covering it with CIP, thereby markedly increasing the specific surface area of the hybrid powder. The increase in the surface area and hybridization with dielectric loss materials (i.e., graphite) improved EM absorbing properties of CIP in the range of S and X bands. Specifically, the CIP/graphite composite containing 3 wt% graphite exhibited electromagnetic wave absorption of -13 dB at 7 GHz, -21 dB at 5.8 GHz, and -29 dB at 4.3 GHz after 1 h, 8 h, and 16 h of milling, respectively. [Figure not available: see fulltext.
Roh, Sung-Hee; Kim, Sun-Il
2012-05-01
A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy using the catalytic reaction of microorganisms. We investigated the performance of mediator-less MFC with carbon nanotubes (CNTs)/graphite felt composite electrodes. The addition of CNTs to a graphite felt electrode increases the specific surface area of the electrode and enhances the charge transfer capability so as to cause considerable improvement of the electrochemical activity for the anode reaction in a MFC. The performance of the MFC using CNTs/graphite felt electrode has been compared against a plain graphite felt electrode based MFC. A CNTs/graphite felt electrode showed as high as 15% increase in the power density (252 mW/m2) compared to graphite felt electrode (214 mW/m2). The CNTs/graphite felt anode therefore offers good prospects for application in MFCs.
Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites
Zhamu, Aruna [Centerville, OH; Shi, Jinjun [Columbus, OH; Guo, Jiusheng [Centerville, OH; Jang, Bor Z [Centerville, OH
2012-03-13
A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650.degree. C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Tsui, C. Y.
1977-01-01
Elastic wave propagation and attenuation in a model fiber matrix was investigated. Damping characteristics in graphite epoxy composite materials were measured. A sound transmission test facility suitable to incorporate into NASA Ames wind tunnel for measurement of transmission loss due to sound generation in boundary layers was constructed. Measurement of transmission loss of graphite epoxy composite panels was also included.
Payne, Liam; Heard, Peter J; Scott, Thomas B
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study).
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study). PMID:27706228
Overview of SBIR Phase II Work on Hollow Graphite Fibers
NASA Technical Reports Server (NTRS)
Stallcup, Michael; Brantley, Lott W. (Technical Monitor)
2001-01-01
Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.
Adsorption behavior of bisphenol A on CTAB-modified graphite
NASA Astrophysics Data System (ADS)
Wang, Li-Cong; Ni, Xin-jiong; Cao, Yu-Hua; Cao, Guang-qun
2018-01-01
In this work, the adsorption behavior of BPA on CTAB-modified graphite was investigated thoroughly to develop a novel absorbent material. Atomic force microscopy revealed that conical admicelles formed on the surface of graphite. The surface area of graphite decreased significantly from 1.46 to 0.95 m2 g-1, which confirmed the formation of the larger size admicelle instead of the original smaller particle on the surface. CTAB concentration and incubation time affected the progress of admicelle formation on the surface of graphite. Adsolubilization is key in BPA adsorption by CTAB-modified graphite. An extraordinary cation-π electron interaction between CTAB and BPA, revealed by a red-shift in the ultraviolet spectrum, as well as a hydrophobic interaction contribute substantially to BPA adsolubilization. The equilibrium adsorption capacity of the modified graphite for BPA was 125.01 mg g-1. The adsorption kinetic curves of BPA on modified graphite were shown to follow a pseudosecond-order rate. The adsorption process was observed to be both spontaneous and exothermic complied with the Freundlich model.
Presolar stardust in meteorites: recent advances and scientific frontiers
NASA Astrophysics Data System (ADS)
Nittler, Larry R.
2003-04-01
Grains of stardust that formed in stellar outflows prior to the formation of the solar system survive intact as trace constituents of primitive meteorites. The presolar origin of the grains is indicated by enormous isotopic ratio variations compared to solar system materials. Identified presolar phases include diamond, silicon carbide, graphite, silicon nitride, corundum, spinel, hibonite, titanium oxide, and, most recently, silicates. Sub-grains of refractory carbides (e.g. TiC), and Fe-Ni metal have also been observed within individual presolar graphite grains. Isotopic compositions indicate that the grains formed in red giants, asymptotic giant branch (AGB) stars, supernovae and novae; thus they provide unique insights into the evolution of and nucleosynthesis within these environments. Some of the isotopic variations also reflect the chemical evolution of the galaxy and can be used to constrain corresponding models. Presolar grain microstructures provide information about physical and chemical conditions of dust formation in stellar environments; recent studies have focused on graphite grains from supernovae as well as SiC and corundum from AGB stars. The survival of presolar grains in different classes of meteorites has important implications for early solar system evolution. Recent analytical developments, including resonance ionization mass spectrometry, high spatial resolution secondary ion mass spectrometry and site-selective ion milling, should help solve many outstanding problems but are likely to also introduce new surprises.
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
Analysis of vibrational response in graphite oxide nanoplatelets
NASA Astrophysics Data System (ADS)
Prias Barragan, Jhon Jairo; Gross, Katherine; Lajaunie, Luc; Arenal, Raul; Ariza Calderon, Hernando; Prieto, Pedro
In this work, we present a new low-cost fabrication process to obtain graphite oxide nanoplatelets from bamboo pyroligneous acid (GO-BPA) by thermal decomposition method using a pyrolysis system for different carbonization temperatures from 673 to 973 K. The GO-BPA samples were characterized by using Raman, FTIR, XRD, SEM and TEM techniques, whose results suggest that increased carbonization temperature increases graphite conversion, boundary defects, desorption of some organic compounds and phonon response, respectively. We discuss potential applications of the GO-BPA samples involving phonon response that would benefit from a fully scaled technology, advanced electronic sensors and devices.
Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.
Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S
2014-01-01
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.
Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries
2014-01-01
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization. PMID:25114651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miguel Cabielles; Miguel A. Montes-Moran; Ana B. Garcia
2008-03-15
Unburned carbon concentrates with different mineral matter contents were obtained from coal combustion fly ashes by an oil agglomeration procedure. The concentrates were then heated in the temperature interval 1800-2700{sup o}C for the purpose of exploring their ability to graphitize. The influence of the treatment temperature and mineral matter of the unburned carbon on the structural characteristics of the materials prepared was studied. The interlayer spacing, d{sub 002}, and crystallite sizes along the c-axis, L{sub c}, and the {alpha}-axis, L{sub a}, calculated from X-ray diffractometry (XRD) as well as the relative intensity of the Raman D-band, I{sub D}/I{sub t}, weremore » used to assess the degree of structural order of the materials. Graphite materials with structural characteristics comparable to those of other oil-derived synthetic graphites were prepared from the unburned carbon concentrates at temperatures {>=}2400{sup o}C. It was also observed that more-ordered materials were obtained from the unburned carbon concentrates with higher mineral matter content. The influence of the mineral matter on the graphitization of the unburned carbon concentrates is the result of two countereffects, thus limiting its extent. On the one hand, the lateral coalescence of the crystallites is preferentially promoted. Reasonably good linear correlations were attained between the mineral matter of the unburned carbon concentrate and the XRD parameter L{sub a} of the materials. However, on the other, this coalescence also facilitates the flattening of the pores, thus decreasing the temperature at which their breakage occurs. As a consequence, from this point on, the structural evolution of the materials with increasing mineral matter is only noticeable by the slow vegetative growth of the crystallites along the a-axis. 40 refs., 2 figs., 3 tabs.« less
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Fang, Ming-Dar; Ho, Tsung-Han; Yen, Jui-Pin; Lin, Yu-Run; Hong, Jin-Long; Wu, She-Huang; Jow, Jiin-Jiang
2015-01-01
Mesophase soft carbon (MSC) and mesophase graphite (SMG), for use in comparative studies of high C-rate Lithium Ion Battery (LIB) anodes, were made by heating mesocarbon microbeads (MCMB) at 1300 °C and 3000 °C; respectively. The crystalline structures and morphologies of the MSC, SMG, and commercial hard carbon (HC) were investigated by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. Additionally, their electrochemical properties, when used as anode materials in LIBs, were also investigated. The results show that MSC has a superior charging rate capability compared to SMG and HC. This is attributed to MSC having a more extensive interlayer spacing than SMG, and a greater number of favorably-oriented pathways when compared to HC.
Resistivity of Rotated Graphite-Graphene Contacts.
Chari, Tarun; Ribeiro-Palau, Rebeca; Dean, Cory R; Shepard, Kenneth
2016-07-13
Robust electrical contact of bulk conductors to two-dimensional (2D) material, such as graphene, is critical to the use of these 2D materials in practical electronic devices. Typical metallic contacts to graphene, whether edge or areal, yield a resistivity of no better than 100 Ω μm but are typically >10 kΩ μm. In this Letter, we employ single-crystal graphite for the bulk contact to graphene instead of conventional metals. The graphite contacts exhibit a transfer length up to four-times longer than in conventional metallic contacts. Furthermore, we are able to drive the contact resistivity to as little as 6.6 Ω μm(2) by tuning the relative orientation of the graphite and graphene crystals. We find that the contact resistivity exhibits a 60° periodicity corresponding to crystal symmetry with additional sharp decreases around 22° and 39°, which are among the commensurate angles of twisted bilayer graphene.
Electro-catalytic degradation of sulfisoxazole by using graphene anode.
Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng
2016-05-01
Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.
2010-01-01
This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.
Design, fabrication and test of graphite/epoxy metering truss structure components, phase 3
NASA Technical Reports Server (NTRS)
1974-01-01
The design, materials, tooling, manufacturing processes, quality control, test procedures, and results associated with the fabrication and test of graphite/epoxy metering truss structure components exhibiting a near zero coefficient of thermal expansion are described. Analytical methods were utilized, with the aid of a computer program, to define the most efficient laminate configurations in terms of thermal behavior and structural requirements. This was followed by an extensive material characterization and selection program, conducted for several graphite/graphite/hybrid laminate systems to obtain experimental data in support of the analytical predictions. Mechanical property tests as well as the coefficient of thermal expansion tests were run on each laminate under study, the results of which were used as the selection criteria for the single most promising laminate. Further coefficient of thermal expansion measurement was successfully performed on three subcomponent tubes utilizing the selected laminate.
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Seibold, R. W.; Basiulis, D. I.
1982-01-01
The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising.
NASA Technical Reports Server (NTRS)
Librescu, L.; Chandiramani, N. K.
1989-01-01
Some recent results obtained by the authors are summarized concerning the stability of transversely isotropic flat panels whose materials exhibit a viscoelastic behavior and whose edges are subjected to in-plane biaxial compressive loads. Two transversely isotropic type materials, largely used in advanced technology, are considered: (1) the pyrolytic-graphite type, used in the thermal protection of aerospace vehicles, and (2) the type corresponding to unidirectional fiber-reinforced composites. In the former case, the planes of isotropy are parallel at each point to the midplane of the plate. In the latter case, they are normal to the fiber directions. The micromechanical relations developed by Aboudi (1984, 1986, 1987) are considered in conjunction with the correspondence principle of linear viscoelastic theory in order to predict the macroscopic viscoelastic properties of a material composed of uniaxial elastic fibers embedded in a linear viscoelastic matrix.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.
Nam, Dong Hoon; Cha, Seung Il; Jeong, Yong Jin; Hong, Soon Hyung
2013-11-01
The carbon nanotubes (CNTs) are actively applied to the reinforcements for composite materials during last decade. One of the attempts is development of CNT/Carbon composites. Although there are some reports on the enhancement of mechanical properties by addition of CNTs in carbon or carbon fiber, it is far below the expectation. Considering the microstructure of carbon materials such as carbon fiber, the properties of them can be modified and enhanced by control of graphitization and alignment of graphene planes. In this study, enhanced graphitization of carbon has been observed the vicinity of CNTs during the pyrolysis of CNT/Polyaniline composites. As a result, novel types of composite, consisting of treading CNTs and coated graphite, can be fabricated. High-resolution transmission electron microscopy revealed a specific orientation relationship between the graphene layers and the CNTs, with an angle of 110 degrees between the layers and the CNT axis. The possibility of graphene alignment control in the carbon by the addition of CNTs is demonstrated.
The Formation of Graphite Whiskers in the Primitive Solar Nebula
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.
2010-01-01
It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from proto stellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.
Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems
Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; ...
2016-03-18
Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E ½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E ½ retention >95% in N 2- and O 2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less
Alternate electrode materials for the SP100 reactor
NASA Astrophysics Data System (ADS)
Randich, E.
1992-05-01
This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB2 (C) CVD coating on SiMo substrates; (2) development of a ZrB2 (C) CVD coating on SiGe substrates; (3) development of CVI W for porous graphite electrodes; and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB2 coatings on SiGe and graphite substrates, and later into developing ZrB2 coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB2 during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
House, E. E.; Hoggatt, J. T.; Symonds, W. A.
1980-01-01
The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.
Cadmium sulfide anchored in three-dimensional graphite cage for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Chen, Liang; Zuo, Yinze; Zhang, Yu; Gao, Yanmin
2018-05-01
Cadmium sulfide (CdS) nanoparticles were anchored in a three-dimensional (3D) graphite cage for high performance supercapacitors. Significantly, the graphite cage intensified the construction of electroactive materials and facilitated the transfer of ions. As a result, the 3D-CdS/graphite cage revealed a great thermal stability and high specific capacitance (511 F/g at 5 A/g). Additionally, the 3D-CdS/graphite//reduced graphene oxide (rGO) asymmetric supercapacitor revealed a high energy density (30.4 Wh/kg at a power density of 800 W/kg) and long-term cycling stability (90.1% retention after 5000 cycles at 10 A/g) for practical applications.
NASA Astrophysics Data System (ADS)
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
Ultra-low voltage electrowetting using graphite surfaces.
Lomax, Deborah J; Kant, Pallav; Williams, Aled T; Patten, Hollie V; Zou, Yuqin; Juel, Anne; Dryfe, Robert A W
2016-10-26
The control of wetting behaviour underpins a variety of important applications from lubrication to microdroplet manipulation. Electrowetting is a powerful method to achieve external wetting control, by exploiting the potential-dependence of the liquid contact angle with respect to a solid substrate. Addition of a dielectric film to the surface of the substrate, which insulates the electrode from the liquid thereby suppressing electrolysis, has led to technological advances such as variable focal-length liquid lenses, electronic paper and the actuation of droplets in lab-on-a-chip devices. The presence of the dielectric, however, necessitates the use of large bias voltages (frequently in the 10-100 V range). Here we describe a simple, dielectric-free approach to electrowetting using the basal plane of graphite as the conducting substrate: unprecedented changes in contact angle for ultra-low voltages are seen below the electrolysis threshold (50° with 1 V for a droplet in air, and 100° with 1.5 V for a droplet immersed in hexadecane), which are shown to be reproducible, stable over 100 s of cycles and free of hysteresis. Our results dispel conventional wisdom that reversible, hysteresis-free electrowetting can only be achieved on solid substrates with the use of a dielectric. This work paves the way for the development of a new generation of efficient electrowetting devices using advanced materials such as graphene and monolayer MoS 2 .
Creep rupture behavior of unidirectional advanced composites
NASA Technical Reports Server (NTRS)
Yeow, Y. T.
1980-01-01
A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.
Durability of commercial aircraft and helicopter composite structures
NASA Technical Reports Server (NTRS)
Dexter, H. B.
1982-01-01
The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.
Vertically aligned carbon nanotube electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Welna, Daniel T.; Qu, Liangti; Taylor, Barney E.; Dai, Liming; Durstock, Michael F.
As portable electronics become more advanced and alternative energy demands become more prevalent, the development of advanced energy storage technologies is becoming ever more critical in today's society. In order to develop higher power and energy density batteries, innovative electrode materials that provide increased storage capacity, greater rate capabilities, and good cyclability must be developed. Nanostructured materials are gaining increased attention because of their potential to mitigate current electrode limitations. Here we report on the use of vertically aligned multi-walled carbon nanotubes (VA-MWNTs) as the active electrode material in lithium-ion batteries. At low specific currents, these VA-MWNTs have shown high reversible specific capacities (up to 782 mAh g -1 at 57 mA g -1). This value is twice that of the theoretical maximum for graphite and ten times more than their non-aligned equivalent. Interestingly, at very high discharge rates, the VA-MWNT electrodes retain a moderate specific capacity due to their aligned nature (166 mAh g -1 at 26 A g -1). These results suggest that VA-MWNTs are good candidates for lithium-ion battery electrodes which require high rate capability and capacity.
Graphite intercalation compound with iodine as the major intercalate
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Kucera, Donald
1994-01-01
Halogenated graphite CBr(x)I(y) (I less than y/x less than 10) was made by exposing graphite materials to either pure Br2 or an I2/Br2/HBr mixture to initiate the reaction, and then to iodine vapor containing a small amount of Br2/HBr/IBr to complete the intercalation reaction. Wetting of the graphite materials by the I2/Br2/HBr mixture is needed to start the reaction, and a small amount of Br2/HBr/IBr is needed to complete the charge transfer between iodine and carbon. The interplanar spacings for the graphite materials need to be in the 3.35 to 3.41 A range. The X-ray diffraction data obtained from the halogenated HOPG indicate that the distance between the two carbon layers containing intercalate is 7.25 A. Electrical resistivity of the fiber product is from 3 to 6.5 times the pristine value, The presence of a small amount of isoprene rubber in the reaction significantly increased the iodine-to-bromine ratio in the product. In this reaction, rubber is known to generate HBr and to slowly remove bromine from the vapor. The halogenation generally caused a 22 percent to 25 percent weight increase. The halogens were found uniformly distributed in the product interior. However, although the surface contains very little iodine, it has high concentrations of bromine and oxygen. It is believed that the high concentrations of bromine and oxygen in this surface cause the halogenated fiber to be more resistant to structural damage during subsequent fluorination to fabricate graphite fluoride fibers.
Exploratory Environmental Tests of Several Heat Shields
NASA Technical Reports Server (NTRS)
Goodman, George P.; Betts, John, Jr.
1961-01-01
Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.
Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials
NASA Technical Reports Server (NTRS)
Bill, R. C.
1974-01-01
Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.
Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam
NASA Technical Reports Server (NTRS)
Bootle, John
2008-01-01
A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.
From Green Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile
2012-01-01
interesting uses of PAN aerogels is not dealing with monoliths at all but rather with films made by grafting PAN on carbon nanotubes that in turn are...REPORT From ‘Green’ Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Porous carbons ...including carbon (C) aerogels, are technologically important materials, while polyacrylonitriile (PAN) is the main industrial source of graphite fiber
Development of graphite/polyimide honeycomb core materials
NASA Technical Reports Server (NTRS)
Stone, R. H.
1978-01-01
Honeycomb panel constructions consisting entirely of graphite/polyimide composites were developed and evaluated. Graphite/polyimide composites, were used in the honeycomb core webs and in pre-cured sandwich skins. Polyimide adhesives were also developed and evaluated for use in skin-core bonding. The purpose of this program was to develop light weight sandwich constructions for high temperature applications which could provide comparable shear strength and stiffness to metallic honeycomb constructions.
Ortiz-Morales, A; López-González, E; Rueda-Morales, G; Ortega-Cervantez, G; Ortiz-Lopez, J
2018-06-06
Graphite powder (GP) subjected to microwave radiation (MWG) results in exfoliation of graphite particles into few-layered graphene flakes (GF) intermixed with partially exfoliated graphite particles (PEG). Characterization of MWG by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman spectroscopy reveal few-layer GF with sizes ranging from 0.2 to 5 µm. Raman D, G, and 2D (G') bands characteristic of graphitic structures include evidence of the presence of bilayered graphene. The thermoluminescent (TL) dosimetric properties of MWG are evaluated and can be characterized as a gamma-ray sensitive and dose-resistant material with kinetic parameters (activation energy for the main peak located at 400 and 408 K is 0.69 and 0.72 eV) and threshold dose (~1 kGy and 5 kGy respectively). MWG is a low-Z material (Z eff = 6) with a wide linear range of TL dose-response (0.170-2.5 kGy) tested at doses in the 1-20 kGy range with promising results for applications in gamma-ray dosimetry. Results obtained in gamma irradiated MWG are compared with those obtained in graphite powder samples (GP) without microwave treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tang, Jing; Torad, Nagy L; Salunkhe, Rahul R; Yoon, Jang-Hee; Al Hossain, Md Shahriar; Dou, Shi Xue; Kim, Jung Ho; Kimura, Tatsuo; Yamauchi, Yusuke
2014-11-01
A recent study on nanoporous carbon based materials (J. Am. Chem. Soc. 2012, 134, 2864) showed that the presence of abundant graphitized sp(2) carbon species in the frameworks led to higher affinity for aromatic hydrocarbons than their aliphatic analogues. Herein, improved understanding of the sensitive and selective detection of aromatic substances by using mesoporous carbon (MPC)-based materials, combined with a quartz crystal microbalance (QCM) sensor system, was obtained. MPCs were synthesized by direct carbonization of mesoporous polymers prepared from resol through a soft templating approach with Pluronic F127. The carbon-based frameworks can be graphitized through the addition of a cobalt source to the precursor solution, according to the catalytic activity of the cobalt nanoparticles formed during the carbonization process. From the Raman data, the degree of the graphitization was clearly increased by increasing the cobalt content and elevating the carbonization temperature. From a QCM study, it was proved that the highly graphitized MPCs exhibited a higher affinity for aromatic hydrocarbons than their aliphatic analogues. By increasing the degree of graphitization in the carbon-based pore walls, the MPCs showed both larger adsorption uptake and faster sensor response towards toxic benzene and toluene vapors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Composition and method for brazing graphite to graphite
Taylor, Albert J.; Dykes, Norman L.
1984-01-01
The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.
NASA Astrophysics Data System (ADS)
Becker, T. H.; Marrow, T. J.; Tait, R. B.
2011-07-01
The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.
NASA Astrophysics Data System (ADS)
Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf
2016-02-01
A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.
The effects of space radiation on a chemically modified graphite-epoxy composite material
NASA Technical Reports Server (NTRS)
Reed, S. M.; Herakovich, C. T.; Sykes, G. F.
1986-01-01
The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.
GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...
GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode
Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; Pan, Chun-Jern; Chou, Hung-Lung; Chen, Hsin-An; Gong, Ming; Wu, Yingpeng; Yuan, Chunze; Angell, Michael; Hsieh, Yu-Ju; Chen, Yu-Hsun; Wen, Cheng-Yen; Chen, Chun-Wei; Hwang, Bing-Joe; Chen, Chia-Chun; Dai, Hongjie
2017-01-01
Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g−1 with Coulombic efficiency ∼98%, at a current density of 99 mA g−1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60 mAh g−1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode. PMID:28194027
Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang
There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less
Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode
Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; ...
2017-02-13
There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Michael; Petti, D. A.
The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gasmore » Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation results of the AGC-4 experiment, as well as the design of AGC-5.« less
Wang, Haoran; Yu, Shukai; Xu, Bin
2016-09-20
Hierarchical porous carbon materials with high surface areas and a localized graphitic structure were simply prepared from sucrose using nano-ZnO as a hard template, activation agent and graphitization catalyst simultaneously, which exhibit an outstanding high-rate performance and can endure an ultrafast scan rate of 20 V s -1 and ultrahigh current density of 1000 A g -1 .
Small Arms Powder Manufacture in Germany
1945-10-16
used were as follows: A. Nit ro--cellulose. B. Diphenylamine. C. Alcohol and Ether. D. Graphite. "E. Camphor . F. Contralite. G. Pottasium Sulfate. -3...about the other raw materials used. Graphite, camphor and centralite were added as.coat.ing materials. The potassium sulfate served as a flash...warm for 2 (two) hours. Centralit I is used on all powders, sometimes in conjunction with Diamylphthalate (Amylol) or camphor . The amount of
Investigation of the effect of resin material on impact damage to graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Palmer, R. J.
1981-01-01
The results of an experimental program are described which establishes the feasibility and guide lines for resin development. The objective was to identify the basic epoxy neat resin properties that improve low velocity impact resistance and toughness to graphite-epoxy laminates and at the same time maintain useful structural laminate mechanical properties. Materials tests from twenty-three toughened epoxy resin matrix systems are included.
Resistance welding graphite-fiber composites
NASA Technical Reports Server (NTRS)
Lamoureux, R. T.
1980-01-01
High-strength joints are welded in seconds in carbon-reinfored thermoplastic beams. Resistance-welding electrode applies heat and pressure to joint and is spring-loaded to follow softening material to maintain contact; it also holds parts together for cooling and hardening. Both transverse and longitudinal configurations can be welded. Adhesive bonding and encapsulation are more time consuming methods and introduce additional material into joint, while ultrasonic heating can damage graphite fibers in composite.
Damage tolerance in filament-wound graphite/epoxy pressure vessels
NASA Technical Reports Server (NTRS)
Simon, William E.; Ngueyen, Vinh D.; Chenna, Ravi K.
1995-01-01
Graphite/epoxy composites are extensively used in the aerospace and sporting goods industries due to their superior engineering properties compared to those of metals. However, graphite/epoxy is extremely susceptible to impact damage which can cause considerable and sometimes undetected reduction in strength. An inelastic impact model was developed to predict damage due to low-velocity impact. A transient dynamic finite element formulation was used in conjunction with the 3D Tsai-Wu failure criterion to determine and incorporate failure in the materials during impact. Material degradation can be adjusted from no degradation to partial degradation to full degradation. The developed software is based on an object-oriented implementation framework called Extensible Implementation Framework for Finite Elements (EIFFE).
Electric treatment for hydrophilic ink deinking.
Du, Xiaotang; Hsieh, Jeffery S
2017-09-01
Hydrophilic inks have been widely used due to higher printing speed, competitive cost and being healthy non-organic solvents. However, they cause problems in both product quality and process runnability due to their hydrophilic surface wettability, strong negative surface charge and sub-micron size. Electric treatment was shown to be able to increase the ink sizes from 60 nm to 700 nm through electrocoagulation and electrophoresis. In addition, electric treatment assisted flotation could reduce effective residual ink concentration (ERIC) by 90 ppm, compared with only 20 ppm by traditional flotation. Furthermore, the effect of electric treatment alone on ink separation was investigated by two anode materials, graphite and stainless steel. Both of them could remove hydrophilic inks with less than 1% yield loss via electroflotation and electrophoresis. But graphite is a better material as the anode because graphite reduced ERIC by an additional 100 ppm. The yield loss of flotation following electric treatment was also lower by 17% if graphite was the anode material. The difference between the two electrode materials resulted from electrocoagulation and ink redeposition during electric treatment. An electric pretreatment-flotation-hyperwashing process was conducted to understand the deinking performance in conditions similar to a paper mill, and the ERIC was reduced from 950 ppm to less than 400 ppm.
Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Gleason, Brian; Beringer, Woody; Stephen, Ryan
2010-01-01
Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from 4 suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used nickel and active braze allows to prepare the carbon fibers for joining with aluminum. This approach was repeatable and scalable with improved strength and thermal conductance when compared with epoxy bonding.
Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan
2011-01-01
Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.
NASA Astrophysics Data System (ADS)
Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang
2015-02-01
A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries. Electronic supplementary information (ESI) available: XRD pattern, XPS spectrum, CV curves, TEM and SEM images, and table. See DOI: 10.1039/c4nr06771a
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Palko, Joseph L.; Tornabene, Robert T.; Bednarcyk, Brett A.; Powers, Lynn M.; Mital, Subodh K.; Smith, Lizalyn M.; Wang, Xiao-Yen J.; Hunter, James E.
2006-01-01
A series of engineering analysis studies were conducted to investigate the potential application of nanoclay-enhanced graphite/epoxy composites and polymer cross-linked silica aerogels in cryogenic hydrogen storage tank designs. This assessment focused on the application of these materials in spherical tank designs for unmanned aeronautic vehicles with mission durations of 14 days. Two cryogenic hydrogen tank design concepts were considered: a vacuum-jacketed design and a sandwiched construction with an aerogel insulating core. Analyses included thermal and structural analyses of the tank designs as well as an analysis of hydrogen diffusion to specify the material permeability requirements. The analyses also provided material property targets for the continued development of cross-linked aerogels and nanoclay-enhanced graphite/epoxy composites for cryogenic storage tank applications. The results reveal that a sandwiched construction with an aerogel core is not a viable design solution for a 14-day mission. A vacuum-jacketed design approach was shown to be far superior to an aerogel. Aerogel insulation may be feasible for shorter duration missions. The results also reveal that the application of nanoclay-enhanced graphite/epoxy should be limited to the construction of outer tanks in a vacuum-jacketed design, since a graphite/epoxy inner tank does not provide a significant weight savings over aluminum and since the ability of nanoclay-enhanced graphite/epoxy to limit hydrogen permeation is still in question.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.; Thompson, E. R.
1978-01-01
A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.
Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron
NASA Astrophysics Data System (ADS)
Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José
2017-10-01
The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.
Eksin, Ece; Zor, Erhan; Erdem, Arzum; Bingol, Haluk
2017-06-15
Recently, the low-cost effective biosensing systems based on advanced nanomaterials have received a key attention for development of novel assays for rapid and sequence-specific nucleic acid detection. The electrochemical biosensor based on reduced graphene oxide (rGO) modified disposable pencil graphite electrodes (PGEs) were developed herein for electrochemical monitoring of DNA, and also for monitoring of biointeraction occurred between anticancer drug, Daunorubicin (DNR), and DNA. First, rGO was synthesized chemically and characterized by using UV-Vis, TGA, FT-IR, Raman Spectroscopy and SEM techniques. Then, the quantity of rGO assembling onto the surface of PGE by passive adsorption was optimized. The electrochemical behavior of rGO-PGEs was examined by cyclic voltammetry (CV). rGO-PGEs were then utilized for electrochemical monitoring of surface-confined interaction between DNR and DNA using differential pulse voltammetry (DPV) technique. Additionally, voltammetric results were complemented with electrochemical impedance spectroscopy (EIS) technique. Electrochemical monitoring of DNR and DNA was resulted with satisfying detection limits 0.55µM and 2.71µg/mL, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gross, K.; Prias-Barragan, J. J.; Sangiao, S.; de Teresa, J. M.; Lajaunie, L.; Arenal, R.; Ariza-Calderón, H.; Prieto, P.
Given the high interest in the fabrication and application of carbon-based materials, we present a new and cost-effective method for the synthesis of graphite oxide nanoplatelets (GONP) using bamboo pyroligneous acid (BPA) as source. GONP-BPA present lateral dimensions of 5-100 micro-meter and thickness less than 80 nm, as confirmed by TEM. EEL spectra show that locally the carbon is mainly in sp2 bonding configuration and confirm a short/medium range crystalline order. Elemental analysis by EDX confirms the presence of oxygen in an atomic percentage ranging from 17 to 5%. For electrical characterization, single platelets were contacted by focused-ion-beam-induced deposition of Pt nanowires. The four-point probe electrical conductivity shows a direct correlation with the oxygen percentage. Three orders of magnitude conductivity rise is observed by the oxygen reduction, reaching a value of 2.3x103 S/m at the final deoxidation degree. The results suggest that GONP-BPA could be used in the development of advanced devices and sensors.
Electrically conductive nano graphite-filled bacterial cellulose composites.
Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J
2016-01-20
A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.
1979-01-01
Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.
A new graphite preparation line for AMS 14C dating in the Zagreb Radiocarbon Laboratory
NASA Astrophysics Data System (ADS)
Krajcar Bronić, I.; Horvatinčić, N.; Sironić, A.; Obelić, B.; Barešić, J.; Felja, I.
2010-04-01
The new line for preparation of graphite samples for 14C dating by AMS has been constructed in the Zagreb Radiocarbon Laboratory. The performance of the rig and sample preparation procedure has been validated by preparing graphites from various reference materials of known 14C activity. The yield of the graphitization was good and the measured fraction of modern carbon ( Fm) values have not significantly deviated from the expected ones. Detailed analysis of measured Fm values indicates a slight bias to more positive values and should be carefully investigated.
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
Tribological Behavior of Nano-Onions in Krytox 143AB Evaluated
NASA Technical Reports Server (NTRS)
Street, Kenneth W.; VanderWal, Randy L.; Marchetti, Mario; Tomasek, Aaron J.
2005-01-01
Nanoparticles have been developed over the past 10 years and have found several applications. This work presents the use of carbon nano-onions as a potential oil additive for aerospace applications. Researchers at the NASA Glenn Research Center tested lubricant lifetimes in ambient air and ultrahigh vacuum and characterized the breakdown products of the friction and wear. These carbon nanoparticles can provide adequate lubrication very similar to that of graphitic material when run in air. Soot represents one of the very first nanostructured materials, although it has rarely been considered as such. Changes in the carbon nanostructure, resulting in increased graphitic layer plane length, correlate with reactivity loss. Upon heating spherically shaped nanometer-sized carbon black in the absence of oxidant, graphene sheets form, and the initial soot particle templates the growth of a graphitic particle into what is best described as a sphere with many flat sides having a hollow interior. Because there are no edge sites, these polygonal graphitic particles, or nano-onions, are relatively resistant to oxidation. Graphite is used as a solid lubricant because of its stability at moderately high temperatures. However, the temperature at which graphite oxidizes rapidly is strongly influenced by surface area. With the size of particles typically employed in lubrication, a great amount of thermal stability is lost because of size reduction either during preparation or during lubrication of contacting parts. Therefore, we have undertaken a study of the lubricating ability of graphitic nano-onions (ref. 1).
Graphitic carbon in the Allende meteorite - A microstructural study
NASA Technical Reports Server (NTRS)
Smith, P. P. K.; Buseck, P. R.
1981-01-01
High-resolution transmission electron microscopy shows that carbon in the Allende carbonaceous chondrite meteorite is predominantly a poorly crystalline graphite. Such material is of interest as an important carrier of the isotopically anomalous noble gases found in carbonaceous chondrites.
NASA Technical Reports Server (NTRS)
Rackiewicz, J. J.
1977-01-01
Small scale combined load fatigue tests were conducted on six artificially and six naturally weathered test specimens. The test specimen material was unidirectionally oriented A-S graphite - woven glass scrim epoxy resin laminate.
Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
Edmonds, Brian J.; DellaCorte, Christopher
2002-01-01
The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.
Novel materials for electrochemical power sources—introduction of PUREBLACK ® Carbons
NASA Astrophysics Data System (ADS)
Barsukov, Igor V.; Gallego, Maritza A.; Doninger, Joseph E.
Graphitization heat treatment of a precursor carbon black was seen to effectively produce a wide variety of forms of partially graphitized nano-sized carbonaceous materials with a set of unique properties, some of which are reported in this paper in comparison with those properties of the precursor carbon material. These novel materials were given the name of PUREBLACK ® Carbons. Among some of the unique properties are: higher conductivity than that of acetylene type carbon blacks due to PUREBLACK ® Carbon's particles having more graphitic structure; very low to zero volatile content (external oxygen, sulfur, etc., groups, which are often believed to be the cause of initiation of self-discharge reactions in batteries); very low equilibrium moisture pickup (20 ppm level), which makes it particularly attractive in lithium metal or lithium-ion based electrochemical systems; high purity. Electrochemical testing of the newly proposed PUREBLACK ® Carbons in several battery systems offers significant promise that it presents a viable solution to the needs of industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estevez, Luis; Prabhakaran, Venkateshkumar; Garcia, Adam L.
Developing hierarchical porous carbon (HPC) materials with competing textural characteristics such as surface area and pore volume in one material is difficult to accomplish—particulalry for an atomically ordered (graphitic) carbon. Herein we describe a synthesis strategy to engineer tunable hierarchically porous carbon (HPC) materials across micro- meso- and macroporous length scales, allowing the fabrication of a graphitic HPC with both very high surface area (> 2500 m2/g) and pore volume (>10 cm3/g), the combination of which has not been seen previously. The mesopore volume alone for these materials is up to 7.91 cm3/g, the highest ever reported. The unique materialmore » was explored for use as a supercapaictor electrode and for oil adsorption; two applications that require textural properties that are typicaly exclusive to one another. This design scheme for HPCs can be utilized in broad applications, including electrochemical systems such as batteries and supercapacitors, sorbents, and catalyst supports.« less
Single-Wall Carbon Nanotube Anodes for Lithium Cells
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike
2006-01-01
In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.
Wang, Miaomiao; Wang, Zubin; Chen, Qirong; Meng, Xiangfu; Heng, Liping
2018-06-01
The wear resistance and stable mechanical properties affect the service life of the underwater functional materials to a certain extent. Unfortunately, the current study of underwater functional materials is rarely related to these aspects. Herein, we successfully designed and prepared polyurethane/graphite nanosheet (PU/GN) composite materials, which exhibited excellent wear resistance and stable mechanical properties underwater. The PU/GN composite films were prepared by evaporating a mixed solution of PU and GN on concave hexagonal honeycomb silicon templates. The mechanical properties of the composite films were determined by tensile test, and the wear resistance was evaluated by comparing the surface morphology before and after grind. By adjusting the content of graphite in the composite films, we found that the composite films containing 23 wt% GN had higher tensile strength and superior wear resistance. Moreover, this composite film showed an outstanding stability when expose to water. The impressive results along with simple preparation process made PU/GN composite films had potential applications in robust underwater functional materials.
Thermal design of composite materials high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.
Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-11-01
The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of thismore » research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.« less
Optical motion control of maglev graphite.
Kobayashi, Masayuki; Abe, Jiro
2012-12-26
Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.
Graphite fluoride as a solid lubricant in a polyimide binder
NASA Technical Reports Server (NTRS)
Fusaro, R. L.; Sliney, H. E.
1972-01-01
Polyimide resin (PI) was shown to be a suitable binder material for the solid lubricant graphite fluoride, (CF(1.1))n. Comparisons were made to similar tests using PI-bonded MOS2 films, graphite fluoride rubbed films, and MOS2 rubbed films. The results showed that, at any one specific temperature between 25 and 400 C, the wear life of PI-bonded graphite fluoride films exceeded those of the other three films by at least a factor of 2 and by as much as a factor of 60. Minimum friction coefficients for the PI-bonded films were 0.08 for graphite fluoride and 0.04 for MOS2. The rider wear rates for the two PI-bonded films at 25 C were nearly equal.
Fabrication of Iron-Containing Carbon Materials From Graphite Fluoride
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh
1996-01-01
Carbon materials containing iron alloy, iron metal, iron oxide or iron halide were fabricated. Typical samples of these metals were estimated to contain 1 iron atom per 3.5 to 5 carbon atoms. Those carbon materials containing iron alloy, iron metal, and/or Fe3O4 were magnetic. The kinetics of the fabrication process were studied by exposing graphite fluoride (CF(0.68)) to FeCl3 over a 280 to 420 C temperature range. Between 280 and 295 C, FeCl3 quickly entered the structure of CF(0.68), broke the carbon-fluorine bonds, and within 10 to 30 min, completely converted it to carbon made up of graphite planes between which particles of crystalline FeF3 and noncrystalline FeCl3 were located. Longer reaction times (e.g., 28 hr) or higher reaction temperatures (e.g., 420 C) produced materials containing graphite, a FeCl3-graphite intercalation compound, FeCl2(center dot)4H2O, and FeCl2(center dot)2H2O. These products were further heat treated to produce iron-containing carbon materials. When the heating temperature was kept in the 750 to 850 C range, and the oxygen supply was kept at the optimum level, the iron halides in the carbon structure were converted to iron oxides. Raising the heat to temperatures higher than 900 C reduced such iron oxides to iron metal. The kinetics of these reactions were used to suggest processes for fabricating carbon materials containing iron alloy. Such processes were then tested experimentally. In one of the successful trial runs, commercially purchased CF(0.7) powder was used as the reactant, and NiO was added during the final heating to 1200 C as a source of both nickel and oxygen. The product thus obtained was magnetic and was confirmed to be a nickel-iron alloy in carbon.
Compression of Composite Materials: A Review,
1987-11-01
epoxy tension face, . and a plexiglass core under the specimen gage-section. A Kevlar /glass phenolic hybrid composite system was evaluated in the...epoxy [0116 specimens, S2/SP-250 7 glass/epoxy [0/±45/9012s specimens, Kevlar 285 weave/Cycom 4143 Aramid/epoxy specimens, unidirectional FP alumina...bundles tested erc- E-glass, T300 graphite, T700 graphite, P75 graphite, Kevlar 49, and FP alumina. " -1. They observed that bundle failure
A graphite-lined regeneratively cooled thrust chamber
NASA Technical Reports Server (NTRS)
Stubbs, V. R.
1972-01-01
Design concepts, based on use of graphite as a thermal barrier for regeneratively cooled FLOX-methane thrust chambers, have been screened and concepts selected for detailed thermodynamic, stress, and fabrication analyses. A single design employing AGCarb-101, a fibrous graphite composite material, for a thermal barrier liner and an electroformed nickel structure with integral coolant passages was selected for fabrication and testing. The fabrication processes and the test results are described and illustrated.
Polarization dependence of laser interaction with carbon fibers and CFRP.
Freitag, Christian; Weber, Rudolf; Graf, Thomas
2014-01-27
A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.
Manufacturing methods of a composite cell case for a Ni-Cd battery
NASA Technical Reports Server (NTRS)
Bauer, J. L.; Bogner, R. S.; Lowe, E. P.; Orlowski, E.
1979-01-01
Graphite epoxy material for a nickel cadmium battery cell case has been evaluated and determined to perform in the simulated environment of the battery. The basic manufacturing method requires refinement to demonstrate production feasibility. The various facets of production scale-up, i.e., process and tooling development together with material and process control, have been integrated into a comprehensive manufacturing process that assures production reproducibility and product uniformity. Test results substantiate that a battery cell case produced from graphite epoxy pre-impregnated material utilizing internal pressure bag fabrication method is feasible.
Impact behavior of graphite-epoxy simulated fan blades
NASA Technical Reports Server (NTRS)
Cook, T. S.; Preston, J. L., Jr.
1977-01-01
The response of a graphite-epoxy material, Modmor II/PR-286, to foreign object impact was investigated by impacting spherical projectiles of three different materials - gelatin, ice, and steel - on simulated blade specimens. Visual and metallographic inspection revealed three damage mechanisms: penetration, leading edge bending failure, and stress wave delamination and cracking. The steel projectiles caused penetration damage regardless of the impact location and angle. For the ice and gelatin particles impacting the leading edge, failure was due to large local bending strains, resulting in significant material removal and delamination damage.
Natural graphite demand and supply - Implications for electric vehicle battery requirements
Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.
2016-01-01
Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.
NASA Astrophysics Data System (ADS)
Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan
2017-12-01
A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).
NASA Astrophysics Data System (ADS)
Latha Shankar, B.; Anil, K. C.; Karabasappagol, Prasann J.
2016-09-01
Industrial application point of view, metal matrix composites in general and Aluminium alloy matrix composites in particular are ideal candidates because of their favourable engineering properties. Being lightweight Aluminium matrix composites are widely used in aircraft, defence and automotive industries. In this work Aluminium 8011 metal matrix was reinforced with fine Graphite particles of 50 μm. developed by two-step Stir casting method. Graphite weight %was varied in the range 2, 4, 6 and 8%. Uniform dispersion of graphite particle is examined under optical microscope. Tensile test coupons were prepared as per standard to determine % of elongation and tensile strength for various % of graphite particle. Hardness of developed composite for various % of graphite particle and Machinability parameters were also studied for effect on surface finish. It was observed that with increase of weight percentage of Graphite particles up to 8% in Aluminium 8011 alloy matrix there was increase in tensile strength, decrease in % of elongation with increase in hardness. Machinability study revealed that, there was decrease in surface roughness with increase in Graphite content.
Effects of sequential treatment with fluorine and bromine on graphite fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Stahl, Mark; Maciag, Carolyn; Slabe, Melissa
1987-01-01
Three pitch based graphite fibers with different degrees of graphitization and one polyacryonitrile (PAN) based carbon fiber from Amoco Corporation were treated with 1 atm, room temperature fluorine gas for 90 hrs. Fluorination resulted in higher electrical conductivity for all pitch fibers. Further bromination after ambient condition defluorination resulted in further increases in electrical defluorination conductivity for less graphitized, less structurally ordered pitch fibers (P-55) which contain about 3% fluorine by weight before bromination. This product can be stable in 200 C air, or 100% humidity at 60 C. Due to its low cost, this less graphitized fiber may be useful for industrial application, such as airfoil deicer materials. The same bromination process, however, resulted in conductivity decreases for fluorine rich, more graphitized, structurally oriented pitch fibers (P-100 and P-75). Such decreases in electrical conductivity were partially reversed by heating the fibers at 185 C in air. Differential scanning calorimetric (DSC) data indicated that the more graphitized fibers (P-100) contained BrF3, whereas the less graphitized fibers (P-55) did not.
Comparison of the tribological properties of fluorinated cokes and graphites
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1988-01-01
The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.
Comparison of the tribological properties of fluorinated cokes and graphites
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1987-01-01
The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.
ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2016-05-01
Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.
Measurement of the cleavage energy of graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wen; Dai, Shuyang; Li, Xide
Here, the basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m –2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitivemore » to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m –2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.« less
Measurement of the cleavage energy of graphite
Wang, Wen; Dai, Shuyang; Li, Xide; ...
2015-08-28
Here, the basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m –2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitivemore » to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m –2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.« less
Fundamental considerations in dynamic fracture in nuclear materials
NASA Astrophysics Data System (ADS)
Cady, Carl; Eastwood, David; Bourne, Neil; Pei, Ruizhi; Mummery, Paul; Rau, Christoph
2017-06-01
The structural integrity of components used in nuclear power plants is the biggest concern of operators. A diverse range of materials, loading, prior histories and environmental conditions, leads to a complex operating environment. An experimental technique has been developed to characterize brittle materials and using linear elastic fracture mechanics, has given accurate measurements of the fracture toughness of materials. X-ray measurements were used to track the crack front as a function of loading parameters as well as determine the crack surface area as loads increased. This X-ray tomographic study of dynamic fracture in beryllium indicates the onset of damage within the target as load is increased. Similarly, measurements on nuclear graphite were conducted to evaluate the technique. This new, quantitative information obtained using the X-ray techniques has shown application in other materials. These materials exhibited a range of brittle and ductile responses that will test our modelling schemes for fracture. Further visualization of crack front advance and the correlated strain fields that are generated during the experiment for the two distinct deformation processes provide a vital step in validating new multiscale predicative modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1975-09-30
Studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies are described. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs. (auth)
High performance mixed bisimide resins and composites based thereon
NASA Technical Reports Server (NTRS)
Parker, J. A.; ations.
1986-01-01
Mixtures of bismaleimide/biscitraconirnide resins produces materials which have better handling, processing or mechanical and thermal properties, particularly in graphite composites, than materials made with the individual resins. The mechanical strength of cured graphite composites prepared from a 1:1 copolymer of such bisimide resins is excellent at both ambient and elevated temperatures. The copolymer mixture provides improved composites which are lighter than metals and replace metals in many aerospace applications.