Science.gov

Sample records for advanced ground-based detectors

  1. Progress and challenges in advanced ground-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Adier, M.; Aguilar, F.; Akutsu, T.; Arain, M. A.; Ando, M.; Anghinolfi, L.; Antonini, P.; Aso, Y.; Barr, B. W.; Barsotti, L.; Beker, M. G.; Bell, A. S.; Bellon, L.; Bertolini, A.; Blair, C.; Blom, M. R.; Bogan, C.; Bond, C.; Bortoli, F. S.; Brown, D.; Buchler, B. C.; Bulten, H. J.; Cagnoli, G.; Canepa, M.; Carbone, L.; Cesarini, E.; Champagnon, B.; Chen, D.; Chincarini, A.; Chtanov, A.; Chua, S. S. Y.; Ciani, G.; Coccia, E.; Conte, A.; Cortese, M.; Daloisio, M.; Damjanic, M.; Day, R. A.; De Ligny, D.; Degallaix, J.; Doets, M.; Dolique, V.; Dooley, K.; Dwyer, S.; Evans, M.; Factourovich, M.; Fafone, V.; Farinon, S.; Feldbaum, D.; Flaminio, R.; Forest, D.; Frajuca, C.; Frede, M.; Freise, A.; Fricke, T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Geitner, M.; Gemme, G.; Gleason, J.; Goßler, S.; Gordon, N.; Gräf, C.; Granata, M.; Gras, S.; Gross, M.; Grote, H.; Gustafson, R.; Hanke, M.; Heintze, M.; Hennes, E.; Hild, S.; Huttner, S. H.; Ishidoshiro, K.; Izumi, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kasprzack, M.; Khalaidovski, A.; Kimura, N.; Koike, S.; Kume, T.; Kumeta, A.; Kuroda, K.; Kwee, P.; Lagrange, B.; Lam, P. K.; Landry, M.; Leavey, S.; Leonardi, M.; Li, T.; Liu, Z.; Lorenzini, M.; Losurdo, G.; Lumaca, D.; Macarthur, J.; Magalhaes, N. S.; Majorana, E.; Malvezzi, V.; Mangano, V.; Mansell, G.; Marque, J.; Martin, R.; Martynov, D.; Mavalvala, N.; McClelland, D. E.; Meadors, G. D.; Meier, T.; Mermet, A.; Michel, C.; Minenkov, Y.; Mow-Lowry, C. M.; Mudadu, L.; Mueller, C. L.; Mueller, G.; Mul, F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Neri, M.; Niwa, Y.; Ohashi, M.; Okada, K.; Oppermann, P.; Pinard, L.; Poeld, J.; Prato, M.; Prodi, G. A.; Puncken, O.; Puppo, P.; Quetschke, V.; Reitze, D. H.; Risson, P.; Rocchi, A.; Saito, N.; Saito, Y.; Sakakibara, Y.; Sassolas, B.; Schimmel, A.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Sequino, V.; Serra, E.; Shaddock, D. A.; Shoda, A.; Shoemaker, D. H.; Shibata, K.; Sigg, D.; Smith-Lefebvre, N.; Somiya, K.; Sorazu, B.; Stefszky, M. S.; Strain, K. A.; Straniero, N.; Suzuki, T.; Takahashi, R.; Tanner, D. B.; Tellez, G.; Theeg, T.; Tokoku, C.; Tsubono, K.; Uchiyama, T.; Ueda, S.; Vahlbruch, H.; Vajente, G.; Vorvick, C.; van den Brand, J. F. J.; Wade, A.; Ward, R.; Wessels, P.; Williams, L.; Willke, B.; Winkelmann, L.; Yamamoto, K.; Zendri, J.-P.

    2014-08-01

    The Amaldi 10 Parallel Session C3 on Advanced Gravitational Wave detectors gave an overview of the status and several specific challenges and solutions relevant to the instruments planned for a mid-decade start of observation. Invited overview talks for the Virgo, LIGO, and KAGRA instruments were complemented by more detailed discussions in presentations and posters of some instrument features and designs.

  2. The potential of advanced ground-based gravitational wave detectors to detect generic deviations from general relativity

    NASA Astrophysics Data System (ADS)

    Narikawa, Tatsuya; Tagoshi, Hideyuki

    2016-09-01

    We discuss the potential of advanced ground-based gravitational wave detectors such as LIGO, Virgo, and KAGRA to detect generic deviations of gravitational waveforms from the predictions of general relativity. We use the parameterized post-Einsteinian formalism to characterize the deviations, and assess what magnitude of deviations are detectable by using an approximate decision scheme based on Bayesian statistics. We find that there exist detectable regions of the parameterized post-Einsteinian parameters for different binary masses from the observation of a single gravitational wave event. The regions are not excluded by currently existing binary pulsar observations for the parameterized post-Einsteinian parameters at higher post-Newtonian order. We also find that neglect of orbital eccentricity or tidal deformation effects do not cause a significant bias on the detectable region of generic deviations from general relativity.

  3. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    PubMed Central

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-01-01

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors. PMID:25705087

  4. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors.

    PubMed

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-12-12

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors.

  5. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-12-01

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors.

  6. Ground-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuaki

    2015-01-01

    Gravitational wave is predicted by Einstein’s general relativity, which conveys the information of source objects in the universe. The detection of the gravitational wave is the direct test of the theory and will be used as new tool to investigate dynamical nature of the universe. However, the effect of the gravitational wave is too tiny to be easily detected. From the first attempt utilizing resonant antenna in the 1960s, efforts of improving antenna sensitivity were continued by applying cryogenic techniques until approaching the quantum limit of sensitivity. However, by the year 2000, resonant antenna had given the way to interferometers. Large projects involving interferometers started in the 1990s, and achieved successful operations by 2010 with an accumulated extensive number of technical inventions and improvements. In this memorial year 2015, we enter the new phase of gravitational-wave detection by the forthcoming operation of the second-generation interferometers. The main focus in this paper is on how advanced techniques have been developed step by step according to scaling the arm length of the interferometer up and the history of fighting against technical noise, thermal noise, and quantum noise is presented along with the current projects, LIGO, Virgo, GEO-HF and KAGRA.

  7. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  8. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  9. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  10. Detectability and Parameter Estimation of Gravitational Waves from Cosmic String with Ground-Based Detectors

    NASA Astrophysics Data System (ADS)

    Yuzurihara, Hirotaka; Kanda, Nobuyuki

    Cosmic string is one dimensional topological defects which might be formed at the phase transition in the early universe. Gravitational Wave (GW) waveform and its power spectrum from structure in closed cosmic string loop that is called as "cusp" are theoretically predicted. Cosmic string is thought to be described with two characteristic parameters: string tension μ and initial loop size α. We demonstrate numerical simulation for GWs from closed comic string loops to study detectability and parameter decision with ground-based detectors, such as KAGRA, advanced LIGO, advanced Virgo and LIGO-India. We employ characteristic parameters 10 - 13 < Gμ < 10 - 7 and 10 - 16 < α < 10 - 1, assuming uniform distribution of cosmic string in isotropic direction, at time epochs of loop forming and GW emission according to the universe model. We calculate waveform numerically in time domain of each GW from these distributed cosmic strings, and superpose waveforms to generate continuously observational signal on the ground-based GW detectors, including detector responses. We consider data analysis for stochastic background type gravitational wave signatures in the observation.

  11. Compact Binary Inspiral and the Science Potential of Third-Generation Ground-Based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    van den Broeck, Chris; Sengupta, Anand S.

    2008-09-01

    We consider EGO as a possible third-generation ground-based gravitational wave detector and evaluate its capabilities for the detection and interpretation of compact binary inspiral signals. We identify areas of astrophysics and cosmology where EGO would have qualitative advantages, using Advanced LIGO as a benchmark for comparison.

  12. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Bhagwat, Swetha; Brown, Duncan; Ballmer, Stefan

    2017-01-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the Kerr black-hole formed by a stellar mass binary black-hole merger. We investigate the detectability and resolvability of the sub-dominant modes l = m = 3, l = m = 4 and l = 2;m = 1. We find that new ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We also investigate detector tuning for ringdown oriented searches.

  13. Millikelvin cryocooler for space- and ground-based detector systems

    NASA Astrophysics Data System (ADS)

    Bartlett, J.; Hardy, G.; Hepburn, I.; Milward, S.; Coker, P.; Theobald, C.

    2012-09-01

    This paper describes the design of a continuously operating millikelvin cryocooler (mKCC) and its origins. It takes heritage from the double adiabatic demagnetization refrigerator (dADR) which was built for the European Space Agency (ESA). The compact design is based on a tandem configuration continuous ADR which alternately cycles two dADRs. The mKCC is a single module (dimensions 355 x 56 x120 mm) which operates from a 4 K bath (liquid or cryocooler) and provides an interface to the user which is settable from < 100 mK to 4 K. Predicted maximum cooling power at 100 mK is 7μW. It will use only single crystal tungsten magnetoresistive heat switches (the first ADR cooler to do so) and the measured thermal performance of these heat switches is presented. The mKCC uses ten shielded 2 Tesla superconducting magnets capable of ramping to full field in 20 - 30 seconds. This has been demonstrated in the lab and the results are given for the successful performance of a prototype Chromium Potassium Alum (CPA) pill using one of these magnets. The mKCC has been designed to be fully automated and user friendly with the aim of expanding the use of millikelvin cryogenics and providing a good testing and operating platform for detector systems.

  14. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Bhagwat, Swetha; Brown, Duncan A.; Ballmer, Stefan W.

    2016-10-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the final Kerr black hole formed by a stellar mass binary black-hole merger. Although it is unlikely that Advanced LIGO can measure multiple modes of the ringdown, assuming an optimistic rate of 240 Gpc-3 yr-1 , upgrades to the existing LIGO detectors could measure multiple ringdown modes in ˜6 detections per year. New ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We perform Monte Carlo injections of 1 06 binary black-hole mergers in a search volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based detector models. We assume a uniform random distribution in component masses of the progenitor binaries, sky positions and orientations to investigate the fraction of the population that satisfies our criteria for detectability and resolvability of multiple ringdown modes. We investigate the detectability and resolvability of the subdominant modes l =m =3 , l =m =4 and l =2 , m =1 . Our results indicate that the modes with l =m =3 and l =2 , m =1 are the most promising candidates for subdominant mode measurability. We find that for stellar mass black-hole mergers, resolvability is not a limiting criteria for these modes. We emphasize that the measurability of the l =2 , m =1 mode is not impeded by the resolvability criterion.

  15. Instruments, Detectors and the Future of Astronomy with Large Ground Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simons, Douglas A.; Amico, Paola; Baade, Dietrich; Barden, Sam; Campbell, Randall; Finger, Gert; Gilmore, Kirk; Gredel, Roland; Hickson, Paul; Howell, Steve; Hubin, Norbert; Kaufer, Andreas; Kohley, Ralf; MacQueen, Philip; Markelov, Sergej; Merrill, Mike; Miyazaki, Satoshi; Nakaya, Hidehiko; O'Donoghue, Darragh; Oliva, Tino; Richichi, Andrea; Salmon, Derrick; Schmidt, Ricardo; Su, Hongjun; Tulloch, Simon; García Vargas, Maria Luisa; Wagner, R. Mark; Wiecha, Olivier; Ye, Binxun

    2005-01-01

    Results of a survey of instrumentation and detector systems, either currently deployed or planned for use at telescopes larger than 3.5 m, in ground based observatories world-wide, are presented. This survey revealed a number of instrumentation design trends at optical, near, and mid-infrared wavelengths. Some of the most prominent trends include the development of vastly larger optical detector systems (> 109 pixels) than anything built to date, and the frequent use of mosaics of near-infrared detectors - something that was quite rare only a decade ago in astronomy. Some future science applications for detectors are then explored, in an attempt to build a bridge between current detectors and what will be needed to support the research ambitions of astronomers in the future.

  16. TOPICAL REVIEW: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Beker, M. G.; Belczynski, K.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Blomberg, A.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Corda, C.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dari, A.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; MacInnis, M.; Mackowski, J. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabaste, O.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rogstad, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2010-09-01

    We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr-1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr-1 MWEG-1 to 1000 Myr-1 MWEG-1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 × 10-4 and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.

  17. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  18. AQUARIUS: the next generation mid-IR detector for ground-based astronomy, an update.

    NASA Astrophysics Data System (ADS)

    Ives, Derek; Finger, Gert; Jakob, Gerd; Beckmann, Udo

    2014-07-01

    ESO has already published data from a preliminary laboratory analysis on the new mid-IR detector, AQUARIUS, at the previous SPIE conference of 2012, held in Amsterdam2. This data analysis indicated that this new mid-IR Si:As IBC detector, from Raytheon Vision Systems, was an excellent astronomical detector when compared to previous generations of this detector type, specifically in terms of stability, read noise and cosmetic quality. Since that time, the detector has been deployed into the VISIR1 instrument at the VLT, with very mixed performance results, especially when used with the telescope secondary mirror, to chop between two areas of sky to do background subtraction and at the same time when many frames are co-added to improve the signal to noise performance. This is the typical mode of operation for a mid-IR instrument on a ground based telescope. Preliminary astronomical data analysis indicated that the new detector was a factor of two to three times less sensitive in terms of its signal to noise per unit time performance when directly compared to the old DRS detector that AQUARIUS was designed to replace. To determine the reason for this loss of sensitivity, the instrument was removed from the telescope and not offered to the ESO user community. A detector testing campaign was then initiated in our laboratory to determine the reasons for this loss of sensitivity, assuming that it was an issue with the new detector itself. This paper reports on our latest laboratory measurements to determine the reasons for this loss of sensitivity. We specifically report on indirect measurements made to measure the quantum efficiency of the detector, which can be difficult to measure directly. We also report on a little known source of noise, called Excess Low Frequency Noise (ELFN). Detailed analysis and testing has confirmed that this ELFN is the reason for the loss of instrument sensitivity. This has been proven by a re-commissioning phase at the telescope with the

  19. MAD-4-MITO, a multi array of detectors for ground-based mm/submm SZ observations

    NASA Astrophysics Data System (ADS)

    Lamagna, L.; de Petris, M.; Melchiorri, F.; Battistelli, E.; de Grazia, M.; Luzzi, G.; Orlando, A.; Savini, G.

    2002-05-01

    The last few years have seen a large development of mm technology and ultra-sensitive detectors devoted to microwave astronomy and astrophysics. The possibility to deal with large numbers of these detectors assembled into multi-pixel imaging systems has greatly improved the performance of microwave observations, even from ground-based stations, especially combining the power of multi-band detectors with their new imaging capabilities. Hereafter, we will present the development of a multi-pixel solution devoted to Sunyaev-Zel'dovich observations from ground-based telescopes, that is going to be operated from the Millimeter and Infrared Testagrigia Observatory. .

  20. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  1. Gravitational Waves from Merging Intermediate-mass Black Holes. II. Event Rates at Ground-based Detectors

    NASA Astrophysics Data System (ADS)

    Shinkai, Hisa-aki; Kanda, Nobuyuki; Ebisuzaki, Toshikazu

    2017-02-01

    Based on a dynamical formation model of a supermassive black hole (SMBH), we estimate the expected observational profile of gravitational waves at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Noting that the second generation of detectors have enough sensitivity from 10 Hz and up (especially with KAGRA owing to its location at less seismic noise), we are able to detect the ring-down gravitational wave of a BH with mass M< 2× {10}3{M}ȯ . This enables us to check the sequence of BH mergers to SMBHs via intermediate-mass BHs. We estimate the number density of galaxies from the halo formation model and estimate the number of BH mergers from the giant molecular cloud model assuming hierarchical growth of merged cores. At the designed KAGRA (and/or advanced LIGO/VIRGO), we find that the BH merger of its total mass M∼ 60{M}ȯ is at the peak of the expected mass distribution. With its signal-to-noise ratio ρ =10 (30), we estimate the event rate R∼ 200 (20) per year in the most optimistic case, and we also find that BH mergers in the range M< 150{M}ȯ are R> 1 per year for ρ =10. Thus, if we observe a BH with more than 100{M}ȯ in future gravitational-wave observations, our model naturally explains its source.

  2. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.

    2014-09-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far

  3. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors

    NASA Astrophysics Data System (ADS)

    Vitale, Salvatore

    2016-07-01

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  4. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    PubMed

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  5. An advanced hypervelocity aerophysics facility - A ground-based flight-test range

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.; Scallion, W. I.; Carter, D. J., Jr.; Courter, R. W.

    1991-01-01

    The paper discusses a concept for a ground-based flight-test facility, a large aeroballistic range capable of launching models large enough to permit the installation of significant amounts of onboard instrumentation. The large model size would also provide thick shock/boundary layers, thus providing the opportunity to measure flow-field properties via advanced offboard diagnostics. Current fabrication technology should permit the construction of a two-stage light-gas gun capable of accelerating 20 to 25 cm diameter models to velocities on the order of 6 km/sec. An electromagnetic launcher or a ram accelerator is considered as a potential means for achieving larger model sizes and/or greater launch velocities. Possible methods for obtaining and recording data are discussed as are the test chamber and model deceleration section requirements.

  6. A CMOS visible silicon imager hybridized to a Rockwell 2RG multiplexer as a new detector for ground based astronomy

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Eschbaumer, Siegfried; Finger, Gert; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Joerg

    2006-06-01

    For the past 25 years Charge Coupled Devices (CCDs) have been used as the preferred detector for ground based astronomy to detect visible photons. As an alternative to CCDs, silicon-based hybrid CMOS focal plane array technology is evolving rapidly. Visible hybrid detectors have a close synergy with IR detectors and are operated in a similar way. This paper presents recent test results for a Rockwell 2K x 2K silicon PIN diode array hybridized to a Hawaii-2RG multiplexer, the Hybrid Visible Silicon Imager (HyViSI). Since the capacitance of the integrating node of Si-PIN diodes is at least a factor of two smaller than the capacitance of the Hawaii-2RG IR detector pixel, lower noise was expected. However, those detectors suffer from interpixel capacitance which introduces an error to the value of the conversion factor measured with the photon transfer method. Therefore QE values have been overestimated by almost a factor of two in the past. Detailed test results on QE, noise, dark current, and other basic performance values as well as a discussion how to interpret the measured values will be presented. Two alternative methods, direct measurement of the nodal capacity and the use of Iron-55 X-rays to determine the actual nodal capacitance and hence the conversion factor will be briefly presented. PSF performance of this detector was analyzed in detail with an optical spot and single pixel reset measurement.

  7. Radar volume reflectivity estimation using an array of ground-based rainfall drop size detectors

    NASA Astrophysics Data System (ADS)

    Lane, John; Merceret, Francis; Kasparis, Takis; Roy, D.; Muller, Brad; Jones, W. Linwood

    2000-08-01

    Rainfall drop size distribution (DSD) measurements made by single disdrometers at isolated ground sites have traditionally been used to estimate the transformation between weather radar reflectivity Z and rainfall rate R. Despite the immense disparity in sampling geometries, the resulting Z-R relation obtained by these single point measurements has historically been important in the study of applied radar meteorology. Simultaneous DSD measurements made at several ground sites within a microscale area may be used to improve the estimate of radar reflectivity in the air volume surrounding the disdrometer array. By applying the equations of motion for non-interacting hydrometers, a volume estimate of Z is obtained from the array of ground based disdrometers by first calculating a 3D drop size distribution. The 3D-DSD model assumes that only gravity and terminal velocity due to atmospheric drag within the sampling volume influence hydrometer dynamics. The sampling volume is characterized by wind velocities, which are input parameters to the 3D-DSD model, composed of vertical and horizontal components. Reflectivity data from four consecutive WSR-88D volume scans, acquired during a thunderstorm near Melbourne, FL on June 1, 1997, are compared to data processed using the 3D-DSD model and data form three ground based disdrometers of a microscale array.

  8. 13 micron cutoff HgCdTe detector arrays for space and ground-based astronomy

    NASA Astrophysics Data System (ADS)

    McMurtry, Craig W.; Cabrera, Mario S.; Dorn, Meghan L.; Pipher, Judith L.; Forrest, William J.

    2016-07-01

    With the recent success of our development of 10 micron HgCdTe infrared (IR) detector arrays,1,2 we have used what we learned and extended the cutoff wavelength to 13 microns. These 13 micron HgCdTe detector arrays can operate at higher temperatures than Si:As, e.g. in a properly designed spacecraft with passive cooling, the 13 micron IR array will work well at temperatures around 30K. We present the initial measurements of dark current, noise and quantum efficiency for the first deliveries of 13 micron HgCdTe detector arrays from Teledyne Imaging Sensors. We also discuss our plans to develop 15 micron cutoff HgCdTe detector arrays which would facilitate the detection of the broad CO2 absorption feature in the atmospheres of exoplanets, particularly those in the habitable zone of their host star.

  9. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  10. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  11. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Savransky, Dmitry; Soummer, Remi

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  12. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter; Frazin, Richard

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012

  13. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  14. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  15. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-05-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 {times} 2048 spatial pixels and a maximum count rate of about 10{sup 6} photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V {approx} 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of {approximately} 10{sup 6} photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  16. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-01-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 [times] 2048 spatial pixels and a maximum count rate of about 10[sup 6] photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V [approx] 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of [approximately] 10[sup 6] photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  17. Tragaldabas: a muon ground-based detector for the study of the solar activity; first observations

    NASA Astrophysics Data System (ADS)

    José Blanco, Juan

    2016-04-01

    A new RPC-based cosmic ray detector, TRAGALDABAS (acronym of "TRAsGo for the AnaLysis of the nuclear matter Decay, the Atmosphere, the earth's B-field And the Solar activity") has been installed at the Univ. of Santiago de Compostela, Spain (N:42°52'34",W:8°33'37"). The detector, in its present layout, consists of three 1.8 m2 planes of three 1mm-gap glass RPCs. Each plane is readout with 120 pads with grounded guard electrodes between them to minimize the crosstalk noise. The main performances of the detectors are: an arrival time resolution of about ~300 ps, a tracking angular resolution below 3°, a detection efficiency close to 1, and a solid angle acceptance of ~5 srad. TRAGALDABAS will be able to monitor the cosmic ray low energy component strongly modulated by solar activity by mean the observation of secondary muons from the interaction between cosmic rays and atmospheric molecules. Its cadence and its angular resolution will allow to study in detail, small variations in cosmic ray anisotropy. These variations can be a key parameter to understand the effect of solar disturbances on the propagation of cosmic ray in the inner heliosphere and, maybe, provide a new tool for space weather analysis. In this work first TRAGALDABAS observations of solar events are shown

  18. Advanced Slit Detectors

    DTIC Science & Technology

    1976-12-01

    removed by chemical etching, shown in step 3. The etch solution used is a diluted aqua regia (2 HCl^i^O:! NHO3) . The etch was terminated by quenching...DISTRIBUTION STATEMENT (ol Hi* mbtltmcl •nl«rad In Black 30, II dlftartnl from Htpotl) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Contlnum on reverse ...source. When 13 : .- ^Mtti m —"—— ’■-■"-—’^ ’-’- ^ - .-».A-.... ■». .^.^.„^^JJ^....^^.^^^. DETECTOR: AD18-L11-#1 FORWARD BIAS fl REVERSE BIAS 1

  19. Advanced Radiation Detector Development

    SciTech Connect

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  20. Report on Advanced Detector Development

    SciTech Connect

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  1. Advanced Space-Based Detectors

    DTIC Science & Technology

    2014-07-17

    Research Laboratory 8. PERFORMING ORGANIZATION REPORT NUMBER Space Vehicles Directorate 3550 Aberdeen Ave., SE Kirtland AFB, NM 87117-5776 AFRL -RV...Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0010 TR-2014-0010 ADVANCED SPACE-BASED DETECTORS David Cardimona 17 Jul 2014 Final Report APPROVED FOR PUBLIC

  2. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    PubMed

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  3. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  4. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kowalska-Leszczynska, Izabela; Bizouard, Marie-Anne; Bulik, Tomasz; Christensen, Nelson; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz; Robinet, Florent; Rohde, Maximilian

    2017-04-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10‑18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network.

  5. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  6. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  7. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  8. Detectability of the nonlinear gravitational wave memory with second and third-generation ground-based detectors

    NASA Astrophysics Data System (ADS)

    Favata, Marc; Berti, Emanuele

    2017-01-01

    Gravitational wave memory refers to a non-oscillating component of a gravitational wave signal. In principle, all gravitational-wave sources have a memory component. The largest sources of memory waves are the merger of two black holes. These produce the so-called nonlinear or Blanchet-Damour-Christodoulou memory. We will discuss the prospects for detecting the nonlinear memory with current and third-generation ground-based interferometers. NSF Grant PHY-1308527.

  9. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  10. Advanced Virgo Interferometer: a Second Generation Detector for Gravitational Waves Observation

    NASA Astrophysics Data System (ADS)

    Accadia, T.; Acernese, F.; Agathos, M.; Allocca, A.; Astone, P.; Ballardin, G.; Barone, F.; Barsuglia, M.; Basti, A.; Bauer, Th. S.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bersanetti, D.; Bertolini, A.; Bitossi, M.; Bizouard, M. A.; Blom, M.; Boer, M.; Bondu, F.; Bonelli, L.; Bonnand, R.; Boschi, V.; Bosi, L.; Bradaschia, C.; Branchesi, M.; Briant, T.; Brillet, A.; Brisson, V.; Bulik, T.; Bulten, H. J.; Buskulic, D.; Buy, C.; Cagnoli, G.; Calloni, E.; Canuel, B.; Carbognani, F.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cesarini, E.; Chassande-Mottin, E.; Chincarini, A.; Chiummo, A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Conte, A.; Coulon, J.-P.; Cuoco, E.; D'Antonio, S.; Dattilo, V.; Davier, M.; Day, R.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Dereli, H.; De Rosa, R.; di Fiore, L.; di Lieto, A.; di Virgilio, A.; Drago, M.; Endrőczi, G.; Fafone, V.; Farinon, S.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Gammaitoni, L.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Giazotto, A.; Gouaty, R.; Granata, M.; Groot, P.; Guidi, G. M.; Heidmann, A.; Heitmann, H.; Hello, P.; Hemming, G.; Jaranowski, P.; Jonker, R. J. G.; Kasprzack, M.; Kéfélian, F.; Kowalska, I.; Królak, A.; Kutynia, A.; Lazzaro, C.; Leonardi, M.; Leroy, N.; Letendre, N.; Li, T. G. F.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marque, J.; Martelli, F.; Martinelli, L.; Masserot, A.; Meacher, D.; Meidam, J.; Michel, C.; Milano, L.; Minenkov, Y.; Mohan, M.; Morgado, N.; Mours, B.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Neri, I.; Neri, M.; Nocera, F.; Palomba, C.; Paoletti, F.; Paoletti, R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pichot, M.; Piergiovanni, F.; Pinard, L.; Poggiani, R.; Prijatelj, M.; Prodi, G. A.; Punturo, M.; Puppo, P.; Rabeling, D. S.; Rácz, I.; Rapagnani, P.; Re, V.; Regimbau, T.; Ricci, F.; Robinet, F.; Rocchi, A.; Rolland, L.; Romano, R.; Rosińska, D.; Ruggi, P.; Saracco, E.; Sassolas, B.; Sentenac, D.; Sequino, V.; Shah, S.; Siellez, K.; Sperandio, L.; Straniero, N.; Sturani, R.; Swinkels, B.; Tacca, M.; Ter Braack, A. P. M.; Toncelli, A.; Tonelli, M.; Torre, O.; Travasso, F.; Vajente, G.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; Vasúth, M.; Vedovato, G.; Veitch, J.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Wei, L.-W.; Yvert, M.; Zadrożny, A.; Zendri, J.-P.

    2015-03-01

    In the last ten years great improvements have been done in the development and operation of ground based detectors for Gravitational Waves direct observation and study. The second generation detectors are presently under construction in Italy, United States and Japan with a common intent to create a worldwide network of instruments able to start a new era in astronomy and astrophysics, a century after the development of the General Relativity theory predicting the existence of Gravitational Waves. The design sensitivity of the advanced detectors will be approximately ten times better with respect to the previous generation corresponding to an increment of a factor one thousand in the observational volume of the Universe where black holes, neutron stars and other enigmatic sources of these weak signals are spread around. In this paper we present a general overview of the advanced detectors with particular emphasis on Advanced VIRGO, the largest European interferometer located at the European Gravitational Observatory (EGO) site in the Pisa countryside (Italy).

  11. Development of a Ground-Based Analog to the Advanced Resistive Exercise Device Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Newby, Nathaniel J.; Scott-Pandorf, M. M.; Caldwell, E.; DeWitt, J.K.; Fincke, R.; Peters, B.T.

    2010-01-01

    NASA and Wyle engineers constructed a Horizontal Exercise Fixture (HEF) that was patented in 2006. Recently modifications were made to HEF with the goal of creating a device that mimics squat exercise on the Advanced Resistive Exercise Device (ARED) and can be used by bed rest subjects who must remain supine during exercise. This project posed several engineering challenges, such as how best to reproduce the hip motions (we used a sled that allowed hip motion in the sagittal plane), how to counterweight the pelvis against gravity (we used a pulley and free-weight mechanism), and how to apply large loads (body weight plus squat load) to the shoulders while simultaneously supporting the back against gravity (we tested a standard and a safety bar that allowed movement in the subject s z-axis, both of which used a retractable plate for back support). METHODS An evaluation of the HEF was conducted with human subjects (3F, 3M), who performed sets of squat exercises of increasing load from 10-repetition maximum (RM) up to 1-RM. Three pelvic counterweight loads were tested along with each of the two back-support squat bars. Data collection included 3-dimensional ground reaction forces (GRF), muscle activation (EMG), body motion (video-based motion capture), and subjective comments. These data were compared with previous ground-based ARED study data. RESULTS All subjects in the evaluation were able to perform low- to high-loading squats on the HEF. Four of the 6 subjects preferred a pelvic counterweight equivalent to 60 percent of their body weight. Four subjects preferred the standard squat bar, whereas 2 female subjects preferred the safety bar. EMG data showed muscle activation in the legs and low back typical of squat motion. GRF trajectories and eccentric-concentric loading ratios were similar to ARED. CONCLUSION: Squat exercise performed on HEF approximated squat exercise on ARED.

  12. Advanced Space-Based Detectors

    DTIC Science & Technology

    2012-09-24

    this interim report, we will discuss this detector architecture, as well as our preliminary electrical and optical characterization results from 200K to...complementary optics .1-2 It would be ideal to be able to achieve multi-color sensing with a single FPA via an internally voltage-tunable, narrowband spectral...pinch-off gate on top of the mesa device and photocarriers generated in that layer are expected to vertically tunnel through the AlGaAs barrier to the

  13. Ground based infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.

    1988-01-01

    Infrared spectroscopic instrumentation has been developed for ground-based measurements of astrophysical objects in the intermediate infrared. A conventional Michelson interferometer is limited for astronomical applications in the intermediate infrared by quantum noise fluctuations in the radiation form the source and/or background incident on the detector, and the multiplex advantage is no longer available. One feasible approach to recovering the multiplex advantage is post-dispersion. The infrared signal after passing through telescope and interferometer, is dispersed by a low resolution grating spectrometer onto an array of detectors. The feasibility of the post-dispersion system has been demonstrated with observations of astrophysical objects in the 5 and 10 micrometer atmospheric windows from ground-based telescopes. During FY87/88 the post-disperser was used at the Kitt Peak 4-meter telescope and McMath telescope with facility Fourier transform spectrometers. Jupiter, Saturn, Mars, and Venus were observed. On Jupiter, the resolution at 12 micrometer was 0.01/cm, considerably higher than had been acheived previously. The spectrum contains Jovian ethane and acetylene emission. Construction was begun on the large cryogenic grating spectrometer.

  14. Remote Sensing Observatory Validation of Surface Soil Moisture Using Advanced Microwave Scanning Radiometer E, Common Land Model, and Ground Based Data: Case Study in SMEX03 Little River Region, Georgia, U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal soil moisture estimation may be characterized by inter-comparisons among remotely sensed measurements, ground-based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground-based measurements, and Soil-Vege...

  15. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  16. Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 10{sup 19} eV

    SciTech Connect

    Palomares-Ruiz, Sergio; Irimia, Andrei; Weiler, Thomas J.

    2006-04-15

    Detection of ultrahigh energy neutrinos will be useful for unraveling the dynamics of the most violent sources in the cosmos and for revealing the neutrino cross-section at extreme energy. If there exists a Greisen-Zatsepin-Kuz'min (GZK) suppression of cosmic-ray events above E{sub GZK}{approx}5x10{sup 19} eV, as predicted by theory, then the only messengers of energies beyond E{sub GZK} are neutrinos. Cosmic neutrino fluxes can initiate air-showers through interaction in the atmosphere, or in the Earth. Neutrino trajectories will be downgoing to nearly horizontal in the former case, and 'Earth-skimming' in the latter case. Thus it is important to know the acceptances (event rate/flux) of proposed air-shower experiments for detecting both types of neutrino-initiated events. We calculate these acceptances for fluorescence detectors, both space-based as with the EUSO and OWL proposals, and ground-based, as with Auger, HiRes and Telescope Array. The neutrino cross-section {sigma}{sub {nu}}{sub N}{sup CC} is unknown at energies above 5.2x10{sup 13} eV. Although the popular QCD extrapolation of lower-energy physics offers the cross-section value of 0.54x10{sup -31}(E{sub {nu}}/10{sup 20} eV){sup 0.36} cm{sup 2}, new physics could raise or lower this value. Therefore, we present the acceptances of horizontal (HAS) and upgoing (UAS) air-showers as a function of {sigma}{sub {nu}}{sub N}{sup CC} over the range 10{sup -34} to 10{sup -30} cm{sup 2}. The dependences of acceptances on neutrino energy, shower-threshold energy, shower length, and shower column density are also studied. We introduce a cloud layer, and study its effect on rates as viewed from space and from the ground. For UAS, we present acceptances for events over land (rock), and over the ocean (water). Acceptances over water are larger by about an order of magnitude, thus favoring space-based detectors. We revisit the idea of Kusenko and Weiler [Phys. Rev. Lett. 88, 161101 (2002)] to infer {sigma}{sub {nu

  17. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  18. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  19. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.

    PubMed

    Kwee, P; Bogan, C; Danzmann, K; Frede, M; Kim, H; King, P; Pöld, J; Puncken, O; Savage, R L; Seifert, F; Wessels, P; Winkelmann, L; Willke, B

    2012-05-07

    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

  20. LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS

    SciTech Connect

    Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik; Vedovato, Gabriele; Klimenko, Sergey

    2015-02-20

    The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitational-wave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transient signals with latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector configurations can produce significantly different sky localizations, which we quantify in detail. We observe a clear improvement in localization of the average detected signal when progressing from two-detector to three-detector networks, as expected. Although localization depends on the waveform morphology, approximately 50% of detected signals would be imaged after observing 100-200 deg{sup 2} in 2015 and 60-110 deg{sup 2} in 2016, although knowledge of the waveform can reduce this to as little as 22 deg{sup 2}. This is the first comprehensive study on sky localization capabilities for generic transients of the early network of advanced LIGO and Virgo detectors, including the early LIGO-only two-detector configuration.

  1. Localization of Short Duration Gravitational-wave Transients with the Early Advanced LIGO and Virgo Detectors

    NASA Astrophysics Data System (ADS)

    Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik; Vedovato, Gabriele; Klimenko, Sergey

    2015-02-01

    The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitational-wave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transient signals with latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector configurations can produce significantly different sky localizations, which we quantify in detail. We observe a clear improvement in localization of the average detected signal when progressing from two-detector to three-detector networks, as expected. Although localization depends on the waveform morphology, approximately 50% of detected signals would be imaged after observing 100-200 deg2 in 2015 and 60-110 deg2 in 2016, although knowledge of the waveform can reduce this to as little as 22 deg2. This is the first comprehensive study on sky localization capabilities for generic transients of the early network of advanced LIGO and Virgo detectors, including the early LIGO-only two-detector configuration.

  2. Ground-based gravitational-wave observatories

    NASA Astrophysics Data System (ADS)

    Giaime, Joseph

    2017-01-01

    After decades of development and recent upgrades, a network of ground-based interferometric gravitational-wave detectors has begun regular operation. Last year LIGO's two detectors ran for ca. 4 months, observing waves emitted during the inspiral and coalescence of pairs of black holes hundreds of megaparsec from Earth. The results from LIGO's first observational run will be described, as will plans and expectations for a larger network to include Virgo in Europe and other ground-based detectors in the coming years.

  3. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    SciTech Connect

    Otte, A. N.; Williams, D. A.; Byrum, K.; Drake, G.; Horan, D.; Smith, A.; Wagner, R. G.; Falcone, A.; Funk, S.; Tajima, H.; Mukherjee, R.

    2008-12-24

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  4. Squeezed light for advanced gravitational wave detectors and beyond.

    PubMed

    Oelker, E; Barsotti, L; Dwyer, S; Sigg, D; Mavalvala, N

    2014-08-25

    Recent experiments have demonstrated that squeezed vacuum states can be injected into gravitational wave detectors to improve their sensitivity at detection frequencies where they are quantum noise limited. Squeezed states could be employed in the next generation of more sensitive advanced detectors currently under construction, such as Advanced LIGO, to further push the limits of the observable gravitational wave Universe. To maximize the benefit from squeezing, environmentally induced disturbances such as back scattering and angular jitter need to be mitigated. We discuss the limitations of current squeezed vacuum sources in relation to the requirements imposed by future gravitational wave detectors, and show a design for squeezed light injection which overcomes these limitations.

  5. Advances in Detector Technology for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    McCreight, Craig; Cheng, P. L. (Technical Monitor)

    1995-01-01

    Progress in semiconductor materials and processing technology has allowed the development of infrared detector arrays with unprecedented sensitivity, for imaging and spectroscopic applications in astronomy. The earlier discrete-detector approach has been replaced by large-element (up to 1024 x 1024 pixel), multiplexed devices. Progress has been made against a number of key limiting factors, such as quantum efficiency, noise, spectral response, linearity, and dark current. Future developments will focus on the need for even larger arrays, which operate at higher temperatures.

  6. Advancement of Polymer Detectors for Space Applications

    DTIC Science & Technology

    2007-11-02

    NOTES 14. ABSTRACT Photovoltaic polymer detectors incorporating Indium Phosphide (InP) and Cadmiume Selenide (CdSe) quantum dots (QDs) were...Indium Phosphide (InP) and Cadmium Selenide (CdSe) quantum dot (QD) materials were fabricated, characterized for their open circuit voltage...the InP QDs absorb energy from the photons and generate excited carriers ( electron -hole pairs) which are localized by the quantum dot field; c) the

  7. Enhancing the Detector for Advanced Neutron Capture Experiments

    NASA Astrophysics Data System (ADS)

    Couture, A.; Mosby, S.; Baramsai, B.; Bredeweg, T. A.; Jandel, M.; Macon, K.; O'Donnell, J. M.; Rusev, G.; Taddeucci, T. N.; Ullmann, J. L.; Walker, C. L.

    2015-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  8. Enhancing the detector for advanced neutron capture experiments

    SciTech Connect

    Couture, A.; Mosby, S.; Baramsai, B.; Bredeweg, T. A.; Jandel, M.; Macon, K.; O’Donnell, J. M.; Rusev, G.; Taddeucci, T. N; Ullmann, J. L.; Walker, C. L.

    2015-05-28

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  9. The advanced LIGO detectors in the era of first discoveries

    NASA Astrophysics Data System (ADS)

    Sigg, Daniel

    2016-08-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Ob- servatory (LIGO) held their first observation run between September 2015 and January 2016. The product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed the transient gravitational-wave signal GW150914, determined to be the coalescence of two black holes, launching the era of gravitational-wave astronomy. We present the main features of the detectors that enabled this observation. At its core Advanced LIGO is a multi-kilometer long Michelson interferometer employing optical resonators to enhance its sensitivity. Four very pure and homogeneous fused silica optics with excellent figure quality serve as the test masses. The displacement produced by the event GW150914 was one 200th of a proton radius. It was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.

  10. Ground-based IRCM testing

    NASA Astrophysics Data System (ADS)

    Greer, Derek; Owen, Mark

    2010-04-01

    Recent advances in the ability to perform comprehensive ground based Infrared Countermeasure (IRCM) testing have the capability to fill the Test and Evaluation (T&E) gaps for existing and future weapons system acquisition. IRCM testing has historically been dominated and in a manner limited by expensive live fire testing requirements. While live fire testing is a vital part of IRCM T&E, next generation technological developments now enable closed-loop, ground-based IRCM testing to provide valuable complementary test data at a much lower cost. The high cost and limited assets that have prevented live fire and flight testing from providing a thorough hardware based data set required for previous T&E analysis is no longer an issue. In the past, traditional physics based digital system model (DSM) analysis has been utilized to augment the IRCM data sets to make them statistically significant. While DSM is a useful tool in the development of IRCM systems, the newly developed installed system testing utilizing a hardware-in-the-loop construct provides for an enhanced level of fidelity and assurance that the systems will meet the warfighter's needs. The goal of the newly developed test technologies is to develop a statistical significant data set utilizing hardware-in-the-loop at a significantly lower cost than historical methods.

  11. Advancement and application of bubble detector technology

    SciTech Connect

    Buckner, M.A.; Casson, W.H.; Sims, C.S.

    1991-01-01

    Every field is searching for it's better mouse trap, and the field of dosimetry is no different. Until recently, a dosimetrist would have been hard-pressed to identify an affordable and yet reliably accurate dosimeter for mixed neutron and gamma fields. A new technology has reared it head and is vying for position in the dosimetry community. This relatively young technology is building upon the foundation of the bubble chamber, conceptualized by Glaser in 1952 (Glaser 1952). Although the attitudes surrounding this technology, as with any new development, are somewhat mixed, with the proper combination of tweaking and innovative thought, applications of this technology hold great promise for the future of neutron dosimetry. The Dosimetry Applications Research (DOSAR) facility of Oak Ridge National Laboratory (ORNL) is looking into some innovative applications of this technology. We are investigating options for overcoming its limiting features in hopes of achieving an unprecedented level of proficiency in neutron detection. Among these are the developing and testing of a Combination Area Neutron Spectrometer, CANS, assessing the plausibility of extremity applications, the assembly of an alternative reader for research, investigation of temperature-related effects and how to correct them and considerations on the coming of age of neutron dosimetry via real time detection of bubble formation in Bubble Technology Industries Inc. (BTI) detectors. In the space allowed, we will attempt to answer the questions: (1) What areas hold the greatest promise for application of this emerging technology (2) What obstacles must be overcome before full-blown application becomes a reality ; and (3) What might the future hold 11 refs., 6 figs., 3 tabs.

  12. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    SciTech Connect

    Actis, M

    2012-04-17

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  13. Advanced mercuric iodide detectors for X-ray microanalysis

    SciTech Connect

    Warburton, W.K.; Iwanczyk, J.S.

    1987-01-01

    We first present a brief tutorial on Mercuric Iodide (HgI/sub 2/) detectors and the intimately related topic of near-room temperature ultralow noise preamplifiers. This provides both a physical basis and technological perspective for the topics to follow. We next describe recent advances in HgI/sub 2/ applications to x-ray microanalysis, including a space probe Scanning Electron Microscope (SEM), Synchrotron x-ray detectors, and energy dispersive detector arrays. As a result of this work, individual detectors can now operate stably for long periods in vacuum, detect soft x-rays to the oxygen K edge at 523 eV, or count at rates exceeding 2x10(5)/sec. The detector packages are small, lightweight, and use low power. Preliminary HgI/sub 2/ detector arrays of 10 elements with 500eV resolution have also been constructed and operate stably. Finally, we discuss expected advances in HgI/sub 2/ array technology, including improved resolution, vacuum operation, and the development of soft x-ray transparent encapsulants. Array capabilities include: large active areas, high (parallel) count rate capability and spatial sensitivity. We then consider areas of x-ray microanalysis where the application of such arrays would be advantageous, particularly including elemental microanalysis, via x-ray fluorescence spectroscopy, in both SEMs and in scanning x-ray microscopes. The necessity of high count rate capability as spatial resolution increases is given particular attention in this connection. Finally, we consider the possibility of Extended X-ray Absorption Fine Structure (EXAFS) studies on square micron sized areas, using detector arrays.

  14. The Detector for Advanced Neutron Capture Experiments at LANSCE

    SciTech Connect

    Ullmann, J.L.; Reifarth, R.; Haight, R.C.; Hunt, L.; O'Donnell, J.M.; Rundberg, R.S.; Bredeweg, T.A.; Wilhelmy, J.B.; Fowler, M.M.; Vieira, D.J.; Wouters, J.M.; Strottman, D.D.; Kaeppeler, F.; Heil, M.; Chamberlin, E.P.

    2003-08-26

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4{pi} barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is being implemented.

  15. Thin-film infrared absorber structures for advanced thermal detectors

    NASA Astrophysics Data System (ADS)

    Parsons, A. D.; Pedder, D. J.

    1988-06-01

    Imaging thermal detector technology is a rapidly advancing field in which the current emphasis is towards the development of very large arrays of very small pyroelectric detector elements. For maximum responsivity, each of the thin pyroelectric elements in an array must be provided with a thermal absorber to convert incoming infrared radiation into heat. This paper describes one such absorber structure, comprising a thin metal film, impedance matched to free space, and a quarter-wave polymer film which offers an acceptably low thermal mass. The structure and properties of this thin-film absorber are compared with those of an electroplated platinum black absorber commonly used in thermal detectors. The theory of the absorber is presented and good agreement is shown between calculated and experimentally derived absorption spectra.

  16. The Suitability of Hybrid Waveforms for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Ilana; Pfeiffer, H.; Nissanke, S.; Mroue, A.

    2013-01-01

    General relativity predicts that the coalescence of two compact objects, such as black holes, will produce gravitational radiation; i.e., ripples in the curvature of space-time. Detectors like Advanced LIGO (the Laser Interferometry Gravitational-wave Observatory) are expected to measure such events within the next few years. In order to be able to characterize the gravitational waves they measure, these detectors require accurate waveform models, which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity late-inspiral-merger-ringdown waveform. Numerical relativity, though the most accurate model, is computationally expensive: the longest simulations to date taking several months to run. Post-Newtonian theory, an analytic approximation to General Relativity, is easy to compute but becomes increasingly inaccurate near merger. Because of this trade-off, it is important to determine the optimal length of the numerical waveform, while maintaining the necessary accuracy for gravitational wave detectors. We present a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. We perform a comprehensive analysis of errors that enter such “hybrid waveforms” in the case of equal-mass and unequal mass non-spinning binaries. We also explore the possibility of using these hybrid waveforms as a detection template bank for Advanced LIGO. Accurate hybrids play an important role in investigating the efficiency of gravitational wave search pipelines, as with NINJA (Numerical INJection Analysis); and also in constructing analytical models that span the entire parameter space of binary black hole mass ratios and spins, as with NRAR (Numerical Relativity and Analytic Relativity).

  17. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  18. The Suitability of Hybrid Waveforms for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Ilana; Pfeiffer, H.; Nissanke, S.

    2012-01-01

    General relativity predicts that the coalescence of two compact objects, such as black holes, will produce gravitational radiation; i.e., ripples in the curvature of space-time. Detectors like Advanced LIGO (the Laser Interferometry Gravitational-wave Observatory) are expected to measure such events within the next few years. In order to be able to characterize the gravitational waves they measure, these detectors require accurate waveform models, which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity late-inspiral-merger-ringdown waveform. Numerical relativity, though the most accurate model, is computationally expensive: the longest simulations to date taking several months to run. Post-Newtonian theory, an analytic approximation to General Relativity, is easy to compute but becomes increasingly inaccurate near merger. Because of this trade-off, it is important to determine the optimal length of the numerical waveform, while maintaining the necessary accuracy for gravitational wave detectors. We present a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. We perform a comprehensive analysis of errors that enter such "hybrid waveforms” in the case of equal-mass non-spinning binaries. Preliminary research has also been done in the case of unequal-mass non-spinning binaries. Accurate hybrids play an important role in investigating the efficiency of gravitational wave search pipelines, as with NINJA (Numerical INJection Analysis); and also in constructing analytical models that span the entire parameter space of binary black hole mass ratios and spins, as with NRAR (Numerical Relativity and Analytic Relativity).

  19. Aspects of suspension design for the development of advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul

    The Institute for Gravitational Research in the University of Glasgow in collaboration with the Albert Einstein Institute in Hannover, Golm and the University of Cardiff has been actively involved in the research for the development of instruments and data analysis techniques to detect gravitational waves. This includes construction of a long ground based interferometer in Germany called GEO 600 (upgraded to GEO-HF) having an arm length 600 m and strong involvement in the larger detectors of the LIGO (Laser interferometer gravitational wave observatory) project in USA having arm lengths of 4 km (Operated by MIT, Boston and CALTECH, Pasadena). An upgrade to LIGO called Advanced LIGO (aLIGO) is currently under construction with significant input from the University of Glasgow. Thermal noise is one of the most significant noise sources affecting the sensitivity of the detector at a range of frequencies. Thermal noise arises due to the random fluctuations of atoms and molecules in the materials of the test mass mirrors and suspension elements, and is related to mechanical loss in these materials. The work presented in chapter 3 of this thesis is devoted to the analysis of aspects of mechanical loss and thermal noise in the final stages of the GEO suspension. The work in chapter 4 focuses on the theory of photoelasticty and birefringence techniques. A study of mechanical and thermal stress induced in fused silica has been discussed in chapter 5 of this thesis. To understand the working of photoelastic techniques learned in chapter 4, a study of mechanical stress was undertaken by applying a load on the sample to induce temporary birefringence. A study of thermal stress in fused silica welds has also been presented in chapter 5.

  20. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2000-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  1. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2002-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  2. The "Puck" energetic charged particle detector: Design, heritage, and advancements.

    PubMed

    Clark, G; Cohen, I; Westlake, J H; Andrews, G B; Brandt, P; Gold, R E; Gkioulidou, M A; Hacala, R; Haggerty, D; Hill, M E; Ho, G C; Jaskulek, S E; Kollmann, P; Mauk, B H; McNutt, R L; Mitchell, D G; Nelson, K S; Paranicas, C; Paschalidis, N; Schlemm, C E

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  3. The "Puck" energetic charged particle detector: Design, heritage, and advancements

    NASA Astrophysics Data System (ADS)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  4. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  5. TFTR alpha extraction and measurement: Development and testing of advanced alpha detectors: Final report

    SciTech Connect

    Wehring, B.W.

    1988-02-15

    Advanced alpha-particle detectors made of heavy elements were investigated as alternatives to silicon surface-barrier detectors for the ''foil-neutralization technique'' of alpha-particle diagnostics in fusion reactors with high neutron backgrounds. From an extensive literature review, it was decided that HgI/sub 2/ would make a more suitable detector for alpha-particle diagnostics than other heavy element detectors such as CdTe. Thus, HgI/sub 2/ detectors were designed and fabricated. Experimental tests were performed to determine detector characteristics and detector responses to alpha particles. Radiation noise measurements were also performed using the North Carolina State University PULSTAR nuclear reactor for both the HgI/sub 2/ detectors and commercial Si(Au) surface barrier detectors. 15 refs., 1 fig.

  6. Archiving data from ground-based telescopes

    NASA Technical Reports Server (NTRS)

    Albrecht, M. A.

    1992-01-01

    The scientific throughput of a particular observing facility has been demonstrated to be multiplied with the operation of a data archive and its corresponding retrieval system. A requisite to achieve such an exploitation is a well structured observations catalog, i.e. a catalog that includes all information necessary to reduce and analyze the data even many years after its acquisition. At the same time, an information system is required that allow users to browse through the catalog at different levels of detail, adapting the amount of information presented to the actual needs of the user. Archiving data acquired with ground-based telescopes is particularly difficult because of the relative short life-time of instruments and detectors in comparison to the expected life-time of the archive. This feature differentiates ground-based originated archives radically from its spaceborne counterparts. The organization of the observations catalog becomes highly dependent on the capability of the archive to deal with new instrumental configurations. We introduce in this paper, the concept of a catalog database as opposed to the static catalog design currently in use in many archiving facilities, as a method to deal with this problem. We also present a brief review of activities currently in progress in this area.

  7. Ground based materials science experiments

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  8. Ground based silicon zoning program

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1981-01-01

    The preparation of building flight hardware and carrying out experiments in space was investigated. The ground based investigation phase A/B of the experimental float zoning of silicon is outlined. The overall program goals, leading to recommending experiments to be done in phase C/D are spelled out. Thermophysical properties which must be accurately known to compare thermophysical models to experimental zoning of silicon are listed.

  9. Advanced passive detectors for neutron dosimetry and spectrometry.

    PubMed

    Tommasino, L

    2004-01-01

    Different neutron detectors have been developed in the past which exploit electrical and electrochemical processes in plastic foils and thin-film capacitors (namely metal-oxide-silicon devices) to trigger avalanche processes, which greatly facilitate the detection of neutron-induced charged particles. These detectors are: (i) spark-replica counter of neutron-induced fission-fragment holes in plastic films, thin-film breakdown counter of neutron-induced fission fragments, and electrochemically etched detectors of neutron-induced recoils in plastic foils. The major shortcomings of damage-track detectors for the measurement of low neutron fluencies, such as those of cosmic ray neutrons at civil aviation altitudes, are their large and unpredictable background and their small signal-to-noise ratio. These shortcomings have been overcome respectively by using long exposure times and large detector areas and counting coincidence-track events on matched pairs of detectors even for a few-micron-long tracks such as those of neutron recoils. The responses of all these detectors have been analysed both with neutrons with energy up to approximately 200 MeV and protons up to tens of gigaelectron volts. Applications of these detectors for the cosmic ray neutron dosimetry and/or spectrometry will be mentioned.

  10. Development of an advanced antineutrino detector for reactor monitoring

    NASA Astrophysics Data System (ADS)

    Classen, T.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Ho, A.; Jonkmans, G.; Kogler, L.; Reyna, D.; Sur, B.

    2015-01-01

    Here we present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. This paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass per detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.

  11. Advanced Si IR detectors using molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Jones, E. W.; George, T.; Ksendzov, A.; Huberman, M. L.

    1991-01-01

    SiGe/Si heterojunction internal photoemission (HIP) long wavelength infrared (LWIR) detectors have been fabricated by MBE. The SiGe/Si HIP detector offers a tailorable spectral response in the long wavelength infrared regime by varying the SiGe/Si heterojunction barrier. Degenerately doped p(+) SiGe layers were grown using elemental boron, as the dopant source allows a low growth temperature. Good crystalline quality was achieved for boron-doped SiGe due to the reduced growth temperature. The dark current density of the boron-doped HIP detectors was found to be thermionic emission limited. HIP detectors with a 0.066 eV were fabricated and characterized using activation energy analysis, corresponding to a 18 micron cutoff wavelength. Photoresponse of the detectors at wavelengths ranging from 2 to 12 microns has been characterized with corresponding quantum efficiencies of 5 - 0.1 percent.

  12. Advanced Ge detectors for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Varnell, Larry S.

    1991-01-01

    Externally segmented coaxial detectors are fabricated for high efficiency in detecting gamma rays from cosmic sources with good sensitivities. The external background is reduced by enclosing the Ge detector array inside a thick active shield. The outer electrode of the coaxial detectors is subdivided into five segments, and internal beta activity is rejected by operating the segmented detector in a multisegment mode. The multisegment mode requires that events be detected in two or more segments before they are recorded. The full-energy-peak (FEP) efficiency of the unit is tested as a function of the incident gamma-ray energy and of the discriminator threshold of the segments. Measurements of beta-rejection and FEP efficiency are compared with Monte Carlo calculations, and good agreement is noted.

  13. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  14. Recent advances in processing and characterization of edgeless detectors

    NASA Astrophysics Data System (ADS)

    Wu, X.; Kalliopuska, J.; Eränen, S.; Virolainen, T.

    2012-02-01

    During past five years VTT has actively developed edgeless detector fabrication process. The straightforward and high yield process relies on ion-implantation to activate the edges of the detector. A recent fabrication process was performed at VTT to provide p-on-n edgeless detectors. The layout contained DC- and AC-coupled strip detector and pixel detectors for Medipix/Timepix readouts. The fabricated detector thicknesses were 50, 100 and 150 μm. Electrical characterization was done for 5 × 5 mm2 edgeless diodes on wafer level. All measured electrical parameters showed a dramatic dependence on the diode thickness. Leakage current was measured below 10 nA/cm2 at full depletion. Calculation using a theoretical approximation indicates the diode surface generation current of less than 300 pA. The breakdown voltages were measured to be above 140 V and increased as a function of diode thickness. Reverse bias of 10 V is enough to fully deplete designed edgeless diodes. Leakage current dependence of temperature was investigated for both p-on-n and previous n-on-n edgeless detectors and results show that the leakage current doubles for every 8.5 degree Celsius rise in temperature. TCAD device simulations reveal that breakdown occurs at the lateral p-n junction where the electric field reaches its highest value. Thick edgeless diodes have wider bulk space that allows electric potential to drop and causes smaller curvature of the equipotential lines. This releases the accumulation of electric field at the corner of anode and increases the breakdown voltage. A good match of the simulated and the measured capacitance-voltage curves enables identification of proper parameters used in the simulation.

  15. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    Powell, Jade; Torres-Forné, Alejandro; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco; Heng, Ik Siong; Font, José A.

    2017-02-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers.

  16. Recent advances in high-speed photon detectors

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1982-12-01

    Recent progress of some fast high-gain photon detectors using photoemission and secondary emission processes is reviewed and summarized. Specifically, performance characteristics are presented, of the new Amperex XP 2020, RCA 8854, and Hamamatsu R 647-01 conventionally design photomultipliers. Also, characteristics are presented of the ITT F 4129 and Hamamatsu R 1564U extended lifetime microchannel plate photomultipliers as well as certain special made photomultipliers intended for application in positron emission tomography, high energy physics and plasma diagnostic experimental systems. Finally, microchannel plates as photon detectors for ultraviolet and X-ray wavelengths are discussed.

  17. Recent advances in CZT strip detectors and coded mask imagers

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.; Gruber, D. E.; Heindl, W. A.; Pelling, M. R.; Peterson, L. E.; Rothschild, R. E.; Skelton, R. T.; Hink, P. L.; Slavis, K. R.; Binns, W. R.; Tumer, T.; Visser, G.

    1999-09-01

    The UCSD, WU, UCR and Nova collaboration has made significant progress on the necessary techniques for coded mask imaging of gamma-ray bursts: position sensitive CZT detectors with good energy resolution, ASIC readout, coded mask imaging, and background properties at balloon altitudes. Results on coded mask imaging techniques appropriate for wide field imaging and localization of gamma-ray bursts are presented, including a shadowgram and deconvolved image taken with a prototype detector/ASIC and MURA mask. This research was supported by NASA Grants NAG5-5111, NAG5-5114, and NGT5-50170.

  18. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  19. Target-based optimization of advanced gravitational-wave detector network operations

    NASA Astrophysics Data System (ADS)

    Szölgyén, Á.; Dálya, G.; Gondán, L.; Raffai, P.

    2017-04-01

    We introduce two novel time-dependent figures of merit for both online and offline optimizations of advanced gravitational-wave (GW) detector network operations with respect to (i) detecting continuous signals from known source locations and (ii) detecting GWs of neutron star binary coalescences from known local galaxies, which thereby have the highest potential for electromagnetic counterpart detection. For each of these scientific goals, we characterize an N-detector network, and all its (N  ‑  1)-detector subnetworks, to identify subnetworks and individual detectors (key contributors) that contribute the most to achieving the scientific goal. Our results show that aLIGO-Hanford is expected to be the key contributor in 2017 to the goal of detecting GWs from the Crab pulsar within the network of LIGO and Virgo detectors. For the same time period and for the same network, both LIGO detectors are key contributors to the goal of detecting GWs from the Vela pulsar, as well as to detecting signals from 10 high interest pulsars. Key contributors to detecting continuous GWs from the Galactic Center can only be identified for finite time intervals within each sidereal day with either the 3-detector network of the LIGO and Virgo detectors in 2017, or the 4-detector network of the LIGO, Virgo, and KAGRA detectors in 2019–2020. Characterization of the LIGO-Virgo detectors with respect to goal (ii) identified the two LIGO detectors as key contributors. Additionally, for all analyses, we identify time periods within a day when lock losses or scheduled service operations could result with the least amount of signal-to-noise or transient detection probability loss for a detector network.

  20. Tuning advanced gravitational-wave detectors to optimally measure neutron-star merger waves

    NASA Astrophysics Data System (ADS)

    Stein, Leo

    2010-02-01

    Next-generation gravitational wave detectors have the potential to bring us astrophysical information in yet unexplored regimes. One of the possibilities is learning about neutron stars' equations of state from the gravitational wave burst of a binary coalescence. Since these events are ``bursty'', one does not have the luxury of time-averaging to improve S/N; one can only hope to do better by ``tuning'' a detector network to have the noise performance which will be most informative about the physics. We present a Bayesian method for optimizing a detector network given a prior distribution of physical parameters which affect the gravitational wave signal. Each detection adds information about the parameter distribution, updating the posterior and the optimal detector configuration. We demonstrate the algorithm with toy signal and detector response models and predict whether tuning Advanced LIGO (via the signal recycling cavity) will be fruitful in accelerating our understanding of neutron stars through their mergers. )

  1. Advanced Microstructured Semiconductor Neutron Detectors: Design, Fabrication, and Performance

    NASA Astrophysics Data System (ADS)

    Bellinger, Steven Lawrence

    The microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/γ) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array

  2. Advances in capillary-based gaseous UV imaging detectors

    NASA Astrophysics Data System (ADS)

    Iacobaeus, C.; Breskin, A.; Danielsson, M.; Francke, T.; Mörmann, D.; Ostling, J.; Peskov, V.

    2004-06-01

    We studied gain and position resolution of gaseous UV-photon detectors combining single- and cascaded- glass capillary-plate multipliers and CsI photocathodes. Two modes of operation were investigated: a conventional one, where the main amplification occurs within capillary holes and a parallel-plate amplification mode, where the main amplification occurs between the capillary plate and the readout anode. Results of these studies demonstrate that in the parallel-plate amplification mode one can reach both high gains (>10 5) and good position resolutions (˜100 μm) even with a single-element multiplier. This offers a compact amplification structure, which can be used in many applications.

  3. Advances in Performance of Microchannel Plate Detectors for HEDP Diagnostics

    SciTech Connect

    Ming Wu, Craig Kruschwitz, Ken Moy, Greg Rochau

    2009-10-01

    In recent years, a team from NSTec and SNL has built a unique capability to develop microchannel plate (MCP)?based framing x-ray cameras for HEDP diagnostics. At the SNL Z facility, multistrip MCP detectors to record up to eight channels are employed in 2-D, sub-nanosecond time-resolved imaging and time- and space-resolved spectroscopy diagnostics. Progressively more stringent technical temporal resolution and response uniformity requirements have necessitated a systematic design approach based on iterative modeling of the MCP using inputs from electrical circuit characterization. An inherently large exponential dependence in MCP gain, V{sup 11.5}, has mandated a firm understanding of the applied voltage pulse shape propagating across the strip. We pioneered direct measurements of the propagating waveform using a Picoprobe{reg_sign} and developed a Monte Carlo code to simulate MCP response to compare against test measurements. This scheme is shown in Figure 1. The simulation detailed a physical model of the cascade and amplification process of the MCP that includes energy conservation for the secondary electrons, the effects of elastic scattering of low-energy electrons from the channel wall, and gain saturation mechanisms from wall charging and space charge. Our model can simulate MCP response for both static and pulsed voltage waveforms. Using this design approach, we began to characterize the newly developed second-generation detector (H-CA-65) by using a Manson x-ray source to evaluate the following DC characteristics: MCP sensitivity as a function of bias voltage, flat-field uniformity and spatial resolution, and variation of spatial resolution and sensitivity as a function of phosphor bias voltage. Dynamic performance and temporal response were obtained by using an NSTec short-pulse laser to measure optical gate profiles, saturation, and dynamic range. These data were processed and combined to obtain the gain variation and gate profiles for any position along

  4. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  5. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  6. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10^{-23}/sqrt[Hz] at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  7. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23/√{Hz } at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  8. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  9. Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors.

    PubMed

    Canuel, B; Genin, E; Vajente, G; Marque, J

    2013-05-06

    The second generation of ground-based interferometric gravitational wave detectors are currently being built and installed. They are designed to be better in strain sensitivity by about a factor 10 with respect to the first generation. Light originating from the laser and following unintended paths, called stray light, has been a major problem during the commissioning of all of the first generation detectors. Indeed, stray light carries information about the phase of the emitting object. Therefore, in the next generation all the optics will be suspended in the vacuum in order to mitigate their associated stray light displacement noise. Despite this additional precaution, the challenging target sensitivity at low frequency which is partially limited by quantum radiation pressure combined with up-conversion effects, requires more detailed investigation. In this paper, we turn our attention to stray light originating from auxiliary optical benches. We use a dedicated formalism to compute the re-coupling of back-reflected and back-scattered light. We show, in particular, how much care should be taken in designing and setting requirements for the input bench optics.

  10. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  11. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  12. Cosmology using advanced gravitational-wave detectors alone

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen R.; Gair, Jonathan R.; Mandel, Ilya

    2012-01-01

    We investigate a novel approach to measuring the Hubble constant using gravitational-wave (GW) signals from compact binaries by exploiting the narrowness of the distribution of masses of the underlying neutron-star population. Gravitational-wave observations with a network of detectors will permit a direct, independent measurement of the distance to the source systems. If the redshift of the source is known, these inspiraling double-neutron-star binary systems can be used as standard sirens to extract cosmological information. Unfortunately, the redshift and the system chirp mass are degenerate in GW observations. Thus, most previous work has assumed that the source redshift is obtained from electromagnetic counterparts. However, we investigate a novel method of using these systems as standard sirens with GW observations alone. In this paper, we explore what we can learn about the background cosmology and the mass distribution of neutron stars from the set of neutron-star (NS) mergers detected by such a network. We use a Bayesian formalism to analyze catalogs of NS-NS inspiral detections. We find that it is possible to constrain the Hubble constant, H0, and the parameters of the NS mass function using gravitational-wave data alone, without relying on electromagnetic counterparts. Under reasonable assumptions, we will be able to determine H0 to ±10% using ˜100 observations, provided the Gaussian half-width of the underlying double NS mass distribution is less than 0.04M⊙. The expected precision depends linearly on the intrinsic width of the NS mass function, but has only a weak dependence on H0 near the default parameter values. Finally, we consider what happens if, for some fraction of our data catalog, we have an electromagnetically measured redshift. The detection, and cataloging, of these compact-object mergers will allow precision astronomy, and provide a determination of H0 which is independent of the local distance scale.

  13. Advanced Fluorescence Protein-Based Synapse-Detectors

    PubMed Central

    Lee, Hojin; Oh, Won Chan; Seong, Jihye; Kim, Jinhyun

    2016-01-01

    The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience. PMID:27445785

  14. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  15. The MIC photon counting detector

    NASA Astrophysics Data System (ADS)

    Fordham, J. L. A.; Bone, D. A.; Oldfield, M. K.; Bellis, J. G.; Norton, T. J.

    1992-12-01

    The MIC (Microchannel plate Intensified CCD (Charge Coupled Device)) detector is an advanced performance Micro Channel Plate (MCP) intensified CCD photon counting detector developed for high resolution, high dynamic range, astronomical applications. The heart of the detector is an MCP intensifier developed specifically for photon counting applications. The maximum detector format is 3072 by 2304 pixels. The measured resolution of the detector system is 18 micrometers FWHM at 490 nm. The detector is linear to approximately 1,000,000 events/detector area/sec on a flat field and linear to count rates up to 200 events/object/s on star images. Two versions of the system have been developed. The first for ground based astronomical applications based around a 40 mm diameter intensifier, was proven in trials at a number of large optical telescopes. The second, specifically for the ESA X-Ray Multi Mirror Mission (XMM), where the MIC has been accepted as the blue detector for the incorporated Optical Monitor (OM). For the XMM-OM, the system is based around a 25 mm diameter intensifier. At present, under development, is a 75 mm diameter version of the detector which will have a maximum format of 6144 by 4608 pixels. Details of the MIC detector and its performance are presented.

  16. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  17. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    SciTech Connect

    Errard, J.; Borrill, J.; Ade, P. A. R.; Akiba, Y.; Chinone, Y.; Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T.; Baccigalupi, C.; Fabbian, G.; Boettger, D.; Chapman, S.; Cukierman, A.; Delabrouille, J.; Ducout, A.; Feeney, S.; Feng, C.; and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  18. Modeling Atmospheric Emission for CMB Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Errard, J.; Ade, P. A. R.; Akiba, Y.; Arnold, K.; Atlas, M.; Baccigalupi, C.; Barron, D.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Delabrouille, J.; Dobbs, M.; Ducout, A.; Elleflot, T.; Fabbian, G.; Feng, C.; Feeney, S.; Gilbert, A.; Goeckner-Wald, N.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W. L.; Hori, Y.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A. H.; Jeong, O.; Katayama, N.; Kaufman, J.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Leon, D.; Linder, E.; Matsuda, F.; Matsumura, T.; Miller, N. J.; Myers, M. J.; Navaroli, M.; Nishino, H.; Okamura, T.; Paar, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K. M.; Schenck, D. E.; Sherwin, B. D.; Siritanasak, P.; Smecher, G.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Tajima, O.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Whitehorn, N.; Wilson, B.; Yadav, A.; Zahn, O.

    2015-08-01

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  19. The VO and Ground-Based Data

    NASA Astrophysics Data System (ADS)

    Huchra, John

    The era of extremely large public databases in astronomy is upon us. such databases are opening the field to new research and new researchers. However it is important to be sure the resources are available to properly archive ground-based astronomical data and include the necessary quality checks and calibrations. A Virtual Observatory without proper archives will have limited usefulness. This also implies that with limited resources not all data can or should be archived. NASA already has a very good handle on US space-based astronomical data. Agencies and organizations that operate astronomical facilities particularly ground based observatories need to plan and budget for these activities now. We should not underestimate the effort required to produce high quality data products that will be useful for the broader community. Currently the best way to ""fill"" archives is with data ftom surveys. That will continue to be the case for most ground based observatories.

  20. Ground-Based Astrometry 2010-2020

    DTIC Science & Technology

    2010-01-01

    rare members of the Galaxy, such as cataclysmic vari- ables and the central stars of planetary nebulae ? Concerted efforts on CVs at optical wave- 4...densities (Thorstensen et al. 2008). Because of ground-based parallax efforts on planetary nebulae central stars, we now know their luminosities and how they

  1. Advanced combined iodine dispenser and detector. [for microorganism annihilation in potable water

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Schubert, F. H.; Jensen, F. C.; Powell, J. D.

    1977-01-01

    A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals.

  2. Technology assessment for the advanced life detector. Final technical report, May 1987-January 1988

    SciTech Connect

    Burrows, W.D.; George, D.T.

    1988-01-29

    This report summarizes an assessment of technology available to develop a noninvasive life detector for use on the battlefield. The detectors determine if casualties wearing chemical protective overgarments are alive or dead without further exposing either the casualties or the aidmen to the contaminated environment. Seven technology approaches sponsored by the Department of Defense (comprising 11 devices), four technologies identified in a market survey, and one device described in a Broad Agency Announcement proposal were examined as candidate Advanced Life Detectors. The technologies and instruments surveyed included three transmitter-receiver technologies, an electrocardiogram (ECG) technology, pacemaker-transmitter/receiver, dry electrode heart rate monitor, five microwave technologies, flash reflectance oximetry, an ultrasound technology, a streaming potential technology, a dry electrode ECG monitor coupled to a microphone, a statometric technique for determining heart rate and blood pressure, and a vital-signs monitor that determines heart rate and blood pressure using blood pressure cuff and microphones incorporated into the cuff. Analysis of the state-of-the-art of each device indicates that none of them are advanced enough to fulfill all the requirements of the draft Joint Services Operational Requirement. Three of the devices identified are recommended for further evaluation.

  3. β-Decay Studies of r-Process Nuclei Using the Advanced Implantation Detector Array (AIDA)

    NASA Astrophysics Data System (ADS)

    Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.

    Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.

  4. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors.

    PubMed

    Cumming, A; Jones, R; Barton, M; Cagnoli, G; Cantley, C A; Crooks, D R M; Hammond, G D; Heptonstall, A; Hough, J; Rowan, S; Strain, K A

    2011-04-01

    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∼10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions.

  5. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  6. Imaging performance of a clinical selenium flat-panel detector for advanced applications in full-field digital mammography

    NASA Astrophysics Data System (ADS)

    Loustauneau, Vincent; Bissonnette, Michel; Cadieux, Sebastien; Hansroul, Marc; Masson, E.; Savard, Serge; Polischuk, Brad T.; Lehtimauki, Mari J.

    2003-06-01

    The advent of digital detectors will enable several advanced imaging applications to be used in the fight against breast cancer. For example, dynamic imaging applications such as tomosynthesis, contrast enhanced and dual energy mammography have demonstrated promising results. In this paper, we will assess the suitability of this detector for these advanced applications. MTF and DQE measurements were performed on a selenium FFDM detector to assess image quality. Ghosting properties of a digital detector are also an important factor, since it can strongly degrade image quality. In this paper, we will also report on the ghosting characteristics of the selenium detector, using typical exposures envisioned to be used in tomosynthesis exams. The physical mechanisms that create ghost images will be discussed and will be quantified.

  7. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  8. Statistical Studies of Ground-Based Optical Lightning Signatures

    NASA Astrophysics Data System (ADS)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  9. Effect of Advanced Synthetically Enhanced Detector Resolution Algorithm on Specificity and Sensitivity of Portable High Purity Germanium Gamma Detector Spectra

    DTIC Science & Technology

    2009-06-01

    with a 50 mm diameter and 30 mm deep Ge crystal and low power Stirling Cooler . The detector is shown in Figure 9. 28 Figure 9. Ortec...recording some characteristics of their average behavior. The common behavior of particles in the physical system is then concluded from the 14...modeling. With increased computational power, Monte Carlo simulations of detector systems have become a complement to experimental detector work

  10. MSFC Skylab ground-based astronomy program

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.

    1974-01-01

    The Skylab Ground-Based Astronomy Program (SGAP) was conducted to enhance the data base of solar physics obtained during the Apollo Telescope Mount (ATM) mission flown in conjunction with the Skylab orbital station. Leading solar physicists from various observatories obtained data from the ground at the same time that orbital data were being acquired by ATM. The acquisition of corollary solar data from the ground simultaneously with the ATM orbital observations helped to provide a broader basis for understanding solar physics by increasing spectral coverage and by the use of additional sophisticated instruments of various types. This report briefly describes the individual tasks and the associated instrumentation selected for this ground-based program and contains as appendices, the final reports from the Principal Investigators.

  11. Ground-based observations of exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst Johan Walter

    2011-11-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project. In addition to secondary eclipse observations, the broadband transmission spectrum of the super-Earth GJ1214b is also presented. The transmission spectrum for this low-density planet indicates that it probably has a low-metallicity, hydrogen dominated atmosphere. Finally the results for an ensemble study of the thermal emission properties of hot Jupiters is presented, including the average spectrum for these planets separated based on the level of incident radiation and the activity of their host-stars.

  12. Current trends in ground based solar magnetometry

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  13. The next detectors for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  14. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Martynov, D. V.; Hall, E. D.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, R. A.; Anderson, S. B.; Arai, K.; Arain, M. A.; Aston, S. M.; Austin, L.; Ballmer, S. W.; Barbet, M.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Batch, J. C.; Bell, A. S.; Belopolski, I.; Bergman, J.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Black, E.; Blair, C. D.; Bogan, C.; Bork, R.; Bridges, D. O.; Brooks, A. F.; Celerier, C.; Ciani, G.; Clara, F.; Cook, D.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Damjanic, M.; Dannenberg, R.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Feldbaum, D.; Fisher, R. P.; Foley, S.; Frede, M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galdi, V.; Giaime, J. A.; Giardina, K. D.; Gleason, J. R.; Goetz, R.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Grote, H.; Guido, C. J.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heefner, J.; Heintze, M. C.; Heptonstall, A. W.; Hoak, D.; Hough, J.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kells, W.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kokeyama, K.; Korth, W. Z.; Kuehn, G.; Kwee, P.; Landry, M.; Lantz, B.; Le Roux, A.; Levine, B. M.; Lewis, J. B.; Lhuillier, V.; Lockerbie, N. A.; Lormand, M.; Lubinski, M. J.; Lundgren, A. P.; MacDonald, T.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Merilh, E. L.; Meyer, M. S.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, C. L.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; O'Dell, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Osthelder, C.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Patrick, Z.; Pele, A.; Penn, S.; Phelps, M.; Pickenpack, M.; Pierro, V.; Pinto, I.; Poeld, J.; Principe, M.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Ramet, C. R.; Reed, C. M.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Sannibale, V.; Savage, R. L.; Schofield, R. M. S.; Schultz, B.; Schwinberg, P.; Sellers, D.; Sevigny, A.; Shaddock, D. A.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith-Lefebvre, N. D.; Sorazu, B.; Staley, A.; Stein, A. J.; Stochino, A.; Strain, K. A.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vargas, M.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Waldman, S. J.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Welborn, T.; Weßels, P.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.

    2016-06-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10-23/√{Hz } was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.

  15. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    SciTech Connect

    Zhao, W.

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  16. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this

  17. Modelling an advanced ManPAD with dual band detectors and a rosette scanning seeker head

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Butters, Brian; Walmsley, Roy

    2012-01-01

    Man Portable Air Defence Systems (ManPADs) have been a favoured anti aircraft weapon since their appearance on the military proliferation scene in the mid 1960s. Since this introduction there has been a 'cat and mouse' game of Missile Countermeasures (CMs) and the aircraft protection counter counter measures (CCMs) as missile designers attempt to defeat the aircraft platform protection equipment. Magnesium Teflon Viton (MTV) flares protected the target aircraft until the missile engineers discovered the art of flare rejection using techniques including track memory and track angle bias. These early CCMs relied upon CCM triggering techniques such as the rise rate method which would just sense a sudden increase in target energy and assume that a flare CM had been released by the target aircraft. This was not as reliable as was first thought as aspect changes (bringing another engine into the field of view) or glint from the sun could inadvertently trigger a CCM when not needed. The introduction of dual band detectors in the 1980s saw a major advance in CCM capability allowing comparisons between two distinct IR bands to be made thus allowing the recognition of an MTV flare to occur with minimal false alarms. The development of the rosette scan seeker in the 1980s complemented this advancement allowing the scene in the missile field of view (FOV) to be scanned by a much smaller (1/25) instantaneous FOV (IFOV) with the spectral comparisons being made at each scan point. This took the ManPAD from a basic IR energy detector to a pseudo imaging system capable of analysing individual elements of its overall FOV allowing more complex and robust CCM to be developed. This paper continues the work published in [1,2] and describes the method used to model an advanced ManPAD with a rosette scanning seeker head and robust CCMs similar to the Raytheon Stinger RMP.

  18. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science

    NASA Astrophysics Data System (ADS)

    Zevin, M.; Coughlin, S.; Bahaadini, S.; Besler, E.; Rohani, N.; Allen, S.; Cabero, M.; Crowston, K.; Katsaggelos, A. K.; Larson, S. L.; Lee, T. K.; Lintott, C.; Littenberg, T. B.; Lundgren, A.; Østerlund, C.; Smith, J. R.; Trouille, L.; Kalogera, V.

    2017-03-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  19. Inverted pendulum as low-frequency pre-isolation for advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Takamori, A.; Raffai, P.; Márka, S.; DeSalvo, R.; Sannibale, V.; Tariq, H.; Bertolini, A.; Cella, G.; Viboud, N.; Numata, K.; Takahashi, R.; Fukushima, M.

    2007-11-01

    We have developed advanced seismic attenuation systems for Gravitational Wave (GW) detectors. The design consists of an Inverted Pendulum (IP) holding stages of Geometrical Anti-Spring Filters (GASF) and pendula, which isolate the test mass suspension from ground noise. The ultra-low-frequency IP suppresses the horizontal seismic noise, while the GASF suppresses the vertical ground vibrations. The three legs of the IP are supported by cylindrical maraging steel flexural joints. The IP can be tuned to very low frequencies by carefully adjusting its load. As a best result, we have achieved an ultra low, ˜12 mHz pendulum frequency for the system prototype made for Advanced LIGO (Laser Interferometer Gravitational Wave Observatory). The measured quality factor, Q, of this IP, ranging from Q˜2500 (at 0.45 Hz) to Q˜2 (at 12 mHz), is compatible with structural damping, and is proportional to the square of the pendulum frequency. Tunable counterweights allow for precise center-of-percussion tuning to achieve the required attenuation up to the first leg internal resonance (˜60 Hz for advanced LIGO prototype). All measurements are in good agreement with our analytical models. We therefore expect good attenuation in the low-frequency region, from ˜0.1to ˜50 Hz, covering the micro-seismic peak. The extremely soft IP requires minimal control force, which simplifies any needed actuation.

  20. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  1. The Detector for Advanced Neutron Capture Experiments: A 4{pi} BaF2 Detector for Neutron Capture Measurements at LANSCE

    SciTech Connect

    Ullmann, J.L.; Esch, E.-I.; Haight, R.C.; Hunt, L.; O'Donnell, J.M.; Reifarth, R.; Agvaanluvsan, U.; Alpizar, A.; Hatarik, R.; Bond, E.M.; Bredeweg, T.A.; Kronenberg, A.; Rundberg, R.S.; Vieira, D.J.; Wilhelmy, J.B.; Folden, C.M.; Hoffman, D.C.; Greife, U.; Schwantes, J.M.; Strottman, D.D.

    2005-05-24

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 162-element 4{pi} BaF2 array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as one milligram. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. The design and initial performance results of DANCE is discussed.

  2. Development of an advanced combined iodine dispenser/detector. [for spacecraft water supplies

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Jensen, F. C.; Winkler, H. E.; Schubert, F. A.

    1977-01-01

    Injection of iodine into water is widely used to control microbial growth. An entirely automated device for I2 injection has been developed for spacecraft application. Transfer of I2 into the water from a concentrated form is controlled electrochemically via feedback from an integrated photometric I2 level detector. All components are contained within a package weighing only 1.23 kg (2.7 lb) dry, which occupies only 1213 cu cm (74 cu in) of space, and which has the capacity to iodinate 10,900 kg (24,000 lb) of water of 5 ppm. These features exceed design specifications. The device performed satisfactorily during extended testing at variable water flow rates and temperatures. Designed to meet specifications of the Shuttle Orbiter, the device will find application in the regenerative water systems of advanced spacecraft.

  3. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  4. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  5. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    NASA Astrophysics Data System (ADS)

    Archambault, Brian C.; Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R.; Taleyakhan, Rusi P.

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources (239Pu-Be and 252Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient 3He sensor replacement was performed utilizing MCNP-PoliMi simulations, the results of which

  6. New Advanced Source Identification Algorithm (ASIA-NEW) for radiation monitors with plastic detectors

    SciTech Connect

    Stavrov, Andrei; Yamamoto, Eugene

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the authors and based on some experimental test results. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co-57, Ba-133 and other). New variant of ASIA is based on physical principles and does not require a lot of special tests to attain statistical data for its parameters. That is why this system can be easily installed into any RPM with plastic detectors. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well. (authors)

  7. The “Puck” energetic charged particle detector: Design, heritage, and advancements

    PubMed Central

    Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-01-01

    Abstract Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low‐resource missions in the past, the need was recognized for a low‐resource but highly capable, mass‐species‐discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the “Puck” EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high‐voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions. PMID:27867799

  8. Ground Based Studies of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Trafton, Laurence M.

    2005-01-01

    This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.

  9. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    SciTech Connect

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received {>=}100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  10. Ground based research in microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1994-01-01

    The core activities performed during this time period have been concerned with tracking the TEMPEST experiments on the shuttle with drops of Zr, Ni, and Nb alloys. In particular a lot of Zr drops are being made to better define the recalescence characteristics of that system so that accurate comparisons of the drop tube results with Tempest can be made. A new liner, with minimal reflectivity characteristics, has been inserted into the drop tube in order to improve the recalescence measurements of the falling drops. The first installation to make the geometric measurements to ensure a proper fit has been made. The stovepipe sections are currently in the shop at MSFC being painted with low reflectivity black paint. Work has also continued on setting up the MEL apparatus obtained from Oak Ridge in the down stairs laboratory at the Drop Tube Facilities. Some ground-based experiments on the same metals as are being processed on TEMPEST are planned for the MEL. The flight schedules for the KC-135 experiments are still to be determined in the near future.

  11. Scientific Efficiency of Ground-based Telescopes

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received >=100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  12. Ground Based GPS Phase Measurements for Atmospheric Sounding

    DTIC Science & Technology

    2016-06-14

    Ground Based GPS Phase Measurements for Atmospheric Sounding Principal Investigator: Randolph Ware Co-Principal Investigator Christian Rocken UNAVCO...objective of this research is to develop GPS sounding techniques for ground based atmospheric profiling. Atmospheric profiling with GPS from space has been...TITLE AND SUBTITLE Ground Based GPS Phase Measurements for Atmospheric Sounding 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  13. Comparisons of Satellite Optical Observations with Ground-Based Observations of Lightning, Then and Now

    NASA Astrophysics Data System (ADS)

    Beasley, W. H.; Noble, C. M.; Edgar, B. C.; Suszcynsky, D. M.; Light, T. E.

    2001-12-01

    About 20 years ago, the first and third authors presented a paper comparing the optical observations of lightning from the DMSP Piggy Back Experiment (PBE) with ground-based manually determined lightning ground-strike locations. In one case in 1977 there were eleven optical events from one satellite pass over the region of interest for which there were ground-based data available. In general there were few periods of overlap because the area covered by the ground-based research direction-finding systems was limited. Now, the Photo-Diode Detector (PDD) on board the FORTE satellite, a cooperative effort between LANL and Sandia Labs, provides hundreds of optical observations that are correlated with ground-strike location data from the National Lightning Detection Network on every pass over a stormy region of the U.S. Though in some ways it should not be too surprising that there are similarities, since the PDD instrument on the FORTE satellite is very similar to the PBE instrument, it has been very interesting to re-visit the 1977 observations to compare what was seen and what was not seen by the satellite and ground-based systems, then and now. The characteristics of the optical observations for which there were no ground-strike data in 1977 are remarkably similar to those of the events attributed to cloud flashes in the FORTE data sets. We show the power-time histories of the optical observations then and now.

  14. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  15. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  16. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  17. Decadal Challenges in Ground-Based Observations for Solar and Space Physics (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, R. M.

    2013-12-01

    Ground-based observations of the sun and near-Earth space have long provided the fundamental information needed to achieve a better understanding of the coupled Sun-Earth system and the processes responsible for solar activity and its effects on Earth's magnetosphere, ionosphere, and atmosphere. Observations based on both active and passive radio wave and optical techniques provide measurements throughout Earth's atmosphere, geospace, the heliosphere, and the Sun. Although the number of observing instruments, the capabilities of the instruments, and the variety of ground-based assets continue to open new frontiers and enable scientific discoveries, gaps still exist, not only in terms of the spatial coverage of the measurements, but also in the properties of the system that are observed and the cadence and frequency of the observations. Fortunately, new technologies have provided the tools by which these challenges can be overcome. This is an opportune time to develop an integrated strategy for development, deployment, operation, and data analysis of ground-based assets. These include, for example, advanced networking technologies, crowd-sourced data acquisition, and multi-use observational platforms. Ground-based observations can also be optimized through the development of smart sensors, that operate at low power and are easily deployable, reconfigurable, and remotely operable. Furthermore, the data from ground-based observations will be collected, archived, and disseminated in ways that will enable effective and productive data mining, image and pattern recognition, cross-correlation among diverse data sets, and broadly-based collaborative research. These capabilities are especially important as we attempt to understand the system aspects of the solar-terrestrial environment. The next decade will undoubtedly see new understanding and discoveries resulting from improved and expanded ground-based instruments, as well as in their strategic deployment and operation.

  18. Intrinsic selection biases of ground-based gravitational wave searches for high-mass black hole-black hole mergers

    SciTech Connect

    O'Shaughnessy, R.; Vaishnav, B.; Healy, J.; Shoemaker, D.

    2010-11-15

    The next generation of ground-based gravitational wave detectors may detect a few mergers of comparable-mass M{approx_equal}100-1000M{sub {center_dot}}[''intermediate-mass'' (IMBH)] spinning black holes. Black hole spin is known to have a significant impact on the orbit, merger signal, and post-merger ringdown of any binary with non-negligible spin. In particular, the detection volume for spinning binaries depends significantly on the component black hole spins. We provide a fit to the single-detector and isotropic-network detection volume versus (total) mass and arbitrary spin for equal-mass binaries. Our analysis assumes matched filtering to all significant available waveform power (up to l=6 available for fitting, but only l{<=}4 significant) estimated by an array of 64 numerical simulations with component spins as large as S{sub 1,2}/M{sup 2{<=}}0.8. We provide a spin-dependent estimate of our uncertainty, up to S{sub 1,2}/M{sup 2{<=}}1. For the initial (advanced) LIGO detector, our fits are reliable for M(set-membership sign)[100,500]M{sub {center_dot}} (M(set-membership sign)[100,1600]M{sub {center_dot}}). In the online version of this article, we also provide fits assuming incomplete information, such as the neglect of higher-order harmonics. We briefly discuss how a strong selection bias towards aligned spins influences the interpretation of future gravitational wave detections of IMBH-IMBH mergers.

  19. Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Parrish, A.; Dezafra, R.; Solomon, P.

    1981-01-01

    The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.

  20. Map-making for the Next Generation of Ground-based Submillimeter Instruments

    NASA Astrophysics Data System (ADS)

    Marsden, G.; Brazier, A.; Jenness, T.; Sayers, J.; Scott, D.

    2014-05-01

    Current ground-based submillimeter (submm) instruments (e.g. SCUBA-2, SHARC-2 and LABOCA) have hundreds to thousands of detectors, sampled at tens to hundreds of hertz, generating up to hundreds of gigabytes per night. Since noise is correlated between detectors and in time, due to atmospheric signals and temperature oscillations, naive map-making is not applicable. In addition, the size of the data sets makes direct likelihood based inversion techniques intractable. As a result, the data reduction approach for most current submm cameras is to adopt iterative methods in order to separate noise from sky signal, and hence effectively produce astronomical images. We investigate how today's map-makers scale to the next generation of instruments, which will have tens of thousands of detectors sampled at thousands of hertz, leading to data sets of challenging size. We propose strategies for reducing such large data sets.

  1. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  2. Ground-based testing and demonstrations of starshades

    NASA Astrophysics Data System (ADS)

    Harness, Anthony; Warwick, Steve; Shipley, Ann; Cash, Webster

    2016-07-01

    The direct detection and characterization of an Earth-like exoplanet is of the highest scientific priority and a leading technology that will enable such discovery is the starshade external occulter. We report on the latest results in ground-based efforts for demonstrating and advancing the technology of starshades. Using the McMath- Pierce Solar Telescope at the Kitt Peak National Observatory, we are able to track stars as they move across the night sky and stabilize a beam of starlight behind a starshade. This has allowed us to conduct the first astronomical observations achieving high-contrast with starshades. In our latest efforts, we have extended the separation between the starshade and telescope to reach an inner working angle of 10 arcseconds at a flight-like Fresnel number and resolution. In this report, we detail the development of a closed-loop feedback system to further stabilize the beam at the extended baseline and provide results on the contrast achieved. We conclude by laying out future work to design a dedicated siderostat-starshade facility for future testing of and observations with starshades. Our main result: we achieved a broadband contrast ratio of 3:2 x 10-5 at 15 arcseconds IWA, while at a flight-like Fresnel number and resolution.

  3. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    NASA Astrophysics Data System (ADS)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  4. Cryogenics for ground based and space-borne instrumentation

    NASA Astrophysics Data System (ADS)

    Duband, L.

    In many space sciences project cryogenic detectors are essential for the accomplishment of the scientific objectives, offering unique advantages and unmatched performance. In addition several other components such as the optics can benefit from a cryogenic cooling which reduces the radiative loading. The Service des Basses Températ- ures (SBT) of CEA Grenoble has been involved in space cryogenics for over 20 years now and features a dedicated laboratory, the Cryocoolers and Space Cryogenics group. Various cryocoolers have been developed in the past and our fields of activity focus now on four main technologies: sorption coolers, multistage pulse tubes, adiabatic demagnetization refrigerators (ADR), and cryogenic loop heat pipes. In addition work on two new concepts for ground based dilution refrigerators is also ongoing. Finally developments on various key technologies such as the heat switches, the suspension or structural systems are also carried out. These developments are mainly funded by the European Space Agency (ESA) or by the Centre National d'Études Spatiales (CNES). In this paper we mostly give an overview of the developments carried out at SBT along with several examples of other relevant systems. We use space cryogenics as a thread. However these coolers or techniques can be used on ground, particularly on remote locations where liquid cryogen are unavailable and/or where maintenance must be limited to a strict minimum. In this case they can be simplified and take advantage of on ground resources, and their cost can be significantly reduced. For most of these systems the common feature is the absence of any moving parts or any friction, which guarantees a very good reliability and make them very good candidates for space borne instruments requiring cryogenic temperatures.

  5. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  6. Gravitational waves from Scorpius X-1: A comparison of search methods and prospects for detection with advanced detectors

    NASA Astrophysics Data System (ADS)

    Messenger, C.; Bulten, H. J.; Crowder, S. G.; Dergachev, V.; Galloway, D. K.; Goetz, E.; Jonker, R. J. G.; Lasky, P. D.; Meadors, G. D.; Melatos, A.; Premachandra, S.; Riles, K.; Sammut, L.; Thrane, E. H.; Whelan, J. T.; Zhang, Y.

    2015-07-01

    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robustness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO [1] and Advanced VIRGO [2] (4 ×10-24 Hz-1 /2 ). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8 ×10-26 strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2 ×10-25 (25 Hz) to 2.2 ×10-26 (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.

  7. Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA"

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    We are conducting tests of optical and electronics components of JEMEUSO at the Telescope Array site in Utah with a ground-based "EUSO-TA" detector. The tests will include an engineering validation of the detector, cross-calibration of EUSO-TA with the TA fluorescence detector and observations of air shower events. Also, the proximity of the TA's Electron Light Source will allow for convenient use of this calibration device. In this paper, we report initial results obtained with the EUSO-TA telescope.

  8. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Olsen, C. S.

    1998-01-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 10(sup 13) cm(exp -3) can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm(exp -1) with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  9. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    SciTech Connect

    Olsen, Christopher Sean

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  10. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  11. Uncertainties in Instantaneous Rainfall Rate Estimates: Satellite vs. Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Amitai, E.; Huffman, G. J.; Goodrich, D. C.

    2012-12-01

    High-resolution precipitation intensities are significant in many fields. For example, hydrological applications such as flood forecasting, runoff accommodation, erosion prediction, and urban hydrological studies depend on an accurate representation of the rainfall that does not infiltrate the soil, which is controlled by the rain intensities. Changes in the rain rate pdf over long periods are important for climate studies. Are our estimates accurate enough to detect such changes? While most evaluation studies are focusing on the accuracy of rainfall accumulation estimates, evaluation of instantaneous rainfall intensity estimates is relatively rare. Can a speceborne radar help in assessing ground-based radar estimates of precipitation intensities or is it the other way around? In this presentation we will provide some insight on the relative accuracy of instantaneous precipitation intensity fields from satellite and ground-based observations. We will examine satellite products such as those from the TRMM Precipitation Radar and those from several passive microwave imagers and sounders by comparing them with advanced high-resolution ground-based products taken at overpass time (snapshot comparisons). The ground based instantaneous rain rate fields are based on in situ measurements (i.e., the USDA/ARS Walnut Gulch dense rain gauge network), remote sensing observations (i.e., the NOAA/NSSL NMQ/Q2 radar-only national mosaic), and multi-sensor products (i.e., high-resolution gauge adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products).

  12. Low frequency gravitational wave detection with ground-based atom interferometer arrays

    NASA Astrophysics Data System (ADS)

    Chaibi, W.; Geiger, R.; Canuel, B.; Bertoldi, A.; Landragin, A.; Bouyer, P.

    2016-01-01

    We propose a new detection strategy for gravitational waves (GWs) below a few hertz based on a correlated array of atom interferometers (AIs). Our proposal allows us to reduce the Newtonian noise (NN), which limits all ground based GW detectors below a few hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical detectors, a NN rejection of a factor of 2 could be achieved and tested with existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise, we show that a tenfold or more NN rejection is possible with a dedicated configuration. Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below 1 ×10-19/√{Hz } in the 0.3 -3 Hz frequency band can be within reach, with a peak sensitivity of 3 ×10-23/√{Hz } at 2 Hz . Our proposed configuration could extend the observation window of current detectors by a decade and fill the gap between ground-based and space-based instruments.

  13. Fresnel Interferometric Imager: ground-based prototype.

    PubMed

    Serre, Denis; Deba, Paul; Koechlin, Laurent

    2009-05-20

    The Fresnel Interferometric Imager is a space-based astronomical telescope project yielding milli-arcsecond angular resolution and high contrast images with loose manufacturing constraints. This optical concept involves diffractive focusing and formation flying: a first "primary optics" space module holds a large binary Fresnel array, and a second "focal module" holds optical elements and focal instruments that allow for chromatic dispersion correction. We have designed a reduced-size Fresnel Interferometric Imager prototype and made optical tests in our laboratory in order to validate the concept for future space missions. The primary module of this prototype consists of a square, 8 cm side, 23 m focal length Fresnel array. The focal module is composed of a diaphragmed small telescope used as "field lens," a small cophased diverging Fresnel zone lens that cancels the dispersion, and a detector. An additional module collimates the artificial targets of various shapes, sizes, and dynamic ranges to be imaged. We describe the experimental setup, different designs of the primary Fresnel array, and the cophased Fresnel zone lens that achieves rigorous chromatic correction. We give quantitative measurements of the diffraction limited performances and dynamic range on double sources. The tests have been performed in the visible domain, lambda = 400-700 nm. In addition, we present computer simulations of the prototype optics based on Fresnel propagation that corroborate the optical tests. This numerical tool has been used to simulate the large aperture Fresnel arrays that could be sent to space with diameters of 3 to 30 m, foreseen to operate from Lyman alpha (121 nm) to mid IR (25 microm).

  14. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1993-01-01

    A new method of providing power to space vehicles consists of using ground-based lasers to beam power to photovoltaic receivers in space. This can be used as a power source for electrically propelled orbital transfer vehicles.

  15. Challenges and Opportunities for Ground-based Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.

    2013-12-01

    I summarize the current status of ground-based helioseismic observations, in particular the two operational networks GONG and BiSON. I then discuss requirements for continued and future ground-based observations based on key science drivers, finishing with a discussion of SPRING, a proposed future high-spatial-resolution network that would provide helioseismic data and a broad range of synoptic data products.

  16. Stable optical spring in the Advanced LIGO detector with unbalanced arms and in the Michelson-Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Vostrosablin, Nikita; Vyatchanin, Sergey P.

    2014-03-01

    Optical rigidity in the Advanced LIGO gravitational-wave detector, operated on the dark port regime, is unstable. We show that the same interferometer with excluded symmetric mechanical mode but with unbalanced arms allows us to get stable optical spring for the antisymmetric mechanical mode. The arm detuning necessary to get stability is shown to be a small one—it corresponds to small power in the signal port. We show that stable optical spring may be also obtained in the Michelson-Sagnac interferometer with both power and signal recycling mirrors and unbalanced arms.

  17. Symmetrical Josephson vortex interferometer as an advanced ballistic single-shot detector

    SciTech Connect

    Soloviev, I. I.; Klenov, N. V.; Bakurskiy, S. V.; Pankratov, A. L.; Kuzmin, L. S.

    2014-11-17

    We consider a ballistic detector formed in an interferometer manner which operational principle relies on Josephson vortex scattering at a measurement potential. We propose an approach to symmetrize the detector scheme and explore arising advantages in the signal-to-noise ratio and in the back-action on a measured object by means of recently presented numerical and analytical methods for modeling of a soliton scattering dynamics in the presence of thermal fluctuations. The obtained characteristics for experimentally relevant parameters reveal practical applicability of the considered schemes including possibility of coupling with standard digital rapid single flux quantum circuits.

  18. The Automatic Measuring Machines and Ground-Based Astrometry

    NASA Astrophysics Data System (ADS)

    Sergeeva, T. P.

    The introduction of the automatic measuring machines into the astronomical investigations a little more then a quarter of the century ago has increased essentially the range and the scale of projects which the astronomers could capable to realize since then. During that time, there have been dozens photographic sky surveys, which have covered all of the sky more then once. Due to high accuracy and speed of automatic measuring machines the photographic astrometry has obtained the opportunity to create the high precision catalogs such as CpC2. Investigations of the structure and kinematics of the stellar components of our Galaxy has been revolutionized in the last decade by the advent of automated plate measuring machines. But in an age of rapidly evolving electronic detectors and space-based catalogs, expected soon, one could think that the twilight hours of astronomical photography have become. On opposite of that point of view such astronomers as D.Monet (U.S.N.O.), L.G.Taff (STScI), M.K.Tsvetkov (IA BAS) and some other have contended the several ways of the photographic astronomy evolution. One of them sounds as: "...special efforts must be taken to extract useful information from the photographic archives before the plates degrade and the technology required to measure them disappears". Another is the minimization of the systematic errors of ground-based star catalogs by employment of certain reduction technology and a dense enough and precise space-based star reference catalogs. In addition to that the using of the higher resolution and quantum efficiency emulsions such as Tech Pan and some of the new methods of processing of the digitized information hold great promise for future deep (B<25) surveys (Bland-Hawthorn et al. 1993, AJ, 106, 2154). Thus not only the hard working of all existing automatic measuring machines is apparently needed but the designing, development and employment of a new generation of portable, mobile scanners is very necessary. The

  19. ProtoEXIST2: Advanced Wide-field Imaging CZT Detector Development For The HET On The Proposed EXIST Mission

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Allen, B.; Grindlay, J.; Barthelmy, S.; Baker, R.; Gehrels, N.; Cook, W.; Kaye, S.; Harrison, F.

    2010-03-01

    We describe our development of ProtoEXIST2, the advanced CZT imaging detector and wide field telescope prototype for the High Energy Telescope (HET) on the proposed Energetic X-ray Imaging Survey Telescope (EXIST) mission. EXIST is a multi-wavelength Medium class mission which would explore the early Universe using high redshift Gamma-ray Bursts and survey black holes on all scales. ProtoEXIST2 will demonstrate the feasibility of a large scale imaging module (256 cm2) with a close-tiled array of fine pixel (0.6 mm) CZT with a balloon flight test in 2010 or 2011. This second generation close-tiled CZT imager follows ProtoEXIST1, which had a recent successful balloon flight (see Allen et al in this meeting) using the same area CZT detector module (256 cm2) but with larger pixel size (2.5mm). For signal readout and event processing, we use the Direct-Bond (DB) ASIC, developed for the NuSTAR mission to be used in a close-tiled 2 x 2 array of 2x2 cm2 CZT detectors, each with 32x32 pixels. The DB-ASIC is attractive for a large scale implementation of tiled imaging CZT detectors given its low noise and power consumption (70uW/pixel). We are developing readout for the DB-ASIC that incorporates our back-end FPGA readout architecture developed for ProtoEXIST1 in order to accomplish the 256 cm2 detector module area with totally vertical integration (i.e. no auxialliary boards to the sides of the module. This is required to tile large numbers of modules into the very large total area (4.5m^2) proposed for the HET on EXIST. We review the design of the EXIST/HET and its optimum shielding in light of our ProtoEXIST1 balloon flight and our plan for future development of ProtoEXIST3, a final EXIST/HET detector module that would incorporate a still lower power version of the DB ASIC.

  20. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  1. Arrays of Bolometric Detectors for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Moseley, S. H.; Freund, M.; Allen, C.; Harper, A.; Loewenstein, R.; Dowell, C. D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Large format two dimensional arrays of bolometric detectors are required for many millimeter and submillimeter applications. We describe the development and testing of such arrays and the plans for using them in both a ground-based and airborne instrument.

  2. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    NASA Astrophysics Data System (ADS)

    Popov, V.

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  3. Advances in CMOS Solid-state Photomultipliers for Scintillation Detector Applications

    PubMed Central

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric; Augustine, Frank L.

    2014-01-01

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance. PMID:25540471

  4. Growth of detector-grade CZT by Traveling Heater Method (THM): An advancement

    SciTech Connect

    ROY, U.N.; JAMES, R.; WEILER, S.; STEIN, J.; GROZA, M.; BURGER, A.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; HOSSAIN, A.; YANG, G.

    2011-04-25

    In this present work we report the growth of Cd{sub 0.9}Zn{sub 0.1}Te doped with In by a modified THM technique. It has been demonstrated that by controlling the microscopically flat growth interface, the size distribution and concentration can be drastically reduced in the as-grown ingots. This results in as-grown detector-grade CZT by the THM technique. The three-dimensional size distribution and concentrations of Te inclusions/precipitations were studied. The size distributions of the Te precipitations/inclusions were observed to be below the 10-{micro}m range with the total concentration less than 10{sup 5} cm{sup -3}. The relatively low value of Te inclusions/precipitations results in excellent charge transport properties of our as-grown samples. The ({mu}{tau}){sub e} values for different as-grown samples varied between 6-20 x 10{sup -3} cm{sup 2}/V. The as-grown samples also showed fairly good detector response with resolution of {approx}1.5%, 2.7% and about 3.8% at 662 keV for quasi-hemispherical geometry for detector volumes of 0.18 cm{sup 3}, 1 cm{sup 3} and 4.2 cm{sup 3}, respectively.

  5. Backscatter tolerant squeezed light source for advanced gravitational-wave detectors.

    PubMed

    Chua, Sheon S Y; Stefszky, Michael S; Mow-Lowry, Conor M; Buchler, Ben C; Dwyer, Sheila; Shaddock, Daniel A; Lam, Ping Koy; McClelland, David E

    2011-12-01

    We report on the performance of a dual-wavelength resonant, traveling-wave optical parametric oscillator to generate squeezed light for application in advanced gravitational-wave interferometers. Shot noise suppression of 8.6±0.8 dB was measured across the detection band of interest to Advanced LIGO, and controlled squeezing measured over 5900 s. Our results also demonstrate that the traveling-wave design has excellent intracavity backscattered light suppression of 47 dB and incident backscattered light suppression of 41 dB, which is a crucial design issue for application in advanced interferometers.

  6. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina

  7. Up-conversion detectors at 1550 nm for quantum communication: review and recent advances

    NASA Astrophysics Data System (ADS)

    Tournier, M.; Alibart, O.; Doutre, F.; Tascu, S.; de Micheli, M. P.; Ostrowsky, D. B.; Thyagarajan, K.; Tanzilli, S.

    Up-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ^2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported. The aim of this paper is to offer a definitive explanation for this noise. We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise

  8. Ground Base Skylab Electron Beam Welds in Tantalum

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of ground-based (left) and Skylab (right) electron beam welds in pure tantalum (Ta) (10X magnification). Residual votices left behind in the ground-based sample after the electron beam passed were frozen into the grain structure. These occurred because of the rapid cooling rate at the high temperature. Although the thermal characteristics and electron beam travel speeds were comparable for the skylab sample, the residual vortices were erased in the grain structure. This may have been due to the fact that final grain size of the solidified material was smaller in the Skylab sample compared to the ground-based sample. The Skylab sample was processed in the M512 Materials Processing Facility (MPF) during Skylab SL-2 Mission. Principal Investigator was Richard Poorman.

  9. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  10. Ground-based laser radar measurements of satellite vibrations.

    PubMed

    Schultz, K I; Fisher, S

    1992-12-20

    Vibration signatures from the low-power atmospheric compensation (LACE) satellite are obtained by using the MIT Lincoln Laboratory Firepond coherent CO(2) laser radar facility located in Westford, Mass. The LACE satellite is equipped with IR germanium retroreflectors on deployable/retractable booms to enhance ground-based IR laser radar measurements of on-orbit boom vibrations. Analysis of pulsed cw laser radar measurements of the satellite during and subsequent to boom retraction indicates the presence of a complex time-varying model structure. The observed vibration spectra include vibration modes not previously predicted. These data represent the first observations of satellite vibration modes from a ground-based laser radar.

  11. Synergy benefit in temperature, humiditiy and cloud property profiling by integrating ground based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ebell, K.; Orlandi, E.; Hünerbein, A.; Crewell, S.; Löhnert, U.

    2012-12-01

    Accurate, highly vertically resolved temperature, humidity and cloud property profiles are needed for many applications. They are essential for climate monitoring, a better process understanding and the subsequent improvement of parameterizations in numerical weather prediction and climate models. In order to provide such profiles with a high temporal resolution, multiple wavelength active and passive remote sensing techniques available at ground based observatories, e.g. the Atmospheric Radiation Measruement (ARM) Program and Cloudnet facilities, need to be exploited. In particular, the Integrated Profiling Technique (IPT, Löhnert et al., 2008) has been successfully applied to simultaneously derive profiles of temperature, humidity and liquid water by a Bayesian based retrieval using a combination of ground based microwave radiometer, cloud radar and a priori information. Within the project ICOS (Integrating Cloud Observations from Ground and Space - a Way to Combine Time and Space Information), we develop a flexible IPT, which allows for the combination of a variety of ground based measurements from cloud radar, microwave radiometer (MWR) and IR spectrometer as well as satellite based information from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of METEOSAT. As ground based observations are mainly sensitive to the lower parts of the troposphere, the satellite measurements provide complementary information and are thus expected to improve the estimates of the thermodynamic and cloud property profiles, i. e. hydrometeor content and effective radius, considerably. In addition to the SEVIRI IR measurements, which are provided with a high repetition time, information from polar orbiting satellites could be included. In paticular, the potential of the Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Sounding Unit (MHS) in the retrieval is investigated. In order to understand the improvement by integrating the measurements of the above

  12. Lunar Seismic Detector to Advance the Search for Strange Quark Matter

    NASA Technical Reports Server (NTRS)

    Galitzki, Nicholas B.

    2005-01-01

    Detection of small seismic signals on the Moon are needed to study lunar internal structure and to detect possible signals from Strange Quark m&er transit events. The immediate objective is to create a prototype seismic detector using a tunnel diode oscillator with a variable capacitor attached to a proof mass. The device is designed to operate effectively on the Moon, which requires a low power consumption to operate through lunar night, while preserving sensitivity. The goal is capacitance resolution of better than 1 part in 10' and power consumption of less than 1 watt.

  13. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    SciTech Connect

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  14. Searching for Gravitational Waves from Scorpius X-1 in Advanced LIGO Data

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanhao; LSC; Virgo Collaboration

    2017-01-01

    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is considered to be one of the most promising continuous gravitational-wave(GW) sources for ground-based detectors. The improved sensitivity of advanced detectors and multiple improved search methods bring us closer to detecting an astrophysically feasible GW signal from Sco X-1. I will present an update on the search for GWs from Sco X-1 in data from Advanced LIGO's first observing run (O1). on behalf of The LSC and the Virgo Collaboration.

  15. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  16. Ground-based Imager and Magnetometer Network for Auroral STudies (GIMNAST)

    NASA Astrophysics Data System (ADS)

    Frey, H. U.; Mende, S. B.

    2012-12-01

    A large network of all-sky cameras and ground based magnetometers has been installed in Canada, Alaska, and Greenland as part of the NASA Midex Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. In connection with plasma measurements in the deep magnetotail that system has been extremely valuable for the determination of auroral effects prior to substorm onset. Now that two of the THEMIS spacecraft became ARTEMIS in their orbits around the moon and the orbits of the remaining near-Earth three THEMIS satellites have drifted away from their conjunctions over North America during northern winter, the ground-based system has become less valuable for the space mission. However, the National Science Foundation agreed to support the continued operation of the Alaska and Greenland sites under the new name Ground-based Imager and Magnetometer Network for Auroral STudies (GIMNAST). The sites are now extremely valuable in support of radar measurements by the Advanced Modular Incoherent Scatter Radar (AMISR) in Poker Flat (PFISR), rocket launches out of Poker Flat, and the global ionospheric monitoring by the Super Dual Auroral radar Network (SuperDARN). We will present results of recent collaborations between GIMNAST and external users.

  17. Advances in crystal growth, device fabrication and characterization of thallium bromide detectors for room temperature applications

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Moed, Demi; Becla, Piotr; Overholt, Matthew; Motakef, Shariar

    2016-10-01

    Thallium bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues need to be addressed before deployment of this material for long-term field applications can be realized. In this paper, progress made towards solving some of these challenges is discussed. The most significant factors for achieving long-term performance stability for TlBr devices include residual stress as generated during crystal growth and fabrication processes, surface conditions, and the choice of contact metal. Modifications to the commonly used traveling molten zone growth technique for TlBr crystals can significantly minimize the stresses generated by large temperature gradients near the melt-solid interface of the growing crystal. Plasma processing techniques were introduced for the first time to modify the Br-etched TlBr surfaces, which resulted in improvements to the surface conditions, and consequently the spectroscopic response of the detectors. Palladium electrodes resulted a 20-fold improvement in the room-temperature device lifetime when compared to its Br-etched Pt counterpart.

  18. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  19. Ground Based Investigation of Electrostatic Accelerometer in HUST

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  20. A ground-based experiment for CMBR anisotropy observations: MITO

    NASA Astrophysics Data System (ADS)

    De Petris, M.; Mainella, G.; Nerozzi, A.; de Bernardis, P.; Garavini, G.; Granata, S.; Guarini, G.; Masi, S.; Melchiorri, B.; Melchiorri, F.; Nobili, S.; Orlando, A.; Palummo, L.; Pisano, G.; Terracina, A.

    1999-07-01

    Ground-based observations at millimeter wavelengths are still competitive with space observatories if inevitable foreground contamination is considered at all stages of data acquisition and analysis. Technical solutions together with carefully chosen cosmological targets and observational strategies are the key points in the development of the MITO experiment.

  1. Vigilant Eagle: ground-based countermeasure system against MANPADS

    NASA Astrophysics Data System (ADS)

    Vollin, Jeff

    2006-05-01

    Man-Portable Air Defense Systems, or MANPADS, have arisen as a major threat to commercial and military air traffic. While no MANPADS attacks have yet occurred within the United States, the risk posed by these weapons is undeniable. MANPADS were originally developed by the Soviet Union and the United States for tactical air defense, but since then these weapons have proliferated around the world. Two major approaches to countering these weapons have arisen: aircraft based and ground based. Aircraft-based systems typically use either flares or lasers to either confuse or blind the oncoming missile, thus driving it off target. These systems have been in use for many years on military aircraft and have been proven effective. However, when one considers the commercial air travel industry, the cost of providing a countermeasure system on every plane becomes prohibitive. A ground-based system by contrast protects every aircraft arriving or departing from an airport. By deploying a ground-based system at high-traffic and hub airports, a large percentage of the flying public can be protected affordably. Vigilant Eagle is such a ground based system which uses High Power Microwaves (HPM) to accomplish this mission.

  2. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  3. Ground-Based Sensing System for Weed Mapping in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ground-based weed mapping system was developed to measure weed intensity and distribution in a cotton field. The weed mapping system includes WeedSeeker® PhD600 sensor modules to indicate the presence of weeds between rows, a GPS receiver to provide spatial information, and a data acquisition and ...

  4. The Urey instrument: an advanced in situ organic and oxidant detector for Mars exploration.

    PubMed

    Aubrey, Andrew D; Chalmers, John H; Bada, Jeffrey L; Grunthaner, Frank J; Amashukeli, Xenia; Willis, Peter; Skelley, Alison M; Mathies, Richard A; Quinn, Richard C; Zent, Aaron P; Ehrenfreund, Pascale; Amundson, Ron; Glavin, Daniel P; Botta, Oliver; Barron, Laurence; Blaney, Diana L; Clark, Benton C; Coleman, Max; Hofmann, Beda A; Josset, Jean-Luc; Rettberg, Petra; Ride, Sally; Robert, François; Sephton, Mark A; Yen, Albert

    2008-06-01

    The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.

  5. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    NASA Astrophysics Data System (ADS)

    Magee, R. M.; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A.

    2016-11-01

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 107 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  6. The Urey Instrument: An Advanced In Situ Organic and Oxidant Detector for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Aubrey, Andrew D.; Chalmers, John H.; Bada, Jeffrey L.; Grunthaner, Frank J.; Amashukeli, Xenia; Willis, Peter; Skelley, Alison M.; Mathies, Richard A.; Quinn, Richard C.; Zent, Aaron P.; Ehrenfreund, Pascale; Amundson, Ron; Glavin Daniel P.; Botta, Oliver; Barron, Laurence; Blaney, Diana L.; Clark, Benton C.; Coleman, Max; Hofmann, Beda A.; Josset, Jean-Luc; Rettberg, Petra; Ride, Sally; Musée, François Robert; Sephton, Mark A.; Yen, Albert

    2008-06-01

    The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.

  7. Measurements on semiconductor and scintillator detectors at the Advanced Light Source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.; Vanier, Peter E.

    2016-09-01

    During the transition period between closure of Beamline X27B at BNL's NSLS and the opening of Beamline MID at NSLS-II, we began operation of LBNL's ALS Beamline 3.3.2 to carry out our radiation detection materials RD. Measurements performed at this Beamline include, X-ray Detector Response Mapping and White Beam X-ray Diffraction Topography (WBXDT), among others. We will introduce the capabilities of the Beamline and present the most recent results obtained on CdZnTe and scintillators. The goal of the studies on CdZnTe is to understand the origin and effects of subgrain boundaries and help to visualize the presence of a higher concentration of impurities, which might be responsible for the deterioration of the energy resolution and response uniformity in the vicinity of the sub-grain boundaries. The results obtained in the second year of measurements will be presented.

  8. Methodology of a combined ground based testing and numerical modelling analysis of supersonic combustion flow paths

    NASA Astrophysics Data System (ADS)

    Hannemann, Klaus; Karl, Sebastian; Martinez Schramm, Jan; Steelant, Johan

    2010-10-01

    In the framework of the European Commission co-funded LAPCAT (Long-Term Advanced Propulsion Concepts and Technologies) project, the methodology of a combined ground-based testing and numerical modelling analysis of supersonic combustion flow paths was established. The approach is based on free jet testing of complete supersonic combustion ramjet (scramjet) configurations consisting of intake, combustor and nozzle in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) and computational fluid dynamics studies utilising the DLR TAU code. The capability of the established methodology is demonstrated by applying it to the flow path of the generic HyShot II scramjet flight experiment configuration.

  9. Ground-based Space Weather Monitoring with LOFAR

    NASA Astrophysics Data System (ADS)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  10. DETECTION OF IMBHs WITH GROUND-BASED GRAVITATIONAL WAVE OBSERVATORIES: A BIOGRAPHY OF A BINARY OF BLACK HOLES, FROM BIRTH TO DEATH

    SciTech Connect

    Amaro-Seoane, Pau; Santamaria, LucIa E-mail: Lucia.Santamaria@aei.mpg.d

    2010-10-20

    Even though the existence of intermediate-mass black holes (IMBHs; black holes with masses ranging between 10{sup 2} M{sub sun} and 10{sup 4} M{sub sun}) has not yet been corroborated observationally, these objects are of high interest for astrophysics. Our understanding of the formation and evolution of supermassive black holes, as well as galaxy evolution modeling and cosmography would dramatically change if an IMBH were to be observed. From the point of view of traditional photon-based astronomy, which relies on the monitoring of innermost stellar kinematics, the direct detection of an IMBH seems to be rather far in the future. However, the prospect of the detection and characterization of an IMBH has good chances in lower frequency gravitational-wave (GW) astrophysics using ground-based detectors such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), Virgo, and the future Einstein Telescope (ET). We present an analysis of the signal of a system of a binary of IMBHs based on a waveform model obtained with numerical relativity simulations coupled with post-Newtonian calculations at the highest available order. IMBH binaries with total masses between 200 and 20,000 M{sub sun} would produce significant signal-to-noise ratios in Advanced LIGO and Virgo and the ET. We have computed the expected event rate of IMBH binary coalescences for different configurations of the binary, finding interesting values that depend on the spin of the IMBHs. The prospects for IMBH detection and characterization with ground-based GW observatories would not only provide us with a robust test of general relativity, but would also corroborate the existence of these systems. Such detections should allow astrophysicists to probe the stellar environments of IMBHs and their formation processes.

  11. Characterization and simulation of a ground-based millimeter wave observation system for Arctic atmospheric research

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Walker, Kaley A.

    2015-01-01

    A preparatory performance and error characterization was carried out for a ground-based millimeter wave instrument designed for high Arctic atmospheric research. The instrument is a radiometer to measure rotational emission spectra of O3, ClO, HNO3, and N2O, between 265 and 280 GHz, using a sensitive superconductor-insulator-superconductor detector. Forward and inverse modeling tests have been performed to assess the instrument/inversion system and to determine the sources of the most significant errors in the retrieval of each trace gas. The altitude ranges over which retrievals of concentrations can be made were found to be ~13-62 km for O3, ~12.5-39 km for N2O, ~12-36 km for HNO3, and ~18-46 km for ClO. For each target species the measurement and smoothing errors calculated with an optimal estimation method (OEM) were compared to the errors calculated from inversions of 500 simulated spectra. The absolute error from these inversions agreed well the OEM results, but there were systematic differences that are attributed to nonlinearities in the forward model. The results of these nonlinearities can cause biases of the order of 5-10% of the a priori profile if they are not accounted for when averaging concentration profiles or when analyzing trends in concentration. The techniques used here can be applied to any ground-based remote sounder.

  12. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    SciTech Connect

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  13. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  14. The WASP and NGTS ground-based transit surveys

    NASA Astrophysics Data System (ADS)

    Wheatley, P. J.

    2015-10-01

    I will review the current status of ground-based exoplanet transit surveys, using the Wide Angle Search for Planets (WASP) and the Next Generation Transit Survey (NGTS) as specific examples. I will describe the methods employed by these surveys and show how planets from Neptune to Jupiter-size are detected and confirmed around bright stars. I will also give an overview of the remarkably wide range of exoplanet characterization that is made possible with large-telescope follow up of these bright transiting systems. This characterization includes bulk composition and spin-orbit alignment, as well as atmospheric properties such as thermal structure, composition and dynamics. Finally, I will outline how ground-based photometric studies of transiting planets will evolve with the advent of new space-based surveys such as TESS and PLATO.

  15. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  16. Simulation of polar atmospheric microwave and sub-millimetre spectra for characterizing potential new ground-based observations

    NASA Astrophysics Data System (ADS)

    Newnham, David; Turner, Emma; Ford, George; Pumphrey, Hugh; Withington, Stafford

    2016-04-01

    Advanced detector technologies from the fields of astronomy and telecommunications are offering the potential to address key atmospheric science challenges with new instrumental methods. Adoption of these technologies in ground-based passive microwave and sub-millimetre radiometry could allow new measurements of chemical species and winds in the polar middle atmosphere for verifying meteorological data-sets and atmospheric models. A site study to assess the feasibility of new polar observations is performed by simulating the downwelling clear-sky submillimetre spectrum over 10-2000 GHz (30 mm to 150 microns) at two Arctic and two Antarctic locations under different seasonal and diurnal conditions. Vertical profiles for temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis, and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified and minimum integration times and maximum receiver noise temperatures estimated. The optimal lines for all species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad frequency range. We also demonstrate the feasibility of measuring horizontal wind profiles above Halley station, Antarctica with time resolution as high as 0.5hr using simulated spectroradiometric observations of Doppler-shifted ozone (O3) and carbon monoxide (CO) lines in the 230-250 GHz region. The techniques presented provide a framework that can be applied to the retrieval of additional atmospheric parameters and be taken forward to simulate and guide the design of future microwave and sub

  17. The Validation of Ground Based Ozone Measurements over Korea.

    NASA Astrophysics Data System (ADS)

    Baek, K. H.; Kim, J. H.; Herman, J. R.; Haffner, D. P.; Kim, J.

    2015-12-01

    The Validation of Ground Based Ozone Measurements over KoreaKorea will launch GEMS instrument in 2018 onboard the Geostationary Korea Multi-Purpose Satellite to monitor tropospheric gas concentrations in both high temporal and spatial resolution. In order to utilize information from satellite, it is crucial to carry out validation of satellite data with respect to ground-based measurements because satellite retrievals suffer from large error. The purpose of this study is to examine the performance of total ozone measurements from Pandora, Brewer, and Dobson which will be used for validation of GEMS ozone product. Because single version of the satellite retrieval algorithm is used to process the entire data set for a given satellite instrument and satellite instrument characteristics are typically changing slowly, it is assumed that sudden jumps or large drifts in ground-satellite total ozone measurements difference for individual sites are commonly related to problems with ground-based measurements. Thereby, satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems residing in individual station. As a reference of satellite ozone measurements, we have selected ozone data derived from OMI-TOMS V8.5 algorithm because it is a very robust algorithm that has well studied about various error sources such as the effects of aerosols and clouds, variation in shape of ozone profiles with season, latitude, and total ozone. For the future validation of GEMS measurements, Korea has planned to use Pandora measurement that has been started operating since 2012. However, Pandora measurements reported to have unusual high total column ozone in the presence of clouds from the comparison of Pandora with OMI total ozone during DISCOVERY-AQ campaign. In this study, we will analyze the Pandora measurements associated with cloud and introduce the statistical technique, Kalman Filter, to correct the

  18. Ground-Based Surveillance and Tracking System (GSTS)

    DTIC Science & Technology

    1987-08-01

    SCHEDULE UNLIMITED 4. PERFORMING ORGANiZATION REPORT NUMBER (S) 5. MONITORING ORGANIZATION REPORT NUMBER (S) 6a. NAME OF. PERFORMING ORGANIZATION 6h. OFFICE...8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF...FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classi6carion) Ground-Based Surveillance

  19. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  20. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  1. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  2. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  3. Electron multiplication CCD detector technology advancement for the WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Harding, Leon K.; Demers, Richard T.; Hoenk, Michael; Peddada, Pavani; Nemati, Bijan; Cherng, Michael; Michaels, Darren; Loc, Anthony; Bush, Nathan; Hall, David; Murray, Neil; Gow, Jason; Burgon, Ross; Holland, Andrew; Reinheimer, Alice; Jorden, Paul R.; Jordan, Douglas

    2015-11-01

    The WFIRST-AFTA (Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset) is a NASA space observatory. It will host two major astronomical instruments: a wide-field imager (WFI) to search for dark energy and carry out wide field near infrared (NIR) surveys, and a coronagraph instrument (CGI) to image and spectrally characterize extrasolar planets. In this paper, we discuss the work that has been carried out at JPL in advancing Electron Multiplying CCD (EMCCD) technology to higher flight maturity, with the goal of reaching a NASA technology readiness level of 6 (TRL-6) by early-to-mid 2016. The EMCCD has been baselined for both the coronagraph's imager and integral field spectrograph (IFS) based on its sub-electron noise performance at extremely low flux levels - the regime where the AFTA CGI will operate. We present results from a study that fully characterizes the beginning of life performance of the EMCCD. We also discuss, and present initial results from, a recent radiation test campaign that was designed and carried out to mimic the conditions of the WFIRST-AFTA space environment in an L2 orbit, where we sought to assess the sensor's end of life performance, particularly degradation of its charge transfer efficiency, in addition to other parameters such as dark current, electron multiplication gain, clock induced charge and read noise.

  4. Microgravity Investigation of Crew Reactions in 0-G (MICR0-G): Ground-Based Development Effort

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    2002-01-01

    This report describes the technology development of an advanced load sensor ground-based prototype and details the preliminary tests in microgravity during parabolic flights. The research effort is entitled, the Microgravity Investigation and Crew Reactions in 0-G (MICR0-G), a ground-based research effort funded by the National Aeronautics and Space Administration (NASA). The MICR0-G project was a follow-on to the Enhanced Dynamic Load Sensors (EDLS) spaceflight experiment flown on the Russian Space Station Mir. The technology development of the advanced load sensor prototype has been carried out by the Massachusetts Institute of Technology (MIT), with collaboration from Politecnico di Milano University and the Italian Space Agency (ASI). The key hardware of the advanced sensor prototype is a set of two types of load sensors - a hand-hold and foot restraints - similar in appearance to the mobility aids found in the Space Shuttle orbiter to assist the crew in moving inside the spacecraft, but able to measure the applied forces and moments about the x-, y-, and z- axes. The aim of Chapter 1 is to give a brief overview of the report contents. The first section summarizes the previous research efforts on astronaut-induced loads in microgravity. The second section provides information on the MICR0-G research project and the technology development work conducted at MIT. Section 1.3 details the motivation for designing a new generation of load sensors and describes the main enhancements and contributions of the MICR0-G advanced load sensors system compared to the EDLS system. Finally, the last section presents the outline of the report.

  5. Preparation of a one-curie 171Tm target for the Detector for Advanced Neutron Capture Experiments (DANCE)

    SciTech Connect

    Schwantes, Jon M.; Taylor, Wayne A.; Rundberg, Robert S.; Vieira, David J.

    2008-05-15

    Roughly one curie of 171Tm (t1/2=1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating roughly 250 mg of its stable enriched 170Er lanthanide neighbor with neutrons at the ILL reactor in France. This production method resulted in a “difficult-to-separate” 1:167 mixture of near-neighboring lanthanides, Tm and Er. Separation and purification was accomplished using high-performance liquid chromatorgraphy (HPLC), with a proprietary cation exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (a-HIB) eluent. This technique yielded a final product of ~95% purity with respect to Tm. A portion (20 ug) of the Tm was electrodeposited on thin Be foil and delivered to the Los Alamos Neutron Science CEnter (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step including, scale-up issues related to the use of HPLC for material separation and purification of the target material from a-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant.

  6. Coupled Simulations, Ground-Based Experiments and Flight Experiments for Astrodynamics Research

    NASA Astrophysics Data System (ADS)

    Boyce, R.; Brown, M.; Lorrain, P.; Capon, C.; Lambert, A.; Benson, C.; Tuttle, S.; Griffin, D.

    Near-Earth satellites undergo complex and poorly understood interactions with their environment, leading to large uncertainties in predicting orbits and an associated risk of collision with other satellites and with space debris. The nature, evolution and behaviour of the growing cloud of space debris in that environment is even less well understood. Significant effort and expenditure is currently being made by governments in Australia, UK, USA, Europe and elsewhere in space surveillance and tracking, in order to mitigate the risk. However, a major gap exists with respect to the science of in-orbit behaviour. Research is underway in Australia to enable the prediction of the orbits of near-Earth space objects with order(s) of magnitude greater fidelity than currently possible. This is being achieved by coupling together the necessary parts of the puzzle - the physics of rarefied space object “aerodynamics” and the space physics and space weather that affects it - and employing our capabilities in ground-based and in-orbit experiments, ground-based observations and high performance computing to do so. As part of the effort, UNSW Canberra is investing $10M to develop a sustainable university-led program to develop and fly affordable in-orbit missions for space research. In the coming 6 years, we will fly a minimum of four cubesat missions, some in partnership with DSTO, which will include flight experiments for validating Space Situational Awareness astrodynamics simulation and observation capabilities. The flights are underpinned by ground-based experimental research employing space test chambers, advanced diagnostics, and supercomputer simulations that couple DSMC and Particle-in-Cell methods for modelling space object interactions with the ionosphere. This paper will describe the research both underway and planned, with particular emphasis on the coupled numerical/experimental/flight approach.

  7. Ground-based observations of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Snodgrass, C.

    2015-10-01

    I will described the campaign of observations from ground-based (and Earth orbiting) telescopes that supports the Rosetta mission. Rosetta gets closer to the nucleus than any previous mission, and returns wonderfully detailed measurements from the heart of the comet, but at the cost of not seeing the large scale coma and tails. The ground-based campaign fills in the missing part of the picture, studying the comet at #1000km resolution, and following how the overall activity of the comet varies. These data provide context information for Rosetta, so changes in the inner coma seen by the spacecraft can be correlated with the phenomena observable in comets. This not only helps to complete our understanding of the activity of 67P, but also allows us to compare it with other comets that are only observed from the ground, and in that way extend the results of the Rosetta mission to the wider population. The ground-based campaign includes observations with nearly all major facilities world-wide. In 2014 the majority of data came from the ESO VLT, as the comet was still relatively faint and in Southern skies, but as it returns to visibility from Earth in 2015 it will be considerably brighter, approaching its perihelion in August, and at Northern declinations. I will show results from the 2014 campaign, including visible wavelength photometry and spectroscopy, and the latest results from early 2015 observations. I will also describe the varied observations that will be included in the campaign post-perihelion, and how all of these results fit around what we are learning about 67P from Rosetta.

  8. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  9. Research on target accuracy for ground-based lidar

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  10. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  11. Ground-based observations and AD HOC models

    NASA Astrophysics Data System (ADS)

    Ground based observations of B stars in the visible, the infrared, and the radio region are described along with the ad hoc models proposed to interpret them. It is shown that these observations refer essentially to the photosphere and to the regions of the outer atmosphere where the gas is cool and at low velocity. The characteristics of the variability of the continuous and line spectrum are examined in general and in the cases of individual stars. Finally, linear polarization in the B stars is discussed.

  12. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, Bruce K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  13. The GROUnd-based Secondary Eclipse project - GROUSE

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst; de Kok, Remco; Nefs, Bas; Brogi, Matteo; Snellen, Ignas

    2011-11-01

    Secondary eclipse observations of exoplanets at near-infrared wavelengths are important to constrain the energy budgets of hot-Jupiters, since they probe the radiation from the planet's atmosphere at the peak of the spectral energy distribution. Since this wavelength range is accesible from the ground, we have started the GROUnd-based Secondary Eclipse (GROUSE) project. As part of the GROUSE project, we target a sample of hot-Jupiters at near-infrared and optical wavelengths. Planets include TrES-3b, HAT-P-1, WASP-18b and WASP-33b.

  14. Recent Improvements in AMSR2 Ground-Based RFI Filtering

    NASA Astrophysics Data System (ADS)

    Scott, J. P.; Gentemann, C. L.; Wentz, F. J.

    2015-12-01

    Passive satellite radiometer measurements in the microwave frequencies (6-89 GHz) are useful in providing geophysical retrievals of sea surface temperature (SST), atmospheric water vapor, wind speed, rain rate, and more. However, radio frequency interference (RFI) is one of the fastest growing sources of error in these retrievals. RFI can originate from broadcasting satellites, as well as from ground-based instrumentation that makes use of the microwave range. The microwave channel bandwidths used by passive satellite radiometers are often wider than the protected bands allocated for this type of remote sensing, a common practice in microwave radiometer design used to reduce the effect of instrument noise in the observed signal. However, broad channel bandwidths allow greater opportunity for RFI to affect these observations and retrievals. For ground-based RFI, a signal is broadcast directly into the atmosphere which may interfere with the radiometer - its antenna, cold mirror, hot load or the internal workings of the radiometer itself. It is relatively easy to identify and flag RFI from large sources, but more difficult to do so from small, sporadic sources. Ground-based RFI has high spatial and temporal variability, requiring constant, automated detection and removal to avoid spurious trends leaching into the geophysical retrievals. Ascension Island in the South Atlantic Ocean has been one of these notorious ground-based RFI sources, affecting many microwave radiometers, including the AMSR2 radiometer onboard JAXA's GCOM-W1 satellite. Ascension Island RFI mainly affects AMSR2's lower frequency channels (6.9, 7.3, and 10.65 GHz) over a broad spatial region in the South Atlantic Ocean, which makes it challenging to detect and flag this RFI using conventional channel and geophysical retrieval differencing techniques. The authors have developed a new method of using the radiometer's earth counts and hot counts, for the affected channels, to detect an Ascension Island

  15. Correlation of satellite lightning observations with ground-based lightning experiments in Florida, Texas and Oklahoma

    NASA Technical Reports Server (NTRS)

    Edgar, B. C.; Turman, B. N.

    1982-01-01

    Satellite observations of lightning were correlated with ground-based measurements of lightning from data bases obtained at three separate sites. The percentage of ground-based observations of lightning that would be seen by an orbiting satellite was determined.

  16. The dayside open/closed field line boundary as seen from space- and ground-based instrumentation

    NASA Astrophysics Data System (ADS)

    Johnsen, M. G.; Lorentzen, D. A.

    2012-03-01

    In this paper we validate the method of Johnsen et al. (2012) for obtaining the cusp open/closed field line boundary (OCB) by the means of a single meridian scanning photometer (MSP). Three cases of conjugate measurements between the Longyearbyen MSP and the NOAA-16 satellite are presented. The satellite OCB as obtained by the energetic particle detectors carried onboard the NOAA-16 satellite is well co-located with the OCB as obtained by the ground-based MSP and well within the calculated uncertainties. We conclude that the method presented by Johnsen et al. (2012) for deriving the cusp OCB using a single MSP produces conscientious results.

  17. Functional Allocation for Ground-Based Automated Separation Assurance in NextGen

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Martin, Lynne; Homola, Jeffrey; Cabrall, Christopher; Brasil, Connie

    2010-01-01

    As part of an ongoing research effort into functional allocation in a NextGen environment, a controller-in-the-loop study on ground-based automated separation assurance was conducted at NASA Ames' Airspace Operations Laboratory in February 2010. Participants included six FAA front line managers, who are currently certified professional controllers and four recently retired controllers. Traffic scenarios were 15 and 30 minutes long where controllers interacted with advanced technologies for ground-based separation assurance, weather avoidance, and arrival metering. The automation managed the separation by resolving conflicts automatically and involved controllers only by exception, e.g., when the automated resolution would have been outside preset limits. Results from data analyses show that workload was low despite high levels of traffic, Operational Errors did occur but were closely tied to local complexity, and safety acceptability ratings varied with traffic levels. Positive feedback was elicited for the overall concept with discussion on the proper allocation of functions and trust in automation.

  18. Capabilities and constraints of NASA's ground-based reduced gravity facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack; Neumann, Eric S.; Sotos, Raymond G.

    1993-01-01

    The ground-based reduced gravity facilities of NASA have been utilized to support numerous investigations addressing various processes and phenomina in several disciplines for the past 30 years. These facilities, which include drop towers, drop tubes, aircraft, and sounding rockets are able to provide a low gravity environment (gravitational levels that range from 10(exp -2)g to 10(exp -6)g) by creating a free fall or semi-free fall condition where the force of gravity on an experiment is offset by its linear acceleration during the 'fall' (drop or parabola). The low gravity condition obtained on the ground is the same as that of an orbiting spacecraft which is in a state of perpetual free fall. The gravitational levels and associated duration times associated with the full spectrum of reduced gravity facilities including spaced-based facilities are summarized. Even though ground-based facilities offer a relatively short experiment time, this available test time has been found to be sufficient to advance the scientific understanding of many phenomena and to provide meaningful hardware tests during the flight experiment development process. Also, since experiments can be quickly repeated in these facilities, multistep phenomena that have longer characteristic times associated with them can sometimes be examined in a step-by-step process. There is a large body of literature which has reported the study results achieved through using reduced-gravity data obtained from the facilities.

  19. Ground-based visual inspection for CTBT verification

    SciTech Connect

    Hawkins, W.; Wohletz, K.

    1997-11-01

    Ground-based visual inspection will play an essential role in On-Site Inspection (OSI) for Comprehensive Test Ban Treaty (CTBT) verification. Although seismic and remote sensing techniques are the best understood and most developed methods for detection of evasive testing of nuclear weapons, visual inspection will greatly augment the certainty and detail of understanding provided by these more traditional methods. Not only can ground-based visual inspection offer effective documentation in cases of suspected nuclear testing, but it also can provide accurate source location and testing media properties necessary for detailed analysis of seismic records. For testing in violation of the CTBT, an offending state may attempt to conceal the test, which most likely will be achieved by underground burial. While such concealment may not prevent seismic detection, evidence of test deployment, location, and yield can be disguised. In this light, if a suspicious event is detected by seismic or other remote methods, visual inspection of the event area is necessary to document any evidence that might support a claim of nuclear testing and provide data needed to further interpret seismic records and guide further investigations. However, the methods for visual inspection are not widely known nor appreciated, and experience is presently limited. Visual inspection can be achieved by simple, non-intrusive means, primarily geological in nature, and it is the purpose of this report to describe the considerations, procedures, and equipment required to field such an inspection. The inspections will be carried out by inspectors from members of the CTBT Organization.

  20. Study of Trade Wind Clouds Using Ground Based Stereo Cameras

    NASA Astrophysics Data System (ADS)

    Porter, J.

    2010-12-01

    We employ ground based stereo cameras to derive the three dimensional position of trade wind clouds features. The process employs both traditional and novel methods. The stereo cameras are calibrated for orientation using the sun as a geo-reference point at several times throughout the day. Spatial correlation is used to detect similar cloud features in both camera images and a simultaneous-differential equation is solved to get the best cloud position for the given rays from the cameras to the cloud feature. Once the positions of the clouds are known in three-dimensional space, then it is also possible to derive upper level wind speed and direction by tracking the position of clouds in space and time. The vector winds can be obtained at many locations and heights in a cone region over the surface site. The accuracy of the measurement depends on the camera separation with a trade-off occurring at different camera separations and cloud ranges. The system design and performance will be discussed along with field observations. This approach provides a new way to study clouds for climate change efforts. It also provides an inexpensive way to measure upper level wind fields in cloudy regions. Ground based stereo cameras are used to derive cloud position in space a time.

  1. Examples of recent ground based L-band radiometer experiments

    NASA Astrophysics Data System (ADS)

    Schwank, Mike; Voelksch, I.; Maetzler, Ch.; Wigneron, Jean-Pierre; Kerr, Y. H.; Antolin, M. C.; Coll, A.; Millan-Scheiding, C.; Lopez-Baeza, Ernesto

    L-band (1 -2 GHz) microwave radiometry is a remote sensing technique to monitor soil mois-ture over land surfaces. The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) radiometer mission aims at providing global maps of soil moisture, with accuracy bet-ter than 0.04 m3 m-3 every 3 days, with a spatial resolution of approximately 40 km. Monitoring the large scale moisture dynamics at the boundary between the deep bulk soil and the atmo-sphere provides essential information both for terrestrial and atmospheric modellers. Perform-ing ground based radiometer campaigns before the mission launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the used radiative transfer models. This presentation starts with an outline of the basic concepts behind remote moisture retrieval from passive L-band radiation. Then the results from a selection of ground based microwave campaigns performed ü with the ELBARA radiometer and its successor models (JULBARA, ELBARAII) are pre-sented. Furthermore, some of the most important technical features, which were implemented in ELBARAII as the result of the experiences made with the forerunner, are outlined.

  2. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  3. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  4. Light pollution simulations for planar ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2008-02-20

    The light pollution model is employed to analyze spatial behavior of luminance at the night sky under cloudless and overcast conditions. Enhanced light excess is particularly identified at cloudy skies, because the clouds efficiently contribute to the downward luminous flux. It is evident that size of ground-based light sources can play an important role in the case of overcast sky conditions. Nevertheless, the realistically sized light sources are rarely embedded into light pollution modeling, and rather they are replaced by simple point sources. We discuss the discrepancies between sky luminance distributions when at first the planar light sources are considered and at second the point-source approximation is accepted. The found differences are noticeable if the size of the light source, distance to the observer, and altitude of a cloudy layer are comparable one to the other. Compared with point-source approximation, an inclusion of the size factor into modeling the light sources leads to partial elimination of the steep changes of sky luminance (typical for point sources of light). The narrow and sharp light pillars normally presented on the sky illuminated by point light sources can disappear or fuse together when two or more nearby light sources are considered with their real sizes. Sky elements situated close to the horizon will glow efficiently if luminous flux originates from two-dimensional ground-based entities (such as cities or villages).

  5. Upcoming and Future Missions in the Area of Infrared Astronomy: Spacecraft and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    2004-01-01

    will also be discussed. Improved thermal detectors could have important applications in solar physics, specifically in the detection of far-IR synchrotron emission from energetic electrons in solar flares. For infrared astronomy we have missions like SIRTF and JWST, which will cover the spectral range from near-IR to far-IR in the search and probing of both new and old planetary systems in our galaxy and the measurement of the most distant galaxies of our universe. SIRTF is scheduled to be launched in August 2003, while JWST will be launched next decade. Another mission is TPF, which will use interferometer techniques at infrared wavelengths to search for planetary systems beyond 2010. With regard to ground based telescopes we have, for example, the twin 10 meter Keck telescopes and the IRTF telescope at Mauna Kea. The Keck telescopes are presently using interferometer techniques. Over the next several decades there are plans for 50 meter to 200 meter telescopes providing near-IR to far-IR measurements with the eventual plan to combine all telescopes using interferometer techniques to provide unprecedented spectral-spatial resolution and sensitivity.

  6. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  7. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  8. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    PubMed

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.

  9. Telerobotic manipulator developments for ground-based space research

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, Reid L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.; Meintel, A. J.

    1988-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the National Aeronautics and Space Administration (NASA) Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Automation Technology Branch at NASA Langley Research Center currently is sponsoring the Laboratory Telerobotic Manipulator (LTM) program at Oak Ridge National Laboratory to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  10. A New Ground-Based, Hourly Global Lightning Climatology

    NASA Astrophysics Data System (ADS)

    Virts, K.; Wallace, J. M.; Hutchins, M. L.; Holzworth, R. H.

    2012-12-01

    The seasonally and diurnally-varying frequency of lightning flashes provides a measure of the frequency of occurrence of intense convection and, as such, is an important aspect of the Earth's climate. Using continuous observations from the ground-based World-Wide Lightning Location Network (WWLLN), it is possible to generate a global lightning climatology that captures seasonal variations and resolves the diurnal cycle. Hourly lightning animations illuminate the interplay between sea breezes, mountain-valley wind systems, and remotely forced gravity waves in touching off thunderstorms in a variety of geographical settings, such as the Maritime Continent, the central Andes, and equatorial Africa. Examination of intraseasonal variations in lightning over the Maritime Continent reveals the impact of shifts in the low-level wind field on the development and propagation of thunderstorms during the Madden-Julian Oscillation.

  11. Unique cell culture systems for ground based research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  12. Compound auroral micromorphology: ground-based high-speed imaging

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Fukuda, Yoko; Miyoshi, Yoshizumi; Miyahara, Hiroko; Itoya, Satoru; Ebihara, Yusuke; Hampton, Donald; Dahlgren, Hanna; Whiter, Daniel; Ivchenko, Nickolay

    2015-02-01

    Auroral microphysics still remains partly unexplored. Cutting-edge ground-based optical observations using scientific complementary metal-oxide semiconductor (sCMOS) cameras recently enabled us to observe the fine-scale morphology of bright aurora at magnetic zenith for a variety of rapidly varying features for long uninterrupted periods. We report two interesting examples of combinations of fine-scale rapidly varying auroral features as observed by the sCMOS cameras installed at Poker Flat Research Range (PFRR), Alaska, in February 2014. The first example shows that flickering rays and pulsating modulation simultaneously appeared at the middle of a surge in the pre-midnight sector. The second example shows localized flickering aurora associated with growing eddies at the poleward edge of an arc in the midnight sector.

  13. Free electron lasers as ground based space weapons

    NASA Astrophysics Data System (ADS)

    Goldstein, Gary R.

    1988-12-01

    The free electron laser (FEL) is the most promising directed energy weapon in the SDI program. Its theoretical underpinnings, present achievements and future prospects are reviewed. The general requirements of a ground based laser system are derived and are seen to be quite expensive to implement as well as being far beyond current technical capabilities. Atmospheric propagation effects, particularly Stimulated Raman Scattering, will make the transmission of adequate powers dubious. A summary of existing and proposed FEL parameters shows that, at best, future facilities will be many orders of magnitude away from the required GigaWatt average output powers in the visible or near infrared region. Prospects for FEL midcourse or terminal phase weapons are equally problematic, given the simple countermeasures available to the offense. Use as an ASAT weapon is less technically demanding, but of limited applicability given the vulnerability of an extensive space based targeting system.

  14. Ground-based column abundance measurements of atmospheric hydroxyl

    NASA Astrophysics Data System (ADS)

    Burnett, Clyde R.

    1988-04-01

    The preliminary results of ground-based OH column abundance measurements from Truk, Federated States of Micronesia, are contained. These are the first OH column measurements from the tropics, and constitute a signficcant contribution to the OH data base. Comparisons of tropical OH behavior with the extensive mid-latitude observations serve as a critical test of the current understanding of the HO (sub x) photochemistry and its relationship to the other major chemical families. The quasi-biennial oscillation (QBO) in tropical stratospheric winds exerts a major influence on the Hadley cell vertical transport. Related QBOs in total O3 and in stratospheric H2O were identified, but QBO effects on other stratospheric species are still unknown. The solar tide in the tropics produces a diurnal surface pressure variation of 2 to 3 mb; its effect on OH photochemistry in the stratosphere may be significant.

  15. Ground-based column abundance measurements of atmospheric hydroxyl

    NASA Technical Reports Server (NTRS)

    Burnett, Clyde R.

    1988-01-01

    The preliminary results of ground-based OH column abundance measurements from Truk, Federated States of Micronesia, are contained. These are the first OH column measurements from the tropics, and constitute a signficcant contribution to the OH data base. Comparisons of tropical OH behavior with the extensive mid-latitude observations serve as a critical test of the current understanding of the HO (sub x) photochemistry and its relationship to the other major chemical families. The quasi-biennial oscillation (QBO) in tropical stratospheric winds exerts a major influence on the Hadley cell vertical transport. Related QBOs in total O3 and in stratospheric H2O were identified, but QBO effects on other stratospheric species are still unknown. The solar tide in the tropics produces a diurnal surface pressure variation of 2 to 3 mb; its effect on OH photochemistry in the stratosphere may be significant.

  16. Spatial-angular modeling of ground-based biaxial lidar

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  17. Responds of Bone Cells to Microgravity: Ground-Based Research

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng

    2015-11-01

    Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.

  18. Modelling atmospheric turbulence effects on ground-based telescope systems

    SciTech Connect

    Bradford, L.W.; Flatte, S.M.; Max, C.E.

    1993-09-30

    Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.

  19. Ground-Based Experiments on Vibrational Thermal Convection

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.; Rogers, Jeffrey L.

    1999-01-01

    Ground-based experiments on g-jitter effects in fluid flow provide insight that complements both theoretical studies and space-based experiments on this problem. We report preliminary results for experiments on Rayleigh-Benard convection subjected to time-dependent accelerations on a shaker table. For sinusoidal modulation, two qualitatively different pattern forming mechanisms come into play: geometry induced wavenumber selection (as in the standard "no-shake" Rayleigh-Benard problem) and dispersion induced wavenumber selection due to parametric instability (as in the Faraday surface-wave problem). We discuss preliminary results on the competition and co-existence of patterns due to these different instability mechanisms. We also discuss the implications of this work on the general question of pattern formation in the presence of noise.

  20. The STACEE Ground-Based Gamma-ray Observatory

    NASA Astrophysics Data System (ADS)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  1. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  2. Designing of a risk assessment architecture to analyze potential risks from space weather to space and ground based assets

    NASA Astrophysics Data System (ADS)

    Sattar, Erum

    2016-07-01

    Today's world is more vulnerable to space weather due to ever increased advance and costly space technology deployed in space and on ground. The space weather has a natural potential of posing harmful effects on space and ground based assets and on astronaut's life. This global challenge of space weather essentially demands global and regional preparedness to develop its situational awareness, analyzing risks and devise possible mitigation procedures. Considering risk mitigation architecture as inevitable for all scientific missions, this paper focuses to develop a risk assessment architecture for the space environment and to map its utility in identifying and analyzing potential risks to space and ground based assets from space weather in the South Asia region. Different risk assessment tools will be studied and would conclude in the most effective tool or strategy that may help to develop our capability in identifying, protecting and mitigating from the devastating effects of the space weather.

  3. Martian Meteorological Measurements Using Ground-Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simpson, A.; Bailey, J.; Walter, M.; Crisp, D.

    2005-12-01

    An important component of the continuing Mars research program is the accurate determination of atmospheric and meteorological parameters, and analysis of how these parameters vary spatially and temporally. Ground-based observations are particularly useful in this regard, as they allow simultaneous global coverage and use of high-resolution spectroscopy to complement orbital measurements. Aside from the perils of atmospheric turbulence (correctable to some degree using adaptive optics), infrared observations of planetary atmospheres face another challenge -- correcting for the presence of telluric spectral lines. Based on atmospheric simulations using the SMART radiative transfer modelling tool1, we present evidence that the current technique of mitigating the effect of Earth's atmosphere by observing a nearby star of known spectral type (the ``standard star" method) can generate significant errors. Indeed, our simulations of measurements of the Martian 2-micron carbon dioxide band at a resolving power of 1000 produced variation between ``standard reduced" spectra and original modelled spectra of up to 50%2. Furthermore, we outline our proposed computational technique of iterative reduction by progressing modelled parameters towards observed values (which negates the ``standard star" issue), to be validated on data obtained from IRTF/Gemini South observations in October/November 2005, and present results to date. 1Meadows, V.S., Crisp, D., 1996, Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface, JGR 101:E2, 4595 2Bailey, J. A., Simpson, A. J., Crisp, D., 2005, Correcting Infrared Spectra for Atmospheric Absorption, in preparation

  4. Evaluation of satellite soil moisture products over Norway using ground-based observations

    NASA Astrophysics Data System (ADS)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  5. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    SciTech Connect

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials, TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.

  6. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  7. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  8. Enhancing our Search for Missing Intermediate Mass Black Holes Using Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Jani, Karan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration

    2017-01-01

    The current generation of ground-based gravitational-wave detectors are most sensitive to mergers of intermediate-mass black holes (IMBH), with search volume of cosmological distances of redshift 1 and detectable total-mass up to 1000M⊙ . Two independent searches for binary black holes, matched-filtering and transient burst, are specifically configured to look for IMBH binaries in Advanced LIGO. I summarize the results from both these searches during the first observing run of Advanced LIGO and narrate our plans to enhance detection volume and detectable total-mass.

  9. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  10. Independet Component Analyses of Ground-based Exoplanetary Transits

    NASA Astrophysics Data System (ADS)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  11. Development of a Ground-Based Differential Absorption Lidar for High Accurate Measurements of Vertical CO2 Concentration Profiles

    NASA Astrophysics Data System (ADS)

    Nagasawa, Chikao; Abo, Makoto; Shibata, Yasukuni; Nagai, Tomohiro; Nakazato, Masahisa; Sakai, Tetsu; Tsukamoto, Makoto; Sakaizawa, Daisuku

    2010-05-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode. The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We are developing the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The output laser of the OPO is 20mJ at a 500 Hz repetition rate and a 600mm diameter telescope is employed for this measurement. A very narrow interference filter (0.5nm FWHM) is used for daytime measurement. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure, which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and

  12. Development of Ground-Based DIAL Techniques for High Accurate Measurements of CO2 Concentration Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Nakazato, M.; Sakai, T.; Tsukamoto, M.; Sakaizawa, D.

    2009-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode (Fig.1). The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We develop the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The characteristics of the 1.6 μm DIALs of the primitive and next generations are shown in Table 1. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaisawa et al., Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009. Fig. 1 Experimental setup of the 1.6 μm CO2 DIAL. Comparison of primitive

  13. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario

  14. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    capability of AERONET SMART-COMMIT in current Asian Monsoon Year-2008 campaigns that are designed and being executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., airborne dust, smoke, mega-city pollutant). Feedback mechanisms between aerosol radiative effects and monsoon dynamics have been recently proposed, however there is a lack of consensus on whether aerosol forcing would be more likely to enhance or reduce the strength of the monsoon circulation. We envision robust approaches which well-collocated ground-based measurements and space-borne observations will greatly advance our understanding of absorbing aerosols (e.g., "Global Dimming" vs. "Elevated Heat-Pump" effects) on aerosol cloud water cycle interactions.

  15. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  16. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  17. Models of ionospheric VLF absorption of powerful ground based transmitters

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  18. Future enhancements to ground-based microburst detection

    NASA Technical Reports Server (NTRS)

    Campbell, Steven D.; Matthews, Michael P.; Dasey, Timothy J.

    1994-01-01

    This set of viewgraphs presents the results of the Cockpit Weather Information (CWI) program at M.I.T. Lincoln Laboratory. The CWI program has been funded through NaSA Langley Research Center by the joint NASA/FAA Integrated Airborne Wind Shear Program for the past four years. During this time, over 120 microburst penetrations by research aircraft have been conducted under Terminal Doppler Weather Radar (TDWR) testbed radar surveillance at Orlando, FL. The results of these in-situ measurements have been compared with ground-based detection methods. Several valuable insights were gained from this research activity. First, it was found that the current TDWR microburst shapes do not permit accurate characterization of microburst hazard in terms of the F factor hazard index, because they are based on loss value rather than shear. Second, it was found that the horizontal component of the F factor can be accurately estimated from shear, provided compensation is made for the dependence of outflow strength on altitude. Third, it was found that a simple continuity assumption for estimating the vertical component of the F factor yielded poor results. However, further research has shown that downdraft strength is correlated with features aloft detected by the TDWR radar scan strategy. The outcome of the CWI program is to move from the loss-based wind shear detection algorithm used in the TDWR to a shear-based detection scheme as proposed in the Integrated Terminal Weather System (ITWS).

  19. A design for a ground-based data management system

    NASA Technical Reports Server (NTRS)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  20. Ground-based validation of scientific SCIAMACHY products: First results

    NASA Astrophysics Data System (ADS)

    Wittrock, F.; Fietkau, S.; Heckel, A.; Medeke, T.; Oetjen, H.; Richter, A.; Tarsu, M.; Burrows, J.

    2003-04-01

    In this study data from the Bremian DOAS network for atmospheric measurements (BREDOM) were used to validate columns of O3, NO2, BrO, HCHO and OClO derived from measurements of the SCIAMACHY instrument using the scientific algorithms developed at the University of Bremen. The ground sites range from northern high latitudes (Ny-Ålesund, 79° N, 12°E) over mid-latitudes (Bremen, 53°N, 9°E and Alzate, 46°N, 9°E) to equatorial regions (Nairobi, 1°S, 36° E). Trace gas columns of ozone, NO2, OClO, HCHO, and BrO were retrieved applying the well-known DOAS method to the UV/vis spectra. All ground-based instruments within the network use the MAX (multi axis) DOAS technique. With this it is possible to derive some profile information for the retrieved absorbers, which enables us to further investigate the consistency of trace gas column amounts derived from different platforms.

  1. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    SciTech Connect

    Chiara, P.; Morelli, A.

    2010-05-28

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  2. Cardiovascular effects of weightlessness and ground-based simulation

    NASA Technical Reports Server (NTRS)

    Sandler, Harold

    1988-01-01

    A large number of animal and human flight and ground-based studies were conducted to uncover the cardiovascular effects of weightlessness. Findings indicate changes in cardiovascular function during simulations and with spaceflight that lead to compromised function on reambulation and/or return to earth. This altered state termed cardiovascular deconditioning is most clearly manifest when in an erect body state. Hemodynamic parameters inidicate the presence of excessive tachnycardia, hypotension (leading to presyncope in one-third of the subjects), decreased heart volume, decreased plasma and circulating blood volumes and loss of skeletal muscle mass, particularly in the lower limbs. No clinically harmful effects were observed to date, but in-depth follow-ups were limited, as was available physiologic information. Available data concerning the causes for the observed changes indicate significant roles for mechanisms involved with body fluid-volume regulation, altered cardiac function, and the neurohumoral control of the control of the peripheral circulation. Satisfactory measures are not found. Return to preflight state was variable and only slightly dependent on flight duration. Future progress awaits availability of flight durations longer than several weeks.

  3. Ground deformation from ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tarchi, Dario; Casagli, Nicola; Fortuny-Guasch, Joaquim; Guerri, Letizia; Antonello, Giuseppe; Leva, Davide

    An in-depth analysis of the last two images acquired by the ground-based interferometric synthetic aperture radar system installed on Stromboli before the 5 April 2003 explosion allowed us to detect the precursory signals of the explosion related to ground deformation. In particular, it was possible to estimate the exact time of the explosion through the time domain analysis of raw data from the radar acquisition. This was interrupted by a blackout that occurred a few seconds after the event. The explosion onset time corresponds to a clear change in the intensity of the backscattered energy, related to the dense volcanic plume emission from the Crater. In addiction, the use of a particular interferometric processing technique for the last two acquisitions, consisting of the selection of synthetic sub-apertures from the main ones and creating with these a sequence of interferograms with a higher temporal resolution, detected precursory deformations starting 2 min before the explosion. These observations indicate the occurrence of an elastic deformation of a centimeter amplitude that affected the volcanic edifice progressively from the Crater down to the Sciara del Fuoco depression.

  4. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  5. Tissue Engineering of Cartilage on Ground-Based Facilities

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  6. An approach to space weather studies from ground based observations

    NASA Astrophysics Data System (ADS)

    Minarovjech, M.; Rušin, V.; Rybanský, M.; Kudela, K.; Kollár, V.

    2004-10-01

    We use daily values of the green corona hole areas, as prepared from the ground-based observations above the E-limb of the Sun and cosmic ray flux observed at Climax and Huancayo/Haleakala, to study a relation between them during a long-term period. A cross-correlation method has been used in the period 1953-2002 (the end of solar cycle 18 to mid-cycle 23). There were found green coronal hole areas that precede the cosmic ray of 200 - 270 days, with the maximum of 230 days (an average of 8 months). The 27-day rotational periodicity is stored around the maximum of correlation coefficients that reached values of 0.78 and 0.72, respectively. This correlation could be used to forecast the level of the cosmic ray daily flux at neutron monitor energies. We try to explain this behavior in a framework of the total coronal mass and its expansion into the heliosphere.

  7. Use of ground-based wind profiles in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  8. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    NASA Technical Reports Server (NTRS)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  9. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  10. Satellite Type Estination from Ground-based Photometric Observation

    NASA Astrophysics Data System (ADS)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  11. Assuring Ground-Based Detect and Avoid for UAS Operations

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Pai, Ganeshmadhav Jagadeesh; Berthold, Randall; Fladeland, Matthew; Storms, Bruce; Sumich, Mark

    2014-01-01

    One of the goals of the Marginal Ice Zones Observations and Processes Experiment (MIZOPEX) NASA Earth science mission was to show the operational capabilities of Unmanned Aircraft Systems (UAS) when deployed on challenging missions, in difficult environments. Given the extreme conditions of the Arctic environment where MIZOPEX measurements were required, the mission opted to use a radar to provide a ground-based detect-and-avoid (GBDAA) capability as an alternate means of compliance (AMOC) with the see-and-avoid federal aviation regulation. This paper describes how GBDAA safety assurance was provided by interpreting and applying the guidelines in the national policy for UAS operational approval. In particular, we describe how we formulated the appropriate safety goals, defined the processes and procedures for system safety, identified and assembled the relevant safety verification evidence, and created an operational safety case in compliance with Federal Aviation Administration (FAA) requirements. To the best of our knowledge, the safety case, which was ultimately approved by the FAA, is the first successful example of non-military UAS operations using GBDAA in the U.S. National Airspace System (NAS), and, therefore, the first nonmilitary application of the safety case concept in this context.

  12. Monitoring Surface Deformation using Polarimetric Ground Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F.; Rosenblad, B.; Loehr, E.; Cherukumilli, S.; Deng, H.; Held, B.; Jenkins, W.

    2012-12-01

    Surface deformation monitoring using ground based interferometric radar (GBIR) measurements may be desirable for a number of applications in the earth sciences. The University of Missouri (MU) research team has ongoing efforts to use the MU GBIR for monitoring surface deformation at a number of sites. Measurements have been collected at sites requiring access by various transportation means such as using off-road vehicle, hiking, and helicopter. Once on site, initial setup takes about 10 minutes. After setup, an image may be acquired by azimuth scan about every 20 seconds. The highly portable system lends itself to rapid deployment in remote environments and repeat survey sites. The MU GBIR's high portability and fast imaging capabilities allow rapid surveying and long-term surveying potential of surface deformation. Imagery may be formed in near real time for initial quick looks. After data collection, imagery data may be further enhanced by radiometric calibration, polarimetric calibration, and time-series analysis. Imaging may be acquired at the electromagnetic spectral bands of C-band and Ku-band. Prior demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed using the MU GBIR. In addition, the MU GBIR can be removed and re-positioned at the same point with geodetic-grade precision for repeat surveys. Study results and additional development progress will be presented. This project is sponsored by a grant from the National Science Foundation.

  13. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  14. TeV γ-ray astronomy with ground-based air-shower arrays

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2016-07-01

    The TeV energy band is a very exciting window into the origin of high energy cosmic radiation, particle acceleration, and the annihilation of dark matter particles. Above a few hundred GeV, ground-based experiments of very large effective areas open a new domain to study extragalactic sources at intermediate redshifts, galaxy clusters, gamma ray bursts, AGN and their flaring states, extended sources and galactic diffuse emission, and to indirect searches for dark matter. In particular, ground arrays of particle detectors -that operate with high duty cycles and large fields of view- can extend to multi-TeV energies the measurements made with experiments on satellites, and complement the observations done with air Cherenkov telescopes on the ground. Key science goals of ground arrays include performing unbiased all-sky surveys, monitoring of transient events from known (and unknown) sources, and detecting extended regions of diffuse emission. In this paper, the status and most recent results from ARGO-YBJ, Tibet AS, HAWC, and LHAASO are presented.

  15. Ground-based observations of uranus and neptune using CCD instruments

    SciTech Connect

    Smith, B.A.

    1985-07-01

    The author verifies that with the help of charge-coupled devices (CCD) great progress is being made in ground-based astronomical observations, including the study of the remote giant planets Uranus and Neptune. In reading the CCD the top row of pixels (potential wells) is moved into the sequential (shift) reading register; after this each row (line) of pixels moves its electrons upward (in each column) until the bottom row is cleared. This process is repeated for each row until the device is interrogated sequentially. The use of CCD detectors for purposes of image acquisition and spectroscopy has already found wide popularity at astronomical observatories, and soon it will spread to space research. The first known attempts to use CCD to obtain astronomical images was made by the author and his colleagues in April 1976. The result was the first observations of structure on the dark disk of Uranus. In general, the more refined the mathematical provision, the more information can be extracted from the images or spectra.

  16. Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.

    2005-01-01

    The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.

  17. Highlights from Ground-Based O/IR Interferometers

    NASA Astrophysics Data System (ADS)

    Armstrong, J. Thomas; Creech-Eakman, M. J.; Akeson, R. L.; Bakker, E. J.; Hutter, D. J.; McAlister, H. A.; ten Brummelaar, T.; Townes, C. H.

    2009-01-01

    Ground-based optical/infrared long-baseline interferometry has continued to extend its capabilities in the U.S., where several existing facilites demonstrate its capabilites in a broad range of scientific applications. This poster presents brief overviews of the CHARA Array and the Infrared Spatial Interferometer (ISI) on Mt. Wilson, CA; the Palomar Testbed Interferometer (PTI) on Mt. Palomar, CA; the Navy Prototype Optical Interferometer (NPOI) located on Anderson Mesa near Flagstaff, AZ; and the Keck Interferometer (KI) on Mauna Kea, HI; as well as the Magdalena Ridge Observatory Interferometer (MROI) now under construction at the highest elevation of the Magdalena Mountains of New Mexico. The poster also includes pointers to a small fraction of the scientific results from U.S. interferometers. Recent scientific highlights range from stellar atmospheres (precise diameters, including G/K dwarfs; limb darkening; Cepheid pulsations) to circumstellar material (water detected in a protoplanetary disk; debris disks; Be star disks; warped circumbinary disks; dust shells) to orbits and stellar masses in double, triple, and quadruple systems, to images of stellar surfaces (rapid rotators such Altair), to name a few. While the great majority of results to date have focused on stellar astrophysics, the MROI strives to have sensitivity sufficient to access a number of AGN. Research with these independently operated facilities is sponsored by the California Institute of Technology and the Jet Propulsion Laboratory for PTI; the Oceanographer of the Navy and the Office of Naval Research for NPOI; the National Aeronautics and Space Administration for KI; the National Science Foundation and Georgia State University for the CHARA Array; and the Office of Naval Research, the National Science Foundation, and the Gordon and Betty Moore Foundation for ISI. Funding for MROI is administered through the Office of Naval Research.

  18. Science Highlights from Ground-Based O/IR Interferometers

    NASA Astrophysics Data System (ADS)

    McAlister, Harold A.; Akeson, R.; Armstrong, T.; Bakker, E.; Boden, A.; ten Brummelaar, T.; Creech-Eakman, M.; Hutter, D.

    2007-05-01

    Ground-based optical/infrared long-baseline interferometry has come of age in the U.S. where several existing or planned facilities have produced remarkable scientific results demonstrating the power of the technique within a broad range of scientific applications. This paper presents brief overviews of the following facilities: the Palomar Testbed Interferometer (PTI) on Mt. Palomar, CA; the Navy Prototype Optical Interferometer (NPOI) located on Anderson Mesa near Flagstaff, AZ; the Keck Interferometer (KI) on Mauna Kea, HI; and the CHARA Array on Mt. Wilson, CA. Also described is the Magdalena Ridge Observatory Interferometer (MROI) to be built at the highest elevation of the Magdalena Mountains of New Mexico. Example scientific highlights to date include: The first measurement of stellar rotational oblateness (Altair), the detection of Cepheid pulsations, and ultra-precise astrometry of binaries with PTI; the first six-telescope images (the triple system eta Virginis) and constraints on disk parameters of Be stars with NPOI; resolving the nucleus of NGC 4151 and probing the inner disk regions of YSOs with KI; and, the first direct detection of gravity darkening in single stars (Regulus), calibration of the Baade-Wesselink method for Cepheids, and the first direct measurement of the diameter of an exoplanet (the transit system HD 189733) using the CHARA Array. While the great majority of results to date have focused on stellar astrophysics, the MROI strives to have sensitivity sufficient to access a number of AGN. Research with these independently operated facilities is sponsored by the California Institute of Technology and the Jet Propulsion Laboratory for PTI; the U.S. Naval Observatory and the Naval Research Laboratory for NPOI; the National Aeronautics and Space Administration for KI; and, the National Science Foundation and Georgia State University for the CHARA Array. Funding for MROI is administered through the Office of Naval Research.

  19. Ground-Based Remote Retrievals of Cumulus Entrainment Rates

    SciTech Connect

    Wagner, Timothy J.; Turner, David D.; Berg, Larry K.; Krueger, Steven K.

    2013-07-26

    While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess of the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.

  20. Orbital debris removal using ground-based lasers

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1996-01-01

    Orbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.

  1. Space- and Ground-based Coronal Spectro-Polarimetry

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  2. Ozone profiles above Kiruna from two ground-based radiometers

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  3. Ground based monitoring of channel and floodplain inundation dynamics

    NASA Astrophysics Data System (ADS)

    Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas; Apel, Heiko

    2010-05-01

    Monitoring of floodplain inundation is one of the key issues in respect to hydraulic model calibration, especially for 2-dimensional modeling of floodplains. While in recent years the use of remote sensing products for flood mapping have received a large boost by new techniques and platforms (LiDAR, SAR, optical system, both satellite and airborn) and proved to be a significant step forward in floodplain inundation model calibration, they are not the encompassing answer to the chronic lack of data of floodplain inundation. Due to the singular nature of floods and restrictions in sensor availability, overpass frequencies, unfavorable atmospheric conditions and difficulties in signal interpretation, remote sensing products usually provide only a short but spatially extensive view on the inundation process. In order to get a more encompassing picture of the inundation dynamics, time series of flood parameters have to be collected in the floodplains itself. In order to overcome the intrinsic problem of testing flood monitoring equipment in a short termed research project, an extensive ground-based flood monitoring system was established within the WISDOM (www.wisdom.caf.dlr.de) project in the Mekong Delta. Due to annual flood rhythm flood condition could be guaranteed within the projects duration. The test site Tam Nong in the Plain of Reeds in the Delta was equipped with 21 water level pressure gauges, 7 turbidity sensors and 2 GPS buoys, all designed to run autonomously for a period of 6 month and sampling data in short termed intervals. The collected data show a detailed picture of the inundation and sediment dynamics in the whole area including tidal influence and dike overtopping. This unique data set will be used in combination with spatial explicit water masks derived by remote sensing for 2D hydraulic model calibration.

  4. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  5. ProtoEXIST: The Development of Advanced Tiled CZT Detector Planes for Wide Field Hard X-Ray Survey Telescope

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Hong, J.; Grindlay, J.; Barthelmy, S.; Baker, R.

    2011-05-01

    ProtoEXIST is a technology development program for a coded aperture hard X-ray telescope with a large area (1-5 m^2) CZT detector plane for use in a future hard X-ray wide field sky monitor and survey telescope. The successful flight of the ProtoEXIST1 (P1) coded-aperture telescope concluded the first phase of the program on October 9, 2009. The black hole binary Cyg X-1 was imaged and its spectrum measured at the end of the (6h) flight. The P1 detector plane is comprised of a 8x8 array of detector crystal units (DCUs); each made up of a single 20 mm x 20 mm, 5 mm thick Redlen CZT crystal with a 8x8 pixilated anode (pixel pitch of 2.5 mm) bonded to an interposer board connecting each of the individual 64 anode pixels to a single input channel on a RadNET ASIC, forming a 256 cm^2 contiguous CZT imaging array with 4096 individual pixels. P1 was successfully recovered and has undergone further characterization in the interim. The program continues with the ongoing development ProtoEXIST2 (P2) utilizing a closely tiled 8x8 array of DCUs now with a reduced anode pixel pitch of 0.6 mm. Each DCU in P2 will consist of a CZT crystal, identical to that utilized in P1 now with a 32x32 pixelated anode, directly bonded to a single NuSTAR ASIC (Nu-ASIC). The fully assembled P2 imaging detector will be comprised of a semi-contiguous 256x256 array of pixels on 256 cm^2 of CZT. With its finer pixelation the P2 detector plane will enable 5' (FWHM) imaging with a 70 cm focal length and will be flown side-by-side with P1 from Ft. Sumner in the Spring of 2012. Results from the characterization of the P1 detector are discussed as well as current progress in the development of the P2 detector plane.

  6. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    NASA Astrophysics Data System (ADS)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  7. Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masanori; Miyachi, Takashi; Hattori, Maki; Sugita, Seiji; Takechi, Seiji; Okada, Nagaya

    2013-03-01

    This paper describes the concept of a dust monitor using lead zirconate titanate (PZT) ceramics with a large detection area. Its potential as a dust detector is experimentally demonstrated. The dust monitor has a small volume compared to an impact ionization detector with the same detection area, due to the PZT sensor. The PZT sensor, as a traditional device for the in-situ observation of hypervelocity dust particles, has been used for momentum measurement. The hypervelocity impact signals of PZT sensors are typically read by charge-sensitive amplifiers. Instead, we suggest a new method that a current-to-voltage converting amplifier is useful for interpreting the impact signal of a PZT sensor arising from dust particles down to 0.5 μm in radius. We propose that datasets of dust impacts can be obtained with a higher statistical accuracy, if the new method is applied to instruments on forthcoming interplanetary-space-cruising spacecrafts.

  8. TEPEE/GReAT (General Relativity Accuracy Test in an Einstein Elevator): Advances in the detector development

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lefevre, C.; Lucchesi, D. M.; Morbidini, A.; Nozzoli, S.; Peron, R.; Persichini, M.; Reale, A.; Santoli, F.; Lorenzini, E. C.; Shapiro, I. I.; Ashenberg, J.; Bombardelli, C.; Glashow, S.

    This paper reports the development of an experiment (TEPEE/GReAT) to test the Equivalence Principle (EP) at a level of accuracy equal to (5 × 10-15), by means of a differential accelerometer free falling in a cryogenic vacuum capsule released from a stratospheric balloon. Such an accuracy requires resolving a very small signal out of the instrument's intrinsic noise and the noise associated with the instrument's motion. Imperfections in the construction of the detector introduce gravity gradient noise that it is possible to separate from the violation signal spinning the detector around an horizontal axis in order to have the EP violation signal and the gravity gradients one modulated at two different frequencies. Experimental results on prototype instruments showing high sensitivity and common mode rejection factor are shown.

  9. Ground based monitoring of channel and floodplain inundation dynamics

    NASA Astrophysics Data System (ADS)

    Apel, H.; Hung, N. N.; Güntner, A.; Thoss, H.

    2009-12-01

    Monitoring of floodplain inundation is one of the key issues in respect to hydraulic model calibration, especially for 2-dimensional modeling of floodplains. While in recent years the use of remote sensing products for flood mapping have received a large boost by new techniques and platforms (LiDAR, SAR, optical system, both satellite and airborn) and proved to be a significant step forward in floodplain inundation model calibration, they are not the encompassing answer to the chronic lack of data of floodplain inundation. Due to the singular nature of floods and restrictions in sensor availability, overpass frequencies, unfavorable atmospheric conditions and difficulties in signal interpretation, remote sensing products usually provide only a short but spatially extensive view on the inundation process. In order to get a more encompassing picture of the inundation dynamics, time series of flood parameters have to be collected in the floodplains itself. In order to overcome the intrinsic problem of testing flood monitoring equipment in a short termed research project, an extensive ground-based flood monitoring system was established within the WISDOM (www.wisdom.caf.dlr.de) project in the Mekong Delta. Due to annual flood rhythm flood condition could be guaranteed within the projects duration. The test site Tam Nong in the Plain of Reeds in the Delta was equipped with 21 water level pressure gauges, 7 turbidity sensors and 2 GPS buoys, all designed to run autonomously for a period of 6 month and sampling data in short termed intervals. The equipment used range from cheap pressure sensors to rather expensive developments like the GPS buoys. Nevertheless, overall costs of the systems are comparatively low, especially in cost-benefit considerations. This is because they are developed for continuous monitoring, are modular in their sensor configuration and movable, i.e. reusable. The collected data show a detailed picture of the inundation and sediment dynamics in the

  10. Postural Responses Following Space Flight and Ground Based Analogs

    NASA Technical Reports Server (NTRS)

    Kofman, Igor S.; Reschke, Millard F.; Cerisano, Jody M.; Fisher, Elizabeth A.; Tomilovskaya, Elena V.; Kozlovskaya, Inessa B.; Bloomberg, Jacob B.

    2013-01-01

    With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous

  11. Ground-Based Observing Campaign of Briz-M Debris

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  12. Long term landslide monitoring with Ground Based SAR

    NASA Astrophysics Data System (ADS)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  13. Ground-based imaging spectrometry of canopy phenology and chemistry in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Toomey, M. P.; Friedl, M. A.; Frolking, S. E.; Hilker, T.; O'Keefe, J.; Richardson, A. D.

    2013-12-01

    late-summer plant stress. Changes in the spectral shape and indices throughout the growing season revealed coupling of leaf biochemistry and phenology, as visually observed in situ. Further, the spectrally rich imagery provided well calibrated reflectance data to simulate vegetation index time series of common spaceborne remote sensing platforms such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat. Comparisons between the simulated time series and in situ phenology observations yielded an enhanced interpretation of vegetation indices for determining phenological transition dates. This study demonstrates an advance in our ability to relate canopy phenology to leaf-level dynamics and demonstrates the role that ground-based imaging spectrometry can play in advancing spaceborne remote sensing of vegetation phenology.

  14. A Guide to Designing Future Ground-based CMB Experiments

    SciTech Connect

    Wu, W. L.K.; Errard, J.; Dvorkin, C.; Kuo, C. L.; Lee, A. T.; McDonald, P.; Slosar, A.; Zahn, O.

    2014-02-18

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-σ constraints: σ(Mv ) = 15 meV, σ(Neff ) = 0.0156, Dark energy Figure of Merit = 303, σ(pann) = 0.00588 x 3 x 10-26 cm3/s/GeV, σ( ΩK) = 0.00074, σ(ns) = 0.00110, σ( αs) = 0.00145, and σ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  15. Comparison of FORTE satellite VHF and WWLLN ground-based VLF data on lightning emissions from the same thunderstorms

    NASA Astrophysics Data System (ADS)

    Jacobson, A. R.; Lay, E.; Holzworth, R.; Suszcynsky, D.

    2006-12-01

    We compare VHF satellite observations and VLF ground-based observations of lightning events within range of both of these dissimilar systems. Earlier work had compared FORTE VHF signals to National Lightning Detection Network (NLDN) signals for lightning in North America [Jacobson, et al., 2000]. That earlier work formed the basis for identifying certain lightning-stroke types over North America via their satellite-recorded VHF waveforms [Light, et al., 2001; Suszcynsky, et al., 2001]. We repeat that exercise for lightning strokes over the lightning-prone region of Australasia, and use the inferred stroke types to provide insight on the relative selection biases of satellite-based VHF and ground-based VLF lightning detection. Jacobson, A. R., et al. (2000), FORTE radio-frequency observations of lightning strokes detected by the National Lightning Detection Network, Journal of Geophysical Research, 105, 15,653. Light, T. E., et al. (2001), Coincident Radio Frequency and Optical Emissions from Lightning, Observed with the FORTE Satellite, Journal of Geophysical Research, 106, 28,223-228,231. Suszcynsky, D. M., et al. (2001), Coordinated Observations of Optical Lightning from Space using the FORTE Photodiode Detector and CCD Imager, Journal of Geophysical Research, 106, 17,897-817,906.

  16. LIGO-India: expanding the international network of gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Iyer, Balasubramanian

    2015-04-01

    The first detection of Gravitational Waves (GW) by ground based detectors will open up a fundamentally new observational window to the Universe with implications for astrophysics and eventually cosmology and fundamental physics. The realization of GW astronomy requires a global network of Advanced GW detectors including upcoming observatories like KAGRA (Japan) and LIGO-India to provide good sky localization of the GW sources. LIGO-India is expected to play a key role in locating and deciphering the sources contributing to the GW symphony. The current status of LIGO-India project and the exciting future research opportunities of this ambitious Indo-US collaboration in science, technology and computation will be finally indicated. Acknowledge CISA and APS for the Award of a APS Beller Lectureship. BRI supported by the AIRBUS Group Corporate Foundation through a visiting professorship, which is part of the ``Mathematics of Complex Systems'' chair at ICTS.

  17. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Dyachok, A.; Epimakhov, S.; Gafatov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Haungs, A.; Hiller, R.; Horns, D.; Huege, T.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kleifges, M.; Kokoulin, R.; Komponiest, K.; Konstantinov, A.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Krömer, O.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Rühle, C.; Samoliga, V.; Satunin, P.; Savinov, V.; Saunkin, A.; Schröder, F.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2015-08-01

    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.

  18. Worldwide flight and ground-based exposure of composite materials

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.; Baker, D. J.

    1984-01-01

    The long-term durability of those advanced composite materials which are applicable to aircraft structures was discussed. The composite components of various military and commercial aircraft and helicopters were reviewed. Both ground exposure and flight service were assessed in terms of their impact upon composite structure durability. The ACEE Program is mentioned briefly.

  19. Rocket-borne and ground-based measurements in support of the field-widened interferometer experiment - sergeant a30. 276

    SciTech Connect

    Ulwick, J.C.; Allred, G.D.; Baker, K.D.; Howlett, L.C.

    1985-05-28

    In April 1983 Utah State University and Air Force Geophysics Laboratory experimenters launched a Sergeant (A30.276) sounding rocket from the Poker Flat Research Range, Alaska. The prime purpose of the flight was to obtain infrared-spectral measurements in the 2-1.5 micrometer m range during an auroral event. In addition to the prime experiment, which has already been reported, the payload contained four photometers, and energy deposition scintillator and an atomic oxygen detector to gather in-situ supporting data. Simultaneously, all-sky television, meridian scanning photometers, riometer, and magnetometers supported the flight from ground-based measuring sites. This report presents a summary of the rocketborne supporting instruments and the data they gathered and provides a time/intensity history of the event as documented by the ground-based meridian scanners and all-sky television.

  20. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    NASA Technical Reports Server (NTRS)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  1. Ground-based radar (GBR): environmental assessment. Final report

    SciTech Connect

    Not Available

    1989-03-01

    The President's Strategic Defense Initiative (SDI), announced on March 23, 1983, initiated an extensive research program to determine the feasibility of developing an effective ballistic missile defense system. The technological progress made on the SDI research program since 1983 has advanced at an unexpectedly fast pace and is still accelerating. Recognizing that no strategic defense system could be deployed all at once, the Strategic Defense Initiative Organization is using an evolutionary approach to strategic concept addressing the question of how to deploy or deploy. In September 1987, some technologies were advanced from the Concept Exploration phase of the material acquisition process to the Concept Demonstration and Validation phase under this approach, because they were judged to be mature enough in concept definition to warrant further evaluation.

  2. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    NASA Astrophysics Data System (ADS)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  3. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Marlow, W.; Carlton, A.; Yoon, H.; Clark, J.; Haughwout, C.; Cahoy, K.; Males, J.; Close, L.; Morzinski, K.

    2016-09-01

    In this study, we assess the utility of using a maneuverable nanosatellite laser guidestar from a geostationary equatorial orbit to enable ground-based, adaptive optics imaging of geosynchronous satellites with next-generation extremely large telescopes. The concept for a satellite guide star was rst discussed in the literature by Greenaway in the early 1990s, and expanded upon by Albert in 2012. With a satellite-based laser as an adaptive optics guidestar, the source laser does not need to scatter, and is well above atmospheric turbulence. When viewed from the ground through a turbulent atmosphere, the angular size of the satellite guidestar is much smaller than a back-scattered source. Advances in small satellite technology and capability allow us to revisit the concept on a 6U CubeSat, measuring 10 cm by 20 cm by 30 cm. We show that a system that uses a satellite-based laser transmitter can be relatively low power (1 W transmit power), operated intermittently, and requires little propellant to relocate within the geosynchronous belt. We present results of a design study on the feasibility of a small satellite guidestar and highlight the potential benets to the space situational awareness community.

  4. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    USGS Publications Warehouse

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  5. Development of an improved ground-based prototype of space vegetable-producing facility

    NASA Astrophysics Data System (ADS)

    Liu, X.; Guo, S.; Zhu, J.; Wang, X.; Ai, W.; Wei, M.; Qin, L.; Deng, Y.

    Based on the development of a ground-based prototype of space vegetable-producing facility development of its improved prototype has been finished so as to make its operating principle adapt to the space microgravity environment better According to the developing experience of first-generation prototype of the space vegetable-producing facility and detailed demonstration and design of technique plan its blueprint design and machining of related components whole facility installment debugging and trial operations were done Its growing chamber contains a volume of about 0 5m 3 and a growing area of approximate 0 5m 2 the atmospheric environmental parameters in the growing chamber and water content in the growing media were totally and effectively controlled lighting sources are the combinations of both red and blue light emitting diode LED The following demonstrating results showed that the entire system design of the facility is reasonable and its operating principle can meet nearly the requirements of space microgravity environment Therefore our plant growing technique in space was advanced greatly which laid an important foundation for next development of the space vegetable-producing facility to be tested and applied in space station

  6. Development of an improved ground-based prototype of space plant-growing facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y.

    Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.

  7. Research on Ground-Based LWIR Hyperspectral Imaging Remote Gas Detection.

    PubMed

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Yang, Zhi-xiong; Wang, Hai-yangi; Fu, Yan-peng; Li, Xun-niu; Liao, Ning-fang; Su, Jun-hong

    2016-02-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent spectral radiance (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6 x 10⁻⁸ W · (cm⁻¹ · sr · cm²)⁻¹ at single sampling. The data is the same as commercial temporal modulation hyperspectral imaging spectrometer. It can prove the advantage of this technique. This technique still has space to be improved. For instance, spectral response range of CHIPED-1 LWIR hyperspectral imaging prototype can reach 11. 5 µm by testing the transmission curve of polypropylene film. In this article, choosing the results of outdoor high-rise and diethyl ether gas experiment as an example, the authors research on the detecting method of 2D distribution chemical gas VOC by infrared hyperspectral imaging. There is no observed diethyl ether gas from the infrared spectral slice of the same wave number in complicated background and low concentration. By doing the difference spectrum, the authors can see the space distribution of diethyl ether gas clearly. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  8. Observation of Passive and Explosive Emissions at Stromboli with a Ground-based Hyperspectral TIR Camera

    NASA Astrophysics Data System (ADS)

    Smekens, J. F.; Mathieu, G.

    2015-12-01

    Scientific imaging techniques have progressed at a fast pace in the recent years, thanks in part to great improvements in detector technology, and through our ability to process large amounts of complex data using sophisticated software. Broadband thermal cameras are ubiquitously used for permanent monitoring of volcanic activity, and have been used in a multitude of scientific applications, from tracking ballistics to studying the thermal evolution lava flow fields and volcanic plumes. In parallel, UV cameras are now used at several volcano observatories to quantify daytime sulfur dioxide (SO2) emissions at very high frequency. In this work we present the results the first deployment of a ground-based Thermal Infrared (TIR) Hyperspectral Imaging System (Telops Hyper-Cam LW) for the study of passive and explosive volcanic activity at Stromboli volcano, Italy. The instrument uses a Michelson spectrometer and Fourier Transform Infrared Spectrometry to produce hyperspectral datacubes of a scene (320x256 pixels) in the range 7.7-11.8 μm, with a spectral resolution of up to 0.25 cm-1 and at frequencies of ~10 Hz. The activity at Stromboli is characterized by explosions of small magnitude, often containing significant amounts of gas and ash, separated by periods of quiescent degassing of 10-60 minutes. With our dataset, spanning about 5 days of monitoring, we are able to detect and track temporal variations of SO2 and ash emissions during both daytime and nighttime. It ultimately allows for the quantification of the mass of gas and ash ejected during and between explosive events. Although the high price and power consumption of the instrument are obstacles to its deployment as a monitoring tool, this type of data sets offers unprecedented insight into the dynamic processes taking place at Stromboli, and could lead to a better understanding of the eruptive mechanisms at persistently active systems in general.

  9. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    NASA Astrophysics Data System (ADS)

    Turner, Emma C.; Withington, Stafford; Newnham, David A.; Wadhams, Peter; Jones, Anna E.; Clancy, Robin

    2016-11-01

    The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0°) clear-sky submillimetre spectrum from 30 mm (10 GHz) to 150 µm (2000 GHz) at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate retrievals and guide the

  10. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  11. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    NASA Astrophysics Data System (ADS)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  12. Ground-based Fourier transform infrared spectroscopy in central Mexico

    NASA Astrophysics Data System (ADS)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Baylon, Jorge; Grutter, Michel; Blumenstock, Thomas; Hase, Frank

    2014-05-01

    Altzomoni is a high altitude station in central Mexico (19.12 N, 98.65 W, 4000 m a.s.l.) for continuous measurements of various atmospheric parameters. It is located within the Izta-Popo National Park and is operated remotely from the UNAM campus. Since May 2012, high resolution solar absorption spectra have been recorded from this site using a FTIR from Bruker (HR120/5) equipped with MCT, InSb and InGaAs detectors and various optical filters. In this contribution we present a detailed description of the measurement site and the instrumental set-up including a record of the instrumental line-shapes (modulation efficiency and phase error) obtained from cell measurements and analyzed with the LINEFIT code. A preliminary analysis of almost two years of spectra recorded at the Altzomoni site resulting in profile retrievals of four NDACC gases O3, CO, HF and HCl is presented. The retrieval code PROFFIT is used and the Averaging Kernels and an error analysis are used to describe the quality of the measurements. The annual cycles in the time series of O3 and CO are presented and discussed, as well as some examples of anomalies due to volcanic gas emissions of HF and HCl are shown. The presented work is part of an effort to certify this station as part of the NDACC international network.

  13. Observation of TGFs onboard "Vernov" satellite and TGEs in ground-based experiments

    NASA Astrophysics Data System (ADS)

    Bogomolov, Vitaly; Panasyuk, Mikhail; Svertilov, Sergey; Garipov, Gali; Iyudin, Anatoly; Klimov, Pavel; Morozenko, Violetta; Maximov, Ivan; Mishieva, Tatiana; Klimov, Stanislav; Pozanenko, Alexey; Rothkaehl, Hanna

    2016-04-01

    "Vernov" satellite with RELEC experiment on-board was launched on 2014 July, 8 into a polar solar-synchronous orbit. The payload includes DRGE gamma-ray spectrometer providing measurements in 10-3000 keV energy range with four detectors directed to atmosphere. Total area of DRGE detectors is ~500 cm2. The data were recorded both in monitoring and gamma by gamma modes with timing accuracy ~15 us. Several TGF candidates with 10-40 gammas in a burst with duration <1ms were detected. Analysis of data from other instruments on-board "Vernov" satellite shows the absence of significant electromagnetic pulses around correspondent time moments. Comparison with WWLLN lightning network data base also indicates that there were no thunderstorms connected with most of detected TGF candidates. Possible connection of these flashes with electron precipitations is discussed. Ground-based experiments, with similar gamma-spectrometers were conducted, to study the spectral, temporal and spatial characteristics of TGEs in 20-3000 keV energy range, as well, as to search the fast hard X-ray and gamma-ray flashes possibly appearing at the moment of lightning. The time of each gamma-quantum interaction was recorded with an ~15 us s accuracy together with detailed spectral data. Measurements were done on the ground at Moscow region, and at mountain altitude in Armenia at Aragatz station. During the time interval covering spring, summer and autumn of 2015 a number of TGEs were detected. Measured low-energy gamma-ray spectra usually contain a set of lines that can be interpreted as radiation of Rn-222 daughter isotopes. The increase of Rn-222 radiation was detected during rainfalls with thunderstorm, as well, as during rainy weather without thunderstorms. Variations of Rn-222 radiation dominate at low energies (<2.6MeV) and must be taken into account in the experiments performed to measure low energy gamma-radiation from the electrons accelerated in thunderclouds. There were no significant

  14. Exoplanets -New Results from Space and Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  15. Advanced Induction Accelerator Designs for Ground Based and Space Based FELs

    DTIC Science & Technology

    1994-04-30

    MeV Electron injector module 2-2 2.2 Electrical Schematic of SNOMAD-IV solid-state driver 2-4 I 2.3 SNOMAD-IV accelerator cell 2-7 2.4 Coupling...injector accelerator cell assembly. 2-20 2.9 Preliminary assembly drawing of cathode extraction optics and vacuum pumping port. 2-22 I 2.10 SNOMAD-IV...Accelerator Cell 3-10 3.7 SNOMAD-IVB Accelerator Cells 3-11 E 3.8 SNOMAD-IVB Main Body Enclosure 3-13 3.9 SNOMAD-IVB Base Plate Enclosure 3-14 I 3.10 SNOMAD

  16. Precursor Analysis for Flight- and Ground-Based Anomaly Risk Significance Determination

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2010-01-01

    This slide presentation reviews the precursor analysis for flight and ground based anomaly risk significance. It includes information on accident precursor analysis, real models vs. models, and probabilistic analysis.

  17. Assessing ground-based counts of nestling bald eagles in northeastern Minnesota

    USGS Publications Warehouse

    Fuller, M.R.; Hatfield, J.S.; Lindquist, E.L.

    1995-01-01

    We present evidence that the bald eagle (Haliaeetus leucocephalus) productivity survey in the Boundary Waters Canoe Area Wilderness of northeastern Minnesota may have underestimated the number of nestlings during 1986-1988. Recommendations are provided to achieve more accurate ground-based counts. By conducting ground-based observations for up to 1 hour/nest, an accurate count of the number of bald eagle nestlings can be obtained. If nests are only observed for up to 30 minutes/nest, an accurate determination of nest success can be made. The effort that managers put into counts should be based on the intended use of the productivity data. If small changes in mean productivity would trigger management action, the less acurate ground-based counts should be conducted with caution. Prior to implementing ground-based counts, a study like ours should estimate bias associated with different survey procedures and the observation time needed to achieve accurate results.

  18. Application of ground-based LIDAR for gully investigation in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detailed scientific investigation of gullies in agricultural fields requires accurate topographic information with adequate temporal and spatial resolution. New technologies, such as ground-based LIDAR systems, are capable of generating datasets with high temporal and spatial resolutions. The spatia...

  19. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  20. High-precision ground-based photometry of exoplanets

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Jayawardhana, Ray

    2013-04-01

    High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level), this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time) as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  1. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    DTIC Science & Technology

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  2. Studies of Plasma Instability Processes Excited by Ground Based High Power HF ("Heating") Facilities

    DTIC Science & Technology

    2001-04-01

    by ground based high power HF (’ heating ’) facilities 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dr. Alexander...Prescribed by ANSI Std. Z39-18 Grant SPC 00-4010 Final Report STUDIES OF PLASMA INSTABILITY PROCESSES EXCITED BY GROUND BASED HIGH POWER HF (" HEATING ...growing field of ionospheric HF heating . The main new results can be summarized as following: 1. Two sets of observations of suprathermal electrons

  3. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    DTIC Science & Technology

    2013-03-01

    AFRL-OSR-VA-TR-2013-0005 (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors Avideh Zakhor...Include area code) 17-08-2012 FINAL 4-1-2008 to 11-30-2011 (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors ...automatic, photo-realistic 3D models of building interiors. We have developed an ambulatory human operated backpack system made of a suite of sensors

  4. Predictors of sprint start speed: the effects of resistive ground-based vs. inclined treadmill training.

    PubMed

    Myer, Gregory D; Ford, Kevin R; Brent, Jensen L; Divine, Jon G; Hewett, Timothy E

    2007-08-01

    There is currently no consensus with regard to the most effective method to train for improved acceleration, or with regard to which kinematic variable provides the greatest opportunity for improvement in this important performance characteristic. The purpose of this study was to determine the effects of resistive ground-based speed training and incline treadmill speed training on speed-related kinematic measures and sprint start speed. The hypothesis tested was that incline treadmill training would improve sprint start time, while the ground-based resistive training would not. Corollary hypotheses were that treadmill training would increase stride frequency and ground-based training would not affect kinematics during the sprint start. Thirty-one high school female soccer players (15.7 +/- 0.5 years) were assigned to either treadmill (n = 17) or ground-based (n = 14) training groups and trained 2 times a week for 6 weeks. The treadmill group utilized incline speed training on a treadmill, while the ground-based group utilized partner band resistance ground-based techniques. Three-dimensional motion analysis was used (4.5 m mark) before and after training to quantify kinematics during the fastest of 3 recorded sprint starts (9.1 m). Both groups decreased average sprint start time from 1.75 +/- 0.12 to 1.68 +/- 0.08 seconds (p < 0.001). Training increased stride frequency (p = 0.030) but not stride length. After training, total vertical pelvic displacement and stride length predicted 62% of the variance in sprint start time for the resistive ground-based group, while stride length and stride frequency accounted for 67% prediction of the variance in sprint start time for the treadmill group. The results of this study indicate that both incline treadmill and resistive ground-based training are effective at improving sprint start speed, although they potentially do so through differing mechanisms.

  5. Lidar CO2 profiling in the atmosphere : from ground-based measurements and geophysical applications to spaceborne simulated performances

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Edouard, Dimitri; Cénac, Claire; Pellegrino, Jessica; Dumas, Arnaud

    2016-04-01

    In the framework of climate prediction, it is necessary to understand the evolution of carbon cycle and particularly surface-atmosphere exchanges of carbon dioxide (CO2). In the carbon budget, the CO2 land sink study is definitively the main interest of CO2 lidar measurements ultimately from space. There is a need of ground-based, airborne and spaceborne observations that enable to address the patterns and the quantification of CO2 sources and sinks at local to regional scales (100 m to 100 km) and CO2 lidar is a well suited instrument to do so. In addition, the current fossil fuel emissions of CO2, that are only known from statistical data reported by emitting countries themselves, no longer have a small uncertainty. Lidar CO2 profiling has a role to play to assess how good or not is the current baseline of emissions and how are efficient the measures that are currently taken by cities and regions to reduce emissions. In this paper, we will present the current status of lidar CO2 profiling in the atmosphere from a ground-based instrument and the potential applications in the carbon cycle studies and we will conclude by the feasibility of a space mission with the recent technological advances.

  6. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-06-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km × 5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instruments.

  7. Design, construction, and implementation of a ground-based solar spectrograph for the National Student Solar Spectrograph Competition

    NASA Astrophysics Data System (ADS)

    Keeler, E.; Moen, D.; Peck, C.; Zimny, C.; Repasky, K.

    2012-10-01

    A solar spectrograph is an instrument that takes incoming sunlight over a specified portion of the sun's emitted electromagnetic spectrum and separates the light into its constituent frequency components, or spectrum. The components are then sent to a detector that measures intensity, which reveals the location of spectral properties of the light such as absorption and emission lines. The National Student Solar Spectrograph Competition (NSSSC) is a Montana Space Grant Consortium sponsored competition where undergraduate student teams from across the country design, build, and implement a ground-based solar spectrograph to perform any solar related task and demonstrate their spectrographs for the competition in May 2012 in Bozeman, MT. Each team is given a 2,000-dollar budget to build their spectrograph, which cannot be exceeded, and all spectrographs must follow regulations in the NSSSC guidelines. This team designed a spectrograph to be capable of imaging the sun across the visible spectrum using spatial filters and a standard photo detector rather than a traditional charge-coupled device due to budget limitations. The spectrograph analyzes the spectrum of small sections of the sun to determine how the spectrum varies across solar features such as the corona, active regions, and quiet regions. In addition to solar imaging, the spectrograph will also analyze atmospheric absorption of the solar spectrum by comparing the measured spectrum to the theoretical spectrum calculated from the blackbody equation.

  8. Improving the resolution of ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Roggemann, Michael C.; Welsh, Byron M.; Fugate, Robert Q.

    1997-04-01

    Atmospheric turbulence profoundly limits the angular resolution of astronomical telescopes working at visible and near-infrared wavelengths. In fact, the angular resolution for conventional imaging through turbulence is on the order of 5-20t% of the diffraction-limited resolution at the best observatories in the world. The origin of these performance degradations is random turbulence-induced fluctuations in the index of refraction of the atmosphere. Random index-of-refraction fluctuations producing the optical path length of the atmosphere to be random in both space and time, producing random aberrations in the telescope pupil that degrade imaging performance. Over the past several years significant advances have been made in developing both hardware and image-processing-based techniques for improving the resolution of astronomical telescopes. Hardware-oriented correction techniques are based on wave-front sensing and adaptive optics. Image-processing-based methods include speckle-imaging techniques and hybrid imaging techniques that use elements of adaptive-optics systems and image reconstruction. Analysis techniques for predicting the performance of these imaging methods have been developed, and the comparative performance of these imaging techniques has been examined. This paper discusses turbulence and image-detection statistics, describes the fundamentals of methods for overcoming turbulence effects, and provides representative performance results.

  9. Ground-Based Correction of Remote-Sensing Spectral Imagery

    NASA Technical Reports Server (NTRS)

    Alder-Golden, Steven M.; Rochford, Peter; Matthew, Michael; Berk, Alexander

    2007-01-01

    Software has been developed for an improved method of correcting for the atmospheric optical effects (primarily, effects of aerosols and water vapor) in spectral images of the surface of the Earth acquired by airborne and spaceborne remote-sensing instruments. In this method, the variables needed for the corrections are extracted from the readings of a radiometer located on the ground in the vicinity of the scene of interest. The software includes algorithms that analyze measurement data acquired from a shadow-band radiometer. These algorithms are based on a prior radiation transport software model, called MODTRAN, that has been developed through several versions up to what are now known as MODTRAN4 and MODTRAN5 . These components have been integrated with a user-friendly Interactive Data Language (IDL) front end and an advanced version of MODTRAN4. Software tools for handling general data formats, performing a Langley-type calibration, and generating an output file of retrieved atmospheric parameters for use in another atmospheric-correction computer program known as FLAASH have also been incorporated into the present soft-ware. Concomitantly with the soft-ware described thus far, there has been developed a version of FLAASH that utilizes the retrieved atmospheric parameters to process spectral image data.

  10. Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.; Kumar, Prayush; Nitz, Alexander H.

    2013-04-01

    Coalescing binary black holes (BBHs) are among the most likely sources for the Laser Interferometer Gravitational-Wave Observatory (LIGO) and its international partners Virgo and KAGRA. Optimal searches for BBHs require accurate waveforms for the signal model and effectual template banks that cover the mass space of interest. We investigate the ability of the second-order post-Newtonian TaylorF2 hexagonal template placement metric to construct an effectual template bank, if the template waveforms used are effective one-body waveforms tuned to numerical relativity (EOBNRv2). We find that by combining the existing TaylorF2 placement metric with EOBNRv2 waveforms, we can construct an effectual search for BBHs with component masses in the range 3M⊙≤m1, m2≤25M⊙. We also show that the (computationally less expensive) TaylorF2 post-Newtonian waveforms can be used in place of EOBNRv2 waveforms when M≲11.4M⊙. Finally, we investigate the effect of modes other than the dominant l=m=2 mode in BBH searches. We find that for systems with (m1/m2)≤1.68 or inclination angle ι≤0.31 or ι≥2.68 radians, there is no significant loss in the total possible signal-to-noise ratio due to neglecting modes other than l=m=2 in the template waveforms. For a source population uniformly distributed in spacial volume, over the entire sampled region of the component-mass space, the loss in detection rate (averaged over a uniform distribution of inclination angle and sky-location/polarization angles) remains below ˜11%. For binaries with high mass ratios and 0.31≤ι≤2.68, including higher-order modes could increase the signal-to-noise ratio by as much as 8% in Advanced LIGO. Our results can be used to construct matched-filter searches in Advanced LIGO and Advanced Virgo.

  11. Validation of NH3 satellite observations by ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  12. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    NASA Astrophysics Data System (ADS)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  13. Dust forecast over North Africa: verification with satellite and ground based observations

    NASA Astrophysics Data System (ADS)

    Singh, Aditi; Kumar, Sumit; George, John P.

    2016-05-01

    Arid regions of North Africa are considered as one of the major dust source. Present study focuses on the forecast of aerosol optical depth (AOD) of dust over different regions of North Africa. NCMRWF Unified Model (NCUM) produces dust AOD forecasts at different wavelengths with lead time upto 240 hr, based on 00UTC initial conditions. Model forecast of dust AOD at 550 nm up to 72 hr forecast, based on different initial conditions are verified against satellite and ground based observations of total AOD during May-June 2014 with the assumption that except dust, presence of all other aerosols type are negligible. Location specific and geographical distribution of dust AOD forecast is verified against Aerosol Robotic Network (AERONET) station observations of total and coarse mode AOD. Moderate Resolution Imaging Spectroradiometer (MODIS) dark target and deep blue merged level 3 total aerosol optical depth (AOD) at 550 nm and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrieved dust AOD at 532 nm are also used for verification. CALIOP dust AOD was obtained by vertical integration of aerosol extinction coefficient at 532 nm from the aerosol profile level 2 products. It is found that at all the selected AERONET stations, the trend in dust AODs is well predicted by NCUM up to three days advance. Good correlation, with consistently low bias (~ +/-0.06) and RMSE (~ 0.2) values, is found between model forecasts and point measurements of AERONET, except over one location Cinzana (Mali). Model forecast consistently overestimated the dust AOD compared to CALIOP dust AOD, with a bias of 0.25 and RMSE of 0.40.

  14. The comparison between a ground based and a space based probabilistic landslide susceptibility assessment

    NASA Astrophysics Data System (ADS)

    Reichenbach, P.; Mondini, A.; Guzzetti, F.; Rossi, M.; Ardizzone, F.; Cardinali, M.

    2009-04-01

    , thematic maps obtained processing satellite data can be an effective alternative to maps prepared using more traditional, ground based methods.

  15. Ground-based simulation of LEO environment: Investigations of a select LDEF material: FEP Teflon (trademark)

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at

  16. Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference

    NASA Technical Reports Server (NTRS)

    Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.

    2015-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.

  17. Update of the ISTP Solar Maximum Mission: ISTP Project Scientist for Theory and Ground-Based Observations

    NASA Technical Reports Server (NTRS)

    Curtis, Steve

    1999-01-01

    Building upon the numerous successes of the pre-solar maximum International Solar Terrestrial Physics (ISTP) mission, the ISTP Solar Maximum Mission is expected to produce new insights into global flow of energy, momentum, and mass, from the Sun, through the heliosphere, into the magnetosphere and to their final deposition in the terrestrial upper atmosphere/ionosphere system. Of particular interest is the determination of the geo-effectiveness of solar events, principally Coronal Mass Ejections (CMEs). Given the expected increased frequency and strength of CMEs during the Solar Maximum period, a major advance in our understanding of nature of the coupling of CMEs to the magnetosphere-ionosphere-atmosphere system is expected. The roles during this time of the various ISTP assets will be discussed. These assets will include the SOHO, Wind, Polar, and Geotail spacecraft, the ground-based observing networks and the theory tools.

  18. Evaluation of the operating range for ground-based infrared imaging tracking system

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhang, Zhen-duo; Zhang, Shu-mei

    2011-08-01

    Ground-based infrared imaging tracking system (GIITS) is of great importance for aerial target warning and guard. The operating range is one of the key performance specifications, which should be calculated, analyzed and studied during the whole GIITS design process. The operating range is mostly influenced by a few factors, including atmospheric attenuation, the performance of GIITS and feature of target and background. This paper firstly makes analysis and summarization on the definite localizations of the traditional operating range equation of the GIITS. The localizations are mainly in two aspects. On one hand, the dispersion of the image and the effect of image dispersion are not considered in the traditional method; on the other, calculate the radiation power received on the detector in order to analysis whether the output signal meets the detection requirements or not, without considering the effect of the background radiation. By improving of the traditional method, a new operating range calculation model of the GIITS was established based on two requirements. One is that the image size of observed target should meet the requirement of the processor signal extraction. The number of the pixel occupied by target image should be more than 9. The other is that the signal noise ratio (SNR) of the GIITS should not be less than 5 to meet the requirements of the target detection probability and spatial frequency. The SNR calculation equation in form of energy is deduced and the radiation characteristic of the observed target and background are analyzed. When evaluate the operating range of the GIITS using the new method, we should successively calculate two operating range values according to two requirements mentioned above and choose the minimum value as the analytic result. In the end, an evaluation of operating range for fighter aircraft is accomplished as an example. The influence factors in every aspect on operating range were explored by the calculated

  19. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  20. Prototype Demonstration of Gamma- Blind Tensioned Metastable Fluid Neutron/Multiplicity/Alpha Detector – Real Time Methods for Advanced Fuel Cycle Applications

    SciTech Connect

    McDeavitt, Sean M.

    2016-12-20

    The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being “blind” to the intense gamma field that typically accompanies used fuel – simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the

  1. Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2012-01-01

    The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.

  2. Performance of advanced a-Si/CsI-based flat-panel x-ray detectors for mammography

    NASA Astrophysics Data System (ADS)

    Albagli, Douglas; Hudspeth, Heather; Possin, George E.; Lee, Ji Ung; Granfors, Paul R.; Giambattista, Brian W.

    2003-06-01

    The GE Senographe 2000D, the first full field digital mammography system based on amorphous Silicon (a-Si) flat panel arrays and a Cesium-Iodide (CsI) scintillator, has been in clinical use for several years. The purpose of this paper is to demonstrate and quantify improvements in the detective quantum efficiency (DQE) for both typical screening and ultra-low exposure levels for this technology platform. A new figure of merit, the electronic noise factor, is introduced to explicitly quantify the influence of the electronic noise, conversion factor, modulation transfer function (MTF), and pixel pitch towards the reduction of DQE at low exposure levels. Methods to improve the DQE through an optimization of both the flat panel design and the scintillator deposition process are discussed. The results show a substantial improvement in the DQE(f) at all frequencies and demonstrate the potential for DQE(0) to exceed 80%. The combination of high DQE at ultra low exposures and the inherent fast read-out capability makes this technology platform ideal for both current clinical procedures and advanced applications that may use multiple projections (tomosynthesis) or contrast media to enhance digital mammography.

  3. Spaceflight induces changes in splenocyte subpopulations: effectiveness of ground-based models.

    PubMed

    Pecaut, M J; Simske, S J; Fleshner, M

    2000-12-01

    Spaceflight produces changes in the immune system. The mechanisms for the alterations in immune function after spaceflight remain unclear due in part to the difficulties associated with conducting spaceflight research. The purpose of the following studies, therefore, was to create a ground-based protocol that can reproduce the immunological changes found after spaceflight, i.e., changes in splenic lymphocyte populations. Rats were exposed to either flight aboard the Space Shuttle Endeavor (STS-77) or ground-based simulations of various components of the spaceflight experience. The ground-based mock spaceflight was comprised of exposure to launch and landing loads and unloading of the hindlimbs. In addition, each component of this ground-based mock spaceflight was tested separately. The results were that spaceflight reduced splenic CD4(+) T (helper/inducer) cells and CD11b(+) (neutrophils/macrophages) cells. The ground-based simulations of spaceflight did not reproduce the same pattern of splenocyte changes. In fact, exposure to landing loads alone increased splenic CD4(+) T (helper/inducer) cells. These findings support the conclusion that the ground models tested did not induce similar changes in the immune system as did spaceflight. It is possible, therefore, that stressors/factors unique to the spaceflight experience impact the immune system in ways that cannot be currently, fully modeled on the ground.

  4. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a

  5. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  6. Preservation of Multiple Mammalian Tissues to Maximize Science Return from Ground Based and Spaceflight Experiments

    PubMed Central

    Choi, Sungshin; Ray, Hami E.; Lai, San-Huei; Alwood, Joshua S.; Globus, Ruth K.

    2016-01-01

    Background Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. Objectives The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and spaceflight studies. The first objective was to determine the impacts of tissue harvest time post-euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80°C. Methods Tissues of C57Bl/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80°C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80°C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). Results Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80°C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen

  7. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  8. Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme

    NASA Astrophysics Data System (ADS)

    Brungs, Sonja; Egli, Marcel; Wuest, Simon L.; M. Christianen, Peter C.; W. A. van Loon, Jack J.; Ngo Anh, Thu Jennifer; Hemmersbach, Ruth

    2016-06-01

    Knowledge of the role of gravity in fundamental biological processes and, consequently, the impact of exposure to microgravity conditions provide insight into the basics of the development of life as well as enabling long-term space exploration missions. However, experimentation in real microgravity is expensive and scarcely available; thus, a variety of platforms have been developed to provide, on Earth, an experimental condition comparable to real microgravity. With the aim of simulating microgravity conditions, different ground-based facilities (GBF) have been constructed such as clinostats and random positioning machines as well as magnets for magnetic levitation. Here, we give an overview of ground-based facilities for the simulation of microgravity which were used in the frame of an ESA ground-based research programme dedicated to providing scientists access to these experimental capabilities in order to prepare their space experiments.

  9. BigBOSS: The Ground-Based Stage IV BAO Experiment

    SciTech Connect

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  10. Extragalactic Science with the Next Generation of Ground Based TeV {gamma}-Ray Telescopes

    SciTech Connect

    Krawczynski, Henric

    2008-12-24

    The ground based Cherenkov telescope experiments H.E.S.S., MAGIC, and VERITAS, and the space borne Fermi Gamma-Ray Space Telescope are currently exploring the galactic and extragalactic Universe in {gamma}-rays. At the time of writing this article, a large number of Active Galactic Nuclei have been studied in great detail and the {gamma}-ray observations have had a major impact on our understanding of the structure of jets from these objects. In this contribution, the status of ground based {gamma}-ray observations of AGN and other extragalactic source classes is reviewed as of October, 2008. After discussing source classes that could be detected with next generation ground based experiments like AGIS, CTA, and HAWC, the potential impact of the observations on the fields of high energy astrophysics, structure formation, observational cosmology, and fundamental physics is reviewed. We close with a discussion of the technical requirements that arise from the science drivers.

  11. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells.

  12. Comparison of backscatter ultraviolet /BUV/ and ground-based total ozone fields for December 1970

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Korty, B.; Heath, D. F.

    1979-01-01

    For the period December 1970, comparison is made between the monthly average analyses (mapped fields) of the backscatter ultraviolet (BUV) total ozone data and the ground-based observations. In particular, significant differences of over 50 Dobson units are noted over the region of the North Atlantic Ocean with the BUV of greater magnitude than the ground-based data. As part of the overall verification program, both analyses are compared against the 100 mb height fields. The results indicate that the BUV analysis in the region of question is the more consistent of the two.

  13. First ground-based FTIR-observations of methane in the tropics

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Warneke, T.; Frankenberg, C.; Bergamaschi, P.; Gerbig, C.; Notholt, J.; Buchwitz, M.; Schneising, O.; Schrems, O.

    2010-02-01

    Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname). The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  14. First ground-based FTIR observations of methane in the inner tropics over several years

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Warneke, T.; Frankenberg, C.; Bergamaschi, P.; Gerbig, C.; Notholt, J.; Buchwitz, M.; Schneising, O.; Schrems, O.

    2010-08-01

    Total column concentrations of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname). The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the inner tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with TM5 model simulations. The comparison of the direct measured CH4/CO2 ratios by FTIR and satellite reveals that the satellite can hardly detect methane emissions of tropical biomass burning due to the used retrieval method.

  15. Semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai

    2016-09-01

    Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.

  16. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  17. Real breakthrough in detection of radioactive sources by portal monitors with plastic detectors and New Advanced Source Identification Algorithm (ASIA-New)

    SciTech Connect

    Stavrov, Andrei; Yamamoto, Eugene

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the Rapiscan company. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co- 57, Ba-133 and other). New variant of ASIA is based on physical principles, a phenomenological approach and analysis of some important parameter changes during the vehicle passage through the monitor control area. Thanks to this capability main advantage of new system is that this system can be easily installed into any RPM with plastic detectors. Taking into account that more than 4000 RPM has been installed worldwide their upgrading by ASIA-New may significantly increase probability of detection and verification of radioactive sources even masked by NORM. This algorithm was tested for 1,395 passages of different

  18. A Synthesis of Star Calibration Techniques for Ground-Based Narrowband Electron-Multiplying Charge-Coupled Device Imagers Used in Auroral Photometry

    NASA Technical Reports Server (NTRS)

    Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-01-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  19. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  20. Investigation of the Influence of Microgravity on Transport Mechanisms in a Virtual Spaceflight Chamber: A Ground Based Program

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Rangel, Roger; Witherow, William; Rogers, Jan; Lal, Ravindra B.

    1999-01-01

    In January 1992, the IML-1 FES experiment produced a set of classic experimental data and a 40 hour holographic "movie" of an ensemble of spheres in a fluid in microgravity. Because the data are in the form of holograms, we can study the three-dimensional distribution of particles with unprecedented detail by a variety of methods and for a wide variety of interests. The possession of the holographic movie is tantamount to having a complex experiment in space while working in an easily accessible laboratory on earth. The movie contains a vast amount of useful data, including residual g, g-jitter, convection and transport data, and particle fluid interaction data. The information content in the movie is so great that we have scarcely begun to tap into the data that is actually available in the more than 1000 holograms, each containing as much as 1000 megabytes of information. This ground-based project is exploiting this data and the concept of holographic storage of spaceflight data to provide an understanding of the effects of microgravity in materials processing. This paper provides the foundation, objectives, and status of the ground based project. The primary objective of this project is to advance the understanding of microgravity effects on crystal growth, convection in materials processing in the space environment, and complex transport phenomena at low Reynolds numbers. This objective is being achieved both experimentally and theoretically. Experiments are making use of existing holographic data recorded during the IML- I spaceflight. A parallel theoretical effort is providing the models for understanding the particle fields and their physics in the microgravity environment.

  1. Ground-Based Measurement Experiment and First Results with Geosynchronous-Imaging Fourier Transform Spectrometer Engineering Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Bingham, Gail E.; Huppi, Ronald J.; Revercomb, Henry E.; Zollinger, Lori J.; Larar, Allen M.; Liu, Xu; Tansock, Joseph J.; Reisse, Robert A.; Hooker, Ronald

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 x 128 detector arrays with a spectral resolution of 0.57 cm(exp -1) with a scan duration of approximately 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  2. Ground-based thermal and multispectral imaging of limited irrigation crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-based methods of remote sensing can be used as ground-truth for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted in ...

  3. Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...

  4. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: Test report

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    The test results for the onboard navigation (ONAV) Ground Based Expert System Trainer System for an aircraft/space shuttle navigation entry phase system are described. A summary of the test methods and analysis results are included. Functional inspection and execution, interface tests, default data sources, function call returns, status light indicators, and user interface command acceptance are covered.

  5. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  6. Plant diversity to support humans in a CELSS ground-based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1982-01-01

    Factors that influence the human nutritional requirements envisioned in a controlled ecological life support system ground-based demonstrator and on bioavailability experiments of Ca, Fe and Zn are discussed. The interrelationhip of protein and magnesium on Ca retention is also described.

  7. Ground Based Reflectance Measurements of Arid Rangeland Vegetation Communities of the Southwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1997 a research program began using an Analytical Spectral Device (ASD-FR) spectroradiometer to collect ground based in situ radiance/reflectance measurements from vegetation communities typical of semiarid/arid rangelands of southwestern United States. Measurements were made after the spring (Ap...

  8. Combined Spectral Index to Improve Ground-Based Estimates of Nitrogen Status in Dryland Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have demonstrated the usefulness of the single ratio Normalized Difference Vegetation Index (NDVI) and ground-based remote sensing for estimating crop yield potential and basing in-season nitrogen (N) fertilizer application. The NDVI is positively related to crop N status and leaf ar...

  9. Analysis of global cloudiness. 2: Comparison of ground-based and satellite-based cloud climatologies

    SciTech Connect

    Mokhov, I.I.; Schlesinger, M.E. |

    1994-08-01

    Cloud climatologies are developed and intercompared for International Satellite Cloud Climatology Project (ISCCO) (1983-1988), Meteor I (1971-1980), Meteor II (1979-1988), and Nimbus 7 (1979-1985) satellite observations, and for Berlyand and Strokina (1975, 1980) and Warren et al. (1986, 1988) ground-based observations. The satellite annual-mean, global- mean cloudiness, 0.57 +/- 0.05, is less than the ground-based value, 0.61 +/- 0.01, predominantly because of the low value for Nimbus 7. There is agreement between the satellite means of ISCCP, 0.62, and Meteor II, 0.61, and the ground-based means of Warren et al., 0.62, and Berlyand and Strokina, 0.60. Each satellite- and ground-based climatology shows that the hemispheric- mean cloudiness is larger in summer than that in winter in both the northern and southern hemispheres. Excluding Nimbus 7 observations, the zonal- mean cloudiness distributions for January, July, and July minus January display reasonably good agreement between 60 deg S and 60 deg N. In polar latitudes there is significant disagreement among the different climatologies, even in the sign of cloudiness changes from winter to summer. This evinces the need for special cloudiness experiments in polar regions, particularly in winter and summer.

  10. Acoustic Disturbance of Ionospheric Plasma by a Ground-Based Radiator

    NASA Astrophysics Data System (ADS)

    Koshovyi, V. V.; Soroka, S. O.

    The authors present the first results of experimental testing of the possibilities of acoustic disturbance of the ionosphere by a controllable ground-based low-power radiator. Detection of ionospheric perturbations of this kind by radiophysical complexes based on the decameter radiotelescope URAN-3 is discussed.

  11. Ground-Based Navigation and Dispersion Analysis for the Orion Exploration Mission 1

    NASA Technical Reports Server (NTRS)

    D' Souza, Christopher; Holt, Greg; Zanetti, Renato; Wood, Brandon

    2016-01-01

    This paper presents the Orion Exploration Mission 1 Linear Covariance Analysis for the DRO mission using ground-based navigation. The Delta V statistics for each maneuver are presented. In particular, the statistics of the lunar encounters and the Entry Interface are presented.

  12. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  13. Ground-based and spacecraft-based data sets: examples of synergy from recent missions

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie; Hicks, Michael; Bauer, James

    2015-08-01

    Missions to small bodies have returned a wealth of observations at high spatial resolution and new wavelengths. Nevertheless, spacecraft data is often deficient in many ways, lacking in temporal coverage, specific viewing geometries, context, spectral range, and calibrations. Several recent examples illustrate how modest ground-based “support” measurements for missions to small bodies have substantially enhanced the results from these missions. Triton, Neptune’s giant moon, was observed by Voyager 2 in 1989: high resolution images showed a sublimating polar cap and explosive plumes of volatiles. This instant in time was placed into context by subsequent ground-based and HST observations of the moon that showed continued volatile transport. Similarly, decades of ground-based observations leading up to the New Horizons fast flyby of Pluto monitored long-term changes in frosts on the dwarf planet’s surface. Another example of synergistic measurements for small-body missions is that of complementary solar phase angle coverage. Space-based missions seldom have small phase angle measurements; similarly, ground-based measurements are often lacking at large solar phase angles (except of course for NEOs). This complementary phase angle coverage enables accurate photometric modeling, including determination of the bolometric Bond albedo, which is a key parameter for thermal modeling. Another key use of ground-based observations is to check and refine spacecraft calibrations, at least at wavelengths that are visible from Earth. In some cases, complete calibration sets are provided by Earth-based observing programs, such as that of ROLO (RObotic Lunar Observatory) for the Moon. Finally, context and the “big picture” in both time and space are provided by telescopic views of spacecraft targets before, during, and after mission durations or critical events.The astronomical community should continue to support, and participate in, teams that make synergistic

  14. Validation of CALIPSO level-2 products using a ground based lidar in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; Vraimaki, Eleni; Balis, Dimitris

    2011-11-01

    We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite - Level 2 extinction coefficient profiles, using coincident observations performed with a ground-based lidar in Thessaloniki, Greece (40.5° N, 22.9° E, 50m above sea level). A ground-based backscatter/Raman lidar system is operating since 2000 at the Laboratory of Atmospheric Physics (LAP) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 150 coincidental aerosol ground-based lidar measurements were performed over Thessaloniki during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground-based lidar measurements was approximately two hours, centred on the satellite overpass time. The analysis was performed for 4 different horizontal resolutions of 5, 25, 45 and 105 km. For our analysis we have used Atmospheric Volume Description (AVD) array to screen out everything that is not an aerosol. Also, the cloud-aerosol discrimination (CAD) score, which provides a numerical confidence level for the classification of layers by the CALIOP cloud-aerosol discrimination algorithm was set between -80 and -100. CALIPSO extinction QC flags, which summarize the final state of the extinction retrieval, was also used. In our analysis we have used those measurements where the lidar ratio is unchanged (extinction QC = 0) during the extinction retrieval or it the retrieval is constrained (extinction QC = 1). The comparison was performed both for extinction and backscater coefficient profiles. For clear sky conditions, the comparison shows good performances of the CALIPSO on-board lidar.

  15. Connecting ground-based in-situ observations, ground-based remote sensing and satellite data within the Pan Eurasian Experiment (PEEX) program

    NASA Astrophysics Data System (ADS)

    Petäjä, Tuukka; de Leeuw, Gerrit; Lappalainen, Hanna K.; Moisseev, Dmitri; O'Connor, Ewan; Bondur, Valery; Kasimov, Nikolai; Kotlyakov, Vladimir; Guo, Huadong; Zhang, Jiahua; Matvienko, Gennadii; Kerminen, Veli-Matti; Baklanov, Alexander; Zilitinkevich, Sergej; Kulmala, Markku

    2014-10-01

    Human activities put an increasing stress on the Earth' environment and push the safe and sustainable boundaries of the vulnerable eco-system. It is of utmost importance to gauge with a comprehensive research program the current status of the environment, particularly in the most vulnerable locations. The Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research program aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions. The PEEX program aims to (i) understand the Earth system and the influence of environmental and societal changes in both pristine and industrialized Pan-Eurasian environments, (ii) establish and sustain long-term, continuous and comprehensive ground-based airborne and seaborne research infrastructures, and utilize satellite data and multi-scale model frameworks filling the gaps of the insitu observational network, (iii) contribute to regional climate scenarios in the northern Pan-Eurasia and determine the relevant factors and interactions influencing human and societal wellbeing (iv) promote the dissemination of PEEX scientific results and strategies in scientific and stake-holder communities and policy making, (v) educate the next generation of multidisciplinary global change experts and scientists, and (vi) increase the public awareness of climate change impacts in the Pan- Eurasian region. In this contribution, we underline general features of the satellite observations relevant to the PEEX research program and how satellite observations connect to the ground-based observations.

  16. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    NASA Astrophysics Data System (ADS)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    A compact differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone campaigns. This lidar will be integrated into the Air Quality lidar Network (AQLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver box with associated Licel photon counting and analog channels. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. A custom-designed Ce:LiCAF tunable UV laser has a wavelength range of 282 to 300-nm that is selectable between two or more wavelengths. The current wavelengths are online 286.4 nm and offline 293.1 nm. The 527-nm visible beam is transmitted into the atmosphere for aerosol measurements. The fourth harmonic 262 nm beam is split by a beamsplitter into two pump beams that pump each face of the Ce:LiCAF crystal. A short laser cavity consisting of a 60% reflective (1m radius of curvature) output mirror, a dispersive prism and a flat HR mirror is used to produce the UV wavelengths. In order to produce different wavelengths, the high-reflectivity rear mirror is mounted on a servo controlled galvanometer motor to allow rapid tuning between the on and offline ozone wavelengths. Typical laser results are 6.8-W at 527-nm, 800-mW at 262-nm and 130-mW at the UV transmitted wavelengths. The lidar receiver system consists of a receiver telescope with a 40-cm diameter parabolic mirror. A fiber optic cable transmits the received signal from the telescope to the receiver box, which houses the detectors. A separate one inch diameter telescope with PMT and filter is used to sample the very near field to allow

  17. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  18. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  19. Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Bellini, A.; Bedin, L. R.; Piotto, G.; Platais, I.; Kissler-Patig, M.; Milone, A. P.

    2014-03-01

    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8 m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field (in the Large Magellanic Cloud). We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2 m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields. Catalogs, fortran code, and distortion maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A80Based on observations with the 8 m VLT ESO telescope.

  20. Ground-based microwave remote sensing of temperature inversions in the Bergen valley, Norway

    NASA Astrophysics Data System (ADS)

    Wolf, Tobias; Esau, Igor; Reuder, Joachim

    2014-05-01

    The temperature profiles in the urbanized Bergen valley, Norway, are characterized by wintertime temperature inversions, which have a strong impact on the surface layer air quality in the city. We present the results from two years of vertical temperature profile measurements obtained with the ground-based microwave temperature profiler MTP-5HE and show the advantages of ground-based remote sensing with this instrument for the monitoring of atmospheric temperature inversions. From a subset of the final, filtered dataset we found that the mean difference between temperatures measured with the MTP-5HE and an automatic meteorological station (AMS) on a nearby mountain was as low as -0.03 ± 0.78 K during inversion free conditions and -0.06 ± 0.71 K during ground-based temperature inversions. The only selection criterion for this subset was a wind speed of more than 5 m/s and to ensure comparability between the location of the AMS and the central valley atmosphere. We found two regimes of ground-based inversions: Non-persistent inversions lasting shorter than 2 hours that are mostly thinner than 100 m and more persistent inversions often reaching 270 m above sea level. The height of the shorter inversions was consistent with the maximum height of inversions found in a previous study based on tethersonde measurements. Ground-based inversions mostly occurred during situations characterized by weak winds in the ERA-Interim reanalysis, to a large degree independent from wind direction. A distinct south-easterly tail in the ERA-Interim wind distribution with wind speeds as high as 16 m/s might have been connected to a wake effect from a nearby mountain. The strong channeling effect within the valley that was also found in previous studies was evident. The ground-based remote sensing was particularly useful for the monitoring of elevated temperature inversions between 170 m and 720 m above sea level. This kind of inversions has not been observed in this valley before. They

  1. The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2012-09-01

    The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ɛ, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  2. Measuring glacier surface temperatures with ground-based thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Aubry-Wake, Caroline; Baraer, Michel; McKenzie, Jeffrey M.; Mark, Bryan G.; Wigmore, Oliver; Hellström, Robert È.; Lautz, Laura; Somers, Lauren

    2015-10-01

    Spatially distributed surface temperature is an important, yet difficult to observe, variable for physical glacier melt models. We utilize ground-based thermal infrared imagery to obtain spatially distributed surface temperature data for alpine glaciers. The infrared images are used to investigate thermal microscale processes at the glacier surface, such as the effect of surface cover type and the temperature gradient at the glacier margins on the glacier's temperature dynamics. Infrared images were collected at Cuchillacocha Glacier, Cordillera Blanca, Peru, on 23-25 June 2014. The infrared images were corrected based on ground truth points and local meteorological data. For the control points, the Pearson's correlation coefficient between infrared and station temperatures was 0.95. The ground-based infrared camera has the potential for greatly improving glacier energy budget studies, and our research shows that it is critical to properly correct the thermal images to produce robust, quantifiable data.

  3. Evaluating the Accuracy of Plasmasphere Data Assimilation from Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Lichtenberger, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vellante, M.; Raita, T.; Rodger, C. J.; Reda, J.; Collier, A.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.

    2013-05-01

    VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. Here we simulate the observations from these networks, with appropriate uncertainties, and use them to drive the data assimilation framework to recover the plasmaspheric configuration. We will discuss the level of accuracy that can be achieved.

  4. Evaluating the Accuracy of Plasmasphere Data Assimilation from Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Lichtenberger, J.; Duffy, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vallante, M.; Manninen, J. K.; Rodger, C. J.; Collier, A.; Reda, J.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.

    2012-12-01

    VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. Here we simulate the observations from these networks, with appropriate uncertainties, and use them to drive the data assimilation framework to recover the plasmaspheric configuration. We will discuss the level of accuracy that can be achieved.

  5. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  6. Infrared ground-based astronomy with the Hughes 256 X 256 PtSi array

    NASA Technical Reports Server (NTRS)

    Fowler, A.; Joyce, R.; Gatley, I.; Gates, J.; Herring, J.

    1989-01-01

    It is shown that large format PtSi Schottky diode infrared arrays, the Hughes 256 X 256 hybrid Schottky array in particular, are competitive alternatives to the smaller format photovoltaic arrays for ground-based astronomy. The modest quantum efficiency of the PtSi compared to the photovoltaic devices is more than compensated for by the larger format. The use of hybrid technology yields effective fill factors of nearly 100 percent, and the low dark current, noise, excellent imaging characteristics, cost, and solid nitrogen operating temperature add to the effectiveness of this array for ground-based imaging. In addition to discussing the characteristics of this array, researchers present laboratory test data and astronomical results achieved at Kitt Peak.

  7. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  8. Networking ground-based images of Comet Halley during the Giotto encounter

    NASA Technical Reports Server (NTRS)

    Rees, David; Perla, Israel; Meredith, Nigel P.; Green, James; Van Der Heijden, Nick

    1986-01-01

    During the period immediately before and after the European, Russian, and Japanese spacecraft encounters with Comet Halley in early March 1986, sequences of ground-based electronic images of the comet, obtained at Table Mountain Observatory (TMO), CA, were transmitted via the Space Physics Analysis Network (SPAN) to the European Space Operations Centre (ESOC), and to University College London (UCL). During the 48-h period when the European Space Agency spacecraft Giotto was within the extended coma of Comet Halley, the ground-based images revealed that the comet displayed several spectacular near-nuclear and large-scale features. The TMO images provided a format for the interpretation of the unique in situ results obtained during the closest of the five spacecraft encounters with Comet Halley.

  9. Comparative analysis of UVB exposure between Nimbus 7/TOMS satellite estimates and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei

    2010-08-01

    This study describes the patterns of variation in ultraviolet (UV) exposure across time and space using two continental scale data sets on UV radiation and conducts a comparative analysis of two sources of noontime UV-B exposure data across the continental US. One dataset was collected from 37 ground-based stations equipped with broadband UV-B-1 Pyranometers across North America whereas the other dataset was of synchronous satellite data collected from the Nimbus-7/TOMS sensor. Comparisons of these datasets confirmed agreement between the ground-based measurements and the TOMS satellite estimates with correlation coefficients of 0.87 and 0.95 for daily and monthly UV Index time series (i.e., a common metric of UV radiation exposure), respectively.

  10. Entry Dispersion Analysis for the HAYABUSA Spacecraft using Ground-Based Optical Observation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomohiro; Yoshikawa, Makoto; Yagi, Masafumi; Tholen, David J.

    2011-10-01

    The HAYABUSA asteroid explorer successfully released its sample capsule to Australia on 2010 June 13. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper considers the reentry dispersion using ground-based optical observation as a backup observation for radiometric observation. Several scenarios were calculated and compared for the reentry phase of HAYABUSA to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, and thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluated the landing dispersion of HAYABUSA only with optical observation.

  11. Space debris removal using a high-power ground-based laser

    SciTech Connect

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  12. Gaussian total variation blind restoration of ground-based space object imagery

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Xu, Rong; Liu, Changhai; Li, Jisheng

    2016-11-01

    We focus on the restoration of ground-based space object adaptive optics (AO) images distorted by atmospheric turbulence. A total variation (TV) blind AO images restoration method taking advantage of low-order Gaussian derivative operators is presented. Unlike previous definition of the TV regularization term, we propose to define the TV prior by the Gaussian gradient operators instead of the general finite-difference gradient operators. Specifically, in each iterative step of alternating minimization when solving the TV blind deconvolution problem, the first-order Gaussian derivative operator (i.e. gradient magnitude of Gaussian) is used to construct the total variation norm of object image, and the secondorder Gaussian derivative operator (i.e. Laplacian of Gaussian) is used to spatially adjust the regularization parameter. Comparative simulation experiments show that this simple improvement is much practicable for ground-based space object images and can provide more robust performance on both restoration accuracy and convergence property.

  13. Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    NASA Technical Reports Server (NTRS)

    Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.; DeMaziere, M.; Dorokhov, V.; Eriksen, P.; Gleason, J. F.; Tornkvist, K. Karlsen; Hoiskar, B. A. Kastad; Kyroe, E.; Leveau, J.; Merienne, M.-F.; Milinevsky, G.

    1998-01-01

    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.

  14. Response of Inconel 617 superalloy to combined ground-based and STS reentry exposure

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Unnam, J.

    1984-01-01

    Inconel 617 is a nickel-based superalloy which is being considered for heat-shield applications because of its high-temperature strength, good oxidation resistance and high emittance of oxidized surfaces. While the effects of simulated reentry conditions on emittance and oxidation of Inconel 617 have been studied, the combined effects of the ground-based environment with sea salt exposure and the reentry environment have not been evaluated. Experimental results are presented to show the effects of environmental simulation including ground-based and reentry exposure on the emittance and oxidation of Inconel 617. Specimens were exposed to simulated reentry at a surface temperature of 2000 F in the Langley Research Center Hypersonic Materials Environmental Test System (HYMETS) Facility with and without alternate exposures to an atmospheric seashore environment or a laboratory sea salt environment. This paper presents emittance, mass loss, oxide chemistry, and alloy composition data for the specimens.

  15. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  16. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP... Selective Availability Anti-spoofing Module SIMCERT - Simulator Certification SOC - Space Operations Center SORTS - Status of Resources and Training System

  17. Using ground-based stereo cameras to derive cloud-level wind fields.

    PubMed

    Porter, John N; Cao, Guang Xia

    2009-08-15

    Upper-level wind fields are obtained by tracking the motion of cloud features as seen in calibrated ground-based stereo cameras. By tracking many cloud features, it is possible to obtain horizontal wind speed and direction over a cone area throughout the troposphere. Preliminary measurements were made at the Mauna Loa Observatory, and resulting wind measurements are compared with winds from the Hilo, Hawaii radiosondes.

  18. Coordinated X-ray/ground-based monitoring of Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Uttley, P.

    2003-05-01

    Co-ordinated X-ray and optical monitoring programs are beginning to reveal the complex connection between the X-ray and optical emitting regions in the central engines of Seyfert galaxies. I will discuss the current state of our knowledge of the optical/X-ray connection in Seyferts, and demonstrate how Lobster, in conjunction with the new generation of ground based robotic observatories, will greatly enhance our understanding of the origins of the continuum emission in AGN.

  19. Ground-based follow-up of the Gaia-RVS radial velocity standards

    NASA Astrophysics Data System (ADS)

    Soubiran, C.; Jasniewicz, G.; Zurbach, C.; Crifo, F.; Sartoretti, P.; Katz, D.; Marchal, O.; Panuzzo, P.; Udry, S.

    2016-12-01

    The RVS spectrograph on board of Gaia having no calibration device, radial velocity standards are needed to calibrate the zero-point of the instrument. We have prepared a list of 2798 such stars, well distributed over the sky, and compiled ˜25 000 individual RV measurements from ground-based velocimeters. For a fraction of these stars, their stability at the 300 ms level during the Gaia mission has still to be assessed. The catalogue and follow-up programme are presented.

  20. Ground Based Simulation Evaluation of the Effects of Time Delays and Motion on Rotorcraft Handling Qualities

    DTIC Science & Technology

    1992-01-01

    Inc. C Lometa, CA ADOLPH ATENCIO, JR. DAVID L. KEY Aeroflightdynamics Directorate U.S. Army Aviation Systems Command Ames Research Center Moffett Field...CA JANUARY 1992 - . Final Report Prepared for Aeroflightdynamics Directorate US Army Aviation Systems Command Ames Research Center Moffett Field, CA...Ground-based simulation is an important tool in the assessment of handling qualities of rotorcraft for both research and development. The strengths and

  1. A ground based phase control system for the solar power satellite, volume 4

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1980-01-01

    A ground phase control system is studied as an alternative approach to the current reference retrodirective phase control system in order to simplify the spaceborne hardware requirement. Based on waveform selections, functional subsystems to implement the ground-based phase control concept are identified and functionally represented. It was concluded that the feasibility of the concept becomes unclear if the conditions of the ionosphere and satellite motion are not met.

  2. Toward the Ground-based Imaging of Satellites at Geosynchronous Altitude

    DTIC Science & Technology

    2011-09-01

    these fall quite a bit short of our requirements. As a result, we considered an imaging interferometer . The exiting facilities do not have enough...fibers. Over a traditional ground-based interferometer , sensitivity is improved since losses due to the vacuum feed system and delay lines are...Std Z39-18 Figure 1: The concept described in this paper is an optical interferometer mounted on a steerable platform. Light from the apertures is

  3. Ground-based FTIR measurements of CLONO[sub 2] vertical column amounts in the Arctic

    SciTech Connect

    Notholt, J. ); Clarmann, T.V.; Adrian, G.P. ); Schrems, O. )

    1994-06-22

    This article presents results of a ground-based FTIR spectroscopy study of ClONO[sub 2] conducted at Ny-Alesund (79[degrees]N) during March 1992. These measurements were made both inside and outside the polar vortex. Column densities outside the vortex were larger than at midlatitudes. Inside the vortex, there was more variability, and even larger values were observed at times.

  4. Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen

    SciTech Connect

    Notholt, J. ); Schrems, O. )

    1994-06-22

    The authors report column density measurements of N[sub 2]O, CH[sub 4], HF, HCl, O[sub 3], NO[sub 2] and HNO[sub 3], made from Ny-Alesund (79[degrees]N), using a ground-based FTIR instrument. The data was collected in March 1992, over a time interval where the site was inside, and then outside the polar vortex.

  5. The crop growth research chamber: A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1990-01-01

    A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

  6. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  7. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    NASA Astrophysics Data System (ADS)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  8. Integrating ground-based EO data in satellite-based systems

    SciTech Connect

    Jennings, S.V.; Daugherty, P.; Yow, T.G.

    1997-02-01

    Earth observation (EO) and other forms of geo-referenced data are typically thought of as being ``satellite data.`` It is true that the majority of EO data are satellite oriented; thus, most on-line EO data systems are designed primarily for satellite image data. However, there is A small but significant minority of EO data that is not satellite image data; i.e., it is ground-based or terrestrial data Unfortunately, many on-line systems designed for satellite data do not take into account the somewhat different nature of associated ground-based data, Data queries that work most of the time but fail because the system has not taken into account less common data are not robust enough for today`s users. In order to avoid embarrassing problems, EO system designers must be aware of the nature of ground- based data. In this paper we describe some of our insights on this subject in the hope that the designers of other systems may learn from our experience.

  9. Evaluation of the consistency of OMI-TOMS total ozone with collocated ground-based measurements

    NASA Astrophysics Data System (ADS)

    Ma, Mingliang; Shi, Runhe; Bai, Kaixu; Liu, Chaoshun; Gao, Wei; Sun, Zhibin

    2016-09-01

    As Ozone Monitoring Instrument (OMI) onboard the Aura satellite has provided global scale ozone measurements on a daily basis since 2004, the long-term stability and consistency of ozone retrievals is thus of critical importance, especially for the ozone recovery assessment. This study aims to evaluate the long-term stability of total ozone derived from the OMI Total Ozone Mapping Spectrometer (OMI-TOMS) algorithm, by comparing with collocated ground-based total ozone measurements recorded from 42Dobson spectrophotometers during the period 2004-2015. It is indicative that the OMI-TOMS total ozone is in good agreement with collocated ground-based measurements, with a R2 of 0.96 and root mean square error (RMSE) of 3.3%. Further investigations show that the OMI-TOMS total ozone is of quality, as no significant latitude dependence is observed. In the past 12 years, the OMI-TOMS total ozone is highly consistent with the ground-based Dobson total ozone, with a variation of mean relative difference less than 1%. In general, the OMI-TOMS total ozone performs well and can be used with confidence.

  10. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  11. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  12. Ground-based FTIR measurements of NH3 total columns and comparison with IASI data

    NASA Astrophysics Data System (ADS)

    Vigouroux, Corinne; De Mazière, Martine; Desmet, Filip; Hermans, Christian; Langerock, Bavo; Scolas, Francis; Van Damme, Martin; Clarisse, Lieven; Coheur, Pierre-François

    2013-04-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen. It has an impact on human health, as a precursor of fine particulate matter, and on Earth's ecosystems, via deposition. The main source of global NH3 emissions is agriculture, the remaining ones being the oceans, natural vegetation, humans, wild animals and biomass burning. The global atmospheric budget of NH3 is still very uncertain in chemical models, highlighting the critical need for satellite and ground-based observations. We present, for the first time, time-series (2009 - 2011) of NH3 total columns obtained from ground-based FTIR measurements. These observations are performed at Reunion Island (21°S, 55°E), one of the two subtropical stations, in Southern Hemisphere, of the ground-based Network for the Detection of Atmospheric Composition Change (NDACC) equipped with FTIR instruments. The seasonal and inter-annual variabilities of ammonia observed at Reunion Island from the ground are compared to the ones derived from recent IASI data obtained with a new retrieval method based on the calculation of a Hyperspectral Range Index.

  13. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  14. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  15. Review of bubble detector response characteristics and results from space.

    PubMed

    Lewis, B J; Smith, M B; Ing, H; Andrews, H R; Machrafi, R; Tomi, L; Matthews, T J; Veloce, L; Shurshakov, V; Tchernykh, I; Khoshooniy, N

    2012-06-01

    A passive neutron-bubble dosemeter (BD), developed by Bubble Technology Industries, has been used for space applications. Both the bubble detector-personal neutron dosemeter and bubble detector spectrometer have been studied at ground-based facilities in order to characterise their response due to neutrons, heavy ion particles and protons. This technology was first used during the Canadian-Russian collaboration aboard the Russian satellite BION-9, and subsequently on other space missions, including later BION satellites, the space transportation system, Russian MIR space station and International Space Station. This paper provides an overview of the experiments that have been performed for both ground-based and space studies in an effort to characterise the response of these detectors to various particle types in low earth orbit and presents results from the various space investigations.

  16. Comparison of INSAT-3D AOD over Indian region with satellite- and ground-based measurements: a data assimilation perspective

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; George, John P.; Sreevathsa, M. N. Raghavendra; Indira Rani, S.

    2016-05-01

    This paper aims at comparing the INSAT-3D AOD with other space based observations over the continental regions. INSAT-3D launched in 2013 is an advanced geostationary weather satellite of India at 82° East longitude provides Aerosol Optical Depth (AOD) observations at 650 nm over both land and ocean. The level-3 daily AOD measurements from MODIS (both Aqua and Terra) and MISR are used for comparison with that from INSAT-3D. This work is applied during premonsoon season of 2015. Overall statistical scores and systematic errors are compared to characterize various error sources. Our study indicates that significant differences exist between different aerosol observations which may be partly due to retrieval algorithm, sensor configurations and temporal sampling. Comparison of INSAT observed AOD shows less bias towards MISR and MODIS-Terra observed AOD than with MODIS-Aqua. The INSAT observations over oceanic region have better correlation, minimum bias and rmse than land region. Overall, the mean bias of the dataset is ±0.05, with a root mean square error of 0.22, but these errors are also found highly dependent on geographical region. Additionally, we compared INSAT 660 nm AOD with two AERONET ground stations. The comparison of INSAT with different observations shows that the retrieved AOD is closer to the ground-based data than the MISR and MODIS AOD.

  17. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  18. Physical response of light-time gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Koop, Michael J.; Finn, Lee Samuel

    2014-09-01

    Gravitational wave detectors are typically described as responding to gravitational wave metric perturbations, which are gauge-dependent and—correspondingly—unphysical quantities. This is particularly true for ground-based interferometric detectors, like LIGO, space-based detectors, like LISA and its derivatives, spacecraft Doppler tracking detectors, and pulsar timing array detectors. The description of gravitational waves, and a gravitational wave detector's response, to the unphysical metric perturbation has lead to a proliferation of false analogies and descriptions regarding how these detectors function, and true misunderstandings of the physical character of gravitational waves. Here we provide a fully physical and gauge-invariant description of the response of a wide class of gravitational wave detectors in terms of the Riemann curvature, the physical quantity that describes gravitational phenomena in general relativity. In the limit of high frequency gravitational waves, the Riemann curvature separates into two independent gauge-invariant quantities: a "background" curvature contribution and a "wave" curvature contribution. In this limit the gravitational wave contribution to the detector response reduces to an integral of the gravitational wave contribution of the curvature along the unperturbed photon path between components of the detector. The description presented here provides an unambiguous physical description of what a gravitational wave detector measures and how it operates, a simple means of computing corrections to a detectors response owing to general detector motion, a straightforward way of connecting the results of numerical relativity simulations to gravitational wave detection, and a basis for a general and fully relativistic pulsar timing formula.

  19. Low background IR detector and detector array evaluations

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Jared, D. A.; Lee, J. H.; Mccreight, C. R.; Mckelvey, M. E.; Stafford, P. S.

    1983-01-01

    A technology program has been underway at Ames since 1978 to develop and evaluate detectors and integrated detector arrays for low-background astronomical applications. The approach is to evaluate existing (less than 24 micron) array technology under low-background conditions, with the aim of adapting and optimizing existing devices. For longer wavelengths, where the technology is much less mature, development is sponsored and devices are evaluated, in both discrete and array formats, for eventual applications. The status of this program has been reported previously. We rely on industrial and university sources for the detectors. Typically, after a brief functionality check in the supplier's laboratory, we work with the device at Ames to characterize its low-background performance. In the case of promising arrays or detectors, we conduct ground-based telescope testing to face the problems associated with real applications. A list of devices tested at Ames is given. In the array category, accumulation-mode charge-injection-devices (AMCIDs) appear repeatedly; this reflects our recent experience with the 2 x 64 and 16 x 16 arrays. Results from the 1 x 16 CID and InSb CCD have been reported. The status of our tests of the discrete Ge:x detectors from Lawrence Berkeley Laboratory are described below. Tests of a 1 x 2 switched sample photoconductor array are just beginning. A 32-channel CMOS multiplexer has been tested at 10 K. Low-temperature silicon MOSFETs and germanium JFETs have also been tested, primarily at Ball Aerospace. This paper describes results to date on three elements of this program: AMCID array, discrete Ge:Ga detectors, and Ge JFET preamplifiers.

  20. Characterisation of bubble detectors for aircrew and space radiation exposure.

    PubMed

    Green, A R; Bennett, L G I; Lewis, B J; Tume, P; Andrews, H R; Noulty, R A; Ing, H

    2006-01-01

    The Earth's atmosphere acts as a natural radiation shield which protects terrestrial dwellers from the radiation environment encountered in space. In general, the intensity of this radiation field increases with distance from the ground owing to a decrease in the amount of atmospheric shielding. Neutrons form an important component of the radiation field to which the aircrew and spacecrew are exposed. In light of this, the neutron-sensitive bubble detector may be ideal as a portable personal dosemeter at jet altitudes and in space. This paper describes the ground-based characterisation of the bubble detector and the application of the bubble detector for the measurement of aircrew and spacecrew radiation exposure.

  1. Current State of the LIGO Detectors

    NASA Astrophysics Data System (ADS)

    Weiss, Rainer

    2007-04-01

    The basic physics of the detector will be described: how the the interferometer interacts with a gravitational wave and the noise sources that limit the measurements. The actual performance of the detectors, the result of a great deal of hard work and elegant diagnostics by members of the LIGO collaboration, will be presented. The talk will end with some ideas for incremental improvements in the initial detectors. The major improvements in the detectors, associated with the Advanced LIGO detector project, will be described in a presentation by David Reitze at this meeting. The data analysis and results of science runs made with the initial LIGO and GEO detectors are discussed by Gabriela Gonzalez.

  2. The Results of Ground-based and In-flight Testing of Charge-dissipative and Conducting EKOM Thermal Control Paints

    NASA Astrophysics Data System (ADS)

    Kleiman, J. I.; Iskanderova, Z.; Issoupov, V.; Grigorevskiy, A. V.; Kiseleva, L. V.; Finckenor, M.; Naumov, S. F.; Sokolova, S. P.; Kurilenok, A. O.

    2009-01-01

    An international program on comparative evaluation of space durability of thermal control paints from a number of countries was initiated a few years ago at ITL with coatings from Russia, France and USA being studied. This paper describes the results of the study on space durability of three types of charge-dissipative and conductive Russian advanced polymer-based EKOM thermal control paints. Extensive ground-based testing in fast atomic oxygen (FAO) beam facilities was used to test the space durability of these paints and the enhancement of their atomic oxygen erosion resistance by a surface modification technology, Photosil™. All pristine EKOM paints were also tested in a direct materials exposure experiment on Russian module "Zvezda" onboard the International Space Station. Space durability and change of the major physical properties were evaluated after these experiments using a number of analytical techniques. Both, the ground-based testing and the flight experiments indicated signs of surface erosion with some changes of thermal optical properties. Therefore, the paints were also modified by a surface treatment technology, Photosil™, to increase their erosion resistance to atomic oxygen, tested in the same ground-based FAO facilities up to high FAO fluencies and compared with testing results of pristine materials. The comparison indicated that the surface-modified paints exhibit reduced mass loss, full stabilization and no surface morphology changes, thus indicating at full protection from the high FAO fluencies. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints, to enhance the low Earth orbit (LEO) environment resistance of external thermal control coatings in long-term space missions.

  3. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  4. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  5. Wavelength dependence of star images formed by large ground-based telescopes including ELTs

    NASA Astrophysics Data System (ADS)

    McKechnie, T. Stewart

    2016-08-01

    Star image appearance in large ground-based telescopes is determined by the properties of the Optical Path Difference (OPD) fluctuation associated with the image-forming wave potions collected by the telescope aperture. The principal properties are the root mean square (rms) OPD fluctuation and the autocorrelation function of the OPD fluctuation. The OPD properties ultimately depend on the combined effects of turbulence in the atmospheric path, the fixed aberrations of the telescope and, if appropriate, the corrective effects of Adaptive Optics (AO). The equations given in this paper relating star image properties to the OPD properties (and also the inverse relations) apply to all large ground-based reflector telescopes, including ELTs. They apply equally to telescopes with and without AO. The OPD properties can be obtained directly from an image of an unresolved star. This image represents the intensity Point Spread Function (PSF) corresponding to the entire end-to-end imaging path. To obtain the full OPD information compliment, however, the image must be formed at a wavelength that delivers the most general type of star image: a core and halo image. Once the OPD properties have been obtained from such an image, the intensity PSF for the telescope/atmosphere/AO combination can immediately be calculated for any other wavelengths of interest in the extended optical wavelength range, 0.3 μm - 1000 μm. There are numerous applications for the mathematical relationships set out in this paper, including characterization of atmospheric paths, assessment of telescope/AO imaging performance, establishing wave front tolerances for ELTs and other large ground-based telescopes, and the rapid identification of sweetspot wavelength regions where highest resolution is achieved and star images attain maximum central intensity.

  6. Estimation of Antarctic ozone loss from Ground-based total column measurements

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Goutail, F.; Pommereau, J.-P.; Lefèvre, F.; Roscoe, H. K.; Pazmiño, A.; Feng, W.; Chipperfield, M. P.

    2010-03-01

    The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy) and are well reproduced by the model (Reprobus and SLIMCAT) calculations. The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet. At southern mid-latitudes, a total ozone reduction of 40-50% is observed at the newly installed station Rio Gallegos and 25-35% at Kerguelen in October-November of 2008-2009 and 2005-2009 (except 2008) respectively, and of 10-20% at Macquarie Island in July-August of 2006-2009. This illustrates the significance of measurements at the edges of Antarctica.

  7. CO2 vertical profile retrieval from ground-based IR atmospheric spectra

    NASA Astrophysics Data System (ADS)

    Khosravian, Kobra; Loehnert, Ulrich; Turner, David; Ebell, Kerstin

    2016-04-01

    CO2 vertical profile retrieval from ground-based IR atmospheric spectra In this study, we developed an algorithm for retrieving the CO2 vertical profile from atmospheric ground-based zenith spectra in the mid IR. Providing the CO2 profile from continuous (24h/day) ground-based spectra would be a great potential for studying the carbon cycle, the evaluation of satellite measurements or the assessment of numerical models, which forecast the near-surface CO2 flux. In order to retrieve the CO2 profile, we used observations of the Atmospheric Emitted Radiance Interferometer (AERI) that was installed at the JOYCE (Jülich ObservatorY for Cloud Evolution), Germany in 2012. AERI measures downwelling infrared radiances from 520 cm-1 (3.3 μm) to 3020 cm-1 (19 μm) with a spectral resolution of 1 cm-1 and a temporal resolution of 1 minute. In a first step, we performed sensitivity studies for finding the most-suited spectral bands with highest sensitivity to the mean column amount of CO2 volume mixing ratio (VMR). Then an algorithm, known as AERIoe (Turner and Löhnert 2014), was applied to retrieve the mean column amount of CO2 VMR using simulated radiances in clear sky cases. AERIoe is a variational retrieval algorithm to provide information on Temperature, humidity, trace gases and clouds. The simulated AERI radiances were generated by a line by line radiative transfer model (LBLRTM) using model temperature, humidity and CO2 profile. The retrieval results of mean column amount of CO2 VMR are in good agreement with the true ones. In addition to the mean column amount, we modified AERIoe to retrieve the CO2 vertical profile. First results reveal that there is more than 1 degree of freedom for CO2 profile. We will show results how the retrieval method is refined to optimally exploit the information on the CO2 profile contained in the AERI measurements.

  8. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  9. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    NASA Astrophysics Data System (ADS)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation Team, Granada occultation Team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude < 30 km), and the mesospheric zone (altitudes between 30 and 260 km). Possible biases will be discussed.Additionally, we use a central flash event observed in New Zealand on June 29, 2015 (close to the NH flyby) to provide an upper limit of Pluto's atmospheric oblateness near 4 km altitude. We will also explore the possibility that small deviations in the observed flash (compared to the model) are caused by the local topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  10. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns

    NASA Astrophysics Data System (ADS)

    Fernandez, S.; Murk, A.; Kämpfer, N.

    2015-07-01

    Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric

  11. Ground-based microwave complex for remote sounding of middle atmosphere thermal structure and ozone concentration

    NASA Astrophysics Data System (ADS)

    Shvetsov, Alexander; Kulikov, Mikhail; Feigin, Alexander; Karashtin, Dmitry; Krasilnikov, Alexander; Mukhin, Dmitry; Bolshakov, Oleg; Fedoseev, Lev; Ryskin, Vitaly; Belikovich, Michael; Kukin, Lev

    2012-07-01

    Existing methods of remote sensing of the thermal structure of the atmosphere and the ozone layer are based on measurements from space. However, having great advantage in global coverage of the Earth they cannot provide high spatial and temporal resolution, required to study rapidly occurring phenomena. This problem can be solving by ground-based system of remote sounding. For this purpose ground-based microwave complex for remote sensing of middle atmosphere thermal structure and ozone concentration have been developed in the Institute of Applied Physics of the Russian Academy of Sciences. The complex consists of the microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in the frequency range that include the rotation transition of ozone molecules 6 _{1.5}-6 _{0.6} with resonance frequency 110.836 GHz. Operating frequency range of the stratospheric thermometer is 52.5-54.5 GHz and includes low frequency edge of 5 mm molecular oxygen absorption bands and some relatively weak lines of O _{2} resolved from the ground. Digital fast Fourier transform spectrometer developed by ``Acqiris'' company is employed for signal spectral analysis on intermediate frequency in both spectroradiometers. The spectrometer has frequency range 0.05-1 GHz and realizes the effective resolution about 61~KHz. Retrieval of the atmospheric temperature and ozone profiles is made on the basis of results of the radiation spectrum measurements. The Bayesian approach method is used for combined retrieval of stratosphere temperature and ozone profiles. This method allows statistically correct inclusion of both the measurement noise and the a priori information on the reconstructed profile needed for regularization of the problem. First simultaneous ground-based measurements of self-radiation of atmospheric ozone and oxygen have been made in January, 2012 during the sudden stratospheric warming above Nizhny Novgorod, Russia. Temperature and

  12. Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna'.

    PubMed

    Jupp, David L B; Culvenor, D S; Lovell, J L; Newnham, G J; Strahler, A H; Woodcock, C E

    2009-02-01

    There are many techniques for measuring leaf area index (LAI) and forest canopy foliage profiles but their accuracy is questionable. This paper briefly reviews current methods of estimating forest LAI and presents a novel, ground-based laser system, Echidna that can make a wide range of measurements of forest structure, including LAI. Here, use of the system to provide field data and derived gap probabilities in the form of a 'hemispherical photograph with range' is demonstrated. The results show consistency and reproducibility and do not depend on special conditions for the natural light field.

  13. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  14. Numerical modeling of polarization properties of the return signals in ground-based LIDAR cloud sensing

    NASA Astrophysics Data System (ADS)

    Kablukova, E. G.; Kargin, B. A.; Lisenko, A. A.

    2015-10-01

    The paper presents results of numerical statistical simulations of experiments of ground-based sensing of cloud layers by terahertz linearly polarized radiation for certain wavelengths from the atmospheric transparency windows. Summarized results of many years' field measurements of liquid droplet size distributions in temperate latitudes of the Earth and the distributions obtained by aircraft experiments off Great Britain's coast are used in the scattering layer models. The models of the scattering medium take into account the vertical stratification of water vapor concentration in the atmosphere and the differences in cloud layer microstructure at the top and the base.

  15. Triton's surface properties - A preliminary analysis from ground-based, Voyager photopolarimeter subsystem, and laboratory measurements

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Lane, A. L.; Gibson, J.; Burrows, H.; Nelson, R. M.; Bliss, D.; Smythe, W.; Garkanian, V.; Wallis, B.

    1991-01-01

    The surface properties of Triton were investigated using data from the ground-based and Voyager photopolarimeter subsystem (PPS) observations of Triton's phase curve. The results indicate that Triton has a high single-scattering albedo (0.96 +/-0.01 at 0.75 micron) and an unusually compacted surface, possibly similar to that of Europa. Results also suggest that Triton's single-particle phase function and the macroscopically rough character of its surface are similar to those of most other icy satellites.

  16. Exo-zodi detection capability of the Ground-Based European Nulling Interferometry Experiment (GENIE) instrument.

    PubMed

    Wallner, Oswald; Flatscher, Reinhold; Ergenzinger, Klaus

    2006-06-20

    The Ground-Based European Nulling Interferometry Experiment (GENIE) is intended as an Earth-based precursor for the European Darwin mission that will prepare the Darwin science program and demonstrate the required technology at system level. We propose a compact nulling interferometer design consisting of a two-telescope aperture configuration, an optional split-pupil add-on, and only four active control loops for counteracting environmentally induced disturbances. We show by simulation that the proposed instrument is able to detect, within a few minutes of observation time, exo-zodiacal dust clouds around Sunlike stars at 20 parsecs that are 20 times stronger than the local zodiacal dust cloud density.

  17. Retrieval of Atmospheric CO2 Column from Ground-based Near IR Spectra of the Sun

    NASA Technical Reports Server (NTRS)

    Wennberg, Paul

    2005-01-01

    This grant has supported a graduate research assistant stipend for Zhonghua Yang, a geochemistry Ph.D. student at Caltech. In this project, we have significantly improved the retrieval of atmospheric column CO2 (and molecular oxygen) from ground-based, high resolution near-IR solar transmission spectra. This work has greatly benefited from interactions with Dr. Geoffrey Toon and Stan Sander of NASA's Jet Propulsion Laboratory and with James T. Randerson, University of California - Irvine. The results from this study are summarized in three publications, reprints of which are enclosed in with this report.

  18. First comparison of simultaneous IRIS, BUV, and ground-based measurements of total ozone

    NASA Technical Reports Server (NTRS)

    Prior, E. J.; Oza, B. J.

    1978-01-01

    In the present paper, the zonally-averaged global distribution of total ozone obtained simultaneously from different measurements are compared with respect to differences in the measured latitudinal and seasonal variations of total ozone. Emphasis is placed on systematic discrepancies that appear to be related to differences in the sensing methodologies or instruments. While the zonal averages of the IRIS and BUV satellite techniques agree quite well at low latitudes, the results are consistently higher for IRIS than for BUV above mid-latitudes in both the Northern and Southern Hemispheres. The BUV and ground-based ultraviolet averages agree better with each other than with infrared IRIS measurements.

  19. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    NASA Astrophysics Data System (ADS)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  20. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  1. Plant diversity to support humans in a CELSS ground based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  2. A Program of Ground-Based Astronomy to Complement Einstein Observations.

    DTIC Science & Technology

    1982-11-30

    Astronomy D T I C i CO-,,, Uv I,. WA TOPE: -. Gary A. Cbanan Assistant Professor of Phy.3[cs i t0V.l.., 1982 %30𔃼 0 ii CONTENTS Page A. REPORT DOCUMENTATION...block number) A total of eight ground-based astronomical observing programs were carried out in pursuit of a multiwavelength approach to a number of...astro- physical problems. Synthesis of these results with existing X-ray data led to considerable progress on problems of the emission mechanisms and

  3. Solar irradiance from Nimbus-7 compared with ground-based photometry

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Cookson, A. M.; Hoyt, D. V.

    1994-01-01

    We have compared total solar irradiance from Nimbus-7 with ground-based photometry from the San Fernando Observatory (SFO) for 109 days between 1 June and 31 December, 1988. We have also included in some analyses NOAA-9 SBUV2 data or F10.7 radio flux. The Nimbus-7 data are from orbital samples, averaged to the mean time of observation at SFO. Using the same parameters as in Chapman et al. (1992), the multiple regression gives an R(exp 2) = 0.9131 and a 'solar minimum' irradiance, S(sub 0) = 1371.76 +/- 0.18 W/sq m for the best fit.

  4. Test and training simulator for ground-based teleoperated in-orbit servicing

    NASA Technical Reports Server (NTRS)

    Schaefer, Bernd E.

    1989-01-01

    For the Post-IOC(In-Orbit Construction)-Phase of COLUMBUS it is intended to use robotic devices for the routine operations of ground-based teleoperated In-Orbit Servicing. A hardware simulator for verification of the relevant in-orbit operations technologies, the Servicing Test Facility, is necessary which mainly will support the Flight Control Center for the Manned Space-Laboratories for operational specific tasks like system simulation, training of teleoperators, parallel operation simultaneously to actual in-orbit activities and for the verification of the ground operations segment for telerobotics. The present status of definition for the facility functional and operational concept is described.

  5. Sensitivity of ground-based Cherenkov telescopes for anisotropics in the cosmic gamma-ray background

    SciTech Connect

    Ripken, Joachim; Horns, Dieter; Elsaesser, Dominik; Mannheim, Karl

    2008-12-24

    Self-annihilating dark matter contributes to the extra galactic very high-energy {gamma}-ray background. This contribution is expected to be anisotropic following the density distribution of non-baryonic dark matter. We explore the possibilities to search for these anisotropies with present and future ground-based gamma-ray experiments like H.E.S.S., MAGIC, or CTA. A multipole-expansion of simulated events is used to investigate the sensitivity for anisotropies detectable with narrow field of view observations.

  6. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    NASA Astrophysics Data System (ADS)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  7. Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image

    NASA Technical Reports Server (NTRS)

    Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.

    1995-01-01

    Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.

  8. Nanoradian ground-based astrometry, optical navigation, and artificial reference stars

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Biswas, Abhijit; Ely, Todd; Jacobs, Christopher; Lazio, Joseph; Martin-Mur, Tomas; Owen, William; Rud, Mike; Saini, Navtej; Sandhu, Jagmit; Turyshev, Slava; Werne, Thomas

    2016-08-01

    Spacecraft carrying optical communication lasers can be treated as artificial stars, whose relative astrometry to Gaia reference stars provides spacecraft positions in the plane-of-sky for optical navigation. To be comparable to current Deep Space Network delta-Differential One-way Ranging measurements, thus sufficient for navigation, nanoradian optical astrometry is required. Here we describe our error budget, techniques for achieving nanoradian level ground-base astrometry, and preliminary results from a 1 m telescope. We discuss also how these spacecraft may serve as artificial reference stars for adaptive optics, high precision astrometry to detect exoplanets, and tying reference frames defined by radio and optical measurements.

  9. Ground-based and spaceborn observations of the type II burst with developed fine structure

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  10. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    NASA Technical Reports Server (NTRS)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  11. Cloud-Base-Height Estimation from Paired Ground-Based Hemispherical Observations

    SciTech Connect

    Kassianov, Evgueni I.; Long, Charles N.; Christy, Jason E.

    2005-08-01

    The Total Sky Imager (TSI) and Hemispheric Sky Imager (HSI) each have a hemispherical field-of-view (FOV) and many TSIs are now deployed. Currently, these instruments have been used routinely to provide a time series of the fractional sky cover only. In this study, we examine the possible retrieval of cloud base height (CBH) from TSI surface observations. This paper presents a validation analysis of a new retrieval using both a model-output inverse problem and independent, ground-based Micropulse Lidar data. The obtained results suggest that, at least for single layer cloud fields, moderately accurate (within ~0.35 km) CBH retrieval is possible.

  12. How close are ground-based Fabry-Perot thermospheric wind and temperature measurements to exospheric values? A simulation study

    NASA Technical Reports Server (NTRS)

    Mccormac, F. G.; Killeen, T. L.; Nardi, B.; Smith, R. W.

    1987-01-01

    A computer simulation model of the measurement process for a ground-based Fabry-Perot interferometer (FPI) has been developed and used to study how variations of wind and temperature along the instrument line-of-sight affect the Doppler shift and width of the observed nightglow O(1D) emission line at high spectral resolution. Ground-based-derived temperatures in the nighttime sector of the winter hemisphere are found to give values that are representative of the peak O(1D) emission altitude. However, when the vertical temperature gradients are large, the ground-based FPI temperature measurement may differ by as much as about 12 percent from the temperature at the peak emission height. Simulations of the FPI measurement of nighttime thermospheric temperatures show that ground-based-derived temperatures may be lower by about 10 percent than the corresponding exospheric temperatures in the winter hemisphere and by about 15 percent in the summer hemisphere.

  13. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  14. A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat

    DTIC Science & Technology

    2009-01-01

    A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat Ronald L. Cypert Scientific...units, along with coordination at the state and federal agency level, a dynamic process modeling capability was chosen to chart the myriad...COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE A Process Model for Deployment Planning of Ground-based Air Defense System Against

  15. Comparisons of MgII core-wing data with Ground-Based Ca K-line

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Preminger, D.

    2011-12-01

    Magnesium_II core-wing ratio data will be compared with ground-based K-line photometry for most of cycle 22 and 23. The ground-based data is the photmetric sum computed from the composite K-line obtained from the San Fernando Observatory. We will examine several MgII core-wing composites. This work is partially supported by grants NNX11AB51G from NASA and ATM-0848518 from NSF.

  16. Development of a flight qualified 100 x 100 mm MCP UV detector using advanced cross strip anodes and associated ASIC electronics

    NASA Astrophysics Data System (ADS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Raffanti, Rick; Cumming, Harley; Seljak, Andrej; Virta, Vihtori; Varner, Gary

    2016-07-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last three decades (e.g. EUVE, FUSE, COS on Hubble etc.) and been mentioned for instruments on future large telescopes in space such as LUVOIR14. Using cross strip anodes, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x10) resulting in lower high voltage requirements and longer MCP lifetimes. A crossed strip anode MCP readout starts with a set of orthogonal conducting strips (e.g. 80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital converter (ADC). All of the ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T) and pass this information to a downstream computer. Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a NASA Strategic Astrophysics Technology (SAT) grant to raise the TRL of a cross strip detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass, and volume requirements of the detector electronics. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration

  17. The COMPASS-2 satellite and the ground-based LOIS vector sensing radar facility as novel tools for ionospheric plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Rothkaehl, H.; Bergman, J. E. S.; Thidé, B.; Klos, Z.

    2008-04-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground-based wide-area sensor networks, such as the LOFAR Outrigger In Scandinavia (LOIS, LOFAR: Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers with full three-dimensional polarization coverage, and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The new digital radio frequency analyzer (RFA) on board the low-orbiting COMPASS-2 satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the COMPASS-2 satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the COMPASS-2 and LOIS experiments.

  18. Toward understanding of differences in current cloud retrievals of ARM ground-based measurements

    SciTech Connect

    Zhao C.; Dunn M.; Xie, S.; Klein, S. A.; Protat, A.; Shupe, M. D.; McFarlane, S. A.; Comstock, J. M.; Delanoë, J.; Deng, M.; Hogan, R. J.; Huang, D.; Jensen, M. P.; Mace, G. G.; McCoy, R.; O’Connor, E. J.; Turner, D. D.; Wang, Z.

    2012-05-30

    Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.

  19. Toward Understanding of Differences in Current Cloud Retrievals of ARM Ground-based Measurements

    SciTech Connect

    Zhao, Chuanfeng; Xie, Shaocheng; Klein, Stephen A.; Protat, Alain; Shupe, Matthew D.; McFarlane, Sally A.; Comstock, Jennifer M.; Delanoe, Julien; Deng, Min; Dunn, Maureen; Hogan, Robin; Huang, Dong; Jensen, Michael; Mace, Gerald G.; McCoy, Renata; O'Conner, Ewan J.; Turner, Dave; Wang, Zhien

    2012-05-30

    Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasize on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice effective radius. It is shown that most of these large differences have their roots in the retrieval algorithms used by these cloud products, including the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.

  20. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Report on the ground-based observation campaign of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Jehin, Emmanuel

    2015-11-01

    Rosetta gets closer to the nucleus than any previous mission, and returns wonderfully detailed measurements from the heart of the comet, but at the cost of not seeing the large scale coma and tails. The ground-based campaign fills in the missing part of the picture, studying the comet at about 1000 km resolution, and following how the overall activity of the comet varies. These data provide context information for Rosetta, so changes in the inner coma seen by the spacecraft can be correlated with the phenomena observable in comets. This will not only help to complete our understanding of the activity of 67P, but also to allow us to compare it with other comets that are only observed from the ground.The ground-based campaign includes observations with nearly all major facilities world-wide. In 2014 the majority of data came from the ESO VLT, as the comet was still relatively faint and in Southern skies, but as it returns to visibility from Earth in 2015 it is considerably brighter, approaching its perihelion in August, and at Northern declinations. I will present results from the 2014 campaign, including visible wavelength photometry and spectroscopy, and the latest results from 2015 observations.

  3. Profile negotiation - A concept for integrating airborne and ground-based automation for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Den Braven, Wim; Williams, David H.

    1991-01-01

    The profile negotiation process (PNP) concept as applied to the management of arrival traffic within the extended terminal area is presented, focusing on functional issues from the ground-based perspective. The PNP is an interactive process between an aircraft and air traffic control (ATC) which combines airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible. Preliminary results from a real-time simulation study show that the controller teams are able to consistently and effectively negotiate conflict-free vertical profiles with 4D-equipped aircraft. The ability of the airborne 4D flight management system to adapt to ATC specified 4D trajectory constraints is found to be a requirement for successful execution of the PNP. It is recommended that the conventional method of cost index iteration for obtaining the minimum fuel 4D trajectory be supplemented by a method which constrains the profile speeds to those desired by ATC.

  4. Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Läufer, Gwendolyn; Gerstenecker, Carl; Becker, Matthias

    2010-06-01

    One fundamental component of early warning systems for natural hazards is displacement monitoring. Spaceborne SAR Interferometry has proven to be a powerful remote sensing tool for this task. Lately new ground-based SAR instruments are available. Their application field is wide and they combine high resolution and accuracy with the classical benefits of remote sensing techniques. Here, the principles of the microwave interferometer IBIS are presented, as well as its advantages and disadvantages compared to common monitoring techniques. IBIS can be operated in two modes: IBIS-S is a microwave interferometer capable of high frequency displacement monitoring of buildings and structures (up to 200 Hz); IBIS-L is a ground-based SAR for long-term displacement monitoring of buildings and natural phenomena as landslides, glaciers, etc. Exemplary three applications are presented: the use of IBIS-S for dynamic monitoring of a chimney; the use of IBIS-L for displacement monitoring in an active quarry and the long-term operation