Science.gov

Sample records for advanced hall cells

  1. Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells

    NASA Astrophysics Data System (ADS)

    Shekhar, R.; Evans, J. W.

    Much research was performed in recent years by corporations and university/government labs on materials for use in advanced Hall-Heroult cells. Attention has focussed on materials for use as wettable cathodes and inert anodes and much was achieved in terms of material development. Comparatively less attention was devoted to how these materials might be incorporated in new or existing cells, i.e., to how the cells should be designed and redesigned, to take full advantage of these materials. The effort, supported by the U.S. Department of Energy, to address this issue, is described. The primary objectives are cell design where electrolyte flow can be managed to promote both the removal of the anode gas bubbles and the convection of dissolved alumina in the inter-electrode region, under conditions where the anode-cathode distance is small. The principal experimental tool was a water model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or vertical configurations. Gas generation was by forcing compressed air through porous graphite and the fine bubbles characteristic of inert anodes were produced by adding butanol to the water. Velocities were measured using a laser Doppler velocimeter. Velocity measurements with two different anode designs (one that is flat and the other that has grooves) are presented. The results show that the electrode configuration has a significant effect on the fluid flow pattern in the inter-electrode region. Furthermore, it is shown that rapid fluid flow is obtained when the cell is operated with a submerged anode.

  2. Advanced Hybrid Modeling of Hall Thruster Plumes

    DTIC Science & Technology

    2010-06-16

    LVTF. A direct simulation Monte Carlo (DSMC) method3 is used to model collision dynamics, and a Particle-in-Cell ( PIC ) method4 is used to capture...cell ( PIC ) numerical methods on an axisymmetric grid.7 The code has been found to be effective in creating either time-averaged outputs of performance...here. The HPHall code performs an axisymmetric simulation, commonly referred to as “hybrid- PIC ,” treating the electrons via fluid approximation

  3. Recent advances in the spin Hall effect of light.

    PubMed

    Ling, Xiaohui; Zhou, Xinxing; Huang, Kun; Liu, Yachao; Qiu, Cheng-Wei; Luo, Hailu; Wen, Shuangchun

    2017-03-30

    The spin Hall effect (SHE) of light, as an analogue of the SHE in electronic systems, is a promising candidate for investigating the SHE in semiconductor spintronics/valleytronics, high-energy physics and condensed matter physics, owing to their similar topological nature in the spin-orbit interaction. The SHE of light exhibits unique potential for exploring the physical properties of nanostructures, such as determining the optical thickness, and the material properties of metallic and magnetic thin films and even atomically thin two-dimensional materials. More importantly, it opens a possible pathway for controlling the spin states of photons and developing next-generation photonic spin Hall devices as a fundamental constituent of the emerging spinoptics. In this review, based on the viewpoint of the geometric phase gradient, we give a detailed presentation of the recent advances in the SHE of light and its applications in precision metrology and future spin-based photonics.

  4. SOI Hall cells design selection using three-dimensional physical simulations

    NASA Astrophysics Data System (ADS)

    Paun, Maria-Alexandra; Udrea, Florin

    2014-12-01

    The main characteristics of Hall Effect Sensors, based on “silicon-on-insulator” (SOI) structure in the ideal design features, are evaluated by performing three-dimensional physical simulations. A particular Hall shape reproducing an XFAB SOI XI10 integration process is analyzed in details. In order to assess the performance of the considered Hall cell, the Hall voltage, absolute sensitivity and input resistance were extracted through simulations. Electrostatic potential distribution and Hall mobility were also produced through simulations for the considered SOI Hall Basic cell. A comparison between the performance of the same Hall cell manufactured in regular bulk and SOI CMOS technology respectively is given.

  5. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  6. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  7. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  8. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, T.M.; Lowden, R.A.

    1990-05-29

    An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.

  9. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, Theodore M.; Lowden, Richard A.

    1990-01-01

    An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.

  10. Particle-in-cell simulation of a Hall thruster

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wu, Boying; Yu, Daren; Cao, Yong; Duan, Ping

    2010-04-01

    Hall thrusters are widely used as space electric propulsion devices. Due to the complex plasma phenomenon and high computation cost, currently it is difficult to fully simulate the real physical process in Hall thrusters. Recently, Szabo and Taccogna have proposed two different methods to simplify and accelerate the simulation, respectively. In this paper, both these methods of acceleration are analysed and compared, and then a modified method of acceleration is proposed. In order to verify the modified method of acceleration, the influence of magnetic field gradient on plasma parameter distribution in the channel is simulated. The numerical results show that the magnetic field gradient can significantly alter the position of the ionization region and thruster performance.

  11. Inert Anode/Cathode Program: Fiscal Year 1986 annual report. [For Hall-Heroult cells

    SciTech Connect

    Brenden, B.B.; Davis, N.C.; Koski, O.H.; Marschman, S.C.; Pool, K.H.; Schilling, C.H.; Windisch, C.F.; Wrona, B.J.

    1987-06-01

    Purpose of the program is to develop long-lasting, energy-efficient anodes, cathodes, and ancillary equipment for Hall-Heroult cells used by the aluminum industry. The program is divided into four tasks: Inert Anode Development, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development. To devise sensors to control the chemistry of Hall-Heroult cells using stable anodes and cathodes. This report highlights the major FY86 technical accomplishments, which are presented in the following sections: Management, Materials Development, Materials Evaluation, Thermodynamic Evaluation, Laboratory Cell Tests, Large-Scale Tests, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development.

  12. High pressure Moissanite-anvil cells for the low temperature Hall effect measurements of oxide superconductors

    NASA Astrophysics Data System (ADS)

    Yomo, Shusuke; Tozer, Stanley

    2013-03-01

    The Hall effect was successfully measured for a single crystal of high temperature superconductor in a Moissanite-anvil clamp cell up to 5 GPa, with proper arrangement of lead wires and a sample. Zylon gasket, good in electrical insulation, worked well up to 5 GPa. The 30-40 % increase of the clamped pressure was observed during cooling to below 60 K. The appreciable pressure effect of the a-b plane Hall coefficient was observed and negative for La2 - x Srx CuO4 with x = 0.090. The result is discussed with those for sintered samples and those studied with a different pressurizing method. Thanks are due to Visiting Scientist Program, NHMFL, and NNSA grant DE-FG52-03NA00066.

  13. Advanced fuel cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Baumert, B.; Claar, T. D.; Fousek, R. J.; Huang, H. S.; Kaun, T. D.; Krumpelt, M.; Minh, N.; Mrazek, F. C.; Poeppel, R. B.

    1985-01-01

    Fuel cell research and development activities at Argonne National Laboratory (ANL) during the period January through March 1984 are described. These efforts have been directed principally toward seeking alternative cathode materials to NiO for molten carbonate fuel cells. Based on an investigation of the thermodynamically stable phases formed under cathode conditions, a number of prospective alternative cathode materials have been identified. From the list of candidates, LiFeO2, Li2MnO3, and ZnO were selected for further investigation. During this quarter, they were doped to promote conductivity and tested for solubility and ion migration in the cell environment. An investigation directed to understanding in cell densification of anode materials was initiated. In addition, calculations were made to evaluate the practicality of controlling sulfur accumulation in molten carbonate fuel cells by bleed off of a portion of the anode gas that could be recycled to the cathode. In addition, a model is being developed to predict the performance of solid oxide fuel cells as a function of cell design and operation.

  14. Ultrasensitive Mirco-Hall Detector for Enumeration and Molecular Profiling of Rare Cells

    NASA Astrophysics Data System (ADS)

    Min, Changwook; Issadore, David; Chung, Jaehoon; Shao, Huilin; Liong, Monty; Ghazani, Arezou A.; Castro, Cesar M.; Weissleder, Ralph; Lee, Hakho

    2013-03-01

    We have recently developed a miniaturized microfluidic chip-based technology, the micro-Hall detector (uHD), that can perform rapid, highly sensitive, and quantitative measurement of individual cells in unprocessed biological samples. The uHD detects the Hall voltage induced by magnetic moments of cells in-flow that have been immunomagnetically tagged with magnetic nanoparticles (MNPs) and bio-orthogonal chemistry. The entire assay is performed on a single microfluidic chip with minimal sample preparation to avoid sample loss and to simplify assay procedure, eliminating the need for any washing and purification steps, and thereby allows cellular diagnostics to be conducted in point-of-care clinical settings. We also demonstrated simultaneous detection of heterogeneous biomarkers on individual cells by targeting different cellular markers with a panel of MNPs. The quantity of each MNP type, and hence the expression level of a target biomarker in a single cell, could be obtained using the particles' distinctive magnetization properties. The clinical use of the uHD was explored by the detection of circulating tumor cells (CTCs) in whole blood of 20 ovarian cancer patients, and drug treatment efficacy was monitored in a mouse tumor model.

  15. Non Invasive estimation of aluminum concentration in Hall-Heroult reduction cells

    SciTech Connect

    David Bell

    2004-03-01

    The present best practice for the preparation of primary aluminum is by electrolysis of alumina in the traditional Hall-Heroult reduction cell. The process conditions in the electrolyte of this cell required for the reduction to proceed are sufficiently harsh to have precluded the implementation of in situ sensing of the electrolyte composition, specifically the concentration of the ionized alumina. This report reveals the theoretical basis for a non-invasive method for estimation of the ionized alumina concentration which does not require the use of any sensor in direct contact with the cell electrolyte. The proposed method can in principle be applied with equal efficacy to the so-called drained cathode cell designs and to cells having any anode composition, because only knowledge of the electrolyte conduction behavior is required a priori. For an operating cell, the proposed method requires only readily available electrical measurements and the facilities to process the acquired signals. The proposed method rests on the ability to identify certain characteristics of the transients in the reduction cell terminal voltages caused by the quasiperiodic introduction of alumina. It will be shown that these voltage transients manifest measurable properties, in a statistical sense, that should permit estimation of the ionized alumina concentration with a delay of one alumina feed cycle. The next logical step following the present work, consistent with the Aluminum Technology Roadmap [1], is to experimentally verify the predictions made here; no doubt practical refinements to the proposed approach will evolve during the course of experimentation. Successful verification of the proposed estimation method will permit the design of reduction cell control algorithms based directly on the mass balance of alumina in the electrolyte. This report assumes that the reader understands certain basic concepts important to the operation of electrolytic cells, and the Hall-Heroult cell

  16. Ultrasensitive clinical enumeration of rare cells ex vivo using a μ-Hall detector

    PubMed Central

    Issadore, David; Chung, Jaehoon; Shao, Huilin; Liong, Monty; Ghazani, Arezou A.; Castro, Cesar M.; Weissleder, Ralph; Lee, Hakho

    2013-01-01

    The ability to detect rare cells (< 100 cells per ml of whole blood) and obtain quantitative measurements of specific biomarkers on single cells is increasingly important in basic biomedical research. Implementing such methodology for widespread use in the clinic, however, has been hampered by low cell density, small sample sizes, and requisite sample purification. To overcome these challenges, we have developed a microfluidic chip-based micro-Hall detector (μHD), which can directly measure single, immunomagnetically tagged cells in whole blood. The μHD can detect single cells even in the presence of vast numbers of blood cells and unbound reactants, and does not require any washing or purification steps. In addition, the high bandwidth and sensitivity of the semiconductor technology used in the μHD enables high-throughput screening (currently ~107 cells/min). The clinical utility of the μHD chip was demonstrated by detecting circulating tumor cells in whole blood of 20 ovarian cancer patients at higher sensitivity than currently possible with clinical standards. Furthermore, the use of a panel of magnetic nanoparticles, distinguished with unique magnetization properties and bio-orthogonal chemistry, allowed simultaneous detection of the biomarkers EpCAM, HER2/neu, and EGFR on individual cells. This cost-effective, single-cell analytical technique is well-suited to perform molecular and cellular diagnosis of rare cells in the clinic. PMID:22764208

  17. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  18. Particle-in-cell simulation of a double stage Hall thruster

    NASA Astrophysics Data System (ADS)

    Yu, Daren; Song, Maojiang; Liu, H.; Ding, Y. J.; Li, Hong

    2012-03-01

    The purpose of inventing a double stage Hall thruster is to control the propellant ionization and ion acceleration independently. In order to better understand the physics involved in such a thruster, an improved particle-in-cell method is used in this paper to simulate the discharge process. It is shown that the numerical features in the ionization stage accord well with the experimental results. It is also indicated that the ionization process and the acceleration process cannot be separated completely, as a relatively important ionization still occurs in the acceleration stage. Furthermore, an optimal threshold of ionization voltage in the ionization stage is existed to obtain the most favorable distributions of plasma parameters in the whole discharge channel.

  19. The moreau-evans hydrodynamic model applied to actual hall-héroult cells

    NASA Astrophysics Data System (ADS)

    Moreau, René J.; Ziegler, Donald

    1988-10-01

    An extension of the Moreau-Evans[1] model for Hall-Héroult cells hydrodynamics is presented. Numerical techniques are used to solve the Moreau-Evans model equations with realistic electromagnetic force fields; the predicted results are compared with those of another model which is the property of Kaiser Aluminum Company and whose results are considered as in fairly good agreement with available measurements (velocity in aluminum, for instance). The main input in this hydrodynamic model, i.e., the electromagnetic force field throughout the two liquids, was previously computed. For a given cell design these data were calculated using the electromagnetic program of Lympany and Evans.[2] For actual cells the forces were deduced from measurements of the magnetic field provided by Kaiser Aluminum Company. As expected, the cryolite flow is found to be governed by the large channels, and to be strongly dependent on the presence of such a channel between the two files of anodes. The use of numerical solution has made possible the analysis of new effects as the interfacial drag and the influence of small channels between anode blocks.

  20. Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, C. H.; Yuan, Z. H.; Fang, C.; Kong, W. J.; Wu, H.; Zhang, Q. T.; Tao, B. S.; Han, X. F.

    2017-04-01

    Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices.

  1. Fish T cells: recent advances through genomics

    USGS Publications Warehouse

    Laing, Kerry J.; Hansen, John D.

    2011-01-01

    This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.

  2. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  3. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  4. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  5. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  6. Advanced Fuel-Cell Modules

    NASA Technical Reports Server (NTRS)

    Bell, William F., III; Martin, Ronald E.; Struning, Albin J.; Whitehill, Robert

    1989-01-01

    Modules designed for long life, light weight, reliability, and low cost. Stack of alkaline fuel cells based on modules, consisting of three fuel cells and cooler. Each cell includes following components: ribbed carbon fine-pore anode electrolyte-reservoir plate; platinum-on-carbon catalyst anode; potassium titanate matrix bonded with butyl rubber; gold-plated nickel-foil electrode substrates; and silver plated, gold-flashed molded polyphenylene sulfide cell holder. Each cell has active area of 1ft to the 2nd power (0.09 m to the 2nd power). Materials and configurations of parts chosen to extend life expectancy, reduce weight and manufacturing cost, and increase reliability.

  7. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  8. Advanced cell therapies for articular cartilage regeneration.

    PubMed

    Madeira, Catarina; Santhagunam, Aruna; Salgueiro, João B; Cabral, Joaquim M S

    2015-01-01

    Advanced cell-based therapies are promising approaches for stimulating full regeneration of cartilage lesions. In addition to a few commercially available medicinal products, several clinical and preclinical studies are ongoing worldwide. In preclinical settings, high-quality cartilage tissue has been produced using combination strategies involving stem or progenitor cells, biomaterials, and biomolecules to generate a construct for implantation at the lesion site. Cell numbers and mechanical stimulation of the constructs are not commonly considered, but are important parameters to be evaluated in forthcoming clinical studies. We review current clinical and preclinical studies for advanced therapy cartilage regeneration and evaluate the progress of the field.

  9. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  10. Advances in Perovskite Solar Cells.

    PubMed

    Zuo, Chuantian; Bolink, Henk J; Han, Hongwei; Huang, Jinsong; Cahen, David; Ding, Liming

    2016-07-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large-scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  11. Cell technology: Advanced silicon sheet

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1986-01-01

    The Flat-plate Solar Array (FSA)-sponsored Fourth Silicon Stress/Strain Workshop reviewed, coordinated, and assessed the progress in understanding and controlling stress and strain during the crystal growth of silicon ribbons. dislocation electrical activity and limits on solar cell efficiency, and on studying the effects of dopants on EFG characteristics. Work on silicon for high-efficiency solar cells, stress-strain relationships in silicon ribbon, and high temperature deformation of dendritic web ribbon was also discussed.

  12. Advanced IPV Nickel/Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O.; Soltis, D. G.

    1986-01-01

    Expansion and contraction of electrode stack accommodated to increase cycle life. Three features of advanced designs new and not incorporated but fully compatible in either contemporary cells: use of alternate methods of oxygen recombination, serrated-edge separators, and expandable stack. Designs also consider electrolyte volume requirements over life of cells and are fully compatible with state-of-the-art designs. Cells improve performance, life, and usable energy leading to lighter storage devices for low Earthorbit applications for commercial or government applications.

  13. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  14. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  15. Evaluation of High-Power Solar Electric Propulsion using Advanced Ion, Hall, MPD, and PIT Thrusters for Lunar and Mars Cargo Missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2006-01-01

    This paper presents the results of mission analyses that expose the advantages and disadvantages of high-power (MWe-class) Solar Electric Propulsion (SEP) for Lunar and Mars Cargo missions that would support human exploration of the Moon and Mars. In these analyses, we consider SEP systems using advanced Ion thrusters (the Xenon [Xe] propellant Herakles), Hall thrusters (the Bismuth [Bi] propellant Very High Isp Thruster with Anode Layer [VHITAL], magnetoplasmadynamic (MPD) thrusters (the Lithium [Li] propellant Advanced Lithium-Fed, Applied-field Lorentz Force Accelerator (ALFA2), and pulsed inductive thruster (PIT) (the Ammonia [NH3] propellant Nuclear-PIT [NuPIT]). The analyses include comparison of the advanced-technology propulsion systems (VHITAL, ALFA2, and NuPIT) relative to state-of-theart Ion (Herakles) propulsion systems and quantify the unique benefits of the various technology options such as high power-per-thruster (and/or high power-per-thruster packaging volume), high specific impulse (Isp), high-efficiency, and tankage mass (e.g., low tankage mass due to the high density of bismuth propellant). This work is based on similar analyses for Nuclear Electric Propulsion (NEP) systems.

  16. [Advances in sickle cell disease].

    PubMed

    de Montalembert, Mariane

    2008-10-01

    Generation of transgenic mice have identified new pathophysiological mechanisms in sickle disease, including a permanent proinflammatory state and dysregulation of vascular tone. Treatment is no longer solely symptomatic. New agents target red cell hydration and the kinetics of deoxyhemoglobin S polymerization. Hydroxyurea, which reactivates fetal hemoglobin synthesis, is now widely used. Anti-adhesion molecules and agents modulating vascular tone are being tried in sickle mice. Bone marrow transplantation is widely used to cure patients with HLA-identical siblings, and gene therapy looks promising for those without a donor.

  17. Advanced Cell Development and Degradation Studies

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; R. C. O'Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  18. Advanced Catalysts for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.

    2006-01-01

    This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.

  19. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  20. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    3SO 2 electrolyte. Surface treatments were carried out at 240"C using water (Cell 15) and thionyl chloride (Cell 16). Cathodes were placed in a Parr... LITHIUM SULFUR DIOXIDE CELL R.C. McDonald R. Vierra P. Harris M. Guentert F. Goebel C. Todino S. Hossain Yardney Technical Products, Inc. 82 Mechanic...61" INK rYPOT I AM 9al covmw 4 November 1991 Final Rpt: Sep 88 to Feb 91 ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL C: DAAL01-88-C-0849 R C

  1. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The goal is to develop secondary lithium cells with a 100 Wh/kg specific energy capable of 1000 cycles at 50 percent DOD. The approach towards meeting this goal initially focused on several basic issues related to the cell chemistry, selection of cathode materials and electrolytes and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of achievable specific energy and cycle life. Major advancements to date in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. A summary is given of these advances.

  2. Particle-In-Cell Modeling of Hall-Driven Magnetic Penetration and Species Separation in Two-Species Plasmas

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Swanekamp, Stephen; Ottinger, Paul; Angus, Justin; Rittersdorf, Ian; Schumer, Joseph

    2014-10-01

    Understanding the interaction of a strong magnetic field with a plasma is a key problem in plasma physics. In this poster we report on a new systematic study using two-dimensional particle-in-cell simulations designed to explore the interplay between magnetic pushing and Hall-driven magnetic field penetration. In plasma where the ions are infinitely massive and ∇n × B > 0 , the magnetic field penetrates into the plasma at a specific fraction of the Hall speed, vb. When the ions have finite mass, the penetrating magnetic field gives an impulse to the ions, accelerating them to speed vi. In a two-species plasma, simulations show simultaneous pushing of the light-ion species and magnetic field penetration through the heavy-ion species when vheavy

  3. Tests Of Advanced Nickel/Hydrogen Cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1994-01-01

    Individual-pressure-vessel (IPV) nickel-hydrogen technology adanced with intention of improving cycle life and performance. One advancement to use 26 percent potassium hydroxide electrolyte to improve cycle life. Another to modify state-of-art cell design to eliminate identified failure modes.

  4. Recent Advances in Morphological Cell Image Analysis

    PubMed Central

    Chen, Shengyong; Zhao, Mingzhu; Wu, Guang; Yao, Chunyan; Zhang, Jianwei

    2012-01-01

    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed. PMID:22272215

  5. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area

  6. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.

  7. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    electrolyte. Surface treatments were carried out at 2406C using water (Cell 15) and thionyl chloride (Cell 16). 3 Cathodes were placed in a Parr Bomb...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald, P. Harris, F. Goebel, S. Hossain...Test Group 3 13 Test Group 4 22 Test Group 5 22 Test Group 6 24 Test Group 7 46 Test Group 8 52 Test Group 9 65 I CHEMICAL ANALYSIS 65 LITHIUM CYCLING

  8. Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells

    SciTech Connect

    Mayani, Maryam Gholami; Reenaas, Turid Worren

    2014-08-18

    In this work, we study how Shockley-Read-Hall (SRH) recombination via energy levels in the bandgap, caused by defects or impurities, affects the performance of both photo-filled and pre-filled intermediate band solar cells (IBSCs). For a pre-filled cell, the IB is half-filled in equilibrium, while it is empty for the photo-filled cell in equilibrium. The energy level, density, and capture cross-sections of the defects/impurities are varied systematically. We find that the photo-filled cells are, in general, less efficient than pre-filled cells, except when the defect level is between the conduction band and the IB. In that case, for a range of light intensities, the photo-filled cell performs better than the pre-filled. When the defect level is at the same energy as the IB, the efficiency is above 82% of the defect-free case, when less than 50% of the states at the IB lead to SRH recombination. This shows that even if SRH recombination via the IB takes place, high efficiencies can be achieved. We also show that band gap optimization can be used to reduce the SRH recombination.

  9. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  10. Mathematical model for prediction of currents, magnetic fields, melt velocities, melt topography and current efficiency in Hall-Heroult cells

    SciTech Connect

    Evans, J.W.; Zundelevich, Y.; Sharma, D.

    1981-06-01

    The magnetic fields, current densities, metal and electrolyte velocities, current efficiencies and topography of the electrolyte-metal interface within the Hall-Heroult cell used to produce aluminum have been predicted from first principles. The computation of current densities was carried out by solving Ohms law enabling the calculation of magnetic field vectors from the Biot-Savart law. The cross product of the current densities and magnetic fields then yielded the electromagnetic stirring forces acting on the molten metal and electrolyte. By employing a turbulence model and the time averaged Navier-Stokes equations, velocities within these two liquids could be calculated. The solution of the fluid flow equations yielded the pressure distribution within both electrolyte and metal, permitting the calculation of the shape of the interface betweeen these two liquids.

  11. Single Cell Genomics: Advances and Future Perspectives

    PubMed Central

    Macaulay, Iain C.; Voet, Thierry

    2014-01-01

    Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organism. Here, we review the major technological and biological breakthroughs achieved, describe the remaining challenges to overcome, and provide a glimpse into the promise of recent and future developments. PMID:24497842

  12. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2001-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  13. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  14. Advanced treatment for basal cell carcinomas.

    PubMed

    Atwood, Scott X; Whitson, Ramon J; Oro, Anthony E

    2014-07-01

    Basal cell carcinomas (BCCs) are very common epithelial cancers that depend on the Hedgehog pathway for tumor growth. Traditional therapies such as surgical excision are effective for most patients with sporadic BCC; however, better treatment options are needed for cosmetically sensitive or advanced and metastatic BCC. The first approved Hedgehog antagonist targeting the membrane receptor Smoothened, vismodegib, shows remarkable effectiveness on both syndromic and nonsyndromic BCCs. However, drug-resistant tumors frequently develop, illustrating the need for the development of next-generation Hedgehog antagonists targeting pathway components downstream from Smoothened. In this article, we will summarize available BCC treatment options and discuss the development of next-generation antagonists.

  15. Advanced Treatment for Basal Cell Carcinomas

    PubMed Central

    Atwood, Scott X.; Whitson, Ramon J.; Oro, Anthony E.

    2014-01-01

    Basal cell carcinomas (BCCs) are very common epithelial cancers that depend on the Hedgehog pathway for tumor growth. Traditional therapies such as surgical excision are effective for most patients with sporadic BCC; however, better treatment options are needed for cosmetically sensitive or advanced and metastatic BCC. The first approved Hedgehog antagonist targeting the membrane receptor Smoothened, vismodegib, shows remarkable effectiveness on both syndromic and nonsyndromic BCCs. However, drug-resistant tumors frequently develop, illustrating the need for the development of next-generation Hedgehog antagonists targeting pathway components downstream from Smoothened. In this article, we will summarize available BCC treatment options and discuss the development of next-generation antagonists. PMID:24985127

  16. Advanced-capability alkaline fuel cell powerplant

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  17. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  18. Advances in retinal ganglion cell imaging

    PubMed Central

    Balendra, S I; Normando, E M; Bloom, P A; Cordeiro, M F

    2015-01-01

    Glaucoma is one of the leading causes of blindness worldwide and will affect 79.6 million people worldwide by 2020. It is caused by the progressive loss of retinal ganglion cells (RGCs), predominantly via apoptosis, within the retinal nerve fibre layer and the corresponding loss of axons of the optic nerve head. One of its most devastating features is its late diagnosis and the resulting irreversible visual loss that is often predictable. Current diagnostic tools require significant RGC or functional visual field loss before the threshold for detection of glaucoma may be reached. To propel the efficacy of therapeutics in glaucoma, an earlier diagnostic tool is required. Recent advances in retinal imaging, including optical coherence tomography, confocal scanning laser ophthalmoscopy, and adaptive optics, have propelled both glaucoma research and clinical diagnostics and therapeutics. However, an ideal imaging technique to diagnose and monitor glaucoma would image RGCs non-invasively with high specificity and sensitivity in vivo. It may confirm the presence of healthy RGCs, such as in transgenic models or retrograde labelling, or detect subtle changes in the number of unhealthy or apoptotic RGCs, such as detection of apoptosing retinal cells (DARC). Although many of these advances have not yet been introduced to the clinical arena, their successes in animal studies are enthralling. This review will illustrate the challenges of imaging RGCs, the main retinal imaging modalities, the in vivo techniques to augment these as specific RGC-imaging tools and their potential for translation to the glaucoma clinic. PMID:26293138

  19. Quantum hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay

    We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.

  20. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  1. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  2. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  3. The quantum Hall effects: Philosophical approach

    NASA Astrophysics Data System (ADS)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  4. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  5. Concert hall acoustics

    NASA Astrophysics Data System (ADS)

    Schroeder, Manfred

    2004-05-01

    I will review some work at Bell Laboratories on artificial reverberation and concert hall acoustics including Philharmonic Hall (Lincoln Center for the Performing Arts, New York). I will also touch on sound diffusion by number-theoretic surfaces and the measurement of reverberation time using the music as played in the hall as a ``test'' signal.

  6. Advanced Materials and Cell Components for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2009-01-01

    This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

  7. Hall Effect Spintronics

    DTIC Science & Technology

    2008-09-23

    resistance measurement, in which current sources can share a common ground, the Hall measurement requires electrically isolated current sources. It...8 Figure captions Fig. 1. Measurement setup for the non-switching van der Pauw Hall technique. IAC and IDB are electrically isolated...Longitudinal resistivity (measured along the electrical current) is expected to be an even function of magnetic induction B, whereas the transverse or Hall

  8. HALL EFFECT INVESTIGATIONS

    DTIC Science & Technology

    INTERMETALLIC COMPOUNDS, *SEMICONDUCTING FILMS, *THIN FILM STORAGE DEVICES, ANTIMONY ALLOYS, CRYSTALLIZATION, ELECTRODES, ELECTROMAGNETIC PROPERTIES, EVAPORATION, HALL EFFECT , HEAT TREATMENT, INDIUM ALLOYS, ELECTRICAL RESISTANCE.

  9. Workshop II: Nanotechnology and Advanced Cell Concepts

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  10. ADVANCED THIN-FILM SOLAR CELLS.

    DTIC Science & Technology

    SEMICONDUCTING FILMS), (* SOLAR CELLS , GALLIUM ARSENIDES, TRANSPORT PROPERTIES, SUBSTRATES, MASS SPECTROSCOPY, CAPACITANCE, PREPARATION, PROCESSING, LABORATORY FURNACES, IMPURITIES, STABILITY, OXIDES.

  11. Advances in cell culture: anchorage dependence

    PubMed Central

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  12. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  13. 52. GREAT HALL, LOOKING NORTH THROUGH STAIR HALL TO NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. GREAT HALL, LOOKING NORTH THROUGH STAIR HALL TO NORTH VESTIBULE DOORS - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  14. Recent advances in T-cell immunotherapy for haematological malignancies.

    PubMed

    Rouce, Rayne H; Sharma, Sandhya; Huynh, Mai; Heslop, Helen E

    2017-03-01

    In vitro discoveries have paved the way for bench-to-bedside translation in adoptive T cell immunotherapy, resulting in remarkable clinical responses in a variety of haematological malignancies. Adoptively transferred T cells genetically modified to express CD19 CARs have shown great promise, although many unanswered questions regarding how to optimize T-cell therapies for both safety and efficacy remain. Similarly, T cells that recognize viral or tumour antigens though their native receptors have produced encouraging clinical responses. Honing manufacturing processes will increase the availability of T-cell products, while combining T-cell therapies has the ability to increase complete response rates. Lastly, innovative mechanisms to control these therapies may improve safety profiles while genome editing offers the prospect of modulating T-cell function. This review will focus on recent advances in T-cell immunotherapy, highlighting both clinical and pre-clinical advances, as well as exploring what the future holds.

  15. New Advanced Technologies in Stem Cell Therapy

    DTIC Science & Technology

    2012-09-01

    stem” like state when expanded in a cell monolayer. A media formulation of 10% fetal bovine serum , 10% horse serum , 1% penicillin /streptomycin and 1...medium (DMEM supplemented with 10% fetal bovine serum , 10% horse serum , 0.5% chicken embryo extract and 1% Penicillin -streptomycin) until the cell...expanded in DMEM containing 10% fetal bovine serum (FBS), 10% horse serum , 1% penicillin -streptomycin, and 0.5% chick embryo extract. Cells were

  16. New Advanced Technologies In Stem Cell Therapy

    DTIC Science & Technology

    2011-09-01

    Project 1: Duchenne Muscular Dystrophy (DMD), human muscle-derived cells (hMDC), myoendothelial cells, pericytes, hMDC transplantation, angiogenesis...function of skeletal muscle that has been damaged by Duchenne muscular dystrophy (DMD) and other muscle degenerative disorders and injury...of Contents 4) Project 1: Muscle stem cell transplantation for Duchenne muscular dystrophy A) Introduction……………………………………………………………6

  17. Hall effect in hopping regime

    NASA Astrophysics Data System (ADS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-02-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO.

  18. ADVANCED THIN-FILM SOLAR CELLS.

    DTIC Science & Technology

    SEMICONDUCTING FILMS), (* SOLAR CELLS , MANUFACTURING, GALLIUM ALLOYS, ARSENIC ALLOYS, PLATINUM, OXIDES, TRANSPORT PROPERTIES, MOLYBDENUM, METAL FILMS, COPPER, HYDROGEN, GERMANIUM ALLOYS, TIN ALLOYS, ZINC, CRYSTAL GROWTH.

  19. Hall of Fame.

    ERIC Educational Resources Information Center

    El Rancho Unified School District, Pico Rivera, CA.

    A Hall of Fame was established by the El Rancho Unified School District (California) to identify and honor graduates of the school district who have graduated more than 15 years ago, who have achieved recognition in their chosen field, and who would bring honor to the school district in its honoring of them. Nominees for the Hall of Fame were…

  20. The Hall Effect

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The experimental procedure consists of the measurement of the Hall coefficient, resistivity, and Hall mobility as a function of temperature of a sample of gallium arsenides before and after irradiation with low and high energy protons. Work has begun on the development of the theory and subsequently experiments will be designed and performed.

  1. Skyrmions and Hall Transport.

    PubMed

    Kim, Bom Soo; Shapere, Alfred D

    2016-09-09

    We derive a generalized set of Ward identities that captures the effects of topological charge on Hall transport. The Ward identities follow from the (2+1)-dimensional momentum algebra, which includes a central extension proportional to the topological charge density. In the presence of topological objects like Skyrmions, we observe that the central term leads to a direct relation between the thermal Hall conductivity and the topological charge density. We extend this relation to incorporate the effects of a magnetic field and an electric current. The topological charge density produces a distinct signature in the electric Hall conductivity, which is identified in existing experimental data and yields further novel predictions. For insulating materials with translation invariance, the Hall viscosity can be directly determined from the Skyrmion density and the thermal Hall conductivity to be measured as a function of momentum.

  2. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  3. Skyrmions and Hall Transport

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo; Shapere, Alfred D.

    2016-09-01

    We derive a generalized set of Ward identities that captures the effects of topological charge on Hall transport. The Ward identities follow from the (2 +1 )-dimensional momentum algebra, which includes a central extension proportional to the topological charge density. In the presence of topological objects like Skyrmions, we observe that the central term leads to a direct relation between the thermal Hall conductivity and the topological charge density. We extend this relation to incorporate the effects of a magnetic field and an electric current. The topological charge density produces a distinct signature in the electric Hall conductivity, which is identified in existing experimental data and yields further novel predictions. For insulating materials with translation invariance, the Hall viscosity can be directly determined from the Skyrmion density and the thermal Hall conductivity to be measured as a function of momentum.

  4. Personalized nanomedicine advancements for stem cell tracking☆

    PubMed Central

    Janowski, Mirek; Bulte, Jeff W.M.; Walczak, Piotr

    2012-01-01

    Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles. PMID:22820528

  5. Recent advances in plant cell wall proteomics.

    PubMed

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  6. Enzymatic biofuel cells: 30 years of critical advancements.

    PubMed

    Rasmussen, Michelle; Abdellaoui, Sofiene; Minteer, Shelley D

    2016-02-15

    Enzymatic biofuel cells are bioelectronic devices that utilize oxidoreductase enzymes to catalyze the conversion of chemical energy into electrical energy. This review details the advancements in the field of enzymatic biofuel cells over the last 30 years. These advancements include strategies for improving operational stability and electrochemical performance, as well as device fabrication for a variety of applications, including implantable biofuel cells and self-powered sensors. It also discusses the current scientific and engineering challenges in the field that will need to be addressed in the future for commercial viability of the technology.

  7. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  8. New Advanced Technologies in Stem Cell Therapy

    DTIC Science & Technology

    2014-11-01

    Pittsburgh, PA, USA. 8Stem Cell and Regenerative Medicine Center, Cellular and Molecular Arrhythmia Research Program, Department of Medicine, School...function and reduce ventricular arrhythmias (145). Preclinical studies are beginning to test PSC cell therapy in large-animal models of heart dis- ease...been ob- served (148). However, a transient increase in ventricular arrhythmias has occurred, raising a potential safety concern. Transplantation of hu

  9. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  10. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  11. Advanced fuel cell concepts for future NASA missions

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    1987-09-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  12. Emerging challenges of advanced squamous cell lung cancer

    PubMed Central

    Zhang, Yi-Chen; Zhou, Qing

    2016-01-01

    Squamous cell lung cancer (SQCLC) is an aggressive type of lung cancer and most are diagnosed at advanced stage. Patients with advanced SQCLC tend to be older, current or former smoker, with central type tumour located near large blood vessels and seldom with druggable genetic alternations. Consequently, progress of targeted therapy and antivascular agents available in lung adenocarcinoma could not be duplicated in this subset of patients. The treatment paradigms have long been dominant by cytotoxic agents and posed many therapeutic challenges. Until recent years, immune checkpoint inhibitors, other monoclonal antibodies and afatinib have been approved for treatment of advanced SQCLC, presenting a novel treatment landscape and initiating the era of precision medicine in this subset of patients. This review will summarise the recent treatment progresses in advanced SQCLC with a focus on checkpoint inhibitors of programmed cell death-1 receptor or its ligand, and discuss the emerging challenges in this new era. PMID:28255454

  13. Recent Advances in Microfluidic Cell Separations

    PubMed Central

    Gao, Yan; Li, Wenjie; Pappas, Dimitri

    2013-01-01

    The isolation and sorting of cells has become an increasingly important step in chemical and biological analyses. As a unit operation in more complex analyses, isolating a phenotypically pure cell population from a heterogeneous sample presents unique challenges. Microfluidic systems are ideal platforms for performing cell separations, enabling integration with other techniques and enhancing traditional separation modalities. In recent years there have been several techniques that use surface antigen affinity, physical interactions, or a combination of the two to achieve high separation purity and efficiency. This review discusses methods including magnetophoretic, acoustophoretic, sedimentation, electric, and hydrodynamic methods for physical separations. We also discuss affinity methods, including magnetic sorting, flow sorting, and affinity capture. PMID:23778244

  14. Advances in management of sickle cell disease.

    PubMed

    Agarwal, M B

    2003-08-01

    Sickle cell disease is numerically as common as thalassaemia. However, it affects relatively under privileged population i.e. tribal population belonging to economically poor class and having inadequate access to education and modern health facilities. A recent explosion acknowledged in understanding the pathogenesis of this disease has lead to newer dimensions in treatment. Some of these viz. prevention of overwhelming bacterial infection, present indications and controversies regarding blood transfusion, prevention of stroke, acute chest syndrome, hydroxyurea therapy--probably the best disease modifying agent at the moment, stem cell transplantation--a cure and certain promising experimental therapies including gene therapy have been discussed in this review.

  15. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  16. A Mathematical model for prediction of currents, magnetic fields, melt velocities, melt topography and current efficiency in Hall-Héroult cells

    SciTech Connect

    Evans, J. W.; Zundelevich, Y.; Sharma, D.

    1981-06-01

    In this paper, the magnetic fields, current densities, metal and electrolyte velocities, current efficiencies and topography of the electrolyte-metal interface within the Hall-Héroult cell used to produce aluminum have been predicted from first principles. The computation of current densities was carried out by solving Ohms law enabling the calculation of magnetic field vectors from the Biot-Savart law. The cross product of the current densities and magnetic fields then yielded the electromagnetic stirring forces acting on the molten metal and electrolyte. By employing a turbulence model and the time averaged Navier-Stokes equations, velocities within these two liquids could be calculated. Finally, the solution of the fluid flow equations yielded the pressure distribution within both electrolyte and metal, permitting the calculation of the shape of the interface between these two liquids.

  17. Comparability: manufacturing, characterization and controls, report of a UK Regenerative Medicine Platform Pluripotent Stem Cell Platform Workshop, Trinity Hall, Cambridge, 14-15 September 2015.

    PubMed

    Williams, David J; Archer, Richard; Archibald, Peter; Bantounas, Ioannis; Baptista, Ricardo; Barker, Roger; Barry, Jacqueline; Bietrix, Florence; Blair, Nicholas; Braybrook, Julian; Campbell, Jonathan; Canham, Maurice; Chandra, Amit; Foldes, Gabor; Gilmanshin, Rudy; Girard, Mathilde; Gorjup, Erwin; Hewitt, Zöe; Hourd, Paul; Hyllner, Johan; Jesson, Helen; Kee, Jasmin; Kerby, Julie; Kotsopoulou, Nina; Kowalski, Stanley; Leidel, Chris; Marshall, Damian; Masi, Louis; McCall, Mark; McCann, Conor; Medcalf, Nicholas; Moore, Harry; Ozawa, Hiroki; Pan, David; Parmar, Malin; Plant, Anne L; Reinwald, Yvonne; Sebastian, Sujith; Stacey, Glyn; Thomas, Robert J; Thomas, Dave; Thurman-Newell, Jamie; Turner, Marc; Vitillo, Loriana; Wall, Ivan; Wilson, Alison; Wolfrum, Jacqueline; Yang, Ying; Zimmerman, Heiko

    2016-07-01

    This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this 'may be difficult for cell-based medicinal products'. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early. The workshop shared current thinking and best practice and allowed the definition of key research questions. The intent of this report is to summarize the key issues and the consensus reached on each of these by the expert delegates.

  18. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.

  19. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  20. [Markers of prostate cancer stem cells: research advances].

    PubMed

    Wang, Shun-Qi; Huang, Sheng-Song

    2013-12-01

    Prostate cancer is one of the most seriously malignant diseases threatening men's health, and the mechanisms of its initiation and progression are not yet completely understood. Recent years have witnessed distinct advances in researches on prostate cancer stem cells in many aspects using different sources of materials, such as human prostate cancer tissues, human prostate cancer cell lines, and mouse models of prostate cancer. Prostate cancer stem cell study offers a new insight into the mechanisms of the initiation and progression of prostate cancer and contributes positively to its treatment. This article presents an overview on the prostate cancer stem cell markers utilized in the isolation and identification of prostate cancer stem cells.

  1. Advances and applications of induced pluripotent stem cells.

    PubMed

    Pietronave, Stefano; Prat, Maria

    2012-03-01

    Direct reprogramming of somatic cells into pluripotent cells is an emerging technology for creating patient-specific cells, and potentially opens new scenarios in medical and pharmacological fields. From the discovery of Shinya Yamanaka, who first obtained pluripotent cells from fibroblasts by retrovirus-derived ectopic expression of defined embryonic transcription factors, new methods have been developed to generate safe induced pluripotent stem (iPS) cells without genomic manipulations. This review will focus on the recent advances in iPS technology and their application in pharmacology and medicine.

  2. Recent advances in sensitized mesoscopic solar cells.

    PubMed

    Grätzel, Michael

    2009-11-17

    Perhaps the largest challenge for our global society is to find ways to replace the slowly but inevitably vanishing fossil fuel supplies by renewable resources and, at the same time, avoid negative effects from the current energy system on climate, environment, and health. The quality of human life to a large degree depends upon the availability of clean energy sources. The worldwide power consumption is expected to double in the next 3 decades because of the increase in world population and the rising demand of energy in the developing countries. This implies enhanced depletion of fossil fuel reserves, leading to further aggravation of the environmental pollution. As a consequence of dwindling resources, a huge power supply gap of 14 terawatts is expected to open up by year 2050 equaling today's entire consumption, thus threatening to create a planetary emergency of gigantic dimensions. Solar energy is expected to play a crucial role as a future energy source. The sun provides about 120,000 terawatts to the earth's surface, which amounts to 6000 times the present rate of the world's energy consumption. However, capturing solar energy and converting it to electricity or chemical fuels, such as hydrogen, at low cost and using abundantly available raw materials remains a huge challenge. Chemistry is expected to make pivotal contributions to identify environmentally friendly solutions to this energy problem. One area of great promise is that of solar converters generally referred to as "organic photovoltaic cells" (OPV) that employ organic constituents for light harvesting or charge carrier transport. While this field is still in its infancy, it is receiving enormous research attention, with the number of publications growing exponentially over the past decade. The advantage of this new generation of solar cells is that they can be produced at low cost, i.e., potentially less than 1 U.S. $/peak watt. Some but not all OPV embodiments can avoid the expensive and energy

  3. Primary processes in sensory cells: current advances.

    PubMed

    Frings, Stephan

    2009-01-01

    In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth's magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.

  4. Advanced Solar Cell Testing and Characterization

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Curtis, Henry; Piszczor, Michael

    2005-01-01

    The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.

  5. Nursing Management of Advanced Merkel Cell Carcinoma.

    PubMed

    Lowry, Pamela A; Freeman, Morganna L; Russell, Jeffery S

    2016-11-01

    Merkel cell carcinoma (MCC) is a rare and lethal skin cancer with few known treatment options. Management of this disease is challenging, and oncology nurses must understand the medical, physical, and psychosocial burden that MCC places on the patient and family caregivers. Patients must navigate a complex medical and insurance network that often fails to support patients with rare cancers. Nurses must advocate for these patients to ensure quality comprehensive cancer care.

  6. Advances and Prospect of Nanotechnology in Stem Cells

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Ruan, Jing; Cui, Daxiang

    2009-07-01

    In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development.

  7. High-Field Fractional Quantum Hall Effect in Optical Lattices

    SciTech Connect

    Palmer, R.N.; Jaksch, D.

    2006-05-12

    We consider interacting bosonic atoms in an optical lattice subject to a large simulated magnetic field. We develop a model similar to a bilayer fractional quantum Hall system valid near simple rational numbers of magnetic flux quanta per lattice cell. Then we calculate its ground state, magnetic lengths, fractional fillings, and find unexpected sign changes in the Hall current. Finally we study methods for detecting these novel features via shot noise and Hall current measurements.

  8. Facilty Focus: Residence Halls.

    ERIC Educational Resources Information Center

    Hunnewell, James F., Jr.

    2002-01-01

    Describes the Western Ridge Residence at Colorado College and Beard Hall at Wheaton College. The buildings feature multiple levels that take advantage of views and also help create a "homey" feeling. (EV)

  9. Hall Effect Spintronics

    DTIC Science & Technology

    2011-04-01

    spin-transfer torque gives rise to magnetization reversal and excitation of spin-waves in ferromagnet /normal- metal / ferromagnet trilayers (F/N/F...applications based on the extraordinary Hall effect (EHE). The work was focused on three major tasks: 1. Preparation and study of CoPd multilayers ...D. Rosenblatt, M. Karpovski and A. Gerber, Reversal of the Extraordinary Hall Effect polarity in thin Co-Pd multilayers ., Appl. Phys. Lett., 96

  10. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  11. Conceptual and methodological advances in cell-free directed evolution

    PubMed Central

    Dodevski, Igor; Markou, George C.; Sarkar, Casim A.

    2015-01-01

    Although cell-free directed evolution methods have been used to engineer proteins for nearly two decades, selections on more complex phenotypes have largely remained in the domain of cell-based engineering approaches. Here, we review recent conceptual advances that now enable in vitro display of multimeric proteins, integral membrane proteins, and proteins with an expanded amino acid repertoire. Additionally, we discuss methodological improvements that have enhanced the accessibility, efficiency, and robustness of cell-free approaches. Coupling these advances with the in vitro advantages of creating exceptionally large libraries and precisely controlling all experimental conditions, cell-free directed evolution is poised to contribute significantly to our understanding and engineering of more complex protein phenotypes. PMID:26093059

  12. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  13. Human umbilical cord blood cells and diabetes mellitus: recent advances.

    PubMed

    Reddi, Alluru S; Kothari, Neil; Kuppasani, Kishore; Ende, Norman

    2015-01-01

    Stem cell therapy for patients with diabetes is an area of great interest to both scientists and clinicians. Human umbilical cord blood cells (HUCBCs) are being increasingly used as a source of stem cells for cell-based therapy for diabetes because these cells can differentiate into pancreatic islet β-cells. Administration of HUCBCs has been shown to lower blood glucose levels in diabetic animal models. The use of autologous HUCBC transfusion in type 1 diabetic children has not shown any benefit. However, "Stem Cell Educator" therapy has shown promise in long term lowering of blood glucose levels in both type 1 and type 2 diabetic patients. In this review, we will briefly discuss recent advances in HUCBC therapy in the treatment of diabetes and some of its complications.

  14. Two-Phase CFD Model of the Bubble-Driven Flow in the Molten Electrolyte Layer of a Hall-Héroult Aluminum Cell

    NASA Astrophysics Data System (ADS)

    Feng, Yuqing; Schwarz, M. Philip; Yang, William; Cooksey, Mark

    2015-08-01

    A two-phase computational fluid dynamics (CFD) model has been developed to simulate the time-averaged flow in the molten electrolyte layer of a Hall -Héroult aluminum cell. The flow is driven by the rise of carbon dioxide bubbles formed on the base of the anodes. The CFD model has been validated against detailed measurements of velocity and turbulence taken in a full-scale air-water physical model containing three anodes in four different configurations, with varying inter-anode gap and the option of slots. The model predictions agree with the measurements of velocity and turbulence energy for all configurations within the likely measurement repeatability, and therefore can be used to understand the overall electrolyte circulation patterns and mixing. For example, the model predicts that the bubble holdup under an anode is approximately halved by the presence of a slot aligned transverse to the cell long axis. The flow patterns do not appear to be significantly altered by halving the inter-anode gap width from 40 to 20 mm. The CFD model predicts that the relative widths of center, side, and end channels have a major influence on several critical aspects of the cell flow field.

  15. Insights into dendritic cell function using advanced imaging modalities.

    PubMed

    Vyas, Jatin M

    2012-11-15

    The application of advanced imaging techniques to fundamental questions in immunology has provided insight into dendritic cell function and has challenged dogma created using static imaging of lymphoid tissue. The history of dendritic cell biology has a storied past and is tightly linked to imaging. The development of imaging techniques that emphasize live cell imaging in situ has provided not only breath-taking movies, but also novel insights into the importance of spatiotemporal relationships between antigen presenting cells and T cells. This review serves to provide a primer on two-photon microscopy, TIRF microscopy, spinning disk confocal microscopy and optical trapping and provides selective examples of insights gained from these tools on dendritic cell biology.

  16. Recent Advances in Therapeutic Applications of Induced Pluripotent Stem Cells.

    PubMed

    Rami, Farzaneh; Beni, Shamsi Naderi; Kahnamooi, Mahboobeh Mojaver; Rahimmanesh, Ilnaz; Salehi, Ahmad Reza; Salehi, Rasoul

    2017-04-01

    Induced pluripotent stem (iPS) cells are generated by reprogramming of differentiated somatic cells. These cells are identical to human embryonic stem cells (hESCs) in gene expression pattern and the ability to differentiate. iPS cells can be used in in vitro modeling of diseases, testing drugs, assessing gene therapy methods, and cell therapy. Yet, the most important and promising application of iPS cells is in regenerative medicine. Regenerative medicine is a novel area in medicine aiming at the treatment of impaired or lost tissues by replacing them with functional and healthy ones. Currently, organ transplantation, which is considered the only treatment and cure for a number of diseases, is limited by shortage of organ donors and availability of the right match. Therefore, utilization of an alternative source of cells and tissues is critical in transplantation therapy. In this study, we review recent advances in therapeutic application of iPS cells in diseases where organ transplantation remains the only solution and will discuss the potential and usage of iPS cells in different areas of regenerative medicine. The primary theory of using iPS cells in regenerative medicine has brought lots of promises due to its potential for solving the immunological, social, and ethical problems of using ESCs. Nevertheless, several issues and problems have to be resolved before applying iPS cells in therapeutic applications.

  17. Advanced technology for extended endurance alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Sheibley, D. W.; Martin, R. A.

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  18. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  19. Advances in sickle cell therapies in the hydroxyurea era.

    PubMed

    Field, Joshua J; Nathan, David G

    2014-12-16

    In the hydroxyurea era, insights into mechanisms downstream of erythrocyte sickling have led to new therapeutic approaches for patients with sickle cell disease (SCD). Therapies have been developed that target vascular adhesion, inflammation and hemolysis, including innovative biologics directed against P-selectin and invariant natural killer T cells. Advances in hematopoietic stem cell transplant and gene therapy may also provide more opportunities for cures in the near future. Several clinical studies are underway to determine the safety and efficacy of these new treatments. Novel approaches to treat SCD are desperately needed, since current therapies are limited and rates of morbidity and mortality remain high.

  20. Nonlocal Anomalous Hall Effect.

    PubMed

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  1. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  2. Conducting Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  3. Cytometry in Cell Necrobiology Revisited. Recent Advances and New Vistas

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; Darzynkiewicz, Zbigniew

    2010-01-01

    Over a decade has passed since publication of the last review on “Cytometry in cell necrobiology.” During these years we have witnessed many substantial developments in the field of cell necrobiology such as remarkable advancements in cytometric technologies and improvements in analytical biochemistry. The latest innovative platforms such as laser scanning cytometry, multispectral imaging cytometry, spectroscopic cytometry, and microfluidic Lab-on-a-Chip solutions rapidly emerge as highly advantageous tools in cell necrobiology studies. Furthermore, we have recently gained substantial knowledge on alternative cell demise modes such as caspase-independent apoptosis-like programmed cell death (PCD), autophagy, necrosis-like PCD, or mitotic catastrophe, all with profound connotations to pathogenesis and treatment. Although detection of classical, caspase-dependent apoptosis is still the major ground for the advancement of cytometric techniques, there is an increasing demand for novel analytical tools to rapidly quantify noncanonical modes of cell death. This review highlights the key developments warranting a renaissance and evolution of cytometric techniques in the field of cell necrobiology. PMID:20235235

  4. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  5. Model of Hall Reconnection

    SciTech Connect

    Malyshkin, Leonid M.

    2008-11-28

    The rate of quasistationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics, which includes the Hall and electron pressure terms in Ohm's law. The Hall-magnetohydrodynamics equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length d{sub i} is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to d{sub i}/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer and the ion layer thickness is found to be d{sub i}.

  6. Model of Hall reconnection.

    PubMed

    Malyshkin, Leonid M

    2008-11-28

    The rate of quasistationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics, which includes the Hall and electron pressure terms in Ohm's law. The Hall-magnetohydrodynamics equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length di is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to di/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer and the ion layer thickness is found to be di.

  7. Advances in the management of cutaneous squamous cell carcinoma

    PubMed Central

    Parikh, Sonal A.

    2014-01-01

    Cutaneous squamous cell carcinoma is one of the most common non-melanoma skin cancers worldwide. While most cutaneous squamous cell carcinomas are easily managed, there is a high-risk subset of tumors that can cause severe morbidity and mortality. Tumor characteristics as well as patient characteristics contribute to the classification of cutaneous squamous cell carcinomas as low-risk vs. high-risk. Advances in the treatment of cutaneous squamous cell carcinomas largely relate to the management of this high-risk subset. Surgical and non-surgical management options, including newer targeted molecular therapies, will be discussed here. Larger, multicenter studies are needed to determine the exact significance of individual risk factors with respect to aggressive clinical behavior and the risks of metastasis and death, as well as the role of surgical and adjuvant therapies in patients with high-risk cutaneous squamous cell carcinomas. PMID:25165569

  8. Advances in cell surface glycoengineering reveal biological function.

    PubMed

    Nischan, Nicole; Kohler, Jennifer J

    2016-08-01

    Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.

  9. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  10. Vismodegib: in locally advanced or metastatic basal cell carcinoma.

    PubMed

    Keating, Gillian M

    2012-07-30

    Vismodegib is the first Hedgehog pathway inhibitor to be approved in the US, where it is indicated for the treatment of adults with metastatic basal cell carcinoma (BCC), or with locally advanced BCC that has recurred following surgery or who are not candidates for surgery, and who are not candidates for radiation. Vismodegib selectively and potently inhibits the Hedgehog signalling pathway by binding to Smoothened, thereby inhibiting the activation of Hedgehog target genes. Oral vismodegib was effective in the treatment of patients with locally advanced (n = 63) or metastatic (n = 33) BCC, according to the results of an ongoing, noncomparative, multinational, pivotal, phase II trial (ERIVANCE BCC). In this trial (using a clinical cutoff date of 26 November 2010), the independent review facility overall response rate was 42.9% in patients with locally advanced BCC and 30.3% in patients with metastatic BCC. In both patients with locally advanced BCC and those with metastatic BCC, the median duration of response was 7.6 months and median progression-free survival was 9.5 months. Oral vismodegib had an acceptable tolerability profile in patients with advanced BCC.

  11. Hall Effect in a Plasma.

    ERIC Educational Resources Information Center

    Kunkel, W. B.

    1981-01-01

    Describes an apparatus and procedure for conducting an undergraduate laboratory experiment to quantitatively study the Hall effect in a plasma. Includes background information on the Hall effect and rationale for conducting the experiment. (JN)

  12. Advances and Prospects in Stem Cells for Cartilage Regeneration

    PubMed Central

    Wang, Mingjie; Yuan, Zhiguo; Ma, Ning; Hao, Chunxiang; Guo, Weimin; Zou, Gengyi; Zhang, Yu; Chen, Mingxue; Gao, Shuang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Lu, Shibi

    2017-01-01

    The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed. PMID:28246531

  13. Recent advances in solid polymer electrolyte fuel cell technology

    SciTech Connect

    Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

    1988-01-01

    With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

  14. 2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdeněk; Bourdon, Anne; Chabert, Pascal

    2017-03-01

    In this work we study the electron drift instability in Hall-effect thrusters (HETs) using a 2D electrostatic particle-in-cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system modeling the radial-azimuthal (r{--}θ ) plane for large radius thrusters. A magnetic field, {{B}}0, is aligned along the Oy axis (r direction), a constant applied electric field, {{E}}0, along the Oz axis (perpendicular to the simulation plane), and the {{E}}0× {{B}}0 direction is along the Ox axis (θ direction). Although electron transport can be well described by electron–neutral collisions for low plasma densities, at high densities (similar to those in typical HETs), a strong instability is observed that enhances the electron cross-field mobility; even in the absence of electron–neutral collisions. The instability generates high frequency (of the order of MHz) and short wavelength (of the order of mm) fluctuations in both the azimuthal electric field and charged particle densities, and propagates in the {{E}}0× {{B}}0 direction with a velocity close to the ion sound speed. The correlation between the electric field and density fluctuations (which leads to an enhanced electron–ion friction force) is investigated and shown to be directly responsible for the increased electron transport. Results are compared with a recent kinetic theory, showing good agreement with the instability properties and electron transport.

  15. 2D Particle-In-Cell simulations of the electron-cyclotron instability and associated anomalous transport in Hall-Effect Thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdenek; Péchereau, François; Bourdon, Anne; Chabert, Pascal

    2016-09-01

    This work studies the electron-cyclotron instability in Hall-Effect Thrusters (HETs) using a 2D Particle-In-Cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system where a magnetic field, B0, is aligned along the X-axis (radial direction, including absorbing walls), a constant electric field, E0, along the Z-axis (axial direction, perpendicular to simulation plane), and the E0xB0 direction along the Y-axis (O direction, with periodic boundaries). Although for low plasma densities classical electron-neutral collisions theory describes well electron transport, at sufficiently high densities (as measured in HETs) a strong instability can be observed that enhances the electron mobility, even in the absence of collisions. The instability generates high frequency ( MHz) and short wavelength ( mm) fluctuations in both the electric field and charged particle densities. We investigate the correlation between these fluctuations and their role with anomalous electron transport; complementing previous 1D simulations. Plasma is self-consistently heated by the instability, but since the latter does not reach saturation in an infinitely long 2D system, saturation is achieved through implementation of a finite axial length that models convection in E0 direction. With support of Safran Aircraft Engines.

  16. Advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Advanced designs for individual pressure vessel nickel-hydrogen cells have been concieved which should improve the cycle life at deep depths-of-discharge. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  17. Advancements in stem cells treatment of skeletal muscle wasting

    PubMed Central

    Meregalli, Mirella; Farini, Andrea; Sitzia, Clementina; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging. PMID:24575052

  18. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall

    SciTech Connect

    Hu, Z. M.; Xie, X. F.; Chen, Z. J.; Peng, X. Y.; Du, T. F.; Cui, Z. Q.; Ge, L. J.; Li, T.; Yuan, X.; Zhang, X.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Gorini, G.

    2014-11-15

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 {sup 3}He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated “experimental” result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the “experimental” measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  19. Assessment of Research Needs for Advanced Fuel Cells

    SciTech Connect

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  20. Strained graphene Hall bar

    NASA Astrophysics Data System (ADS)

    Milovanović, S. P.; Peeters, F. M.

    2017-02-01

    The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, R B, around zero-magnetic field and the occurrence of side-peaks in R B. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in R B are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.

  1. Residence Hall Fires.

    ERIC Educational Resources Information Center

    Wright, Dorothy

    1999-01-01

    Discusses how one college's experience with a tragic fire in one of its residence halls prompted a reevaluation of its fire-prevention-and-response strategies. Staff training, sprinkler installation, new alarm systems, and exit hardware to help make building exiting more efficient are discussed. (GR)

  2. Laurance David Hall.

    PubMed

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered.

  3. The Monty Hall Dilemma.

    ERIC Educational Resources Information Center

    Granberg, Donald; Brown, Thad A.

    1995-01-01

    Examines people's behavior in the Monty Hall Dilemma (MHD), in which a person must make two decisions to win a prize. In a series of five studies, found that people misapprehend probabilities in the MHD. Discusses the MHD's relation to illusion of control, belief perseverance, and the status quo bias. (RJM)

  4. Hall Sweet Home

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2011-01-01

    Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…

  5. [Advances of molecular targeted therapy in squamous cell lung cancer].

    PubMed

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.

  6. Development of Advanced Fuel Cell System (Phase 4)

    NASA Technical Reports Server (NTRS)

    Meyer, A. P.; Bell, W. F.

    1976-01-01

    A multiple-task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. During Phase 4, the lowest stabilized degradation rate observed in all the testing completed during four phases of the program, 1 microvolt/hour, was demonstrated. This test continues after 5,000 hours of operation. The cell incorporates a PPf anode, a 90Au/10Pt cathode, a hybrid frame, and a Fybex matrix. These elements were developed under this program to extend cell life. The result demonstrated that the 80Au/20Pt cathode is as stable as a 90Au/10Pt cathode of twice the precious metal loading, was confirmed in full-scale cells. A hybrid frame two-cell plaque with dedicated flow fields and manifolds for all fluids was demonstrated to prevent the cell-to cell electrolyte transfer that limited the endurance of multicell plaques. At the conclusion of Phase 4, more than 90,900 hours of testing had been completed and twelve different cell designs had been evaluated. A technology base has been established which is ready for evaluation at the powerplant level.

  7. Inside Single Cells: Quantitative Analysis with Advanced Optics and Nanomaterials

    PubMed Central

    Cui, Yi; Irudayaraj, Joseph

    2014-01-01

    Single cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single cell activity. In order to obtain quantitative information (e.g. molecular quantity, kinetics and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single cell studies both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live cell analysis. Although a considerable proportion of single cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single cell analysis. PMID:25430077

  8. Advances in genetic modification of pluripotent stem cells.

    PubMed

    Fontes, Andrew; Lakshmipathy, Uma

    2013-11-15

    Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. Choosing the right platform based on preferred length, strength, and context of transgene expression is a critical step. Random integration of the transgene into the genome can be complicated due to silencing or altered regulation of expression due to genomic effects. An alternative to this are site-specific methods that target transgenes followed by screening to identify the genomic loci that support long-term expression with stem cell proliferation and differentiation. A highly precise and accurate editing of the genome driven by homology can be achieved using traditional methods as well as the newer technologies such as zinc finger nuclease, TAL effector nucleases and CRISPR. In this review, we summarize the different genetic engineering methods that have been successfully used to create modified embryonic and induced pluripotent stem cells.

  9. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  10. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    PubMed Central

    Lowes, Lori E.; Allan, Alison L.

    2014-01-01

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing. PMID:24633084

  11. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  12. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  13. Advances in stem cell therapy for cardiovascular disease (Review)

    PubMed Central

    SUN, RONGRONG; LI, XIANCHI; LIU, MIN; ZENG, YI; CHEN, SHUANG; ZHANG, PEYING

    2016-01-01

    Cardiovascular disease constitutes the primary cause of mortality and morbidity worldwide, and represents a group of disorders associated with the loss of cardiac function. Despite considerable advances in the understanding of the pathologic mechanisms of the disease, the majority of the currently available therapies remain at best palliative, since the problem of cardiac tissue loss has not yet been addressed. Indeed, few therapeutic approaches offer direct tissue repair and regeneration, whereas the majority of treatment options aim to limit scar formation and adverse remodeling, while improving myocardial function. Of all the existing therapeutic approaches, the problem of cardiac tissue loss is addressed uniquely by heart transplantation. Nevertheless, alternative options, particularly stem cell therapy, has emerged as a novel and promising approach. This approach involves the transplantation of healthy and functional cells to promote the renewal of damaged cells and repair injured tissue. Bone marrow precursor cells were the first cell type used in clinical studies, and subsequently, preclinical and clinical investigations have been extended to the use of various populations of stem cells. This review addresses the present state of research as regards stem cell therapy for cardiovascular disease. PMID:27220939

  14. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  15. Spatially resolved Hall effect measurement in a single semiconductor nanowire.

    PubMed

    Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M; Monemar, Bo; Samuelson, Lars

    2012-11-01

    Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.

  16. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  17. Advances in magnetic tweezers for single molecule and cell biophysics.

    PubMed

    Kilinc, Devrim; Lee, Gil U

    2014-01-01

    Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical and magnetic properties and discuss their potential as future MTW probes.

  18. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  19. Hall effect magnetometer

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Beale, H. A.; Spain, I. L. (Inventor)

    1974-01-01

    A magnetometer which uses a single crystal of bismuth selenide is described. The rhombohedral crystal structure of the sensing element is analyzed. The method of construction of the magnetometer is discussed. It is stated that the sensing crystal has a positive or negative Hall coefficient and a carrier concentration of about 10 to the 18th power to 10 to the 20th power per cubic centimeter.

  20. Urogenital development in Pallister–Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor

    PubMed Central

    Blake, Joshua; Hu, Di; Cain, Jason E.; Rosenblum, Norman D.

    2016-01-01

    Pallister–Hall syndrome (PHS) is a rare disorder caused by mutations in GLI3 that produce a transcriptional repressor (GLI3R). Individuals with PHS present with a variably penetrant variety of urogenital system malformations, including renal aplasia or hypoplasia, hydroureter, hydronephrosis or a common urogenital sinus. The embryologic mechanisms controlled by GLI3R that result in these pathologic phenotypes are undefined. We demonstrate that germline expression of GLI3R causes renal hypoplasia, associated with decreased nephron number, and hydroureter and hydronephrosis, caused by blind-ending ureters. Mice with obligate GLI3R expression also displayed duplication of the ureters that was caused by aberrant common nephric duct patterning and ureteric stalk outgrowth. These developmental abnormalities are associated with suppressed Hedgehog signaling activity in the cloaca and adjacent vesicular mesenchyme. Mice with conditional expression of GLI3R were utilized to identify lineage-specific effects of GLI3R. In the ureteric bud, GLI3R expression decreased branching morphogenesis. In Six2-positive nephrogenic progenitors, GLI3R decreased progenitor cell proliferation reducing the number of nephrogenic precursor structures. Using mutant mice with Gli3R and Gli3 null alleles, we demonstrate that urogenital system patterning and development is controlled by the levels of GLI3R and not by an absence of full-length GLI3. We conclude that the urogenital system phenotypes observed in PHS are caused by GLI3R-dependent perturbations in nephric duct patterning, renal branching morphogenesis and nephrogenic progenitor self-renewal. PMID:26604140

  1. Dissecting cell adhesion architecture using advanced imaging techniques

    PubMed Central

    Morton, Penny E

    2011-01-01

    Cell adhesion to extracellular matrix proteins or to other cells is essential for the control of embryonic development, tissue integrity, immune function and wound healing. Adhesions are tightly spatially regulated structures containing over one hundred different proteins that coordinate both dynamics and signaling events at these sites. Extensive biochemical and morphological analysis of adhesion types over the past three decades has greatly improved understanding of individual protein contributions to adhesion signaling and, in some cases, dynamics. However, it is becoming increasingly clear that these diverse macromolecular complexes contain a variety of protein sub-networks, as well as distinct sub-domains that likely play important roles in regulating adhesion behavior. Until recently, resolving these structures, which are often less than a micron in size, was hampered by the limitations of conventional light microscopy. However, recent advances in optical techniques and imaging methods have revealed exciting insight into the intricate control of adhesion structure and assembly. Here we provide an overview of the recent data arising from such studies of cell:matrix and cell:cell contact and an overview of the imaging strategies that have been applied to study the intricacies and hierarchy of proteins within adhesions. PMID:21785274

  2. 27. THIRD FLOOR MAIN HALL FROM SIDE HALL LEADING TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. THIRD FLOOR MAIN HALL FROM SIDE HALL LEADING TO SERVICE STAIRS This hall is lit by three natural sources, the lightwell window of the main stairs visible in the distance, the skylight in the linen closet at the extreme left, and from the glazed openings in the interior and exterior doors of the nurse's room, out of sight to the right. - Woodrow Wilson House, 2340 South S Street, Northwest, Washington, District of Columbia, DC

  3. Shockley-Read-Hall recombination in P3HT:PCBM solar cells as observed under ultralow light intensities

    NASA Astrophysics Data System (ADS)

    Tzabari, Lior; Tessler, Nir

    2011-03-01

    We present light intensity dependent measurements of the quantum efficiency of P3HT:PCBM photovoltaic devices. Unlike previous studies we focus on ultralow light intensities down to 10-3 mW/cm2. We find that although when the devices are excited at intensities close to 1 Sun they exhibit very little bias or light intensity dependence, this is clearly not the case for light intensities below 1 mW/cm2, where the cell's efficiency becomes highly dependent on the bias and light intensity. Using a simple model for the device efficiency we can fit the experimental data across a wide range of parameters and thus separate the effects of generation efficiency (geminate recombination) and charge recombination. Our finding suggests that recombination through trap (charge transfer) states is an important loss mechanism and we are able to quantify the density and depth of these states.

  4. Shockley-Read-Hall recombination in P3HT:PCBM solar cells as observed under ultralow light intensities

    SciTech Connect

    Tzabari, Lior; Tessler, Nir

    2011-03-15

    We present light intensity dependent measurements of the quantum efficiency of P3HT:PCBM photovoltaic devices. Unlike previous studies we focus on ultralow light intensities down to 10{sup -3} mW/cm{sup 2}. We find that although when the devices are excited at intensities close to 1 Sun they exhibit very little bias or light intensity dependence, this is clearly not the case for light intensities below 1 mW/cm{sup 2}, where the cell's efficiency becomes highly dependent on the bias and light intensity. Using a simple model for the device efficiency we can fit the experimental data across a wide range of parameters and thus separate the effects of generation efficiency (geminate recombination) and charge recombination. Our finding suggests that recombination through trap (charge transfer) states is an important loss mechanism and we are able to quantify the density and depth of these states.

  5. Current advances in T-cell-based cancer immunotherapy.

    PubMed

    Wang, Mingjun; Yin, Bingnan; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy.

  6. Advances in the management of basal cell carcinoma

    PubMed Central

    Carucci, John A.

    2015-01-01

    Basal cell carcinoma (BCC), a malignant neoplasm derived from non-keratinizing cells that originate in the basal layer of the epidermis, is the most common cancer in humans. Several factors such as anatomic location, histologic features, primary or recurrent tumors, and patient characteristics influence the choice of treatment modality for BCC. Mohs micrographic surgery (MMS) facilitates optimal margin control and conservation of normal tissue for the management of BCC; however, other treatment modalities may also be implemented in the correct clinical scenario. Other treatment modalities that will be reviewed include simple excision, electrodesiccation and curettage, cryotherapy, topical immunotherapy and chemotherapy, photodynamic therapy, and radiation therapy. In addition, targeted molecular therapeutic options for the treatment of advanced or metastatic BCC will be discussed in this informal review based on recent literature obtained by using PubMed with relevant search terms. PMID:26097726

  7. Judy Estes Hall (1940-2015).

    PubMed

    Sammons, Morgan T; Boucher, Andrew

    2016-01-01

    Presents an obituary for Judy Estes Hall, who passed away on November 24, 2015. Hall served as the Executive Officer of the National Register of Health Service Psychologists until her retirement in 2013. She is a recognized expert in the development of education and training standards for the profession of psychology, she also made significant contributions in the field of international psychology, where she was a renowned expert in cross-national credentialing and an advocate for commonality in licensing standards. She was the coauthor of one edited volume and author of more than 60 journal articles, book chapters, and professional publications. A passionate advocate for the advancement of women in psychology, a devoted mother and grandmother, a connoisseur of wine and international traveler extraordinaire, she touched the personal and professional lives of many. (PsycINFO Database Record

  8. Treatment of advanced renal cell carcinoma: recent advances and current role of immunotherapy, surgery, and cryotherapy.

    PubMed

    Mennitto, Alessia; Verzoni, Elena; Calareso, Giuseppina; Spreafico, Carlo; Procopio, Giuseppe

    2017-01-21

    Renal cell carcinoma (RCC) is the 10th most common cancer in Western countries. The prognosis of metastatic disease is unfavorable but may be different according to several risk factors, such as histology and clinical features (Karnofsky performance status, time from nephrectomy, hemoglobin level, neutrophils and thrombocytes count, lactate dehydrogenase and calcium serum value, sites and extension of the disease). In this review, we focused on some recent developments in the use of immunotherapy, surgery and cryotherapy in the treatment of advanced disease. While RCC is unresponsive to chemotherapy, recent advances have emerged with the development of targeted agents and innovative immunotherapy-based treatments. Surgical resection remains the standard of care for patients with small renal lesions but in patients with significant comorbidities ablative therapies such as cryoablation and radiofrequency ablation may lead to local cancer control and avoid surgical complications and morbidity. In the setting of metastatic RCC, radical nephrectomy, or cytoreductive nephrectomy, is considered a palliative surgery, usually part of a multimodality treatment approach that requires systemic treatments.

  9. Thermal Hall Effect of Magnons

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi; Okamoto, Akihiro

    2017-01-01

    We review recent developments in theories and experiments on the magnon Hall effect. We derive the thermal Hall conductivity of magnons in terms of the Berry curvature of magnonic bands. In addition to the Dzyaloshinskii-Moriya interaction, we show that the dipolar interaction can make the Berry curvature nonzero. We mainly discuss theoretical aspects of the magnon Hall effect and related theoretical works. Experimental progress in this field is also mentioned.

  10. Advanced mast cell disease: an Italian Hematological Multicenter experience.

    PubMed

    Pagano, Livio; Valentini, Caterina Giovanna; Caira, Morena; Rondoni, Michela; Van Lint, Maria Teresa; Candoni, Anna; Allione, Bernardino; Cattaneo, Chiara; Marbello, Laura; Caramatti, Cecilia; Pogliani, Enrico Maria; Iannitto, Emilio; Giona, Fiorina; Ferrara, Felicetto; Invernizzi, Rosangela; Fanci, Rosa; Lunghi, Monia; Fianchi, Luana; Sanpaolo, Grazia; Stefani, Pietro Maria; Pulsoni, Alessandro; Martinelli, Giovanni; Leone, Giuseppe; Musto, Pellegrino

    2008-12-01

    The aim of the study is to evaluate clinical features, treatments and outcome of patients with systemic mast cell disease (MCD) who arrived to the attention of hematologists. A retrospective study was conducted over 1995-2006 in patients admitted in 18 Italian hematological divisions. Twenty-four cases of advanced MCD were collected: 12 aggressive SM (50%), 8 mast cell leukemia (33%), 4 SM with associated clonal non-mast cell-lineage hematologic disease (17%). Spleen and liver were the principal extramedullary organ involved. The c-kit point mutation D816V was found in 13/18 patients in which molecular biology studies were performed (72%). Treatments were very heterogeneous: on the whole Imatinib was administered in 17 patients, alpha-Interferon in 8, 2-CdA in 3; 2 patients underwent allogeneic hematopoietic stem cell transplantation. The overall response rate to Imatinib, the most frequently employed drugs, was of 29%, registering one complete remission and four partial remission; all responsive patients did not present D816V c-kit mutation. Overall three patients (12%) died for progression of disease. We conclude that MCD is characterized by severe mediator-related symptoms but with a moderate mortality rate. D816V c-kit mutation is frequent and associated with resistance against Imatinib. Because of the rarity of these forms, an effective standard of care is lacking. More data are needed to find new and successful therapeutic strategies.

  11. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  12. Development of advanced fuel cell system, phase 3

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1975-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.

  13. Magnesium Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  14. Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.

    2015-01-01

    NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).

  15. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  16. Advanced tendencies in development of photovoltaic cells for power engineering

    NASA Astrophysics Data System (ADS)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  17. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  18. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  19. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  20. Advanced fuel cells for transportation applications. Final report

    SciTech Connect

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  1. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review

    PubMed Central

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-01-01

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  2. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    PubMed

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  3. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    PubMed

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  4. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  5. Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality

    PubMed Central

    Simard, Trevor; Jung, Richard G.; Motazedian, Pouya; Di Santo, Pietro; Ramirez, F. Daniel; Russo, Juan J.; Labinaz, Alisha; Yousef, Altayyeb; Anantharam, Brijesh; Pourdjabbar, Ali

    2017-01-01

    Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation. PMID:28232850

  6. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  7. Current Management of Advanced Resectable Oral Cavity Squamous Cell Carcinoma

    PubMed Central

    Ow, Thomas J.

    2011-01-01

    The oral cavity is the most common site of head and neck squamous cell carcinoma, a disease which results in significant morbidity and mortality worldwide. Though the primary modality of treatment for patients with oral cavity cancer remains surgical resection, many patients present with advanced disease and are thus treated using a multi-disciplinary approach. Patients with extracapsular spread of lymphatic metastasis and surgical margins that remain positive have been found to be at high risk for local-regional recurrence and death from disease, and are most often recommended to receive both post-operative radiation as well as systemic chemotherapy. The basis for this approach, as well as scientific developments that underly future trials of novels treatments for patients with high-risk oral cavity cancer are reviewed. PMID:21461056

  8. A very advanced case of a T cell peritoneal lymphomatosis.

    PubMed

    Ridolfini, Marco Pericoli; Caprino, Paola; Berardi, Stefano; Rotondi, Fabio; Cusumano, Giacomo; Sofo, Luigi; Pacelli, Fabio; Doglietto, Giovanni Battista

    2012-01-01

    Small-bowel lymphoma is not a common disease, accounting for 15-20% of primary extranodal gastrointestinal lymphomas. Peritoneal lymphomatosis is considered a rare and aggressive presentation. We describe the case of a 55 years-old man affected by T-cell intestinal lymphoma, presenting with diffuse abdominal involvement, bowel dysfunction, severe ascites and pleural effusion, who underwent surgery. Clinical course led dramatically to death. Preoperative cytology and radiologic investigations did not yield diagnosis and were unable to differentiate between peritoneal carcinosis and lymphomatosis. It is suggested that, in such advanced cases, with rapidly deteriorating clinical conditions and huge systemic involvement, surgery is not indicated. On the contrary, maximum effort has to be spent to obtain a preoperative diagnosis.

  9. Microalgal drying and cell disruption--recent advances.

    PubMed

    Show, Kuan-Yeow; Lee, Duu-Jong; Tay, Joo-Hwa; Lee, Tse-Min; Chang, Jo-Shu

    2015-05-01

    Production of intracellular metabolites or biofuels from algae involves various processing steps, and extensive work on laboratory- and pilot-scale algae cultivation, harvesting and processing has been reported. As algal drying and cell disruption are integral processes of the unit operations, this review examines recent advances in algal drying and disruption for nutrition or biofuel production. Challenges and prospects of the processing are also outlined. Engineering improvements in addressing the challenges of energy efficiency and cost-effective and rigorous techno-economic analyses for a clearer prospect comparison between different processing methods are highlighted. Holistic life cycle assessments need to be conducted in assessing the energy balance and the potential environmental impacts of algal processing. The review aims to provide useful information for future development of efficient and commercially viable algal food products and biofuels production.

  10. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2015-09-01

    populations were successfully established from the corresponding parental cell lines (Figure 2). To generate quantized cell populations a single ...individual cells from the SN291 parental culture. Each dot represents a single cell. Color gradient indicates enrichment score for either published CD133... parental lines and quantized cell types (Specific Aim 5). We believe this program has significantly advanced genomic, proteomic and single -cell

  11. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  12. Chapin Hall Center for Children.

    ERIC Educational Resources Information Center

    Chicago Univ., IL. Chapin Hall Center for Children.

    This document consists of two separate publications: (1) "The Power of Knowing", a brief 12-page description of the Chapin Hall Center for Children, and (2) "Projects and Publications", a 67-page list of the center's projects and publications as of Autumn 1997. "The Power of Knowing" describes the Chapin Hall Center…

  13. Residence Hall Seating That Works.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)

  14. Predictors of Residence Hall Involvement

    ERIC Educational Resources Information Center

    Arboleda, Ana; Wang, Yongyi; Shelley, Mack C., II; Whalen, Donald F.

    2003-01-01

    Residence hall students' (N = 1,186, 52% male, 90% White, 66% freshmen) involvement in their living community is influenced significantly by precollege student characteristics (gender, ethnicity), classification, attitudes (toward hall director, house cabinet, academic comfort, social environment, group study), and environmental variables (noise,…

  15. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  16. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  17. Prospective study of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced renal cell cancer.

    PubMed

    Lin, Mao; Xu, Kecheng; Liang, Shuzhen; Wang, Xiaohua; Liang, Yinqing; Zhang, Mingjie; Chen, Jibing; Niu, LiZhi

    2017-03-05

    In this study, the clinical efficacy of cryosurgery combined with allogenic NK cell immunotherapy for advanced renal cell cancer was evaluated. From July to December 2016, we enrolled 60 patients who met the enrollment criteria and divided them into two groups: (1) the simple cryoablation group (n=30); and (2) the cryoablation combined with allogenic NK cells group (n=30). The clinical efficacy, quality of life, immune function, and other related indicators were evaluated. Combining allogeneic NK cells with cryoablation had a synergistic effect, not only enhancing the immune function and improving the quality of life of the patients, but also significantly exhibiting good clinical efficacy of the patients. This study is the first clinical trial that has evaluated the safety and efficacy of allogenic NK cells combined with cryosurgery for the treatment of renal cell cancer.

  18. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies

    PubMed Central

    Câmara, Diana Aparecida Dias; Mambelli, Lisley Inata; Porcacchia, Allan Saj; Kerkis, Irina

    2016-01-01

    Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field. PMID:27994667

  19. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies.

    PubMed

    Câmara, Diana Aparecida Dias; Mambelli, Lisley Inata; Porcacchia, Allan Saj; Kerkis, Irina

    2016-01-01

    Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field.

  20. Rotating plasma structures in the cross-field discharge of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Mazouffre, Stephane; Grimaud, Lou; Tsikata, Sedina; Matyash, Konstantin

    2016-09-01

    Rotating plasma structures, also termed rotating spokes, are observed in various types of low-pressure discharges with crossed electric and magnetic field configurations, such as Penning sources, magnetron discharges, negative ion sources and Hall thrusters. Such structures correspond to large-scale high-density plasma blocks that rotate in the E×B drift direction with a typical frequency on the order of a few kHz. Although such structures have been extensively studied in many communities, the mechanism at their origin and their role in electron transport across the magnetic field remain unknown. Here, we will present insights into the nature of spokes, gained from a combination of experiments and advanced particle-in-cell numerical simulations that aim at better understanding the physics and the impact of rotating plasma structures in the ExB discharge of the Hall thruster. As rotating spokes appear in the ionization region of such thrusters, and are therefore difficult to probe with diagnostics, experiments have been performed with a wall-less Hall thruster. In this configuration, the entire plasma discharge is pushed outside the dielectric cavity, through which the gas is injected, using the combination of specific magnetic field topology with appropriate anode geometry.

  1. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends

    PubMed Central

    Bernardino, Raquel L.; Marinelli, Raul A.; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G.; Svelto, Maria; Oliveira, Pedro F.; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  2. Hematopoietic cell transplantation for hemophagocytic lymphohistiocytosis: recent advances and controversies.

    PubMed

    Seo, Jong Jin

    2015-09-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory clinical syndrome of uncontrolled immune response which results in hypercytokinemia due to underlying primary or secondary immune defect. A number of genetic defects in transport, processing and function of cytotoxic granules which result in defective granule exocytosis and cytotoxicity of cytotoxic T lymphocytes (CTL) and natural killer (NK) cells have been well identified at the cellular and molecular level. Important advances have been made during the last 20 years in the diagnosis and treatment of HLH. The Histiocyte Society has proposed diagnostic guideline using both clinical and laboratory findings in HLH-2004 protocol, and this has been modified partly in 2009. HLH used to be a fatal disease, but the survival of HLH patients has improved to more than 60% with the use of chemoimmunotherapy combined with hematopoietic cell transplantation (HCT) over the past 2 decades. However, HCT is still the only curative option of treatment for primary HLH and refractory/relapsed HLH after proper chemoimmunotherapy. The outcome of HCT for HLH patients was also improved steadily during last decades, but HCT for HLH still carries significant mortality and morbidity. Moreover, there remain ongoing controversies in various aspects of HCT including indication of HCT, donor selection, timing of HCT, conditioning regimen, and mixed chimerism after HCT. This review summarized the important practical issues which were proven by previous studies on HCT for HLH, and tried to delineate the controversies among them.

  3. Transcatheter embolization of advanced renal cell carcinoma with radioactive seeds

    SciTech Connect

    Lang, E.K.; deKernion, J.B.

    1981-11-01

    Advanced renal cell carcinoma was treated by transcatheter embolization with radioactive seeds. There were 14 patients with nonresectable or metastatic disease (stage IV) and 8 with stage II tumors treated. In 8 patients the tumor was implanted with radon seeds, complemented by 2,500 rad of external beam therapy, and 10 were treated by embolization with 125iodine seeds. The total dose delivered ranged form 1,600 to 14,000 rad. Several patients also had intra-arterial chemotherapy. Survival was improved over previously reported studies: 13 of 22 (59 per cent) at risk for 2 years and 5 of 15 (33 per cent) for 5 years. Distant metastases did not resolve but significant local palliation was achieved. Tumor size decreased in all patients, 8 of whom subsequently underwent nephrectomy. Other local effects included pain control (10 per cent), weight gain (75 per cent) and control of hemorrhage (88 per cent). Toxicity was minimal and consisted of mild nausea or pain. This approach, using a low energy emitter, allows selective high dose radiation of the tumor, while sparing the adjacent normal tissues. In contrast to renal artery occlusion with inert embolic material, subsequent nephrectomy in patients with disseminated disease is not necessary. Transcatheter embolization with radioactive seeds should be considered a reasonable palliative procedure in patients with nonresectable primary renal cell carcinoma.

  4. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    -Effect Thruster (PMHET), developed at the Plasma Physics Laboratory of UnB. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is very attractive, especially because of the possibility of developing a HET with power consumption low enough to be used in small satellites or medium-size satellites with low on board power. Hall-Effect Thrusters are now a very good option for spacecraft primary propulsion and also for station-keeping of medium and large satellites. This is because of their high specific impulse, efficient use of propellant mass and combined low and precise thrust capabilities, which are related to an economy in terms of propellant mass utilization , longer satellite lifetime and easier spacecraft maneuvering in microgravity environment. The first HETs were developed in the mid 1950’s, and they were first called Closed Drift Thrusters. Today, the successful use of electric thrusters for attitude control and orbit modification on hundreds of satellites shows the advanced stage of development of this technology. In addition to this, after the success of space missions such as Deep Space One and Dawn (NASA), Hayabusa (JAXA) and Smart-1 (ESA), the employment of electric thrusters is also consolidated for the primary propulsion of spacecraft. This success is mainly due to three factors: reliability of this technology; efficiency of propellant utilization, and therefore reduction of the initial mass of the ship; possibility of operation over long time intervals, with practically unlimited cycling and restarts. This thrusting system is designed to be used in satellite attitude control and long term space missions. One of the greatest advantage of this kind of thruster is the production of a steady state magnetic field by permanent magnets providing electron trapping and Hall current generation within a significant decrease on the electric energy supply

  5. Farm Hall: The Play

    NASA Astrophysics Data System (ADS)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  6. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies.

    PubMed

    Negroni, Elisa; Gidaro, Teresa; Bigot, Anne; Butler-Browne, Gillian S; Mouly, Vincent; Trollet, Capucine

    2015-04-01

    Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.

  7. Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance

    SciTech Connect

    Zhang, J. Y.; Yang, G.; Wang, S. G. E-mail: ghyu@mater.ustb.edu.cn; Liu, J. L.; Wang, R. M.; Amsellem, E.; Kohn, A.; Yu, G. H. E-mail: ghyu@mater.ustb.edu.cn

    2015-04-13

    Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.

  8. Ward identities for Hall transport

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-10-01

    We derive quantum field theory Ward identities based on linear area preserving and conformal transformations in 2+1 dimensions. The identities relate Hall viscosities, Hall conductivities and the angular momentum. They apply both for relativistic and non relativistic systems, at zero and at finite temperature. We consider systems with or without translation invariance, and introduce an external magnetic field and viscous drag terms. A special case of the identities yields the well known relation between the Hall conductivity and half the angular momentum density.

  9. Gemcitabine for the treatment of advanced nonsmall cell lung cancer.

    PubMed

    Toschi, Luca; Cappuzzo, Federico

    2009-02-18

    Gemcitabine is a pyrimidine nucleoside antimetabolite agent which is active in several human malignancies, including nonsmall cell lung cancer (NSCLC). Because of its acceptable toxicity profile, with myelosuppression being the most common adverse event, gemcitabine can be safely combined with a number of cytotoxic agents, including platinum derivatives and new-generation anticancer compounds. In fact, the combination of gemcitabine and cisplatin is a first-line treatment for patients with advanced NSCLC, pharmacoeconomic data indicating that it represents the most cost-effective regimen among platinum-based combinations with third-generation cytotoxic drugs. The drug has been investigated in the context of nonplatinum-based regimens in a number of prospective clinical trials, and might provide a suitable alternative for patients with contraindications to platinum. Recently, gemcitabine-based doublets have been successfully tested in association with novel targeted agents with encouraging results, providing further evidence for the role of the drug in the treatment of NSCLC. In the last few years several attempts have been pursued in order to identify molecular predictors of gemcitabine activity, and recent data support the feasibility of genomic-based approaches to customize treatment with the ultimate goal of improving patient outcome.

  10. [Novelties in the treatment for advanced renal-cell cancer].

    PubMed

    Maráz, Anikó

    2011-04-24

    Therapeutic options in advanced renal-cell cancer have expanded through better understanding of molecular pathology and development of novel targeted therapeutics. Vascular endothelial growth factor, the key ligand of angiogenesis, has a major role in the progression of vascularized kidney tumors and this is the target molecule of modern medications. The three types of the mechanism of action of current therapies are: monoclonal antibodies blocking directly vascular endothelial growth factor ligand (bevacizumab), tyrosine-kinase inhibitors blocking vascular endothelial growth factor receptors (sorafenib, sunitinib, pazopanib) and inhibitors of the intracellular mTOR-kinase (temsirolimus, everolimus). Based on randomized studies, sunitinib, pazopanib or interferon-α-bevacizumab combination should be the first-line therapy in patients with good/moderate prognosis, while temsirolimus is recommended in those with poor prognosis. Following an ineffective cytokine therapy sorafenib or pazopanib are the second-line treatment. In case of tyrosine-kinase inhibitor inefficacy, current evidence favors everolimus. Patient outcome can further be improved by the involvement of more modern and effective target products.

  11. Oncology Gold Standard™ practical consensus recommendations 2016 for treatment of advanced clear cell renal cell carcinoma

    PubMed Central

    Batra, U; Parikh, PM; Prabhash, K; Tongaonkar, HB; Chibber, P; Dabkara, D; Deshmukh, C; Ghadyalpatil, N; Hingmire, S; Joshi, A; Raghunath, SK; Rajappa, S; Rajendranath, R; Rawal, SK; Singh, Manisha; Singh, R; Somashekhar, SP; Sood, R

    2016-01-01

    The Oncology Gold Standard (OGS) Expert Group on renal cell carcinoma (RCC) developed the consensus statement to provide community oncologists practical guidelines on the management of advanced clear cell (cc) RCC using published evidence, practical experience of experts in real life management, and results of a nationwide survey involving 144 health-care professionals. Six broad question categories containing 33 unique questions cover major situations in the routine management of RCC. This document serves as a ready guide for the standard of care to optimize outcome. The table of “Take Home Messages” at the end is a convenient tool for busy practitioners. PMID:28032079

  12. Diffuse large B-cell lymphoma mimicking advanced basal cell carcinoma.

    PubMed Central

    Akinyemi, Emmanuel; Mai, Le; Matin, Abu; Maini, Archana

    2007-01-01

    Primary cutaneous B-cell lymphomas (PCBCLs) are made up of a heterogenous group of B-cell lymphoproliferative diseases confined to the skin at the time of diagnosis with no evidence of extracutaneous involvement. With early diagnosis and adequate treatment, PCBCLs as a group has excellent prognosis, with about a 95% survival rate at five years. We report a case of diffuse large B-cell lymphoma (DLBCL) in a 52-year-old woman presenting as a fungating skin ulcer mimicking advanced basal cell carcinoma. Review of available literature showed most studies of PCBCLs being done on Europeans with no universally acceptable system of classification. Clinical findings, diagnostic evaluations and treatment outcomes of PCBCLs are discussed with emphasis on comparison of European Organization for Research and Treatment of Cancer (EORTC) and the World Health Organization (WHO) Classification of Neoplasms of the Hematopoietic and Lymphoid Tissue classification systems. Images Figure 1 Figure 2 PMID:17722675

  13. Diffuse large B-cell lymphoma mimicking advanced basal cell carcinoma.

    PubMed

    Akinyemi, Emmanuel; Mai, Le; Matin, Abu; Maini, Archana

    2007-08-01

    Primary cutaneous B-cell lymphomas (PCBCLs) are made up of a heterogenous group of B-cell lymphoproliferative diseases confined to the skin at the time of diagnosis with no evidence of extracutaneous involvement. With early diagnosis and adequate treatment, PCBCLs as a group has excellent prognosis, with about a 95% survival rate at five years. We report a case of diffuse large B-cell lymphoma (DLBCL) in a 52-year-old woman presenting as a fungating skin ulcer mimicking advanced basal cell carcinoma. Review of available literature showed most studies of PCBCLs being done on Europeans with no universally acceptable system of classification. Clinical findings, diagnostic evaluations and treatment outcomes of PCBCLs are discussed with emphasis on comparison of European Organization for Research and Treatment of Cancer (EORTC) and the World Health Organization (WHO) Classification of Neoplasms of the Hematopoietic and Lymphoid Tissue classification systems.

  14. Multilayer thin film Hall effect device

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N. (Inventor); Sisk, R. Charles (Inventor)

    1994-01-01

    A Hall effect device and a method of obtaining a magnetic field map of a magnetic body with the Hall effect device are presented. The device comprises: (1) a substrate, (2) a first layer having a first Hall coefficient deposited over the substrate, and (3) a second layer having a second Hall coefficient deposited over the first layer, the first and second layers cooperating to create, in the Hall effect device, a third Hall coefficient different from the first and second Hall coefficients. Creation of the third Hall coefficient by cooperation of the first and second layers allows use of materials for the first and second layers that were previously unavailable for Hall effect devices due to their relatively weak Hall coefficient.

  15. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  16. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi

    2007-07-24

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________

  17. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch

    2007-11-27

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  18. Designing advanced alkaline polymer electrolytes for fuel cell applications.

    PubMed

    Pan, Jing; Chen, Chen; Zhuang, Lin; Lu, Juntao

    2012-03-20

    Although the polymer electrolyte fuel cell (PEFC) is a superior power source for electric vehicles, the high cost of this technology has served as the primary barrier to the large-scale commercialization. Over the last decade, researchers have pursued lower-cost next-generation materials for fuel cells, and alkaline polymer electrolytes (APEs) have emerged as an enabling material for platinum-free fuel cells. To fulfill the requirements of fuel cell applications, the APE must be as conductive and stable as its acidic counterpart, such as Nafion. This benchmark has proved challenging for APEs because the conductivity of OH(-) is intrinsically lower than that of H(+), and the stability of the cationic functional group in APEs, typically quaternary ammonia (-NR(3)(+)), is usually lower than that of the sulfonic functional group (-SO(3)(-)) in acidic polymer electrolytes. To improve the ionic conductivity, APEs are often designed to be of high ion-exchange capacity (IEC). This modification has caused unfavorable changes in the materials: these high IEC APEs absorb excessive amounts of water, leading to significant swelling and a decline in mechanical strength of the membrane. Cross-linking the polymer chains does not completely solve the problem because stable ionomer solutions would not be available for PEFC assembly. In this Account, we report our recent progress in the development of advanced APEs, which are highly resistant to swelling and show conductivities comparable with Nafion at typical temperatures for fuel-cell operation. We have proposed two strategies for improving the performance of APEs: self-cross-linking and self-aggregating designs. The self-cross-linking design builds on conventional cross-linking methods and works for APEs with high IEC. The self-aggregating design improves the effective mobility of OH(-) and boosts the ionic conductivity of APEs with low IEC. For APEs with high IEC, cross-linking is necessary to restrict the swelling of the

  19. Overview of NASA Iodine Hall Thruster Propulsion System Development

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  20. Recent advances in mantle cell lymphoma: report of the 2013 Mantle Cell Lymphoma Consortium Workshop.

    PubMed

    Gordon, Leo I; Bernstein, Steven H; Jares, Pedro; Kahl, Brad S; Witzig, Thomas E; Dreyling, Martin

    2014-10-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma characterized by overexpression of cyclin D1 resulting from the t(11;14) chromosomal translocation. MCL is biologically and clinically heterogeneous and frequently disseminates to extranodal areas. MCL remains a clinically challenging lymphoma subtype, as there is no proven curative therapy and no standard of care has been established for initial or subsequent lines of therapy. However, there have been considerable advances in the last several years in the treatment of MCL, leading to improved survival. Recent investigations into the biology of MCL, clinically relevant biomarkers, novel therapeutic targets and new treatment strategies were discussed at a recent workshop of the Lymphoma Research Foundation's Mantle Cell Lymphoma Consortium. The presentations are summarized in this manuscript, which is intended to highlight areas of active investigation and identify topics for future research.

  1. PHOTOCOPY OF EARLY STEREO VIEW OF CARPENTERS' HALL. Date and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF EARLY STEREO VIEW OF CARPENTERS' HALL. Date and photographer unknown. Original in Carpenters' Hall - Carpenters' Company Hall, 320 Chestnut Street & Carpenters' Court, Philadelphia, Philadelphia County, PA

  2. Crizotinib for Advanced Non-Small Cell Lung Cancer

    Cancer.gov

    A summary of results from an international phase III clinical trial that compared crizotinib versus chemotherapy in previously treated patients with advanced lung cancer whose tumors have an EML4-ALK fusion gene.

  3. Iodine Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  4. Correlation of replicating cells and osteogenesis in the glenoid fossa during stepwise advancement.

    PubMed

    Rabie, A B M; Wong, Louise; Hägg, Urban

    2003-05-01

    The purposes of this study were to quantify the number of replicating mesenchymal cells and to correlate it with the amount of new bone formed in the glenoid fossa during stepwise advancement. We randomly divided 250 female Sprague-Dawley rats, 35 days old, into 10 control groups (n = 5) and 20 experimental groups (n = 10). Fifty rats from the stepwise experimental group received initial advancement of 2 mm and another 1.5 mm of advancement on day 30 by the addition of veeners. On days 3, 7, 14, 21, 30, 33, 37, 44, 51, and 60, the rats were killed. One hour before that, the rats were injected with bromodeoxyuridine (BrdU) intravenously. We cut 7-microm tissue sections through the glenoid fossa sagittally and stained them with anti-BrdU antibody to evaluate the number of replicating mesenchymal cells. During the first advancement, the number of replicating cells in the posterior region of the glenoid fossa showed a significant increase compared with natural growth, but a significant decrease compared with 1-step advancement. On the second advancement, however, an increase in the number of replicating cells was observed on day 37 with a subsequent and significant increase in bone formation on day 44. Mandibular advancement conducted in a stepwise fashion increases the number of replicating mesenchymal cells in the glenoid fossa. However, a minimum threshold of strain must first be exceeded before these mesenchymal cells can differentiate to ultimately form new bone.

  5. [Targeted molecular therapy based on advanced cancer stem cell model].

    PubMed

    Hirao, Atsushi

    2015-08-01

    Improvement of cell purification and transplantation techniques have contributed to the identification of cell populations known as tumor-initiating cells (TICs). Although it was hypothesized that tumors are organized as hierarchies of tumor cells that are sustained by rare TICs, like normal tissue stem cells, there are several controversies towards such cancer stem cell model, e.g. reversible change of stem cell like population based on epigenetic changes, clonal genetic evolution and problems in xenotransplantation system. Despite complexity in cancer stem cell models, studies in cancer stem cell field have revealed that there are close relationship between cancer malignancy and stem cell properties, called "stemness". Understanding molecular mechanisms for controlling stemness would contribute to establishment of novel diagnostics or therapeutics for cancer.

  6. Advances in bone marrow stem cell therapy for retinal dysfunction.

    PubMed

    Park, Susanna S; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D; Grant, Maria B; Zam, Azhar; Zawadzki, Robert J; Werner, John S; Nolta, Jan A

    2017-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34(+) cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34(+) cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy.

  7. ADVANCES IN THE USE OF STEM CELLS IN ORTHOPEDICS

    PubMed Central

    Cristante, Alexandre Fogaça; Narazaki, Douglas Kenji

    2015-01-01

    Primordial cells or stem cells are multipotent undifferentiated cells with the capacity to originate any type of cell in the organism. They may have their origins in the blastocyst and thus are classified as embryonic, or tissues developed in fetuses, newborns or adults and thus are known as somatic stem cells. Bone marrow is one of the main locations for isolating primordial cells, and there are two lineages: hematopoietic and mesenchymal progenitor cells. There are several uses for these undifferentiated cells in orthopedics, going from cartilaginous lesions in osteoarthrosis, osteochondritis dissecans and patellar chondromalacia, to bone lesions like in pseudarthrosis or bone losses, or nerve lesions like in spinal cord trauma. Studying stem cells is probably the most promising field of study of all within medicine, and this is shortly going to revolutionize all medical specialties (both clinical and surgical) and thus provide solutions for diseases that today are difficult to deal with. PMID:27027022

  8. Recent advances in GaAs/Ge solar cells

    NASA Technical Reports Server (NTRS)

    Chu, C. L.; Iles, P. A.; Patterson, W.

    1991-01-01

    By growing the GaAs cell on a Ge substrate, the advantages of GaAs cells can be retained and the higher mechanical strength of the Ge makes larger, thinner GaAs cells possible. To conform to immediate user requirements, GaAs growth conditions were modified to eliminate the additional PV output at GaAs/Ge interface. To demonstrate acceptable cell manufacturing technology, the major areas in cell manufacture were analyzed and developed, and efficiency combined. Also the cells were successfully assembled on current lightweight arrays. The main areas of effort are discussed.

  9. Hall thruster with grooved walls

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ning, Zhongxi; Yu, Daren

    2013-02-01

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings help to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.

  10. Evaluation of advanced NiCd cell designs for NASA applications

    NASA Astrophysics Data System (ADS)

    di Stefano, S.; Halpert, G.; Yi, T. Y.; Dalton, P.; Hall, S.

    It is pointed out that an advanced NiCd cell based on a Hughes Aircraft Company design appears to show the most promise in the current generation of aerospace NiCd batteries. The cell was designed to ameliorate the major failure mechanisms of NiCd cells. This required cell design and process modifications and the use of alternate materials for some of the components (the most notable one being the substitution of zirconia cloth for nylon as the separator material). Recent reports in the literature indicate that the improvement in the performance of this technology appears to have been verified for GEO (geosynchronous)-type applications. The authors report on initial results of the evaluation of the advanced NiCd technology for applications of interest to NASA. They summarize the characteristics of cells based on the advanced technology from the time of manufacture to their current cell cycling status.

  11. Cell line development for biomanufacturing processes: recent advances and an outlook.

    PubMed

    Le, Huong; Vishwanathan, Nandita; Jacob, Nitya M; Gadgil, Mugdha; Hu, Wei-Shou

    2015-08-01

    At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.

  12. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-07-19

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.

  13. [Advances in microbial solar cells--A review].

    PubMed

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  14. The Performance of Advanced III-V Solar Cells

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.; Gaddy, Edward; Day, John H. (Technical Monitor)

    2002-01-01

    Test results show triple junction solar cells with efficiencies as high as 27% at 28C and 136.7 mw/sq cm. Triple junction cells also achieve up to 27.5% at -120 C and 5 mw/sq cm, conditions applicable to missions to Jupiter. Some triple junction cells show practically no degradation as a result of Low Intensity Low Temperature (LILT) effects, while others show some; this degradation can be overcome with minor changes to the cell design.

  15. Restructuring Residence Hall Programming: Residence Hall Educators with a Curriculum

    ERIC Educational Resources Information Center

    Buckner, Donald R.

    1977-01-01

    Development of residence hall learning environments through comprehensive educational programming has been inhibited by both the generalist nature of live-in professional staff positions and the retention of a student committee-centered programming philosophy. A rationale is developed in this article for a revised staffing pattern and a different…

  16. [Advance of neurogenic erectile dysfunction therapy by stem cells].

    PubMed

    Shen, Han-Jian; Zhu, Guang-You

    2010-06-01

    Neurogenic erectile dysfunction (NED) commonly results from erectile nerve damage. Recent researches have focused on the preclinical study of stem cell-based therapies targeted at repairing and protecting nervi erigentes. In this paper, researches of NESCs, MDSCs, ASCs and MSCs in NED are reviewed. Early studies have demonstrated that stem cells and gene modified stem cells were effective to the therapy of ED, even likely to cure ED. Stem cells are expected to be applied in the clinical therapy of NED. Stem cells as a new therapy technique will bring up a new challenge in forensic clinical medicine.

  17. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  18. Nanotechnology in stem cells research: advances and applications.

    PubMed

    Deb, Kaushik Dilip; Griffith, May; Muinck, Ebo De; Rafat, Mehrdad

    2012-01-01

    Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate. Nanotechnology provides us with such capacity. Therefore, effective amalgamation of nanotechnology and stem cells - medical nanoscience or nanomedicine - offers immense benefits to the human race. The aim of this paper is to discuss the role and importance of nanotechnology in stem cell research by focusing on several important areas such as stem cell visualization and imaging, genetic modifications and reprogramming by gene delivery systems, creating stem cell niche, and similar therapeutic applications.

  19. Electrochemistry of the Hall-Heroult Process for Aluminum Smelting.

    ERIC Educational Resources Information Center

    Haupin, W. E.

    1983-01-01

    Nearly all aluminum is produced by the electrolysis of alumina dissolved in a molten cryolite-based electrolyte, the Hall-Heroult Process. Various aspects of the procedure are discussed, focusing on electrolyte chemistry, dissolution of alumina, electrode reactions, current efficiency, and cell voltage. Suggestions for graduate study related to…

  20. A Gift for Reading Hall No. 1

    ERIC Educational Resources Information Center

    MacWilliams, Bryon

    2009-01-01

    In this article, the author describes Reading Hall No. 1 of the Russian State Library. He was placed in the first reading hall in the mid-1990s, when the Russian government still honored Soviet traditions of granting certain privileges to certain foreigners. In the first hall, the rules are different. He can request as many books as he wants. He…

  1. Berry curvature and various thermal Hall effects

    NASA Astrophysics Data System (ADS)

    Zhang, Lifa

    2016-10-01

    Applying the approach of semiclassical wave packet dynamics, we study various thermal Hall effects where carriers can be electron, phonon, magnon, etc. A general formula of thermal Hall conductivity is obtained to provide an essential physics for various thermal Hall effects, where the Berry phase effect manifests naturally. All the formulas of electron thermal Hall effect, phonon Hall effect, and magnon Hall effect can be directly reproduced from the general formula. It is also found that the Strěda formula can not be directly applied to the thermal Hall effects, where only the edge magnetization contributes to the Hall effects. Furthermore, we obtain a combined formula for anomalous Hall conductivity, thermal Hall electronic conductivity and thermal Hall conductivity for electron systems, where the Berry curvature is weighted by a different function. Finally, we discuss particle magnetization and its relation to angular momentum of the carrier, change of which could induce a mechanical rotation; and possible experiments for thermal Hall effect associated with a mechanical rotation are also proposed.

  2. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  3. Single-cell RNA-seq: advances and future challenges.

    PubMed

    Saliba, Antoine-Emmanuel; Westermann, Alexander J; Gorski, Stanislaw A; Vogel, Jörg

    2014-08-01

    Phenotypically identical cells can dramatically vary with respect to behavior during their lifespan and this variation is reflected in their molecular composition such as the transcriptomic landscape. Single-cell transcriptomics using next-generation transcript sequencing (RNA-seq) is now emerging as a powerful tool to profile cell-to-cell variability on a genomic scale. Its application has already greatly impacted our conceptual understanding of diverse biological processes with broad implications for both basic and clinical research. Different single-cell RNA-seq protocols have been introduced and are reviewed here-each one with its own strengths and current limitations. We further provide an overview of the biological questions single-cell RNA-seq has been used to address, the major findings obtained from such studies, and current challenges and expected future developments in this booming field.

  4. Single-cell RNA-seq: advances and future challenges

    PubMed Central

    Saliba, Antoine-Emmanuel; Westermann, Alexander J.; Gorski, Stanislaw A.; Vogel, Jörg

    2014-01-01

    Phenotypically identical cells can dramatically vary with respect to behavior during their lifespan and this variation is reflected in their molecular composition such as the transcriptomic landscape. Single-cell transcriptomics using next-generation transcript sequencing (RNA-seq) is now emerging as a powerful tool to profile cell-to-cell variability on a genomic scale. Its application has already greatly impacted our conceptual understanding of diverse biological processes with broad implications for both basic and clinical research. Different single-cell RNA-seq protocols have been introduced and are reviewed here—each one with its own strengths and current limitations. We further provide an overview of the biological questions single-cell RNA-seq has been used to address, the major findings obtained from such studies, and current challenges and expected future developments in this booming field. PMID:25053837

  5. Recent advances in microbial single cell genomics technology and applications

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.

    2015-12-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. I will present several new developments of this exciting technology, which improve genomic data recovery from individual cells and allow its integration with cell's phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the biology of the "microbial dark matter" inhabiting marine and terrestrial subsurface environments.

  6. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  7. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  8. Advanced alternate planar geometry solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells (SOFC) as high performance, high efficiency energy conversion devices is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes. A novel design concept was investigated which allows for the following: improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/sq cm at 0.4V/cell with an area specific resistance of 1 Ohm-sq cm/cell. Improvements in manifolding are expected to provide much higher performance.

  9. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1996-12-31

    The following figures are included: Westinghouse (W.) SOFC pilot manufacturing facility; cell scale-up plan; W. 25 kW SOFC unit at the utility`s facility on Rokko Island; pressure effect on SOFC power and efficiency; SureCELL{trademark} vs conventional gas turbine plants; SureCELL{trademark} product line for distributed power applications; 20 MW pressurized SOFC/gas turbine power plant; 10 MW SOFT/CT power plant; SureCELL{trademark} plant concept design requirements; and W. SOFC market entry.

  10. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  11. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.

    PubMed

    Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P

    2015-03-07

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.

  12. Microfluidic Cell Sorting: A Review of the Advances in the Separation of Cells from Debulking to Rare Cell Isolation

    PubMed Central

    Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.

    2015-01-01

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308

  13. Overview of Hall D Complex

    SciTech Connect

    Chudakov, Eugene A.

    2016-04-01

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillator hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is

  14. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  15. Advances in ethanol production using immobilized cell systems

    SciTech Connect

    Margaritis, A.; Merchant, F.J.A.

    1984-01-01

    The application of immobilized cell systems for the production of ethanol has resulted in substantial improvements in the efficiency of the process when compared to the traditional free cell system. In this review, the various methods of cell immobilization employed in ethanol production systems have been described in detail. Their salient features, performance characteristics, advantages and limitations have been critically assessed. More recently, these immobilized cell systems have also been employed for the production of ethanol from non-conventional feedstocks such as Jerusalem artichoke extracts, cheese whey, cellulose, cellobiose and xylose. Ethanol production by immobilized yeast and bacterial cells has been attempted in various bioreactor types. Although most of these studies have been carried out using laboratory scale prototype bioreactors, it appears that only fluidized bed, horizontally packed bed bioreactors and tower fermenters may find application on scale-up. Several studies have indicated that upon immobilization, yeast cells performing ethanol fermentation exhibit more favourable physiological and metabolic properties. This, in addition to substantial improvements in ethanol productivities by immobilized cell systems, is indicative of the fact that future developments in the production of ethanol and alcoholic beverages will be directed towards the use of immobilized cell systems. 291 references.

  16. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  17. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  18. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  19. Advances in Materials and System Technology for Portable Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.

    2007-01-01

    This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.

  20. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression.

    PubMed

    Subramanian, Manikandan; Proto, Jonathan D; Matsushima, Glenn K; Tabas, Ira

    2016-12-13

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl(-/-) or wild-type mice were transplanted into lethally irradiated Ldlr(-/-) mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr(-/-) mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis.

  1. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression

    PubMed Central

    Subramanian, Manikandan; Proto, Jonathan D.; Matsushima, Glenn K.; Tabas, Ira

    2016-01-01

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl−/− or wild-type mice were transplanted into lethally irradiated Ldlr−/− mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr−/− mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis. PMID:27958361

  2. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2017-02-01

    There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  3. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  4. Advances in tubular solid oxide fuel cell technology

    SciTech Connect

    Singhal, S.C.

    1996-12-31

    The design, materials and fabrication processes for the earlier technology Westinghouse tubular geometry cell have been described in detail previously. In that design, the active cell components were deposited in the form of thin layers on a ceramic porous support tube (PST). The tubular design of these cells and the materials used therein have been validated by successful electrical testing for over 65,000 h (>7 years). In these early technology PST cells, the support tube, although sufficiently porous, presented an inherent impedance to air flow toward air electrode. In order to reduce such impedance to air flow, the wall thickness of the PST was first decreased from the original 2 mm (the thick-wall PST) to 1.2 mm (the thin-wall PST). The calcia-stabilized zirconia support tube has now been completely eliminated and replaced by a doped lanthanum manganite tube in state-of-the-art SOFCs. This doped lanthanum manganite tube is extruded and sintered to about 30 to 35 percent porosity, and serves as the air electrode onto which the other cell components are fabricated in thin layer form. These latest technology cells are designated as air electrode supported (AES) cells.

  5. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  6. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  7. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa

    PubMed Central

    He, Yuxi; Zhang, Yan; Liu, Xin; Ghazaryan, Emma; Li, Ying; Xie, Jianan; Su, Guanfang

    2014-01-01

    Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive loss of photoreceptors and eventually leads to retina degeneration and atrophy. Until now, the exact pathogenesis and etiology of this disease has not been clear, and many approaches for RP therapies have been carried out in animals and in clinical trials. In recent years, stem cell transplantation-based attempts made some progress, especially the transplantation of bone marrow-derived mesenchymal stem cells (BMSCs). This review will provide an overview of stem cell-based treatment of RP and its main problems, to provide evidence for the safety and feasibility for further clinical treatment. PMID:25141102

  8. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  9. New advances in the mesenchymal stem cells therapy against skin flaps necrosis

    PubMed Central

    Zhang, Fu-Gui; Tang, Xiu-Fa

    2014-01-01

    Mesenchymal stem cells (MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various cells, such as osteoblasts, adipocytes, chondrocytes, vascular endothelial progenitor cells, and other cell types. MSCs are being widely studied as potential cell therapy agents due to their angiogenic properties, which have been well established by in vitro and in vivo researches. Within this context, MSCs therapy appears to hold substantial promise, particularly in the treatment of conditions involving skin grafts, pedicle flaps, as well as free flaps described in literatures. The purpose of this review is to report the new advances and mechanisms underlying MSCs therapy against skin flaps necrosis. PMID:25258671

  10. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    PubMed Central

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years. PMID:26106425

  11. Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells

    PubMed Central

    Cosnier, Serge; Holzinger, Michael; Le Goff, Alan

    2014-01-01

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O2, H2O2) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications. PMID:25386555

  12. Recent advances in the management of renal cell carcinoma

    PubMed Central

    Molina, Ana M.; Nanus, David M.

    2016-01-01

    Therapeutic options for patients with metastatic renal cell carcinoma have significantly improved over the past few years with the recent approval of two new agents resulting in prolonged progression-free and overall survival. PMID:27019698

  13. Advances and Applications of Single Cell Sequencing Technologies

    PubMed Central

    Wang, Yong; Navin, Nicholas E.

    2015-01-01

    Single cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic. PMID:26000845

  14. Advances and applications of single-cell sequencing technologies.

    PubMed

    Wang, Yong; Navin, Nicholas E

    2015-05-21

    Single-cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology, and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic.

  15. Optical Hall effect-model description: tutorial.

    PubMed

    Schubert, Mathias; Kühne, Philipp; Darakchieva, Vanya; Hofmann, Tino

    2016-08-01

    The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors. Among many advantages, while the optical Hall effect dispenses with the need of electrical contacts, electrical material properties such as effective mass and mobility parameters, including their anisotropy as well as carrier type and density, can be determined from the optical Hall effect. Measurement of the optical Hall effect can be performed within the concept of generalized ellipsometry at an oblique angle of incidence. In this paper, we review and discuss physical model equations, which can be used to calculate the optical Hall effect in single- and multiple-layered structures of semiconductor materials. We define the optical Hall effect dielectric function tensor, demonstrate diagonalization approaches, and show requirements for the optical Hall effect tensor from energy conservation. We discuss both continuum and quantum approaches, and we provide a brief description of the generalized ellipsometry concept, the Mueller matrix calculus, and a 4×4 matrix algebra to calculate data accessible by experiment. In a follow-up paper, we will discuss strategies and approaches for experimental data acquisition and analysis.

  16. Evaluation of critical materials in five additional advance design photovoltaic cells

    SciTech Connect

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  17. Immunosuppressive properties of mesenchymal stem cells: advances and applications.

    PubMed

    De Miguel, M P; Fuentes-Julián, S; Blázquez-Martínez, A; Pascual, C Y; Aller, M A; Arias, J; Arnalich-Montiel, F

    2012-06-01

    Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo

  18. Advanced PEFC development for fuel cell powered vehicles

    NASA Astrophysics Data System (ADS)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  19. Advances and perspectives of colorectal cancer stem cell vaccine.

    PubMed

    Guo, Mei; Dou, Jun

    2015-12-01

    Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.

  20. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer

    PubMed Central

    Brahmer, Julie; Reckamp, Karen L.; Baas, Paul; Crinò, Lucio; Eberhardt, Wilfried E.E.; Poddubskaya, Elena; Antonia, Scott; Pluzanski, Adam; Vokes, Everett E.; Holgado, Esther; Waterhouse, David; Ready, Neal; Gainor, Justin; Frontera, Osvaldo Arén; Havel, Libor; Steins, Martin; Garassino, Marina C.; Aerts, Joachim G.; Domine, Manuel; Paz-Ares, Luis; Reck, Martin; Baudelet, Christine; Harbison, Christopher T.; Lestini, Brian; Spigel, David R.

    2015-01-01

    Background Patients with advanced squamous-cell non–small-cell lung cancer (NSCLC) who have disease progression during or after first-line chemotherapy have limited treatment options. This randomized, open-label, international, phase 3 study evaluated the efficacy and safety of nivolumab, a fully human IgG4 programmed death 1 (PD-1) immune-checkpoint–inhibitor antibody, as compared with docetaxel in this patient population. Methods We randomly assigned 272 patients to receive nivolumab, at a dose of 3 mg per kilogram of body weight every 2 weeks, or docetaxel, at a dose of 75 mg per square meter of body-surface area every 3 weeks. The primary end point was overall survival. Results The median overall survival was 9.2 months (95% confidence interval [CI], 7.3 to 13.3) with nivolumab versus 6.0 months (95% CI, 5.1 to 7.3) with docetaxel. The risk of death was 41% lower with nivolumab than with docetaxel (hazard ratio, 0.59; 95% CI, 0.44 to 0.79; P<0.001). At 1 year, the overall survival rate was 42% (95% CI, 34 to 50) with nivolumab versus 24% (95% CI, 17 to 31) with docetaxel. The response rate was 20% with nivolumab versus 9% with docetaxel (P = 0.008). The median progression-free survival was 3.5 months with nivolumab versus 2.8 months with docetaxel (hazard ratio for death or disease progression, 0.62; 95% CI, 0.47 to 0.81; P<0.001). The expression of the PD-1 ligand (PD-L1) was neither prognostic nor predictive of benefit. Treatment-related adverse events of grade 3 or 4 were reported in 7% of the patients in the nivolumab group as compared with 55% of those in the docetaxel group. Conclusions Among patients with advanced, previously treated squamous-cell NSCLC, overall survival, response rate, and progression-free survival were significantly better with nivolumab than with docetaxel, regardless of PD-L1 expression level. (Funded by Bristol-Myers Squibb; CheckMate 017 ClinicalTrials.gov number, NCT01642004.) PMID:26028407

  1. Recent advances in thin film CdTe solar cells

    SciTech Connect

    Ferekides, C.S.; Ceekala, V.; Dugan, K.; Killian, L.; Oman, D.; Swaminathan, R.; Morel, D.

    1996-01-01

    CdTe thin film solar cells have been fabricated on a variety of glass substrates (borosilicate and soda lime). The CdS films were deposited to a thickness of 500{endash}2000 A by the chemical bath deposition (CBD), rf sputtering, or close spaced sublimation (CSS) processes. The CdTe films were deposited by CSS in the temperature range of 450{endash}625{degree}C. The main objective of this work is to fabricate high efficiency solar cells using processes that can meet low cost manufacturing requirements. In an attempt to enhance the blue response of the CdTe cells, ZnS films have also been prepared (CBD, rf sputtering, CSS) as an alternative window layer to CdS. Device behavior has been found to be consistent with a recombination model. {copyright} {ital 1996 American Institute of Physics.}

  2. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    PubMed

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  3. Recent advancements in low cost solar cell processing

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.

    1975-01-01

    A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.

  4. Advanced catalyst supports for PEM fuel cell cathodes

    SciTech Connect

    Du, Lei; Shao, Yuyan; Sun, Junming; Yin, Geping; Liu, Jun; Wang, Yong

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  5. Vismodegib: a guide to its use in locally advanced or metastatic basal cell carcinoma.

    PubMed

    Lyseng-Williamson, Katherine A; Keating, Gillian M

    2013-02-01

    Vismodegib is the first Hedgehog pathway inhibitor to be approved in the USA, where it is indicated for the treatment of adults with metastatic basal cell carcinoma (BCC), or with locally advanced BCC that has recurred following surgery or who are not candidates for surgery, and who are not candidates for radiation. In an ongoing, noncomparative, phase II trial, oral vismodegib was effective in and had an acceptable tolerability profile in the treatment of patients with locally advanced or metastatic BCC.

  6. Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy

    PubMed Central

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.

    2014-01-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088

  7. Antiangiogenic Agents in Combination with Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer

    PubMed Central

    Ulahannan, Susanna V; Brahmer, Julie R

    2011-01-01

    Most patients with non-small cell lung cancer (NSCLC) present with advanced disease requiring systemic chemotherapy. Treatment with the antiangiogenic agent bevacizumab in combination with standard platinum-based doublet chemotherapy has been shown to improve outcomes in patients with advanced NSCLC. Several multitargeted antiangiogenic tyrosine kinase inhibitors (e.g., sorafenib, sunitinib, cediranib, vandetanib, BIBF 1120, pazopanib, and axitinib) are also being evaluated in combination with standard chemotherapy. Here we review current clinical data with combination therapy involving antiangiogenic agents and cytotoxic chemotherapy in patients with advanced NSCLC. PMID:21469981

  8. Advances in wound-healing assays for probing collective cell migration.

    PubMed

    Riahi, Reza; Yang, Yongliang; Zhang, Donna D; Wong, Pak Kin

    2012-02-01

    Collective cell migration plays essential roles in a wide spectrum of biological processes, such as embryogenesis, tissue regeneration, and cancer metastasis. Numerous wound-healing assays based on mechanical, chemical, optical, and electrical approaches have been developed to create model "wounds" in cell monolayers to study the collective cell migration processes. These approaches can result in different microenvironments for cells to migrate and possess diverse assay characteristics in terms of simplicity, throughput, reproducibility, and multiplexability. In this review, we provide an overview of advances in wound-healing assays and discuss their advantages and limitations in studying collective cell migration.

  9. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  10. Electron dynamics in Hall thruster

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  11. Hall sensors for extreme temperatures.

    PubMed

    Jankowski, Jakub; El-Ahmar, Semir; Oszwaldowski, Maciej

    2011-01-01

    We report on the preparation of the first complete extreme temperature Hall sensor. This means that the extreme-temperature magnetic sensitive semiconductor structure is built-in an extreme-temperature package especially designed for that purpose. The working temperature range of the sensor extends from -270 °C to +300 °C. The extreme-temperature Hall-sensor active element is a heavily n-doped InSb layer epitaxially grown on GaAs. The magnetic sensitivity of the sensor is ca. 100 mV/T and its temperature coefficient is less than 0.04 %/K. This sensor may find applications in the car, aircraft, spacecraft, military and oil and gas industries.

  12. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    SciTech Connect

    Gerdes, Kirk; Richards, George

    2014-04-16

    The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental

  13. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, {le}{approximately}{ovr J} {times} {approximately}{ovr B}{ge}, has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  14. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, [le][approximately][ovr J] [times] [approximately][ovr B][ge], has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  15. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  16. Fractional quantum Hall effect revisited

    NASA Astrophysics Data System (ADS)

    Jacak, J.; Łydżba, P.; Jacak, L.

    2015-10-01

    The topology-based explanation of the fractional quantum Hall effect (FQHE) is summarized. The cyclotron braid subgroups crucial for this approach are introduced in order to identify the origin of the Laughlin correlations in 2D (two-dimensional) Hall systems. Flux-tubes and vortices for composite fermions in their standard constructions are explained in terms of cyclotron braids. The derivation of the hierarchy of the FQHE is proposed by mapping onto the integer effect within the topology-based approach. The experimental observations of the FQHE supporting the cyclotron braid picture are reviewed with a special attention paid to recent experiments with a suspended graphene. The triggering role of a carrier mobility for organization of the fractional state in Hall configuration is emphasized. The prerequisites for the FQHE are indicated including topological conditions substantially increasing the previously accepted set of physical necessities. The explanation of numerical studies by exact diagonalizations of the fractional Chern insulator states is formulated in terms of the topology condition applied to the Berry field flux quantization. Some new ideas withz regard to the synthetic fractional states in the optical lattices are also formulated.

  17. Advances in simulation study on organic small molecular solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Guo, Wenge; Li, Ming; Ma, Wentao; Meng, Sen

    2015-02-01

    Recently, more focuses have been put on organic semiconductors because of its advantages, such as its flexibility, ease of fabrication and potential low cost, etc. The reasons we pay highlight on small molecular photovoltaic material are its ease of purification, easy to adjust and determine structure, easy to assemble range units and get high carrier mobility, etc. Simulation study on organic small molecular solar cells before the experiment can help the researchers find relationship between the efficiency and structure parameters, properties of material, estimate the performance of the device, bring the optimization of guidance. Also, the applicability of the model used in simulation can be discussed by comparison with experimental data. This paper summaries principle, structure, progress of numerical simulation on organic small molecular solar cells.

  18. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    PubMed Central

    Wehler, Thomas C.; Graf, Claudine; Biesterfeld, Stefan; Brenner, Walburgis; Schadt, Jörg; Gockel, Ines; Berger, Martin R.; Thüroff, Joachim W.; Galle, Peter R.; Moehler, Markus; Schimanski, Carl C.

    2008-01-01

    Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P = .039), tumor dedifferentiation (P = .0005), and low hemoglobin (P = .039). In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma. PMID:19266088

  19. The correlation of replicating cells and osteogenesis in the condyle during stepwise advancement.

    PubMed

    Rabie, A Bakr M; Tsai, Ming-Ju Marjorie; Hägg, Urban; Du, Xi; Chou, Bing-Wu

    2003-08-01

    The aim of this study was to quantify the number of replicating mesenchymal cells and to correlate it to the amount of bone formation in the condyle during stepwise advancement of the mandible. Two hundred and fifty female Spraque-Dawley rats, 35 days old, were randomly divided into 10 control groups (n = 5) and 20 experimental groups (n = 10). Fifty rats from the stepwise experimental group relieved a two-mm advancement initially and veneers were added on day 30 with another 1.5 mm advancement. The rats were sacrificed after 3, 7, 14, 21, 30, 33, 37, 44, 51, and 60 days. One hour before death, all rats were injected with bromodeoxyuridine (BrdU) intravenously. Tissue sections of seven microm were cut through the condyle in the sagittal plane and stained with anti-BrdU antibody to evaluate the number of replicating mesenchymal cells. Haematoxylin stain was applied to observe cellular response. The results indicated that during the first advancement, replicating mesenchymal cells in the posterior region of the condyle showed the highest increase on days 7 and 14 when compared with the control. Such an increase preceded the highest level of bone formation between days 30 and 37 of advancement. In response to the second advancement, another increase of replicating cells was evident on day 44, along with a significant increase in bone formation observed on day 60. We concluded that forward positioning of mandible in a stepwise manner delivers a mechanical strain that solicits an increase in the number of replicating mesenchymal cells in the condyle. The increase in the population size of the osteoprogenitor cells subsequently leads to more bone formation.

  20. Thermal management of advanced fuel cell power systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J.

    1990-01-01

    It is shown that fuel cell devices are particularly attractive for the high-efficiency, high-reliability space hardware necessary to support upcoming space missions. These low-temperature hydrogen-oxygen systems necessarily operate with two-phase water. In either PEMFCs (proton exchange membrane fuel cells) or AFCs (alkaline fuel cells), engineering design must be critically focused on both stack temperature control and on the relative humidity control necessary to sustain appropriate conductivity within the ionic conductor. Water must also be removed promptly from the hardware. Present designs for AFC space hardware accomplish thermal management through two coupled cooling loops, both driven by a heat transfer fluid, and involve a recirculation fan to remove water and heat from the stack. There appears to be a certain advantage in using product water for these purposes within PEM hardware, because in that case a single fluid can serve both to control stack temperature, operating simultaneously as a heat transfer medium and through evaporation, and to provide the gas-phase moisture levels necessary to set the ionic conductor at appropriate performance levels. Moreover, the humidification cooling process automatically follows current loads. This design may remove the necessity for recirculation gas fans, thus demonstrating the long-term reliability essential for future space power hardware.

  1. Advanced anodes for high-temperature fuel cells.

    PubMed

    Atkinson, A; Barnett, S; Gorte, R J; Irvine, J T S; McEvoy, A J; Mogensen, M; Singhal, S C; Vohs, J

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000 degrees C. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.

  2. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells

    PubMed Central

    Kawser Hossain, Mohammed; Abdal Dayem, Ahmed; Han, Jihae; Kumar Saha, Subbroto; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2016-01-01

    Diabetes mellitus (DM) is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs) are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies. PMID:26907255

  3. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells.

    PubMed

    Kawser Hossain, Mohammed; Abdal Dayem, Ahmed; Han, Jihae; Kumar Saha, Subbroto; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2016-02-19

    Diabetes mellitus (DM) is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs) are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies.

  4. Advanced developments in NiH{sub 2} dependent pressure vessel (DPV) cell and battery technology

    SciTech Connect

    Caldwell, D.B.; Fox, C.L.

    1997-12-01

    The Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH{sub 2}) design is being developed by Eagle-Picher Industries, Inc. (EPI) as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced parts count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risks.

  5. Hedgehog pathway inhibition in advanced basal cell carcinoma: latest evidence and clinical usefulness

    PubMed Central

    Silapunt, Sirunya; Chen, Leon; Migden, Michael R.

    2016-01-01

    Treatment of locally advanced basal cell carcinomas (laBCCs) with large, aggressive, destructive, and disfiguring tumors, or metastatic disease is challenging. Dysregulation of the Hedgehog (Hh) signaling pathway has been identified in the vast majority of basal cell carcinomas (BCCs). There are two United States Food and Drug Administration (US FDA)-approved Hh pathway inhibitors (HPIs) that exhibit antitumor activity in advanced BCC with an acceptable safety profile. Common adverse effects include muscle spasms, dysgeusia, alopecia, fatigue, nausea and weight loss. PMID:27583029

  6. Advances toward More Efficient Targeted Delivery of Nanoparticles in Vivo: Understanding Interactions between Nanoparticles and Cells.

    PubMed

    Polo, Ester; Collado, Manuel; Pelaz, Beatriz; Del Pino, Pablo

    2017-03-07

    In this Perspective, we describe current challenges and recent advances in efficient delivery and targeting of nanoparticles in vivo. We discuss cancer therapy, nanoparticle-biomolecule interactions, nanoparticle trafficking in cells, and triggers and responses to nanoparticle-cell interactions. No matter which functionalization strategy to target cancer is chosen, passive or active targeting, more than 99% of the nanoparticles administered in vivo end up in the mononuclear phagocytic system, mainly sequestered by macrophages. Comprehensive studies, such as the one reported by MacParland et al. in this issue of ACS Nano, will help to close the gap between nanotechnology-based drug-delivery solutions and advanced medicinal products.

  7. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Benavides, Gabriel; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; Szabo, James; Lee, Lauren

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the 200 W Busek BHT-200-I and the continued development of the 600 W BHT-600-I Hall thruster propulsion systems. This paper presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  8. Some aspects of achieving an ultimate accuracy during insertion device magnetic measurements by a Hall probe.

    PubMed

    Vasserman, I B; Strelnikov, N O; Xu, J Z

    2013-02-01

    An extensive test of a new Senis 2-axis Hall probe was done at the Advanced Photon Source using the Undulator A device and calibration system. This new probe has clear advantages compared with previously used Bell and Sentron Hall probes: very stable zero offset (less than the noise of 0.026 G) and compensated planar Hall effect. It can be used with proper calibration even for first and second field integral measurements. A comparison with reference measurements by long stretched coil shows that the difference in the first field integral measurement results for a 2.4-m-long Undulator A device is between 17 G cm for the best of four Hall probes used for the test and 51 G cm for the worst of them for all gap ranges from 10.5 mm to 150 mm.

  9. Recent advances in redox flow cell storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    Several features which were conceived and incorporated into complete redox systems that greatly enhanced its ability to be kept in proper charge balance, to be capable of internal voltage regulation, and in general be treated as a true multicell electrochemical system rather than an assembly of single cells that were wired together, were discussed. The technology status as it relates to the two application areas of solar photovoltaic/wind and distributed energy storage for electric utility applications was addressed. The cost and life advantages of redox systems were also covered.

  10. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  11. Fort Hall air emissions study, Fort Hall Indian Reservation, Fort Hall, Idaho

    SciTech Connect

    Metcalf, S.W.; Sonnenfeld, N.L.; Rolka, D.L.; Kaye, W.E.

    1995-11-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) conducted a cross-sectional health study at the Fort Hall Indian Reservation in Idaho to investigate concerns about the health effects on reservation residents that might be attributed to two phosphate-processing plants located near the reservation`s southern border. In addition to increased particulates, air emissions from these plants included phosphorus pentoxide, cadmium, chromium, fluoride, uranium, and its daughter radionuclides. A total of 515 participants -- 229 from Fort Hall and 286 from a comparison group at the Duck Valley Indian Reservation -- were interviewed in person by trained American Indian interviewers. Approximately 100 residents of each reservation performed pulmonary function tests and provided urine specimens that were analyzed for cadmium, chromium, fluoride, and several renal biomarkers.

  12. Development of advanced kocite electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Welsh, L. S.; Leyerle, R. W.; Scarlata, D. S.; Vanek, M. A.

    1981-01-01

    These improved electrocatalysts should demonstrate a larger initial catalytic metal surface area, and a better catalytic metal surface area retention during fuel cell operation than present state-of-the-art phosphoric acid electrocatalysts. Kocite electrocatalysts impregnated with platinum and platinum-vanadium alloys were tested. The Kocite electrocatalysts were aged in electrodes potentiostated in H3PO4 half cells, and were then analyzed for catalytic metals surface area retention. Compared with the state-of-the-art platinum electrocatalysts, as represented by a standard Kocite electrocatalyst, the Kocite electrocatalysts impregnated by the techniques used in this study have a better initial platinum surface area. This initial surface area difference appeared to be maintained when the catalysts are aged at 700 mV, but was not maintained when the catalysts were aged at 800 mV. Variations of the alumina substrate and of the post-treatment of the leached Kocite catalyst support did not produce any catalysts with better platinum surface area retention than the standard catalyst. Alloying of vanadium with the platinum did produce Kocite electrocatalysts which maintained their alloy surface area better than the standard catalyst maintained its platinum surface area.

  13. Advances in antiangiogenic treatment of small-cell lung cancer

    PubMed Central

    Lu, Hongyang; Jiang, Zhiming

    2017-01-01

    Small-cell lung cancer (SCLC), a poorly differentiated neuroendocrine malignancy, has a rapid growth rate, strong aggressiveness, early metastases, and poor prognosis. Angiogenesis greatly contributes to the metastatic process of SCLC, which has a higher vascularization compared with non-small-cell lung cancer (NSCLC). SCLC might constitute an ideal malignancy for assessing new antiangiogenic drugs and therapeutic strategies. Combining bevacizumab with paclitaxel has therapeutic benefits in chemoresistant, relapsed SCLC. The cisplatin–etoposide and bevacizumab combination, as the first-line treatment for extensive-stage SCLC, can improve progression-free survival (PFS), with an acceptable toxicity profile. Ziv-aflibercept combined with topotecan is promising for platinum-refractory SCLC. Chemotherapy combined with thalidomide cannot prolong survival. Maintenance sunitinib of 37.5 mg/day in extensive-stage SCLC patients following induction chemotherapy with platinum/etoposide improves median PFS by 1.6 months. Serum angiopoietin-2 concentrations and vascular endothelial growth factor levels correlate with poor prognosis. Bevacizumab, ziv-aflibercept, and sunitinib are worthy of further evaluation. Thalidomide, sorafenib, pomalidomide, and cediranib may not be suitable for SCLC. PMID:28138259

  14. Propulsion Instruments for Small Hall Thruster Integration

    NASA Technical Reports Server (NTRS)

    Johnson, Lee K.; Conroy, David G.; Spanjers, Greg G.; Bromaghim, Daron R.

    2001-01-01

    Planning and development are underway for the propulsion instrumentation necessary for the next AFRL electric propulsion flight project, which includes both a small Hall thruster and a micro-PPT. These instruments characterize the environment induced by the thruster and the associated data constitute part of a 'user's manual' for these thrusters. Several instruments probe the back-flow region of the thruster plume, and the data are intended for comparison with detailed numerical models in this region. Specifically, an ion probe is under development to determine the energy and species distributions, and a Langmuir probe will be employed to characterize the electron density and temperature. Other instruments directly measure the effects of thruster operation on spacecraft thermal control surfaces, optical surfaces, and solar arrays. Specifically, radiometric, photometric, and solar-cell-based sensors are under development. Prototype test data for most sensors should be available, together with details of the instrumentation subsystem and spacecraft interface.

  15. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator.

    PubMed

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-18

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  16. Nivolumab: a review in advanced squamous non-small cell lung cancer.

    PubMed

    Keating, Gillian M

    2015-11-01

    Nivolumab (Opdivo(®); Nivolumab BMS™) was the first programmed death (PD)-1 immune checkpoint inhibitor to be approved for use in advanced, squamous non-small cell lung cancer (NSCLC) following prior chemotherapy. In the pivotal CheckMate 017 trial, intravenous nivolumab 3 mg/kg every 2 weeks was associated with significantly better overall survival and progression-free survival and a significantly higher overall response rate than intravenous docetaxel in the second-line treatment of advanced, squamous NSCLC. Nivolumab was also better tolerated than docetaxel in CheckMate 017, and its adverse event profile (which included immune-mediated adverse events) was manageable. In conclusion, nivolumab represents an important advance in previously-treated, advanced, squamous NSCLC.

  17. Observations of Hall Reconnection Physics Far Downstream of the X Line.

    PubMed

    Mistry, R; Eastwood, J P; Haggerty, C C; Shay, M A; Phan, T D; Hietala, H; Cassak, P A

    2016-10-28

    Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent agreement with observations. The Hall fields are observed thousands of ion inertial lengths downstream from the reconnection X line, indicating that narrow regions of kinetic dynamics can persist extremely far downstream.

  18. Comparative study on the performance of five different Hall effect devices.

    PubMed

    Paun, Maria-Alexandra; Sallese, Jean-Michel; Kayal, Maher

    2013-02-05

    Five different Hall Effect sensors were modeled and their performance evaluated using a three dimensional simulator. The physical structure of the implemented sensors reproduces a certain technological fabrication process. Hall voltage, absolute, current-related, voltage-related and power-related sensitivities were obtained for each sensor. The effect of artificial offset was also investigated for cross-like structures. The simulation procedure guides the designer in choosing the Hall cell optimum shape, dimensions and device polarization conditions that would allow the highest performance.

  19. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and

  20. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic

  1. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    PubMed

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels.

  2. DEVELOPMENT OF IMPROVED HALL EFFECT SENSORS.

    DTIC Science & Technology

    HALL EFFECT , MAGNETOMETERS, GAIN, SENSITIVITY, MAGNETIC FIELDS, DETECTION, ELECTROMAGNETIC PROBES, WEIGHT, VOLUME, BATTERY COMPONENTS, INDIUM ALLOYS, ANTIMONY ALLOYS, FERRITES, MANPORTABLE EQUIPMENT.

  3. AN A. C. HALL EFFECT GAUSSMETER,

    DTIC Science & Technology

    MEASURING INSTRUMENTS, MEASURING INSTRUMENTS, HALL EFFECT , MAGNETOMETERS, MEASUREMENT, GENERATORS, CIRCUITS, ALTERNATING CURRENT, GERMANIUM, SEMICONDUCTOR DIODES, GALVANOMETERS, VOLTAGE, DIRECT CURRENT, MAGNETIC FIELDS.

  4. Listening to the acoustics in concert halls

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.; Griesinger, David

    2001-05-01

    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  5. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  6. Listening to the acoustics in concert halls

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.; Griesinger, David

    2004-05-01

    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  7. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2013-07-01

    extending the period of performance soon. The Ivy Center for Advanced Brain Tumor Treatment at the Swedish Neuroscience Institute (SNI) has...markers: (A) GFAP/astrocytes, (B), TUJ-1/neurons and (C) O4/oligodendrocytes. Cells were grown in NSA media without growth factors (EGF and FGF-2...Treatment at the Swedish Neuroscience Institute (SNI) has collected potentially eligible tumor tissue from over forty GBM patients. • Primary GBM cell

  8. [Advance of researches on thyroid tissues autotransplantation and embryonic stem cell transplantation in therapy of hypothyroidism].

    PubMed

    Ma, Quanfu; Kuang, Anren

    2008-10-01

    Patients with irreversible hypothyroidism require lifelong levo-thyroxin ( L-T4) replacement therapy, which makes them feel discomfortable. With the development of the thyroid tissues autotransplantation and embryonic stem cell (ESC), this would be a more physiological approach to the treatment of irreversible hypothyroidism. The animal experiments and human clinical trials on thyroid tissues autotransplantation have shown that the autograft can survive and function. The advanced researches have demonstrated that ESC can differentiate into thyroid follicular cells.

  9. Mesoscopic spin Hall effect in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Zarbo, Liviu

    , appeared in 1970s, it is only in the past few years that advances in optical detection of nonequilibrium magnetization in semiconductors have made possible the detection of such extrinsic SHE in groundbreaking experiments. The experimental pursuits of SHE have, in fact, been largely motivated by very recent theoretical speculations for several order of magnitude greater spin Hall currents driven by intrinsic SO mechanisms due to SO couplings existing not only around the impurity but also throughout the sample. The homogeneous intrinsic SO couplings are capable of spin-splitting the band structure and appear as momentum-dependent magnetic field within the sample which causes spin non-conservation due to precession of injected spins which are not in the eigenstates of the corresponding Zeeman term. Besides deepening our understanding of subtle relativistic effects in solids, SHE has attracted a lot of attention since it offers an all-electrical way of generating pure spin currents in semiconductors. (Abstract shortened by UMI.)

  10. Advanced imaging and tissue engineering of the human limbal epithelial stem cell niche.

    PubMed

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E; Vernon, Amanda J; Funderburgh, James L; Daniels, Julie T

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein.

  11. Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche

    PubMed Central

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J.; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E.; Vernon, Amanda J.; Funderburgh, James L.; Daniels, Julie T.

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein. PMID:25388395

  12. Extending the Endurance of Small Unmanned Aerial Vehicles Using Advanced Flexible Solar Cells

    DTIC Science & Technology

    2012-12-01

    construction (from [40]). ...............................................37 Figure 31. Energy density comparison including Li- S (from [43...discharging, respective- ly, without the use of circuitry [43]. Figure 31. Energy density comparison including Li- S (from [43]). 40 While the sulfur...USING ADVANCED FLEXIBLE SOLAR CELLS 5. FUNDING NUMBERS 6. AUTHOR( S ) Christopher R. Gromadski 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES

  13. Advances in circulating tumor cells (ACTC): from basic research to clinical practice

    PubMed Central

    2013-01-01

    The first 'Advances in Circulating Tumor Cells (ACTC): from Basic Research to Clinical Practice' meeting was held in Athens, Greece, September 26–29, 2012 (abstracts, presentations and a more detailed meeting report are freely available online: http://www.actc2012.org). We summarize in this report most major findings presented and the main conclusions derived during the expert panel sessions. PMID:24314311

  14. Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2012-01-01

    Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in order to meet the performance goals for NASA s High Energy and Ultra High Energy cells. NASA s overall approach to advanced cell development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.

  15. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques.

    PubMed

    Dirk, Brennan S; Van Nynatten, Logan R; Dikeakos, Jimmy D

    2016-10-19

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell-cell transmission and cell-free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.

  16. Steady advance of stem cell therapies: report from the 2011 World Stem Cell Summit, Pasadena, California, October 3-5.

    PubMed

    Swan, Melanie

    2011-12-01

    Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease.

  17. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine.

    PubMed

    Revilla, Ana; González, Clara; Iriondo, Amaia; Fernández, Bárbara; Prieto, Cristina; Marín, Carlos; Liste, Isabel

    2016-11-01

    Over the last few years, the generation of induced pluripotent stem cells (iPSCs) from human somatic cells has proved to be one of the most potentially useful discoveries in regenerative medicine. iPSCs are becoming an invaluable tool to study the pathology of different diseases and for drug screening. However, several limitations still affect the possibility of applying iPS cell-based technology in therapeutic prospects. Most strategies for iPSCs generation are based on gene delivery via retroviral or lentiviral vectors, which integrate into the host's cell genome, causing a remarkable risk of insertional mutagenesis and oncogenic transformation. To avoid such risks, significant advances have been made with non-integrative reprogramming strategies. On the other hand, although many different kinds of somatic cells have been employed to generate iPSCs, there is still no consensus about the ideal type of cell to be reprogrammed. In this review we present the recent advances in the generation of human iPSCs, discussing their advantages and limitations in terms of safety and efficiency. We also present a selection of somatic cell sources, considering their capability to be reprogrammed and tissue accessibility. From a translational medicine perspective, these two topics will provide evidence to elucidate the most suitable combination of reprogramming strategy and cell source to be applied in each human iPSC-based therapy. The wide variety of diseases this technology could treat opens a hopeful future for regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  19. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  20. Town Hall with Secretary Moniz

    SciTech Connect

    Energy Secretary Ernest Moniz; Deputy Secretary of Energy Daniel Poneman

    2013-07-18

    In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department’s management structure. The plans will help better achieve the Department’s key priorities and those of the President, including implementing the President’s Climate Action Plan, “all of the above” energy strategy and nuclear security agenda. After his remarks, Moniz, joined by Deputy Secretary Dan Poneman, took questions from the audience in the Forrestal Auditorium as well as email questions from other Department locations.

  1. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  2. Temperature Stable Hall Effect Sensors

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J. P.; Schroeder, T.; Thrush, C. M.; Flores, L. A.

    2004-03-01

    Magnetic field sensors are needed for high accuracy position, angle, force, strain, torque, and current flow measurements. Molecular beam epitaxy was used to grow tellurium-doped indium gallium antimonide thin films. Hall effect sensors made from these films have been studied for their magnetic sensitivity and thermal stability. For a range of alloy composition and n-type doping levels, high magnetic sensitivity from -40°C to +200°C was found with a resolution of better than +/- 0.5 percent over the entire temperature range.

  3. Electron Transport in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  4. Town Hall with Secretary Moniz

    ScienceCinema

    Energy Secretary Ernest Moniz; Deputy Secretary of Energy Daniel Poneman

    2016-07-12

    In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department’s management structure. The plans will help better achieve the Department’s key priorities and those of the President, including implementing the President’s Climate Action Plan, “all of the above” energy strategy and nuclear security agenda. After his remarks, Moniz, joined by Deputy Secretary Dan Poneman, took questions from the audience in the Forrestal Auditorium as well as email questions from other Department locations.

  5. Assessment of sulfur removal processes for advanced fuel cell systems

    SciTech Connect

    Lorton, G.A.

    1980-01-01

    This study consisted of a technical evaluation and economic comparison of sulfur removal processes for integration into a coal gasification-molten carbonate (CGMC) fuel cell power plant. Initially, the performance characteristics of potential sulfur removal processes were evaluated and screened for conformance to the conditions and requirements expected in commercial CGMC power plants. Four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen-blown and air-blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas (1 ppMv or 25 ppMv). The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed for the essentially complete removal of sulfur compounds. The impact on the overall plant performance was also determined. The total capital requirement for sulfur removal schemes ranged from $59.4/kW to $84.8/kW for the oxygen-blown cases and from $89.5/kW to $133/kW for the air-blown cases. The O and M costs for sulfur removal for 70% plant capacity factor ranged from 0.82 mills/kWh to 2.76 mills/kWh for the oxygen-blown cases and from 1.77 mills/kWh to 4.88 mills/kWh for the air-blown cases. The Selexol process benefitted the most from the addition of COS hydrolysis pretreatment.

  6. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation.

    PubMed

    Chen, Hanbei; Wu, Lifang; Li, Yakui; Meng, Jian; Lin, Ning; Yang, Dianqiang; Zhu, Yemin; Li, Xiaoyong; Li, Minle; Xu, Ye; Wu, Yuchen; Tong, Xuemei; Su, Qing

    2014-09-01

    Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients.

  7. PHOTOCOPY OF EARLY STEREO VIEW OF INTERIOR OF CARPENTERS' HALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF EARLY STEREO VIEW OF INTERIOR OF CARPENTERS' HALL. Date and photographer unknown. Original in Carpenters' Hall - Carpenters' Company Hall, 320 Chestnut Street & Carpenters' Court, Philadelphia, Philadelphia County, PA

  8. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    PubMed

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  9. DESIGN, PROTOTYPE AND MEASUREMENT OF A SINGLE-CELL DEFLECTING CAVITY FOR THE ADVANCED PHOTON SOURCE

    SciTech Connect

    Haipeng Wang, Guangfeng Cheng, Gianluigi Ciovati, Peter Kneisel, Robert Rimmer, Kai Tian, Larry Turlington, Alireza Nassiri, Geoff Waldschmidt

    2009-05-01

    After the design optimization of a squashed elliptical shape, single-cell, superconducting (SC) deflecting cavity at 2.815 GHz, a copper prototype has been bench measured to determine its rf properties and the effectiveness of waveguide damping of parasitic modes [1]. RF cold tests were also performed at 2K on niobium single-cell and two-cell prototype cavities. Details of impedance calculation using wakefiled analysis of the single-cell cavity are shown to meet the strict 200 mA beam stability requirement of the Advanced Photon Source (APS) at Argonne National Lab where a total of 16 single-cell cavities will be divided into two cryomodule. The design of higher-order mode (HOM) waveguide damping, the simulations of the Lorenz force detuning, and the prototype of on-cell damping are presented.

  10. Advanced Materials and Component Development for Lithium-ion Cells for NASA Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2012-01-01

    Human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The National Aeronautics and Space Administration is developing advanced High Energy and Ultra High Energy lithium-ion cells to address these needs. In order to meet the performance goals, advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level. This paper will provide an update on the performance of experimental materials through the completion of two years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.

  11. Multiscale Modeling of Hall Thrusters. Chapter 7: Plume Modeling

    DTIC Science & Technology

    2012-03-06

    NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Justin W. Koo, Ph.D. a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE...public release; distribution unlimited. 20 [28] J. Fife and M. Martinez -Sanchez, “Two-dimensional hybrid particle-in-cell (pic) modeling of hall thrusters...in 24th International Electric Propulsion Conference, Moscow, Russia, pp. 1213–1224, 1995. [29] F. Parra, E. Ahedo, J. Fife, and M. Martinez -Sanchez

  12. Comparison of Hall Thruster Plume Expansion Model with Experimental Data

    DTIC Science & Technology

    2006-05-23

    focus of this study, is a hybrid particle- in-cell ( PIC ) model that tracks particles along an unstructured tetrahedral mesh. * Research Engineer...measurements of the ion current density profile, ion energy distributions, and ion species fraction distributions using a nude Faraday probe, retarding...Vol.37 No.1. 6 Oh, D. and Hastings, D., “Three Dimensional PIC -DSMC Simulations of Hall Thruster Plumes and Analysis for Realistic Spacecraft

  13. Advanced lung adenocarcinomas with ROS1-rearrangement frequently show hepatoid cell

    PubMed Central

    Kong, Mei; Zhou, Jianya; Ding, Wei; Zhou, Jianying

    2016-01-01

    Defining distinctive histologic characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) may help identify cases that merit molecular testing. However, the majority of previous reports have focused on surgical specimens but only limited studies assessed histomorphology of advanced NSCLCs. In order to identify the clinical and histological characteristics of ROS1-rearranged advanced NSCLCs, we examined five hundred sixteen Chinese patients with advanced NSCLCs using ROS1 fluorescence in situ hybridization and real-time polymerase chain reaction and then analyzed for clinical and pathological features. We performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement. 19 tumors were identified with ROS1 rearrangement (3.7% of adenocarcinomas). 16 ROS1+ and 122 ROS1- samples with available medical records and enough tumor cells were included for histological analysis. Compared with ROS1-negative advanced NSCLCs, ROS1-rearranged advanced NSCLCs were associated with a younger age at presentation. ROS1 rearrangements were not significantly associated with sex, smoking history, drinking history and metastatic sites. The most common histological pattern was solid growth (12/16), followed by acinar (4/16) growth. 66.7% cases with solid growth pattern showed hepatoid cytology (8/12) and 75% cases with acinar growth pattern showed a cribriform structure (3/4). 18.8% cases were found to have abundant extracellular mucus or signet-ring cells (3/16). Only one case with solid growth pattern showed psammomatous calcifications. In conclusion, age, hepatoid cytology and cribriform structure are the independent predictors for ROS1-rearranged advanced NSCLCs, recognizing these may be helpful in finding candidates for genomic alterations, especially when available tissue samples are limited. PMID:27708233

  14. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  15. Personalized Combined Modality Therapy for Locally Advanced Non-small Cell Lung Cancer

    PubMed Central

    Kim, D. Nathan; Nam, Taek-Keun; Choe, Kevin S.

    2012-01-01

    Locally advanced non-small cell lung cancer (NSCLC) is a heterogeneous disease, and we have embarked on an era where patients will benefit from individualized therapeutic strategies based on identifiable molecular characteristics of the tumor. The landmark studies demonstrating the importance of molecular characterization of tumors for NSCLC patients, the promising molecular pathways, and the potential molecular targets/agents for treatment of this disease will be reviewed. Understanding these issues will aid in the development of rationally designed clinical trials, so as to determine best means of appropriately incorporating these molecular strategies, to the current standard of radiation and chemotherapy regimens, for the treatment of locally advanced NSCLC. PMID:22802745

  16. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma.

    PubMed

    Doan, Hung Q; Silapunt, Sirunya; Migden, Michael R

    2016-01-01

    Basal cell carcinoma (BCC) is the most common nonmelanoma skin cancer. If left untreated, BCCs can become locally aggressive or even metastasize. Currently available treatments include local destruction, surgery, and radiation. Systemic options for advanced disease are limited. The Hedgehog (Hh) pathway is aberrantly activated in a majority of BCCs and in other cancers. Hh pathway inhibitors are targeted agents that inhibit the aberrant activation of the Hh pathway, with smoothened being a targeted component. Sonidegib is a novel smoothened inhibitor that was recently approved by the US Food and Drug Administration. This review focuses on BCC pathogenesis and the clinical efficacy of sonidegib for the treatment of advanced BCC.

  17. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma

    PubMed Central

    Doan, Hung Q; Silapunt, Sirunya; Migden, Michael R

    2016-01-01

    Basal cell carcinoma (BCC) is the most common nonmelanoma skin cancer. If left untreated, BCCs can become locally aggressive or even metastasize. Currently available treatments include local destruction, surgery, and radiation. Systemic options for advanced disease are limited. The Hedgehog (Hh) pathway is aberrantly activated in a majority of BCCs and in other cancers. Hh pathway inhibitors are targeted agents that inhibit the aberrant activation of the Hh pathway, with smoothened being a targeted component. Sonidegib is a novel smoothened inhibitor that was recently approved by the US Food and Drug Administration. This review focuses on BCC pathogenesis and the clinical efficacy of sonidegib for the treatment of advanced BCC. PMID:27695345

  18. Survival among patients with advanced renal cell carcinoma in the pretargeted versus targeted therapy eras.

    PubMed

    Li, Pengxiang; Wong, Yu-Ning; Armstrong, Katrina; Haas, Naomi; Subedi, Prasun; Davis-Cerone, Margaret; Doshi, Jalpa A

    2016-02-01

    Between December 2005 and October 2009, FDA approved six targeted therapies shown to significantly extend survival for advanced renal cell carcinoma (RCC) patients in clinical trials. This study aimed to examine changes in survival between the pretargeted and targeted therapy periods in advanced RCC patients in a real-world setting. Utilizing the 2000-2010 SEER Research files, a pre-post study design with a contemporaneous comparison group was employed to examine differences in survival outcomes for patients diagnosed with advanced RCC (study group) or advanced prostate cancer (comparison group, for whom no significant treatment innovations happened during this period) across the pretargeted therapy era (2000-2005) and the targeted therapy era (2006-2010). RCC patients diagnosed in the targeted therapy era (N = 6439) showed improved survival compared to those diagnosed in the pretargeted therapy era (N = 7231, hazard ratio (HR) for all-cause death: 0.86, P < 0.01), while the change between the pre-post periods was not significant for advanced prostate cancer patients (HR: 0.97, P = 0.08). Advanced RCC patients had significantly larger improvements in overall survival compared to advanced prostate cancer patients (z = 4.31; P < 0.01). More detailed year-to-year analysis revealed greater survival improvements for RCC in the later years of the posttargeted period. Similar results were seen for cause-specific survival. Subgroup analyses by nephrectomy status, age, and gender showed consistent findings. Patients diagnosed with advanced RCC during the targeted therapy era had better survival outcomes than those diagnosed during the pretargeted therapy era. Future studies should examine the real-world survival improvements directly associated with targeted therapies.

  19. Training Top 10 Hall of Fame

    ERIC Educational Resources Information Center

    Training, 2012

    2012-01-01

    Microsoft Corporation and SCC Soft Computer are the newest inductees into the Training Top 10 Hall of Fame, joining the ranks of the 11 companies named to the hall since its inception in 2008 (Wyeth Pharmaceuticals subsequently was acquired by Pfizer Inc. in 2009). These 11 companies held Top 10 spots in the Training Top 50, Top 100, and now Top…

  20. Hall devices improve electric motor efficiency

    NASA Technical Reports Server (NTRS)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  1. Quantum Hall effect in quantum electrodynamics

    SciTech Connect

    Penin, Alexander A.

    2009-03-15

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.

  2. Azimuthal Spoke Propagation in Hall Effect Thrusters

    DTIC Science & Technology

    2013-08-01

    Approved for public release; distribution unlimited. IEPC-2013- Background Pressure Effects on Krypton Hall Effect Thruster Internal Acceleration...Why are we doing this work? – Continued examination of alternative Hall effect thruster propellants: Krypton – Interest in effects of test...Distribution unlimited 2 Photograph of BHT-600 operating on krypton Long exposure photograph of BHT-600 operating on krypton showing extended plume

  3. 20th Annual Residence Hall Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2009-01-01

    Even in difficult economic times, colleges and universities continue to invest in residence hall construction projects as a way to attract new students and keep existing ones on campus. According to data from "American School & University"'s 20th annual Residence Hall Construction Report, the median new project completed in 2008 was…

  4. 19th Annual Residence Hall Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2008-01-01

    The construction of residence hall facilities at colleges and universities continues to be strong, as institutions scramble to meet the housing needs and varied demands of a growing student population. This article presents data collected from 39 new residence hall projects completed in 2007. According to American School & University's 19th…

  5. Magnetic Field Tailored Annular Hall Thruster with Anode Layer

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Adv Inst of Sci; Tech Team; Korea Institute of Materials Science Collaboration

    2016-09-01

    Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.

  6. Observation of the fractional quantum Hall effect in an oxide

    NASA Astrophysics Data System (ADS)

    Tsukazaki, A.; Akasaka, S.; Nakahara, K.; Ohno, Y.; Ohno, H.; Maryenko, D.; Ohtomo, A.; Kawasaki, M.

    2010-11-01

    The quantum Hall effect arises from the cyclotron motion of charge carriers in two-dimensional systems. However, the ground states related to the integer and fractional quantum Hall effect, respectively, are of entirely different origin. The former can be explained within a single-particle picture; the latter arises from electron correlation effects governed by Coulomb interaction. The prerequisite for the observation of these effects is extremely smooth interfaces of the thin film layers to which the charge carriers are confined. So far, experimental observations of such quantum transport phenomena have been limited to a few material systems based on silicon, III-V compounds and graphene. In ionic materials, the correlation between electrons is expected to be more pronounced than in the conventional heterostructures, owing to a large effective mass of charge carriers. Here we report the observation of the fractional quantum Hall effect in MgZnO/ZnO heterostructures grown by molecular-beam epitaxy, in which the electron mobility exceeds 180,000cm2V-1s-1. Fractional states such as ν=4/3, 5/3 and 8/3 clearly emerge, and the appearance of the ν=2/5 state is indicated. The present study represents a technological advance in oxide electronics that provides opportunities to explore strongly correlated phenomena in quantum transport of dilute carriers.

  7. View of north front and west sides of hall, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north front and west sides of hall, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  8. Interior detail of dispatch boards in main hall, facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of dispatch boards in main hall, facing west - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  9. Pluripotent stem cells for cardiac regeneration: Overview of recent advances & emerging trends

    PubMed Central

    Pawani, Harsha; Bhartiya, Deepa

    2013-01-01

    Cell based regenerative therapy has emerged as one of the most promising options of treatment for patients suffering from heart failure. Various adult stem cells types have undergone extensive clinical trials with limited success which is believed to be more of a cytokine effect rather than cell therapy. Pluripotent human embryonic stem cells (hESCs) have emerged as an attractive candidate stem cell source for obtaining cardiomyocytes (CMs) because of their tremendous capacity for expansion and unquestioned potential to differentiate into CMs. Studies carried out in animal models indicate that ES-derived CMs can partially remuscularize infarcted hearts and improve contractile function; however, the effect was not sustained over long follow up periods due to their limited capacity of cell division in vivo. Thus, the concept of transplanting multipotent cardiovascular progenitors derived from ES cells has emerged since the progenitors retain robust proliferative ability and multipotent nature enabling repopulation of other myocardial elements also in addition to CMs. Transplantation of CMs (progenitors) seeded in biodegradable scaffold and gel based engineered constructs has met with modest success due to issues like cell penetration, nutrient and oxygen availability and inflammation triggered during scaffold degradation inversely affecting the seeded cells. Recently cell sheet based tissue engineering involving culturing cells on ‘intelligent’ polymers has been evolved. Generation of a 3-D pulsatile myocardial tissue has been achieved. However, these advances have to be looked at with cautious optimism as many challenges need to be overcome before using these in clinical practice. PMID:23563370

  10. Pluripotent stem cells for cardiac regeneration: overview of recent advances & emerging trends.

    PubMed

    Pawani, Harsha; Bhartiya, Deepa

    2013-02-01

    Cell based regenerative therapy has emerged as one of the most promising options of treatment for patients suffering from heart failure. Various adult stem cells types have undergone extensive clinical trials with limited success which is believed to be more of a cytokine effect rather than cell therapy. Pluripotent human embryonic stem cells (hESCs) have emerged as an attractive candidate stem cell source for obtaining cardiomyocytes (CMs) because of their tremendous capacity for expansion and unquestioned potential to differentiate into CMs. Studies carried out in animal models indicate that ES-derived CMs can partially remuscularize infarcted hearts and improve contractile function; however, the effect was not sustained over long follow up periods due to their limited capacity of cell division in vivo. Thus, the concept of transplanting multipotent cardiovascular progenitors derived from ES cells has emerged since the progenitors retain robust proliferative ability and multipotent nature enabling repopulation of other myocardial elements also in addition to CMs. Transplantation of CMs (progenitors) seeded in biodegradable scaffold and gel based engineered constructs has met with modest success due to issues like cell penetration, nutrient and oxygen availability and inflammation triggered during scaffold degradation inversely affecting the seeded cells. Recently cell sheet based tissue engineering involving culturing cells on 'intelligent' polymers has been evolved. Generation of a 3-D pulsatile myocardial tissue has been achieved. However, these advances have to be looked at with cautious optimism as many challenges need to be overcome before using these in clinical practice.

  11. Hall magneto-hydrodynamics in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Béthune, W.; Lesur, G.; Ferreira, J.

    2016-12-01

    Protoplanetary discs exhibit large-scale, organised structures. Because they are dense and cold, they should be weakly ionized, and hence concerned by non-ideal plasma effects, such as the Hall effect. We perform numerical simulations of non-stratified Keplerian discs, in the non-ideal magnetohydrodynamic framework. We show that the Hall effect causes self-organisation through three distinct stages. A weak Hall effect enhances turbulent transport. At intermediate strength, it produces magnetized vortices. A strong Hall effect generates axisymmetric zonal flows. These structures may trap dust particles, and thus influence planetary formation. The transport of angular momentum is quenched in the organised state, impugning the relevance of magneto-rotational turbulence as a driving mechanism of accretion in Hall dominated regions.

  12. Flexible Hall sensors based on graphene.

    PubMed

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-04-14

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT(-1) and 79 V AT(-1) were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  13. Flexible Hall sensors based on graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-03-01

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT-1 and 79 V AT-1 were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  14. Following the Path Blazed by Jan Hall

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo

    It was a great pleasure to gather with friends in August 2004 for the symposium honoring Jan Hall and celebrating his 70th birthday, and this book provides a unique opportunity to record some words commemorating Jan's incredible contributions to science and to our lives. At best, my recollections are a faded, myopic snapshot of some events that come to mind after many years of association with Jan. Reflecting on the years that have passed since I first entered Jan's lab, I see that many things have changed, technology has advanced (mostly for the better), the world has evolved in dramatic and significant ways (some good and some not), and I have grown older (but unfortunately not wiser as one might have hoped). Nonetheless, after many years, I find myself still following the path pointed out by Jan's visions and investing most of my productive time and energy working as a scientist trying to get atoms, lasers, electronics, (and the institutional bureaucracy that comes along with them) to work in some kind of harmony…

  15. Evaluation of Low Power Hall Thruster Propulsion

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oleson, Steve; Sankovic, John; Haag, Tom; Semenkin, Alexander; Kim, Vladimir

    1996-01-01

    Hall thruster systems based on the SPT-50 and the TAL D-38 were evaluated and mission studies were performed. The 0.3 kilowatt SPT-50 operated with a specific impulse of 1160 seconds and an efficiency of 0.32. The 0.8 kilowatt D-38 provided a specific impulse above 1700 seconds at an efficiency of 0.5. The D-38 system was shown to offer a 56 kilogram propulsion system mass savings over a 101 kilogram hydrazine monopropellant system designed to perform North-South station keeping maneuvers on board a 430 kilogram geostationary satellite. The SPIT-50 system offered a greater than 50% propulsion system mass reduction in comparison to the chemical system on board a 200 kilogram low Earth orbit spacecraft performing two orbit raises and drag makeup over two years. The performance characteristics of the SPF-50 were experimentally evaluated at a number of operating conditions. The ion current density distribution of this engine was measured. The performance and system mass benefits of advanced systems based on both engines were considered.

  16. [Recent advancements in the treatment of renal cell carcinoma--focus on international guidelines].

    PubMed

    Biró, Krisztina; Küronya, Zsófia

    2010-12-01

    Recent advances in understanding the fundamental biology underlying clear-cell RCC have opened the door to a series of targeted agents, such as tyrosine kinase inhibitors (TKIs) or mTOR inhibitors. These new agents have become the standard of care in managing advanced clear-cell RCC. Choice of initial medical management in patients with metastatic clear-cell RCC should be guided by randomised studies. On the evidence available, the first-line therapy in patients with good- or intermediate-risk mRCC should be either sunitinib or pazopanib, or bevacizumab plus interferon. In selected patients sorafenib is an option, as is high-dose interleukin-2 if performance status is good. In patients with poor prognosis, temsirolimus is recommended. In cytokine refractory patients, sorafenib, when patients have progressed on a tyrosine kinase inhibitor everolimus is the agent of choice. Biró K, Küronya Z. Recent advancements in the treatment of renal cell carcinoma - focus on international guidelines.

  17. System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell

    SciTech Connect

    Hendricks, T.J.; Huang, C.

    1998-07-01

    Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts on the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements.

  18. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    PubMed Central

    Dirk, Brennan S.; Van Nynatten, Logan R.; Dikeakos, Jimmy D.

    2016-01-01

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle. PMID:27775563

  19. Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians

    PubMed Central

    Wang, Yongsheng; Schmid-Bindert, Gerald

    2012-01-01

    Inhibition of epidermal growth factor receptor (EGFR) has become an important target in the treatment of advanced non-small cell lung cancer (NSCLC). Erlotinib and gefitinib, two small molecular agents that target the tyrosine kinase domain of the EGFR, were approved in many countries for the treatment of locally advanced or metastatic NSCLC as a second- or third-line regimen. Since then, randomized trials have evaluated the role of these two targeted agents alone or combined with chemotherapy in maintenance and first-line settings. This review summarizes the results of recent clinical trials with these tyrosine kinase inhibitors, with a focus on erlotinib, as first-line treatment towards a form of personalized medicine aimed at improving clinical outcome in advanced NSCLC. PMID:22229045

  20. Vismodegib: the first drug approved for advanced and metastatic basal cell carcinoma.

    PubMed

    Dubey, A K; Dubey, S; Handu, S S; Qazi, M A

    2013-01-01

    Treatment of basal cell carcinoma (BCC) usually involves surgical interventions and laser ablation, but in locally advanced BCC, which arise either from earlier untreated lesions or from recurrence of aggressive BCC, surgery and radiotherapy are not helpful. Vismodegib, the first oral-targeted therapy for locally advanced and metastatic BCC, unsuitable for surgery or radiotherapy, was recently approved by US Food and Drug Administration (FDA). The drug was under the priority review program of FDA and was approved on the basis of promising results of phase II trial. Vismodegib acts by targeting the hedgehog pathway, which is activated abnormally in most BCCs. Approval of vismodegib is a big step ahead in the treatment of advanced BCC, where there was no other effective drug therapy till now.

  1. Treatment of advanced squamous cell carcinoma of the lung: a review

    PubMed Central

    Mileham, Kathryn F.; Bonomi, Philip D.; Batus, Marta; Fidler, Mary J.

    2015-01-01

    Lung cancer remains the single deadliest cancer both in the US and worldwide. The great majority of squamous cell carcinoma (SCC) is attributed to cigarette smoking, which fortunately is declining alongside cancer incidence. While we have been at a therapeutic plateau for advanced squamous cell lung cancer patients for several decades, recent observations suggest that we are on the verge of seeing incremental survival improvements for this relatively large group of patients. Current studies have confirmed an expanding role for immunotherapy [including programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibition], a potential opportunity for VEGFR inhibition, and even future targets in fibroblast growth factor receptor (FGFR) and PI3K-AKT that collectively should improve survival as well as quality of life for those affected by squamous cell lung cancer over the next decade. PMID:26629421

  2. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  3. ADVANCED CHINESE. YALE LINGUISTIC SERIES.

    ERIC Educational Resources Information Center

    DE FRANCIS, JOHN; AND OTHERS

    THE THIRD IN A SERIES OF TEXTS PREPARED AT SETON HALL UNIVERSITY, THIS ADVANCED TEXT PRESUPPOSES MASTERY OF "BEGINNING CHINESE,""BEGINNING CHINESE READER," AND LESSONS 1 TO 6 OF "INTERMEDIATE CHINESE READER." A COMPANION VOLUME TO THIS ONE, "CHARACTER TEXT FOR ADVANCED CHINESE," PROVIDES READING PRACTICE AND…

  4. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1988-01-01

    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  5. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  6. Single String Integration Test of the High Voltage Hall Accelerator System

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas W.; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Shastry, Rohit

    2013-01-01

    HiVHAc Task Objectives:-Develop and demonstrate low-power, long-life Hall thruster technology to enable cost effective EP for Discovery-class missions-Advance the TRL level of potential power processing units and xenon feed systems to integrate with the HiVHAc thruster.

  7. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC).

    PubMed

    Kumarakulasinghe, Nesaretnam Barr; van Zanwijk, Nico; Soo, Ross A

    2015-04-01

    Historically, patients with advanced stage non-small cell lung cancer (NSCLC) were treated with chemotherapy alone, but a therapeutic plateau has been reached. Advances in the understanding of molecular genetics have led to the recognition of multiple molecularly distinct subsets of NSCLC. This in turn has led to the development of rationally directed molecular targeted therapy, leading to improved clinical outcomes. Tumour genotyping for EGFR mutations and ALK rearrangement has meant chemotherapy is no longer given automatically as first-line treatment but reserved for when patients do not have a 'druggable' driver oncogene. In this review, we will address the current status of clinically relevant driver mutations and emerging new molecular subsets in lung adenocarcinoma and squamous cell carcinoma, and the role of targeted therapy and mechanisms of acquired resistance to targeted therapy.

  8. Potential role of immunotherapy in advanced non-small-cell lung cancer

    PubMed Central

    de Mello, Ramon Andrade; Veloso, Ana Flávia; Esrom Catarina, Paulo; Nadine, Sara; Antoniou, Georgios

    2017-01-01

    Immuno checkpoint inhibitors have ushered in a new era with respect to the treatment of advanced non-small-cell lung cancer. Many patients are not suitable for treatment with epidermal growth factor receptor tyrosine kinase inhibitors (eg, gefitinib, erlotinib, and afatinib) or with anaplastic lymphoma kinase inhibitors (eg, crizotinib and ceritinib). As a result, anti-PD-1/PD-L1 and CTLA-4 inhibitors may play a novel role in the improvement of outcomes in a metastatic setting. The regulation of immune surveillance, immunoediting, and immunoescape mechanisms may play an interesting role in this regard either alone or in combination with current drugs. Here, we discuss advances in immunotherapy for the treatment of metastatic non-small-cell lung cancer as well as future perspectives within this framework. PMID:28031719

  9. The quantum Hall effect helicity

    SciTech Connect

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  10. Advances in sickle cell disease treatment: from drug discovery until the patient monitoring.

    PubMed

    dos Santos, Jean Leandro; Lanaro, Carolina; Chin, Chung Man

    2011-04-01

    Sickle cell disease (SCD) is one of the most prevalent hematological diseases in the world. Despite the immense progress in molecular knowledge about SCD in last years few therapeutical sources are currently available. Nowadays the treatment is performed mainly with drugs such as hydroxyurea or other fetal hemoglobin inducers and chelating agents. This review summarizes current knowledge about the treatment and the advancements in drug design in order to discover more effective and safe drugs. Patient monitoring methods in SCD are also discussed.

  11. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis.

    PubMed

    Kong, Xiang; Wang, Guo-Dong; Ma, Ming-Zhe; Deng, Ru-Yuan; Guo, Li-Qun; Zhang, Jun-Xiu; Yang, Jie-Ren; Su, Qing

    2015-06-09

    Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67(phox) and p22(phox), and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  12. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    PubMed Central

    Kong, Xiang; Wang, Guo-Dong; Ma, Ming-Zhe; Deng, Ru-Yuan; Guo, Li-Qun; Zhang, Jun-Xiu; Yang, Jie-Ren; Su, Qing

    2015-01-01

    Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress. PMID:26066015

  13. Dynamic assessment of Amyloid oligomers - cell membrane interaction by advanced impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; David, S.; Polonschii, C.; Bratu, D.; Gheorghiu, E.

    2013-04-01

    The amyloid β (Aβ) peptides are believed to be pivotal in Alzheimer's disease (AD) pathogenesis and onset of vascular dysfunction. Recent studies indicate that Aβ1-42 treatment influences the expression of tight junction protein complexes, stress fibre formation, disruption and aggregation of actin filaments and cellular gap formation. Aiming for functional characterization of model cells upon Aβ1-42 treatment, we deployed an advanced Electric Cell-substrate Impedance Sensing for monitoring cell evolution. A precision Impedance Analyzer with a multiplexing module developed in house was used for recording individual electrode sets in the 40 Hz - 100 KHz frequency range. In a step forward from the classical ECIS assays, we report on a novel data analysis algorithm that enables access to cellular and paracellular electrical parameters and cell surface interaction with fully developed cell monolayers. The evolution of the impedance at selected frequencies provides evidence for a dual effect of Aβ42 exposure, at both paracellular permeability and cell adherence level, with intricate dynamics that open up new perspectives on Aβ1-42 oligomers - cell membrane interaction. Validation of electrical impedance assays of the amyloid fibrils effect on cell membrane structure is achieved by both AFM analysis and Surface Plasmon Resonance studies. The capabilities of this noninvasive, real time platform for cell analysis in a wider applicative context are outlined.

  14. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation.

    PubMed

    Rokstad, Anne Mari A; Lacík, Igor; de Vos, Paul; Strand, Berit L

    2014-04-01

    Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.

  15. Hall conductance in graphene with point defects.

    PubMed

    İslamoğlu, S; Oktel, M Ö; Gülseren, O

    2013-02-06

    We investigate the Hall conductance of graphene with point defects within the Kubo formalism, which allows us to calculate the Hall conductance without constraining the Fermi energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian, we recover both the usual and the anomalous integer quantum Hall effects depending on the proximity to the Dirac points. We investigate the effect of point defects on Hall conduction by considering a dilute but regular array of point defects incorporated into the graphene lattice. We extend our calculations to include next nearest neighbor hopping, which breaks the bipartite symmetry of the lattice. We find that impurity atoms which are weakly coupled to the rest of the lattice result in gradual disappearance of the high conductance value plateaus. For such impurities, especially for vacancies which are decoupled from the lattice, strong modification of the Hall conductance occurs near the E = 0 eV line, as impurity states are highly localized. In contrast, if the impurities are strongly coupled, they create additional Hall conductance plateaus at the extremum values of the spectrum, signifying separate impurity bands. Hall conductance values within the original spectrum are not strongly modified.

  16. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy

    PubMed Central

    Otero-Viñas, Marta; Falanga, Vincent

    2016-01-01

    Significance: Almost 7 million Americans have chronic cutaneous wounds and billions of dollars are spent on their treatment. The number of patients with nonhealing wounds keeps increasing worldwide due to an ever-aging population, increasing number of obese and diabetic patients, and cardiovascular disease. Recent Advances: Advanced treatments for difficult wounds are needed. Therapy with mesenchymal stem cells (MSCs) is attractive due to their differentiating potential, their immunomodulating properties, and their paracrine effects. Critical Issues: New technologies (including growth factors and skin substitutes) are now widely used for stimulating wound healing. However, in spite of these advances, the percentage of complete wound closure in most clinical situations is around 50–60%. Moreover, there is a high rate of wound recurrence. Future Directions: Recently, it has been demonstrated that MSCs speed up wound healing by decreasing inflammation, by promoting angiogenesis, and by decreasing scarring. However, there are some potential limitations to successful MSC therapy. These limitations include the need to improve cell delivery methods, cell viability, heterogeneity in MSC preparations, and suboptimal wound bed preparation. Further large, controlled clinical trials are needed to establish the safety of MSCs before widespread clinical application. PMID:27076993

  17. Phase 1 Study of Erlotinib Plus Radiation Therapy in Patients With Advanced Cutaneous Squamous Cell Carcinoma

    SciTech Connect

    Heath, C. Hope; Deep, Nicholas L.; Nabell, Lisle; Carroll, William R.; Desmond, Renee; Clemons, Lisa; Spencer, Sharon; Magnuson, J. Scott; Rosenthal, Eben L.

    2013-04-01

    Purpose: To assess the toxicity profile of erlotinib therapy combined with postoperative adjuvant radiation therapy in patients with advanced cutaneous squamous cell carcinoma. Methods and Materials: This was a single-arm, prospective, phase 1 open-label study of erlotinib with radiation therapy to treat 15 patients with advanced cutaneous head-and-neck squamous cell carcinoma. Toxicity data were summarized, and survival was analyzed with the Kaplan-Meier method. Results: The majority of patients were male (87%) and presented with T4 disease (93%). The most common toxicity attributed to erlotinib was a grade 2-3 dermatologic reaction occurring in 100% of the patients, followed by mucositis (87%). Diarrhea occurred in 20% of the patients. The 2-year recurrence rate was 26.7%, and mean time to cancer recurrence was 10.5 months. Two-year overall survival was 65%, and disease-free survival was 60%. Conclusions: Erlotinib and radiation therapy had an acceptable toxicity profile in patients with advanced cutaneous squamous cell carcinoma. The disease-free survival in this cohort was comparable to that in historical controls.

  18. Advances in the theory and application of BSF cells. [including electrical resistivity and photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.

  19. Bench to batch: advances in plant cell culture for producing useful products.

    PubMed

    Weathers, Pamela J; Towler, Melissa J; Xu, Jianfeng

    2010-02-01

    Despite significant efforts over nearly 30 years, only a few products produced by in vitro plant cultures have been commercialized. Some new advances in culture methods and metabolic biochemistry have improved the useful potential of plant cell cultures. This review will provide references to recent relevant reviews along with a critical analysis of the latest improvements in plant cell culture, co-cultures, and disposable reactors for production of small secondary product molecules, transgenic proteins, and other products. Some case studies for specific products or production systems are used to illustrate principles.

  20. Recent advances and current issues in single-cell sequencing of tumors.

    PubMed

    Sun, Hai-Jian; Chen, Jian; Ni, Bing; Yang, Xia; Wu, Yu-Zhang

    2015-08-28

    Intratumoral heterogeneity is a recently recognized but important feature of cancer that underlies the various biocharacteristics of cancer tissues. The advent of next-generation sequencing technologies has facilitated large scale capture of genomic data, while the recent development of single-cell sequencing has allowed for more in-depth studies into the complex molecular mechanisms of intratumoral heterogeneity. In this review, the recent advances and current challenges in single-cell sequencing methodologies are discussed, highlighting the potential power of these data to provide insights into oncological processes, from tumorigenesis through progression to metastasis and therapy resistance.

  1. Screening system of blocking agents of the receptor for advanced glycation endproducts in cells using fluorescence.

    PubMed

    Jung, Dong Ho; Kim, Young Sook; Kim, Jin Sook

    2012-01-01

    Activation of the receptor for advanced glycation endproducts (RAGE) triggers cellular responses implicated in the pathogenesis of diabetic complications; blockade of RAGE has been shown to inhibit the development of diabetic complications. To develop a screening system to identify novel disruptors of advanced glycation endproducts (AGE)-RAGE binding, we used an AGE-RAGE binding system in RAGE-overexpressing cells; test compounds were screened using this system. To construct human RAGE-overexpressing cells, mouse mesangial cells (MMCs) were stably transfected with the pcDNA-human RAGE (hRAGE) vector and selected under 1 mg/mL gentamicin (G418). RAGE expression in hRAGE-overexpressing MMCs was analyzed by Western blotting with specific RAGE antibody. To identify novel disruptors of AGE-RAGE binding, 50 single compounds and AGE-bovine serum albumin (BSA)-Alexa 488 (AGE-BSA labeled with Alexa 488) were treated to the hRAGE-overexpressing MMCs. Nonbinding AGE-BSA-Alexa 488 was washed and fluorescence measured by microtiter plate reader (excitation wavelength, 485 nm; emission wavelength, 528 nm). In hRAGE-overexpressing cells, only treatment with AGE-BSA-Alexa 488 significantly increased fluorescence intensity in a dose-dependent manner. Of 50 compounds tested, genistein disrupted AGE-RAGE binding in a dose-dependent manner. This AGE-RAGE binding system using AGE-BSA-Alexa 488 in hRAGE-overexpressing cells was suitable for screening of agents that disrupt AGE-hRAGE binding.

  2. Initial performance of advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1985-01-01

    Advanced designs for individual pressure vessel nickel hydrogen cells were conceived which should improve the life cycle at deep depths of discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) the use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  3. Initial performance of advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.

    1986-01-01

    Advanced designs for individual pressure vessel nickel-hydrogen cells have been conceived which should improve the cycle life at deep depths-of-discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  4. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  5. Recent advances in cardiac regeneration: Stem cell, biomaterial and growth factors.

    PubMed

    Cheraghi, Mostafa; Namdari, Mehrdad; Negahdari, Babak; Eatemadi, Ali

    2017-03-01

    Myocardial infarction has been reported to be responsible for about 7.3 million deaths each year globally. Present treatments for myocardial infarction have been more palliative rather than curative. Over the past few years, stem cells have demonstrated its potency in regenerating damaged cardiac tissue, especially after myocardial infarction. However, limited short half-life of the protein and cell therapy and low transplanted cell survival rate as demonstrated via several clinical trials have lead to development of more potent and novel delivery systems like biomaterial delivery system and the use of various growth factors. In this review, we will be enumerating and discussing the recent advances in cardiac regeneration with focus on stem cell, biomaterial and growth factors.

  6. Direct Drive for Low Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2005-01-01

    Due to recent studies, NASA has initiated the development of a low power Hall thruster for discovery class missions. The potential advantages of a low power Hall thruster is primarily due to its high efficiency operation at low power and its lower complexity compared to ion engines. Direct drive is another method of reducing the complexity of a Hall thruster system while improving its efficiency. The technical challenges associated with this technology are reported. Additionally, the benefits of this technology are discussed based on parametric studies and mission analysis.

  7. Joule heating in spin Hall geometry

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2016-07-01

    The theoretical formula for the entropy production rate in the presence of spin current is derived using the spin-dependent transport equation and thermodynamics. This theory is applicable regardless of the source of the spin current, for example, an electric field, a temperature gradient, or the Hall effect. It reproduces the result in a previous work on the dissipation formula when the relaxation time approximation is applied to the spin relaxation rate. By using the developed theory, it is found that the dissipation in the spin Hall geometry has a contribution proportional to the square of the spin Hall angle.

  8. Chiral Thermoelectrics with Quantum Hall Edge States

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2015-04-01

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  9. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  10. Piezo Voltage Controlled Planar Hall Effect Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  11. Submicrometer hall sensors for superparamagnetic nanoparticle detection.

    SciTech Connect

    Mihajlovic, G.; Xiong, P.; von Molnar, S.; Field, M.; Sullivan, G. J.; Ohtani, K.; Ohno, H.; Materials Science Division; Florida State Univ.; Teledyne Scientific Co. LLC

    2007-06-01

    Submicrometer Hall sensors, with Hall cross width of {approx}250 nm, were fabricated from InAs/AlSb quantum well semiconductor heterostructures. The room-temperature device characteristics were examined by experimental Hall effect and electronic noise measurements combined with analytical calculations. The noise-equivalent magnetic moment resolution of the order of 104muB/radicHz was obtained at frequencies above {approx}1 kHz. We show that the devices can achieve single superparamagnetic nanoparticle detection and thus be employed in experiments involving single magnetically labeled biomolecule detection.

  12. Chiral thermoelectrics with quantum Hall edge states.

    PubMed

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N

    2015-04-10

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  13. Integer Quantum Hall Effect in Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Escoffier, W.; Poumirol, J. M.; Faugeras, C.; Arovas, D. P.; Fogler, M. M.; Guinea, F.; Roche, S.; Goiran, M.; Raquet, B.

    2011-09-01

    By using high-magnetic fields (up to 60 T), we observe compelling evidence of the integer quantum Hall effect in trilayer graphene. The magnetotransport fingerprints are similar to those of the graphene monolayer, except for the absence of a plateau at a filling factor of ν=2. At a very low filling factor, the Hall resistance vanishes due to the presence of mixed electron and hole carriers induced by disorder. The measured Hall resistivity plateaus are well reproduced theoretically, using a self-consistent Hartree calculations of the Landau levels and assuming an ABC stacking order of the three layers.

  14. Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays

    PubMed Central

    Kim, Do Hyun; Kim, Moon Il; Park, Hyun Gyu

    2015-01-01

    Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes. PMID:26436087

  15. Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system

    NASA Astrophysics Data System (ADS)

    Janssen, T. J. B. M.; Rozhko, S.; Antonov, I.; Tzalenchuk, A.; Williams, J. M.; Melhem, Z.; He, H.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.

    2015-09-01

    We demonstrate quantum Hall resistance measurements with metrological accuracy in a small cryogen-free system operating at a temperature of around 3.8 K and magnetic fields below 5 T. Operating this system requires little experimental knowledge or laboratory infrastructure, thereby greatly advancing the proliferation of primary quantum standards for precision electrical metrology. This significant advance in technology has come about as a result of the unique properties of epitaxial graphene on SiC.

  16. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    NASA Astrophysics Data System (ADS)

    Cosnier, Serge; Gross, Andrew J.; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  17. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy.

    PubMed

    Park, Geon-Tae; Choi, Kyung-Chul

    2016-09-06

    The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field.

  18. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS

    SciTech Connect

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

  19. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    SciTech Connect

    Zhou Yijun . E-mail: zhou-yijun@hotmail.com; Wang Jiahe; Zhang Jin

    2006-06-02

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-{kappa}B, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-{kappa}B, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.

  20. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  1. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy

    PubMed Central

    Park, Geon-Tae; Choi, Kyung-Chul

    2016-01-01

    The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field. PMID:27494901

  2. CPV module design optimization for advanced multi-junction solar cell concepts

    NASA Astrophysics Data System (ADS)

    Steiner, Marc; Kiefel, Peter; Siefer, Gerald; Wiesenfarth, Maike; Dimroth, Frank; Krause, Rainer; Gombert, Andreas; Bett, Andreas W.

    2015-09-01

    A network model for multi-junction solar cells has been combined with ray tracing and finite element simulations of a Fresnel lens in order to interpret experimentally derived measurement results. This combined model reveals a good agreement between simulation and measurement for advanced four-junction solar cells under a Fresnel lens when the cell-to-lens distance was varied. Thus, the effect of fill factor drop caused by distributed series resistance losses due to chromatic aberration is well described by this model. Eventually, this model is used to calculate I-V characteristics of a four-junction cell, as well as of a upright metamorphic and lattice-matched triple-junction solar cell under the illumination profile of a Fresnel lens. A significant fill factor drop at distinct cell-to-lens distances was found for all three investigated solar cell types. In this work we discuss how this fill factor drop can be avoided. It is shown that already a halving of the sheet resistance within one of the lateral conduction layer in the solar cell increases the module efficiency significantly.

  3. Performance Characterization of the Air Force Transformational Satellite 12 kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas W.; Smith, Timothy; Herman, Daniel; Huang, Wensheng; Shastry, Rohit; Peterson, Peter; Mathers, Alex

    2013-01-01

    The STMD GCD ISP project is tasked with developing, maturing, and testing enabling human exploration propulsion requirements and potential designs for advanced high-energy, in-space propulsion systems to support deep-space human exploration and reduce travel time between Earth's orbit and future destinations for human activity. High-power Hall propulsion systems have been identified as enabling technologies and have been the focus of the activities at NASA Glenn-In-house effort to evaluate performance and interrogate operation of NASA designed and manufactured Hall thrusters. Evaluate existing high TRL EP devices that may be suitable for implementation in SEP TDM.

  4. Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W.; Glazman, Leonid I.; von Oppen, Felix

    2016-12-01

    We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2 π . This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8 π -periodic (or Z4) fractional Josephson effect in the context of recent experiments.

  5. Advances in the theory and application of BSF cells. [Back Surface Field solar cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    A study to determine the influence of fabrication processes and bulk material properties on the behavior of back surface field (BSF) cells is reported. It is concluded that a photovoltage is generated at the p(+), p back junction of the cell. The concept of majority carrier collection is proposed as a possible mechanism for this generation. Advantages accruing to the advent of BSF cells are outlined.

  6. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  7. Eligibility of patients with advanced non-small cell lung cancer for phase III chemotherapy trials

    PubMed Central

    2009-01-01

    Background Evidence that chemotherapy improves survival and quality of life in patients with stage IIIB & IV non small cell lung cancer (NSCLC) is based on large randomized controlled trials. The purpose of this study was to determine eligibility of patients with advanced NSCLC for major chemotherapy trials. Methods Physicians treating stage IIIB/IV NSCLC at Sydney Cancer Centre assessed patient eligibility for the E1594, SWOG9509 and TAX326 trials for patients presenting from October 2001 to December 2002. A review of the centre's registry was used to obtain missing data. Results 199 patients with advanced NSCLC were registered during the 14-month period. Characteristics of 100 patients were defined prospectively, 85 retrospectively: 77% males, median age 68 (range 32–88), 64% stage IV disease. Only 35% met trial eligibility for E1594 and 28% for SWOG9509 and TAX326. Common reasons for ineligibility were: co-morbidities 75(40%); ECOG Performance Status ≥2 72(39%); symptomatic brain metastasis 15(8%); and previous cancers 21(11%). Many patients were ineligible by more than one criterion. Conclusion The majority of patients with advanced NSCLC were ineligible for the large chemotherapy trials. The applicability of trial results to advanced lung cancer populations may be limited. Future trials should be conducted in a more representative population. PMID:19402889

  8. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  9. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options – role of smoothened inhibitors

    PubMed Central

    Fecher, Leslie A; Sharfman, William H

    2015-01-01

    Cutaneous basal cell carcinoma (BCC) is the most common human cancer and its incidence is rising worldwide. Ultraviolet radiation exposure, including tanning bed use, as well as host factors play a role in its development. The majority of cases are treated and cured with local therapies including surgery. Yet, the health care costs of diagnosis and treatment of BCCs in the US is substantial. In the United States, the cost of nonmelanoma skin cancer care in the Medicare population is estimated to be US$426 million per year. While rare, locally advanced BCCs that can no longer be controlled with surgery and/or radiation, and metastatic BCCs do occur and can be associated with significant morbidity and mortality. Vismodegib (GDC-0449), a smoothened inhibitor targeted at the hedgehog pathway, is the first US Food and Drug Association (FDA)-approved agent in the treatment of locally advanced, unresectable, and metastatic BCCs. This class of agents appears to be changing the survival rates in advanced BCC patients, but appropriate patient selection and monitoring are important. Multidisciplinary assessments are essential for the optimal care and management of these patients. For some patients with locally advanced BCC, treatment with a hedgehog inhibitor may eliminate the need for an excessively disfiguring or morbid surgery. PMID:26604681

  10. Challenges and new horizons in the management of advanced basal cell carcinoma: a UK perspective

    PubMed Central

    Lear, J T; Corner, C; Dziewulski, P; Fife, K; Ross, G L; Varma, S; Harwood, C A

    2014-01-01

    Basal cell carcinoma (BCC) is a common malignancy with a good prognosis in the majority of cases. However, some BCC patients develop a more advanced disease that poses significant management challenges. Such cases include locally advanced, recurrent or metastatic BCC, or tumours that occur in anatomical sites where surgical treatment would result in significant deformity. Until recently, treatment options for these patients have been limited, but increased understanding of the molecular basis of BCC has enabled potential therapies, such as hedgehog signalling pathway inhibitors, to be developed. A clear definition of advanced BCC as a distinct disease entity and formal management guidelines have not previously been published, presumably because of the rarity, heterogeneity and lack of treatment options available for the disease. Here we provide a UK perspective from a multidisciplinary group of experts involved in the treatment of complex cases of BCC, addressing the key challenges associated with the perceived definition and management of the disease. With new treatments on the horizon, we further propose a definition for advanced BCC that may be used as a guide for healthcare professionals involved in disease diagnosis and management. PMID:25211660

  11. Full potential of radial junction Si thin film solar cells with advanced junction materials and design

    NASA Astrophysics Data System (ADS)

    Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-07-01

    Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.

  12. The atypical cadherin Flamingo is required for sensory axon advance beyond intermediate target cells.

    PubMed

    Steinel, Martin C; Whitington, Paul M

    2009-03-15

    The Drosophila atypical cadherin Flamingo plays key roles in a number of developmental processes. We have used the sensory nervous system of the Drosophila embryo to shed light on the mechanism by which Flamingo regulates axon growth. flamingo loss of function mutants display a highly penetrant sensory axon stall phenotype. The location of these axon stalls is stereotypic and corresponds to the position of intermediate target cells, with which sensory axons associate during normal development. This suggests that Flamingo mediates an interaction between the sensory neuron growth cones and these intermediate targets, which is required for continued axon advance. Mutant rescue experiments show that Flamingo expression is required only in sensory neurons for normal axon growth. The flamingo mutant phenotype can be partially rescued by expressing a Flamingo construct lacking most of the extracellular domain, suggesting that regulation of sensory axon advance by Flamingo does not absolutely depend upon a homophilic Flamingo-Flamingo interaction or its ability to mediate cell-cell adhesion. Loss of function mutants for a number of key genes that act together with Flamingo in the planar cell polarity pathway do not display the highly penetrant stalling phenotype seen in flamingo mutants.

  13. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    NASA Astrophysics Data System (ADS)

    1994-05-01

    This project has successfully advanced the technology for MSOFC's for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-sq cm per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  14. Observation of the magnon Hall effect.

    PubMed

    Onose, Y; Ideue, T; Katsura, H; Shiomi, Y; Nagaosa, N; Tokura, Y

    2010-07-16

    The Hall effect usually occurs in conductors when the Lorentz force acts on a charge current in the presence of a perpendicular magnetic field. Neutral quasi-particles such as phonons and spins can, however, carry heat current and potentially exhibit the thermal Hall effect without resorting to the Lorentz force. We report experimental evidence for the anomalous thermal Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore lattice structure. Our theoretical analysis indicates that the propagation of the spin waves is influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector potential, much as in the intrinsic anomalous Hall effect in metallic ferromagnets.

  15. Hall Opens Doors to Astronaut Heroes

    NASA Video Gallery

    Space shuttle astronauts Bonnie Dunbar, Curt Brown and Eileen Collins joined an elite group of American space heroes as they were inducted into the U.S. Astronaut Hall of Fame on April 20, during a...

  16. Quantum Hall effect in momentum space

    NASA Astrophysics Data System (ADS)

    Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-05-01

    We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.

  17. Hall effect degradation of rail gun performance

    NASA Astrophysics Data System (ADS)

    Witalis, E. A.; Gunnarsson, Patrik

    1993-01-01

    The paper discusses the Hall effect and shows it to be significant in the low-density and high-field trailing part of a plasma armature. Without the Hall effect a simple armature model is derived. It exhibits properties expected from classical MHD theory and shows that the purely relativistic electric charge buildup on the rails is a fundamental gun property, leading to V(breech) = 1.5 V(muzzle). The mathematics involved in accounting for Hall effect phenomena is described. These are of two types: the Hall-skewing of the armature current and the superimposed plasma flow rotation. For decreasing gun current the two effects efficiently combine to eject armature plasma rearwards, thus creating conditions for arc separation and parasitic arcs.

  18. Success of Hall technique crowns questioned.

    PubMed

    Nainar, S M Hashim

    2012-01-01

    Hall technique is a method of providing stainless steel crowns for primary molars without tooth preparation and requires no local anesthesia. Literature review showed inconclusive evidence and therefore this technique should not be used in clinical practice.

  19. Prognostic factors of advanced stage non-small-cell lung cancer.

    PubMed

    Ben Amar, Jihen; Ben Safta, Boutheina; Zaibi, Haifa; Dhahri, Besma; Baccar, Mohamed Ali; Azzabi, Saloua

    2016-05-01

    Background Lung cancer is the main cause of death from cancer in the world. The 5-year survival is about 15%. Despite the progress of medicine the mortality rate decreased only marginally. This poor prognosis is due to late diagnosis. Aim To evaluate overall survival and prognostic factors in patients locally advanced or metastatic non small cell lung cancer (NSCLC). Methods Retrospective study including 180 patients with non-small cell lung cancer hospitalized in the department of Charles Nicolle Hospital of Tunis between January 2007 and December 2014. Results The mean age was 61.5 years with a male predominance (93.3%). The median overall survival was 6 months. The poor prognostic factors were the performans status (PS) and early delays of management (<30 days). The factors that improve survival were surgical treatment and delays of management more than 45 days.  Conclusion The prognostic factors in locally advanced and metastatic NSLC in our patient were: PS, management delay and treatment. These factors should be considered in management of patient with advanced stage NSCLC.

  20. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone

    PubMed Central

    Borkowska, Aneta; Goryń, Tomasz; Pieńkowski, Andrzej; Wągrodzki, Michał; Jagiełło-Wieczorek, Ewelina; Rogala, Paweł; Szacht, Milena; Rutkowski, Piotr

    2016-01-01

    Giant cell tumor of bone (GCTB) is an osteolytic, locally aggressive tumor that rarely metastasizes and typically occurs in the bones. At present, the primary treatment for GCTB is curettage with local adjuvants. Giant cells express receptor activator of nuclear factor-κB ligand (RANKL). Denosumab, a RANKL inhibitor appears to present an effective therapeutic option in advanced cases of GCTB. The aim of the present study was to confirm the efficacy of denosumab in large group of patients with locally advanced GCTB. A total of 35 patients with histologically confirmed GCTB that were treated with denosumab with no participation in clinical trials between May 2013 and September 2015 were included in the present study. Denosumab treatment was administered until complete tumor resection was feasible or tumor progression or unacceptable toxicity had occurred. The mean denosumab treatment duration was 7.4 months. A total of 17 patients received surgery following denosumab treatment: 11 patients underwent wide en bloc resection with prosthesis implantation in 10 cases and 6 patients were treated with intralesional curettage. Tumor progression was observed in 2 patients that underwent intralesional curettage without prosthesis implantation. In addition, tumor progression was observed during denosumab treatment in 2 patients that had previously undergone radiotherapy. The overall 1-year progression-free survival rate was 92.8%. Thus, for patients with advanced, unresectable, progressive or symptomatic pretreated GCTB, denosumab provides a therapeutic option not previously available, which has become the standard therapy in multidisciplinary management of GCTB. PMID:28101196

  1. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone.

    PubMed

    Borkowska, Aneta; Goryń, Tomasz; Pieńkowski, Andrzej; Wągrodzki, Michał; Jagiełło-Wieczorek, Ewelina; Rogala, Paweł; Szacht, Milena; Rutkowski, Piotr

    2016-12-01

    Giant cell tumor of bone (GCTB) is an osteolytic, locally aggressive tumor that rarely metastasizes and typically occurs in the bones. At present, the primary treatment for GCTB is curettage with local adjuvants. Giant cells express receptor activator of nuclear factor-κB ligand (RANKL). Denosumab, a RANKL inhibitor appears to present an effective therapeutic option in advanced cases of GCTB. The aim of the present study was to confirm the efficacy of denosumab in large group of patients with locally advanced GCTB. A total of 35 patients with histologically confirmed GCTB that were treated with denosumab with no participation in clinical trials between May 2013 and September 2015 were included in the present study. Denosumab treatment was administered until complete tumor resection was feasible or tumor progression or unacceptable toxicity had occurred. The mean denosumab treatment duration was 7.4 months. A total of 17 patients received surgery following denosumab treatment: 11 patients underwent wide en bloc resection with prosthesis implantation in 10 cases and 6 patients were treated with intralesional curettage. Tumor progression was observed in 2 patients that underwent intralesional curettage without prosthesis implantation. In addition, tumor progression was observed during denosumab treatment in 2 patients that had previously undergone radiotherapy. The overall 1-year progression-free survival rate was 92.8%. Thus, for patients with advanced, unresectable, progressive or symptomatic pretreated GCTB, denosumab provides a therapeutic option not previously available, which has become the standard therapy in multidisciplinary management of GCTB.

  2. Advanced Dependent Pressure Vessel (DPV) nickel-hydrogen spacecraft cell and battery design

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Wright, Doug; Repplinger, Ron

    1995-01-01

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH2) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. Individual pressure vessel (IPV) NiH2 batteries are currently flying on more than 70 Earth orbital satellites and have accumulated more than 140,000,000 cell-hours in actual spacecraft operation. The limitations of standard NiH2 IPV flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher specific energy and reduced cost, while retaining the established IPV NiH2 technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The internal electrode stack is a prismatic flat-plate arrangement. The flat individual cell pressure vessel provides a maximum direct thermal path for removing heat from the electrode stack. The cell geometry also minimizes multiple-cell battery packaging constraints by using an established end-plateltie-rod battery design. A major design advantage is that the battery support structure is efficiently required to restrain only the force applied to a portion of the end cell. As the cells are stacked in series to achieve the desired system voltage, this increment of the total battery weight becomes small. The geometry of the DPV cell promotes compact, minimum volume packaging and places all cell terminals along the length of the battery. The resulting ability to minimize intercell wiring offers additional design simplicity and significant weight savings. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks. Cell and battery level design issues will be addressed including mechanical, electrical and thermal design aspects. A design performance analysis will be presented at both

  3. 75 FR 433 - Notice of Intent to Repatriate a Cultural Item: Seton Hall University Museum, Seton Hall...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Cultural Item: Seton Hall University Museum, Seton Hall University, South Orange, NJ AGENCY: National Park... possession of the Seton Hall University Museum, Seton Hall University, South Orange, NJ, that meets the... University Museum purchased it from Mr. Tarrant in 1962 or 1963. Written evidence of Haudenosaunee...

  4. Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013.

    PubMed

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P; Kirshenbaum, Lorrie; Blaxall, Burns C; Terzic, Andre; Hall, Jennifer L

    2014-07-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, preclinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multimodality imaging, and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context.

  5. Pluripotent stem cell derivation and differentiation toward cardiac muscle: novel techniques and advances in patent literature.

    PubMed

    Quattrocelli, Mattia; Thorrez, Lieven; Sampaolesi, Maurilio

    2013-04-01

    Pluripotent stem cells hold unprecedented potential for regenerative medicine, disease modeling and drug screening. Embryonic stem cells (ESCs), standard model for pluripotency studies, have been recently flanked by induced pluripotent stem cells (iPSCs). iPSCs are obtained from somatic cells via epigenetic and transcriptional reprogramming, overcoming ESC-related ethical issues and enabling the possibility of donor-matching pluripotent cell lines. Since the European Court of Justice banned patents involving embryo disaggregation to generate human ESCs, iPSCs can now fuel the willingness of European companies to invest in treatments based on stem cells. Moreover, iPSCs share many unique features of ESCs, such as unlimited self-renewal potential and broad differentiation capability, even though iPSCs seem more susceptible to genomic instability and display epigenetic biases as compared to ESCs. Both ESCs and iPSCs have been intensely investigated for cardiomyocyte production and cardiac muscle regeneration, both in human and animal models. In vitro and in vivo studies are continuously expanding and refining this field via genetic manipulation and cell conditioning, trying to achieve standard and reproducible products, eligible for clinical and biopharmaceutical scopes. This review focuses on the recently growing body of patents, concerning technical advances in production, expansion and cardiac differentiation of ESCs and iPSCs.

  6. Recent advances in T-cell engineering for use in immunotherapy

    PubMed Central

    Sharma, Preeti; Kranz, David M.

    2016-01-01

    Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR) to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs) that contain antibody variable domains (single-chain fragments variable) and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens) serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs. PMID:27703664

  7. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections.

    PubMed

    Franek, Michal; Suchánková, Jana; Sehnalová, Petra; Krejčí, Jana; Legartová, Soňa; Kozubek, Stanislav; Večeřa, Josef; Sorokin, Dmitry V; Bártová, Eva

    2016-04-01

    Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.

  8. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    SciTech Connect

    Huang, J.-S. Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-12-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27{sup Kip1}, collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells.

  9. Investigation of novel electrolyte systems for advanced metal/air batteries and fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Hui

    It is a worldwide challenge to develop advanced green power sources for modern portable devices, transportation and stationary power generation. Metal/air batteries and fuel cells clearly stand out in view of their high specific energy, high energy efficiency and environment-friendliness. Advanced metal/air batteries based on metal ion conductors and proton exchange membrane (PEM) fuel cells operated at elevated temperatures (>120°C) can circumvent the limitations of current technologies and bring considerable advantages. The key is to develop suitable electrolytes to enable these new technologies. In this thesis research, investigation of novel electrolytes systems for advanced metal/air batteries and PEM fuel cells is conducted. Novel polymer gel electrolyte systems, [metal salt/ionic liquid/polymer] and [metal salt/liquid polyether/polymer] are prepared. Such systems contain no volatile solvents, conduct metal ions (Li+ or Zn 2+) with high ionic conductivity, possess wide electrochemical stability windows, and exhibit wide operating temperature ranges. They promise to enable non-aqueous, all-solid-state, thin-film Li/air batteries and Zn/air batteries. They are advantageous for application in other battery systems as well, such as rechargeable lithium and lithium ion batteries. In the case of proton exchange membranes, polymer gel electrolyte systems [acid/ionic liquid/polymer] are prepared. Especially, H3PO4/PMIH2PO 4/PBI is demonstrated as prospective proton exchange membranes for PEM fuel cells operating at elevated temperatures. Comprehensive electrochemical characterization, thermal analysis (TGA and DSC) and spectroscopy analysis (NMR and FTIR) are carried out to investigate these novel electrolyte systems and their ion transport mechanisms. The design and synthesis of novel ionic liquids and electrolyte systems based on them for advantageous application in various electrochemical power sources are highlighted in this work.

  10. The Hall effect in star formation

    NASA Astrophysics Data System (ADS)

    Braiding, C. R.; Wardle, M.

    2012-05-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.

  11. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  12. From GFP to β-lactamase: advancing intact cell imaging for toxins and effectors

    PubMed Central

    Zuverink, Madison; Barbieri, Joseph T.

    2015-01-01

    Canonical reporters such as green fluorescent protein (GFP) and luciferase have assisted researchers in probing cellular pathways and processes. Prior research in pathogenesis depended on sensitivity of biochemical and biophysical techniques to identify effectors and elucidate entry mechanisms. Recently, the β-lactamase (βlac) reporter system has advanced toxin and effector reporting by permitting measurement of βlac delivery into the cytosol or host βlac expression in intact cells. βlac measurement in cells was facilitated by the development of the fluorogenic substrate, CCF2-AM, to identify novel effectors, target cells, and domains involved in bacterial pathogenesis. The assay is also adaptable for high-throughput screening of small molecule inhibitors against toxins, providing information on mechanism and potential therapeutic agents. The versatility and limitations of the βlac reporter system as applied to toxins and effectors are discussed in this review. PMID:26500183

  13. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  14. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  15. Complete Remission of Locally Advanced Penile Squamous Cell Carcinoma after Multimodality Treatment

    PubMed Central

    Meng, Yifan; Bernie, Helen Levey; Weng, Tzu-Hua; Ling, Dean-An; Messing, Edward M.; Guancial, Elizabeth

    2016-01-01

    Treatment of locally advanced penile squamous cell carcinoma (pSCC) remains highly controversial secondary to disease rarity and lack of prospective randomized controlled trials. The current mainstays of care are multi-modality treatment with neoadjuvant chemotherapy and surgery. However, clinicians often have difficulty making recommendations for patients unable to tolerate chemotherapy or surgery due to scarcity of data to guide clinical decision-making. We report two cases of locally advanced pSCC that achieved complete remission after treatment with cisplatin-based neoadjuvant chemotherapy and surgery in one case, and concurrent cisplatin chemoradiation in a second, supporting the use of chemotherapy as part of first-line multimodal therapy. We also discuss additional treatment options for patients unable to tolerate traditional chemotherapy regimens. PMID:28191294

  16. Uncommon gastrointestinal bleeding during targeted therapy for advanced renal cell carcinoma: A report of four cases

    PubMed Central

    FUJIHARA, SHINTARO; MORI, HIROHITO; KOBARA, HIDEKI; NISHIYAMA, NORIKO; AYAKI, MAKI; OHATA, RYO; UEDA, NOBUFUMI; SUGIMOTO, MIKIO; KAKEHI, YOSHIYUKI; MASAKI, TSUTOMU

    2015-01-01

    Clinically available targeted agents to treat advanced renal cell carcinoma (RCC) include sunitinib, sorafenib and temsirolimus. Sorafenib and sunitinib have been associated with bleeding in selected trials, but clinical and endoscopic characteristics of gastrointestinal bleeding are not well described. Herein, we report four cases of advanced RCC in which endoscopic hemostasis effectively resolved high-grade, life-threatening gastrointestinal bleeding that occurred during targeted therapy. Although stomatitis and mucositis have occurred during targeted therapies, life-threatening gastrointestinal bleeding is less common. In these four patients, the origins of gastrointestinal bleeding were identified, and complete endoscopic hemostasis was achieved. Endoscopies revealed variable characteristics including angiodysplasia, multiple gastric ulcers and oozing bleeding of the normal mucosa. Although the most effective diagnostic and treatment strategies are disputed, endoscopic examinations are best performed before starting targeted therapies. Additionally, these patients should be monitored even for rare life-threatening events. PMID:26722259

  17. Identifying locally advanced basal cell carcinoma eligible for treatment with vismodegib: an expert panel consensus.

    PubMed

    Peris, Ketty; Licitra, Lisa; Ascierto, Paolo A; Corvò, Renzo; Simonacci, Marco; Picciotto, Franco; Gualdi, Giulio; Pellacani, Giovanni; Santoro, Armando

    2015-01-01

    Basal cell carcinoma (BCC) is the most common skin cancer worldwide. Most occur on the head and neck, where cosmetic and functional outcomes are critical. BCC can be locally destructive if not diagnosed early and treated appropriately. Surgery is the treatment of choice for the majority of high-risk lesions. Aggressive, recurrent or unresectable tumors can be difficult to manage. Until recently, no approved systemic therapy was available for locally advanced or metastatic BCC inappropriate for surgery or radiotherapy. Vismodegib provides a systemic treatment option. However, a consensus definition of advanced BCC is lacking. A multidisciplinary panel with expertise in oncology, dermatology, dermatologic surgery and radiation oncology proposes a consensus definition based on published evidence and clinical experience.

  18. Recent advances in nanotechnology-based detection and separation of circulating tumor cells.

    PubMed

    Myung, Ja Hye; Tam, Kevin A; Park, Sin-jung; Cha, Ashley; Hong, Seungpyo

    2016-01-01

    Although circulating tumor cells (CTCs) in blood have been widely investigated as a potential biomarker for diagnosis and prognosis of metastatic cancer, their inherent rarity and heterogeneity bring tremendous challenges to develop a CTC detection method with clinically significant specificity and sensitivity. With advances in nanotechnology, a series of new methods that are highly promising have emerged to enable or enhance detection and separation of CTCs from blood. In this review, we systematically categorize nanomaterials, such as gold nanoparticles, magnetic nanoparticles, quantum dots, graphenes/graphene oxides, and dendrimers and stimuli-responsive polymers, used in the newly developed CTC detection methods. This will provide a comprehensive overview of recent advances in the CTC detection achieved through application of nanotechnology as well as the challenges that these existing technologies must overcome to be directly impactful on human health.

  19. Update on targeted therapies for advanced non-small cell lung cancer: nivolumab in context

    PubMed Central

    Le, Alexander D; Alzghari, Saeed K; Jean, Gary W; La-Beck, Ninh M

    2017-01-01

    While the initial treatment of non-small cell lung cancer (NSCLC) usually relies on surgical resection followed by systemic cytotoxic chemotherapy and/or radiation therapy, recent advances in understanding of NSCLC biology and immunology have spurred the development of numerous targeted therapies. In particular, a class of immune modulatory drugs targeting the immune checkpoint pathways has demonstrated remarkable durable remissions in a select minority of advanced NSCLC patients, potentially heralding the elusive “cancer cure”. This review focuses on the clinical evidence for one of these agents, nivolumab, and clarifies the role of this drug in the context of the other targeted therapies currently available for the treatment of NSCLC. We also discuss the impact of nivolumab on patient quality of life and health economics. PMID:28260909

  20. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  1. Observation of a superfluid Hall effect

    PubMed Central

    Jiménez-García, Karina; Williams, Ross A.; Beeler, Matthew C.; Perry, Abigail R.; Phillips, William D.; Spielman, Ian B.

    2012-01-01

    Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)—internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect’s sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose–Einstein condensate’s transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system’s global irrotationality influences this superfluid Hall signal. PMID:22699494

  2. Advances in thin-film solar cells for lightweight space photovoltaic power

    SciTech Connect

    Landis, G.A.; Bailey, S.G.; Flood, D.J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuInSe2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuInSe2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  3. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  4. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  5. Analysis of advanced vapor source for cadmium telluride solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Khetani, Tejas Harshadkumar

    A thin film CdS/CdTe solar cell manufacturing line has been developed in the Materials Engineering Laboratory at Colorado State University. The original design incorporated infrared lamps for heating the vapor source. This system has been redesigned to improve the energy efficiency of the system, allow co-sublimation and allow longer run time before the sources have to be replenished. The advanced vapor source incorporates conduction heating with heating elements embedded in graphite. The advanced vapor source was modeled by computational fluid dynamics (CFD). From these models, the required maximum operating temperature of the element was determined to be 720 C for the processing of CdS/CdTe solar cells. Nichrome and Kanthal A1 were primarily selected for this application at temperature of 720 °C in vacuum with oxygen partial pressure. Research on oxidation effects and life due to oxidation as well as creep deformation was done, and Nichrome was found more suitable for this application. A study of the life of the Nichrome heating elements in this application was conducted and the estimate of life is approximately 1900 years for repeated on-off application. This is many orders of magnitude higher than the life of infrared heat lamps. Ceramic cement based on aluminum oxide (Resbond 920) is used for bonding the elements to the graphite. Thermodynamic calculations showed that this cement is inert to the heating element. An earlier design of the advanced source encountered failure of the element. The failed element was studies by scanning electron microscopy and the failure was attributed to loss of adhesion between the graphite and the ceramic element. The design has been modified and the advanced vapor source is currently in operation.

  6. Recent advances in molecular and cell biology of testicular germ-cell tumors.

    PubMed

    Chieffi, Paolo

    2014-01-01

    Testicular germ-cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and nonseminomas germ-cell tumors (NSGCTs). NSGCTs can be further divided into embryonal, carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the primordial germ cells. Many discovered biomarkers including OCT3/4, SOX2, SOX17, HMGA1, Nek2, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful novel molecular targets for antineoplastic strategies. More insight into the pathogenesis of TGCTs is likely to improve disease management not only to better treatment of these tumors but also to a better understanding of stem cells and oncogenesis.

  7. Donor Natural Killer Cells After Donor Stem Cell Transplant in Treating Patients With Advanced Cancer

    ClinicalTrials.gov

    2013-02-18

    Brain and Central Nervous System Tumors; Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Lymphoproliferative Disorder; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Unspecified Adult Solid Tumor, Protocol Specific

  8. Advances in pluripotent stem cell-derived endothelial cells: from biomaterials to organ regeneration.

    PubMed

    Lui, Kathy O

    2014-01-01

    Human embryonic stem cells (ESCs), by virtue of their capability to self-renew and differentiate into a variety of cell types, represent the first type of pluripotent stem cells (PSCs) to be used in clinical transplantation during recent phase-I trials; however, it is still unclear whether hESC-derived tissues can self-organize and form part of the vascularized, functional organ following transplantation. Recently, endothelial cells (ECs) or angiogenic factors such as VEGFA have been demonstrated to support development and regeneration of multiple organ systems, including the heart, pancreas, liver, lung and bone marrow. Therefore, co-transplantation of ECs derived from the same parental PSCs that differentiate into cell types of interest; or overexpression of the inductive angiogenic factors responsible for organ regeneration might be beneficial to support function of hPSC-derived tissues. In this special issue, we discuss how protein kinases (Ng and colleagues); DNA methylation and histone modification (Tsui and colleagues) regulate cellular pluripotency and cell-fate specification of PSCs. In addition, we discuss how ECs and angiogenic factors could contribute to repair and regeneration of organs such as the heart (Yuan and colleagues), the cardiovascular system (Tse and colleagues) and the pancreas (Lui). We also discuss the role of mesenchymal stem cells or paracrine factors secreted by them in tissue repair (Li and colleagues). Lastly, we discuss how to generate self-organized and vascularized tissues derived from PSCs in a 2- or 3-dimensional format by fusing tissue bioengineering approaches with stem cell technology (Chen).

  9. Healing mysteries: An interview with Howard Hall, PhD, PsyD. Interview by Sheldon Lewis.

    PubMed

    Hall, Howard

    2007-01-01

    Dr Howard Hall is an associate professor in the department of pediatrics at Case Western Reserve University (CWRU) and an attending doctor in the division of behavioral pediatrics at Rainbow Babies and Children's Hospital in Cleveland, Ohio. Dr Hall holds a PhD in Experimental Psychology from Princeton University and a PsyD in Clinical Psychology from Rutgers University. He has conducted research and taught courses in clinical and multicultural psychology and maintains a clinical practice using hypnosis and other mind-body approaches to healing at CWRU. Howard Hall has been recognized as a leader in the field of clinical psychoneuroimmunology and conducted pioneering research on the effects of hypnosis on immune responses. In recent years, he has studied energy-based rapid wound healing as demonstrated by Sufi practitioners. Recently, Sheldon Lewis, Editor-in-Chief of Advances in Mind-Body Medicine, spoke with Dr Hall about his work.

  10. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells.

    PubMed

    Schurman, L; McCarthy, A D; Sedlinsky, C; Gangoiti, M V; Arnol, V; Bruzzone, L; Cortizo, A M

    2008-06-01

    Advanced glycation endproducts (AGEs) are implicated in the complications of diabetes and ageing, affecting several tissues, including bone. Metformin, an insulin-sensitizer drug, reduces the risk of life-threatening macrovascular complications. We have evaluated the hypothesis that metformin can abrogate AGE-induced deleterious effects in osteoblastic cells in culture. In two osteoblast-like cell lines (UMR106 and MC3T3E1), AGE-modified albumin induced cell death, caspase-3 activity, altered intracellular oxidative stress and inhibited alkaline phosphatase activity. Metformin-treatment of osteoblastic cells prevented these AGE-induced alterations. We also assessed the expression of AGE receptors as a possible mechanism by which metformin could modulate the action of AGEs. AGEs-treatment of osteoblast-like cells enhanced RAGE protein expression, and this up-regulation was prevented in the presence of metformin. Although the precise mechanisms involved in metformin signaling are still elusive, our data implicate the AGE-RAGE interaction in the modulation of growth and differentiation of osteoblastic cells.

  11. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    PubMed Central

    Kim, Tae-Houn; Böhmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2011-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms. PMID:20192751

  12. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  13. Advanced NaBH4/H2O2 Fuel Cell for Space Applications

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Kim, Kyu-Jung; Luo, Nie; Shrestha, Prajakti Joshi

    2009-03-01

    Fuel cells have played an important role in NASA's space program starting with the Gemini space program. However, improved fuel cell performance will be needed to enable demanding future missions. An advanced fuel cell (FC) using liquid fuel and oxidizer is being developed by U of IL/NPL team to provide air independence and to achieve higher power densities than normal H2/O2 fuel cells (Lou et al., 2008; Miley, 2007). Hydrogen peroxide (H2O2) is used in this FC directly at the cathode (Lou and Miley, 2004). Either of two types of reactant, namely a gas-phase hydrogen or an aqueous NaBH4 solution, is utilized as fuel at the anode. Experiments with both 10-W single cells and 500-W stacks demonstrate that the direct utilization of H2O2 and NaBH4 at the electrodes result in >30% higher voltage output compared to the ordinary H2/O2 FC (Miley, 2007). Further, the use of this combination of all liquid fuels provides—from an operational point of view—significant advantages (ease of storage, reduced pumping requirements, simplified heat removal). This design is inherently compact compared to other fuel cells that use gas phase reactants. This results in a high overall system (including fuel tanks, pumps and piping, waste heat radiator) power density. Further, work is in progress on a regenerative version which uses an electrical input, e.g. from power lines or a solar panel to regenerate reactants.

  14. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects.

    PubMed

    Mansilla-Soto, Jorge; Riviere, Isabelle; Boulad, Farid; Sadelain, Michel

    2016-04-01

    The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade.

  15. Some aspects of allogeneic stem cell transplantation in patients with myelodysplastic syndrome: advances and controversy.

    PubMed

    Blau, Olga; Blau, Igor Wolfgang

    2014-01-01

    Myelodysplastic syndrome (MDS) is a heterogeneous group of myeloid disorders. MDS remains a disease of elderly patients; moreover, the incidence of high risk MDS is proportionally greater in elderly patients, with increased frequency of secondary acute myeloid leukemia, as well as adverse cytogenetic abnormalities. Allogeneic stem cell transplantation is a therapeutic approach with known curative potential for patients with MDS that allows the achievement of long-term disease control. Numerous controversies still exist regarding transplantation in MDS: timing of transplantation, disease status at transplantation and comorbidity, conditioning intensity, pretransplant therapy, and stem cell source. Various transplant modalities of different intensities and alternative donor sources are now in use. Current advances in transplant technology are allowing the consideration of older patients. This should result in a greater number of older patients benefiting from this potentially curative treatment modality. Despite advances in transplantation technology, there is still considerable morbidity and mortality associated with this approach. Nevertheless, with the introduction of reduced-intensity conditioning and thereby reduced early mortality, transplant numbers in MDS patients have significantly increased. Moreover, recent new developments with innovative drugs, including hypomethylating agents, have extended the therapeutic alternatives for MDS patients. Hypomethylating agents allow the delay of allogeneic stem cell transplantation by serving as an effective and well-tolerated means to reduce disease burden.

  16. Progress in Materials and Component Development for Advanced Lithium-ion Cells for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha, M.; Reid, Concha M.

    2011-01-01

    Vehicles and stand-alone power systems that enable the next generation of human missions to the Moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the- art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance the power systems for the Altair Lunar Lander, Extravehicular Activities spacesuit, and rovers and portable utility pallets for Lunar Surface Systems. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This report on interim progress of the development efforts will elaborate on the challenges of the development activities, proposed strategies to overcome technical issues, and present performance of materials and cell components.

  17. Third generation tyrosine kinase inhibitors and their development in advanced renal cell carcinoma.

    PubMed

    Bukowski, Ronald M

    2012-01-01

    Angiogenesis in general and the vascular endothelial growth factor (VEGF) signaling axis in particular is a validated target in renal cell carcinoma (RCC). Clear-cell carcinoma of the kidney is now recognized as a malignancy that is sensitive to inhibitors of the VEGF pathway. Treatment options for patients with metastatic renal cell carcinoma have evolved in dramatic fashion over the past 6 years, and a new paradigm has developed. The cytokines interferon-α and interleukin-2 were previously utilized for therapy, but since December 2005, six new agents have been approved in the United States for the treatment of advanced RCC. Two are tyrosine kinase inhibitors (TKI's) including sunitinib and recently pazopanib, and the multikinase inhibitor sorafenib. The current review examines the evolving data with the next generation of TKI's, axitinib and tivozanib being developed for the treatment of advanced RCC. These agents were synthesized to provide increased target specificity and enhanced target inhibition. The preclinical and clinical data are examined, an overview of the development of these TKI's is provided, and discussion plus speculation concerning their potential roles as RCC therapy is provided.

  18. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  19. Frequently rearranged in advanced T-cell lymphomas-1 demonstrates oncogenic properties in prostate cancer

    PubMed Central

    Zhang, Wei; Xiong, Hua; Zou, Yanmei; Xu, Sanpeng; Quan, Lanping; Yuan, Xianglin; Xu, Ningzhi; Wang, Yihua

    2016-01-01

    Prostate cancer is the fifth most common cause of cancer-associated mortality for males worldwide. Although dysregulation of the β-catenin/T-cell factor (TCF) pathway has been previously reported in prostate cancer, the mechanisms underlying this process remain unknown. Frequently rearranged in advanced T-cell lymphomas-1 (FRAT1) functions as a positive regulator of the β-catenin/TCF signaling pathway. However, to the best of our knowledge, the molecular association between FRAT1 and the β-catenin/TCF pathway in prostate cancer has not been investigated. In the present study, FRAT1 expression was analyzed in normal prostate tissues and prostate adenocarcinoma samples using publicly available databases, a commercial tissue microarray and immunohistochemistry techniques. In addition, FRAT1 expression levels were altered by overexpression or RNA interference-mediated depletion in prostate cancer cells. The effects of FRAT1 expression on tumor growth were determined using cell growth curves in vitro and xenografts in nude mice in vivo. The effects of FRAT1 on β-catenin/TCF activity were measured using the TOPFLASH reporter assay. FRAT1 was expressed exclusively in the nuclei of normal prostate basal cells, and nuclear FRAT1 was detected in 68% (40/59) of prostate adenocarcinoma samples. In addition, FRAT1 activated the TCF luciferase reporter gene promoter in prostate cancer cells, and was observed to promote the growth of prostate cancer cells in vitro. Furthermore, FRAT1 expression was sufficient to transform NIH3T3 mouse embryonic fibroblast cells and lead to tumor formation in vivo. These results suggest that FRAT1 demonstrates oncogenic properties in prostate cancer, potentially by suppressing the inhibitory effect of nuclear glycogen synthase 3β against β-catenin/TCF activity, thus activating the Wnt/β-catenin signaling pathway and promoting cell growth. PMID:27599661

  20. Advanced Glycation Endproducts Impair Endothelial Progenitor Cell Migration and Homing via Syndecan 4 Shedding.

    PubMed

    Xie, Jun; Li, Ran; Wu, Han; Chen, Jianzhou; Li, Guannan; Chen, Qinhua; Wei, Zhonghai; He, Guixin; Wang, Lian; Ferro, Albert; Xu, Biao

    2017-02-01

    Endothelial progenitor cells (EPCs) are a subtype of bone marrow-derived progenitor cells. Stromal cell-derived factor 1 (SDF-1)-mediated EPC mobilization from bone marrow to areas of ischemia plays an important role in angiogenesis. Previous studies have reported that advanced glycation endproducts (AGEs), which are important mediators of diabetes-related vascular pathology, may impair EPC migration and homing, but the mechanism is unclear. Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan receptor on the cell surface, involved in SDF-1-dependent cell migration. The extracellular domain of synd4 (ext-synd4) is shed in the context of acute inflammation, but the shedding of ext-synd4 in response to AGEs is undefined. Here we investigated changes in ext-synd4 on EPCs in response to AGEs, focusing on the influence of impaired synd4 signaling on EPC migration and homing. We found decreased full length and increased residue of synd4 in cells incubated with AGEs, with concomitant increase in the soluble fragment of ext-synd4 in the cell medium. EPCs from patients with type 2 diabetes expressed less ext-synd4 as assessed by Western blotting. Flow cytometry analysis showed less ext-synd4 on circulating CD34(+) peripheral blood mononuclear cells, of which EPCs form a subgroup. We then explored the role of synd4 in EPC migration and homing. Impaired migration of synd4-deficient EPCs was observed by a 2D-chemotaxis slide. Furthermore, poor homing of synd4-/- EPCs was observed in a mouse model of lower limb ischemia. This study demonstrates that the shedding of synd4 from EPCs plays a key role in AGE-mediated dysfunction of EPC migration and homing. Stem Cells 2017;35:522-531.

  1. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    SciTech Connect

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  2. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  3. Clinical activity of sunitinib in patients with advanced desmoplastic round cell tumor: a case series.

    PubMed

    Italiano, Antoine; Kind, Michèle; Cioffi, Angela; Maki, Robert G; Bui, Binh

    2013-09-01

    Desmoplastic small round cell tumor (DSRCT) is a rare and aggressive malignancy with poor outcome occurring in adolescents and young adults. Therapeutic options for patients with advanced disease are limited. Preclinical studies have shown that VEGFR-2 and VEGFA are overexpressed in DSRCT and that DSRCT xenografts were highly responsive to anti-VEGF agents such as bevacizumab. We report here the clinical activity of sunitinib in eight patients with DSCRT. Our data suggest that sunitinib may be associated with clinical benefit even in heavily pretreated patients.

  4. Advancement of mesenchymal stem cell therapy in solid organ transplantation (MISOT).

    PubMed

    Hoogduijn, Martin J; Popp, Felix C; Grohnert, Anja; Crop, Meindert J; van Rhijn, Marieke; Rowshani, Ajda T; Eggenhofer, Elke; Renner, Philipp; Reinders, Marlies E; Rabelink, Ton J; van der Laan, Luc J W; Dor, Frank J M F; Ijzermans, Jan N M; Genever, Paul G; Lange, Claudia; Durrbach, Antoine; Houtgraaf, Jaco H; Christ, Bruno; Seifert, Martina; Shagidulin, Murat; Donckier, Vincent; Deans, Robert; Ringden, Olle; Perico, Norberto; Remuzzi, Giuseppe; Bartholomew, Amelia; Schlitt, Hans J; Weimar, Willem; Baan, Carla C; Dahlke, Marc H

    2010-07-27

    There is evolving interest in the use of mesenchymal stem cells (MSC) in solid organ transplantation. Pre-clinical transplantation models show efficacy of MSC in prolonging graft survival and a number of clinical studies are planned or underway. At a recent meeting of the MISOT consortium (MSC In Solid Organ Transplantation) the advances of these studies were evaluated and mechanisms underlying the potential effects of MSC discussed. Continued discussion is required for definition of safety and eventually efficacy endpoints for MSC therapy in solid organ transplantation.

  5. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  6. Long-lasting control with erlotinib in advanced non-small cell lung cancer (NSCLC).

    PubMed

    Guimarães, Teresa; Castro, Ana; Cortesão, Nuno; Ferreira, Jorge; João, Fernanda

    2008-10-01

    The authors present a clinical case of a caucasian male patient, 59 years-old, non-smoker, with an advanced non-small cell lung carcinoma (NSCLC), with 3 years of follow-up, received erlotinib for 18 months, after failure of more than one chemotherapy schedule, without evidence of oncologic progression. The patient evidences excellent quality of life, controlled sintomatology, recovery of the capacity of tolerance to the effort and it maintains his professional activities. The treatment with erlotinib has been well tolerated, although exhibiting grade 1 cutaneous toxicity. Rev Port Pneumol 2008; XIV (Supl 3): S9-S15.

  7. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended,...

  8. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  9. Advances and issues in mantle cell lymphoma research: report of the 2014 Mantle Cell Lymphoma Consortium Workshop.

    PubMed

    Kahl, Brad S; Gordon, Leo I; Dreyling, Martin; Gascoyne, Randy D; Sotomayor, Eduardo M

    2015-01-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma characterized by the t(11;14) chromosomal translocation and cyclin D1 over-expression. A biologically and clinically heterogeneous lymphoma, MCL, remains clinically challenging, with no proven curative therapy and no established standard of care. However, there have been considerable advances in the last several years in the treatment and understanding of MCL with the FDA approval of lenalidomide and ibrutinib, the development of other potentially active novel agents and the identification of recurrent mutations through new genomic sequencing approaches that may contribute to the biology of MCL and to therapeutic resistance. At the Lymphoma Research Foundation's 11th MCL Workshop, researchers gathered to discuss recent studies and current issues related to the biology of MCL, novel therapeutic targets and new treatment strategies. The presentations are summarized in this manuscript, which is intended to highlight areas of active investigation and identify topics for future research.

  10. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  11. Charge carrier coherence and Hall effect in organic semiconductors

    SciTech Connect

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  12. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  13. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease.

    PubMed

    Fuchs, Shmuel; Kornowski, Ran; Weisz, Giora; Satler, Lowell F; Smits, Peter C; Okubagzi, Petros; Baffour, Richard; Aggarwal, Anita; Weissman, Neil J; Cerqueira, Manuel; Waksman, Ron; Serrruys, Parrick; Battler, Alexander; Moses, Jeffrey W; Leon, Martin B; Epstein, Stephen E

    2006-03-15

    The present report contains the final results of a Phase I study that evaluated the feasibility, safety, and potential efficacy of intramyocardial injection of autologous bone marrow (BM) in "no-option" patients with refractory angina and myocardial ischemia. Twenty-seven patients underwent electromechanic mapping-guided transendomyocardial injections (n = 12, 0.2 ml each) of unfractionated autologous BM cells directed to ischemic, noninfarcted myocardial territory. Patients were injected with 28 +/- 27 x 10(6)/ml nucleated cells containing 2.2 +/- 1.4% CD34+ cells. The autologous BM injection procedure was successful in all patients and was associated with no adverse events. At 3 months, the Canadian Cardiovascular Society angina score (3.2 +/- 0.5 vs 2.0 +/- 0.91, p = 0.001) and treadmill exercise duration (418 +/- 136 vs 489 +/- 142 seconds, p = 0.017) had improved significantly. The stress-induced ischemia score within the injected territories (118 segments) had also improved (2.2 +/- 0.8 vs 1.7 +/- 1.1, p < 0.001). At 1 year, the clinical improvement was sustained, although 5 patients had undergone revascularization procedures. The number of total injected nucleated cells (CD45+), progenitor cells (CD34+), and the magnitude of secreted vascular endothelial growth factor and macrophage chemoattractant protein-1 by cultured BM cells failed to predict the clinical response. In conclusion, the 3- and 12-month study results have indicated the safety of catheter-based transendocardial delivery of autologous BM cells in patients with advanced symptomatic ischemic heart disease and may suggest sustained potential efficacy. The cellular and humeral characteristics of autologous BM cells did not predict the clinical response, underscoring the advisability of additional mechanistic exploration.

  14. Molecular-targeted therapy for elderly patients with advanced non-small cell lung cancer

    PubMed Central

    ANTONELLI, GIOVANNA; LIBRA, MASSIMO; PANEBIANCO, VINCENZO; RUSSO, ALESSIA ERIKA; VITALE, FELICE VITO; COLINA, PAOLO; D'ANGELO, ALESSANDRO; ROSSELLO, ROSALBA; FERRAÙ, FRANCESCO

    2016-01-01

    Lung cancer is the most common cause of cancer-related mortality in men and women. Non-small cell lung cancer (NSCLC) represents close to 90% of all lung cancers. When diagnosed, >50% of patients are >65 years old. Through an improved understanding of the molecular mechanisms involved in lung oncogenesis, molecular-targeted approaches have become an essential element for the treatment of patients with NSCLC. As the toxicity profiles of the techniques are definitely more favorable compared with chemotherapy, they are particularly attractive for use in elderly patients, who are potentially more susceptible to the toxicity of systemic oncological therapies. However, studies on the activity of molecular-targeted agents in this aged patient setting are much more limited compared with those in their younger counterparts. In the present review, the literature on molecular-targeted therapy for elderly patients with advanced NSCLC is discussed. It is concluded that bevacizumab should be reserved only for highly select elderly patients with advanced NSCLC when the clinician deems it useful in the face of acceptable toxicities. In elderly patients with advanced epidermal growth factor receptor mutation-positive NSCLC, erlotinib and gefitinib appear to repeat the same favorable performance as that documented on a larger scale in the overall population of patients with activating mutations. A good toxicity profile is also confirmed for active molecules on different pathways, such as crizotinib. PMID:26870160

  15. Nivolumab: A Review in Advanced Nonsquamous Non-Small Cell Lung Cancer.

    PubMed

    Keating, Gillian M

    2016-06-01

    The programmed death (PD)-1 immune checkpoint inhibitor nivolumab (Opdivo(®)) is approved in the USA for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) who have progression on or after platinum-based chemotherapy and in the EU for the treatment of adults with locally advanced or metastatic NSCLC after prior chemotherapy. In previously-treated patients with advanced nonsquamous NSCLC, overall survival was significantly prolonged and the overall response rate was significantly higher in patients who received intravenous nivolumab 3 mg/kg every 2 weeks versus intravenous docetaxel in the pivotal CheckMate 057 trial. Progression-free survival did not significantly differ between patients receiving nivolumab and those receiving docetaxel. Intravenous nivolumab had a manageable adverse event profile (including immune-mediated adverse events) and was better tolerated than docetaxel in the CheckMate 057 trial. Thus, nivolumab is an important new option for use in previously-treated patients with advanced nonsquamous NSCLC.

  16. Salvage treatment with apatinib for advanced non-small-cell lung cancer

    PubMed Central

    Song, Zhengbo; Yu, Xinmin; Lou, Guangyuan; Shi, Xun; Zhang, Yiping

    2017-01-01

    Objective No definitive chemotherapeutic regimen has been established in patients with non-small-cell lung cancer (NSCLC) who failed second- or third-line treatment. The aim of this study was to evaluate apatinib, a VEGFR-2 inhibitor, in advanced NSCLC as salvage treatment. Methods We evaluated the efficacy and toxicity of apatinib in patients with previously treated advanced NSCLC from 2014 to 2015 in Zhejiang Cancer Hospital. Survival analysis was performed by the Kaplan–Meier method. Results Forty-two patients were included in the present study. Four patients achieved partial response, and 22 achieved stable disease, representing a response rate of 9.5% and a disease control rate of 61.9%. Median progression-free survival and overall survival were 4.2 and 6.0 months, respectively. The toxicities associated with apatinib were generally acceptable with a total grade 3/4 toxicity of 50%. Conclusion Apatinib appears to have some activity against advanced NSCLC when utilized as salvage treatment. PMID:28367065

  17. Molecular-targeted therapy for elderly patients with advanced non-small cell lung cancer.

    PubMed

    Antonelli, Giovanna; Libra, Massimo; Panebianco, Vincenzo; Russo, Alessia Erika; Vitale, Felice Vito; Colina, Paolo; D'Angelo, Alessandro; Rossello, Rosalba; Ferraù, Francesco

    2016-01-01

    Lung cancer is the most common cause of cancer-related mortality in men and women. Non-small cell lung cancer (NSCLC) represents close to 90% of all lung cancers. When diagnosed, >50% of patients are >65 years old. Through an improved understanding of the molecular mechanisms involved in lung oncogenesis, molecular-targeted approaches have become an essential element for the treatment of patients with NSCLC. As the toxicity profiles of the techniques are definitely more favorable compared with chemotherapy, they are particularly attractive for use in elderly patients, who are potentially more susceptible to the toxicity of systemic oncological therapies. However, studies on the activity of molecular-targeted agents in this aged patient setting are much more limited compared with those in their younger counterparts. In the present review, the literature on molecular-targeted therapy for elderly patients with advanced NSCLC is discussed. It is concluded that bevacizumab should be reserved only for highly select elderly patients with advanced NSCLC when the clinician deems it useful in the face of acceptable toxicities. In elderly patients with advanced epidermal growth factor receptor mutation-positive NSCLC, erlotinib and gefitinib appear to repeat the same favorable performance as that documented on a larger scale in the overall population of patients with activating mutations. A good toxicity profile is also confirmed for active molecules on different pathways, such as crizotinib.

  18. Outcome prediction of advanced mantle cell lymphoma by international prognostic index versus different mantle cell lymphoma indexes: one institution study.

    PubMed

    Todorovic, Milena; Balint, Bela; Andjelic, Bosko; Stanisavljevic, Dejana; Kurtovic, Nada Kraguljac; Radisavljevic, Ziv; Mihaljevic, Biljana

    2012-09-01

    The aim of this study was to evaluate the prognostic significance of international prognostic index (IPI), mantle cell lymphoma IPI (MIPI), simplified MIPI (sMIPI), and MIPI biological (MIPIb), as well as their correlation with immunophenotype, clinical characteristics, and overall survival (OS), in a selected group of 54 patients with advanced-stage mantle cell lymphoma (MCL), treated uniformly with CHOP. Seventeen patients had IV clinical stage (CS), while other 37 had leukemic phase at presentation. Diffuse type of marrow infiltration was verified in 68.5% and nodular in remainder patients. Extranodal localization (25.9%) included bowel (20.4%), pleural effusion, sinus, and palpebral infiltration. All of analyzed patients expressed typical MCL immunophenotypic profile: CD19(+)CD20(+)CD22(+)CD5(+)Cyclin-D1(+)FMC7(+)CD79b(+)smIg(+)CD38(+/-)CD23(-)CD10(-). Median OS of the whole group was 23 months, without significant differences between IV CS and leukemic phase patients. Thirty-two patients (59.3%) responded to initial treatment, 9 (16.7%) with complete and 23 (42.6%) with partial remission. Negative prognostic influence on OS had high IPI (P < 0.01), high sMIPI (P < 0.001), MIPI (P < 0.01), MIPIb (P < 0.01), extranodal localization (P < 0.01), and diffuse marrow infiltration (P < 0.01). Testing between randomly selected groups showed that patients with lower proportion of CD5(+) cells (<80%) correlated with cytological blastoid variant and had shorter survival comparing with the group with higher proportion of CD5(+) cells (>80%) (P < 0.01). Using univariate Cox regression, we proved that IPI, sMIPI, MIPI, and MIPIb had an independent predictive importance (P < 0.01) for OS in uniformly treated advanced MCL patients, although sMIPI prognostic significance was the highest (P < 0.001).

  19. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    PubMed

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  20. Advanced Feeder-Free Generation of Induced Pluripotent Stem Cells Directly From Blood Cells

    PubMed Central

    Trokovic, Ras; Weltner, Jere; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Salomaa, Veikko; Jalanko, Anu; Otonkoski, Timo

    2014-01-01

    Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking. PMID:25355732